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Abstract

In the U.S., cognitive non-routine (CNR) occupations are disproportionately represented in large
cities as well as some smaller cities specializing in CNR intensive industries. To study the alloca-
tion of workers across cities, we propose and quantify a spatial equilibrium model with multiple
industries employing CNR and non-CNR occupations. Productivity is city-industry-occupation
specific and, as we estimate, partly determined by externalities that depend on local occupation
shares and total employment. Heterogeneous preferences and these externalities imply ineffi-
cient equilibrium allocations. An optimal policy that benefits workers equally incentivizes (i)
the formation of cognitive hubs in the largest cities, (ii) higher overall activity and employment
in smaller cities, and (iii) increased industrial specialization in both the largest and smallest
cities and increases diversification in medium sized cities.
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1 Introduction

“Most of what we know we learn from other people (...) most of it we get for free.”
Robert E. Lucas Jr.1

Workers capable of doing the complicated cognitive non-routine tasks required in a modern
economy are scarce. Acquiring the expertise to work as a doctor, manager, lawyer, computer sci-
entist or researcher requires many years of schooling, sustained effort, and individual ability. These
workers are a valuable input and so their allocation across industries and locations is important for
overall efficiency and welfare in an economy. The marginal productivity of a worker depends on
the local productivity of the industry where she works, as well as on the set of workers in the same
city. Larger cities with a large fraction of workers in cognitive non-routine (CNR) occupations offer
learning and collaboration opportunities that enhance the productivity of other workers. However,
the abundance of CNR workers also lowers their marginal product, particularly in industries that
are less intensive in these occupations. The equilibrium interaction of these forces determines the
spatial polarization of workers and, relatedly, the spatial specialization of industries. Can the econ-
omy allocate scarce CNR workers in a way that improves the lives of all workers? Our aim is to
study the allocation of occupations and industries across cities in the U.S. and to characterize the
optimal spatial allocation and the policies to implement it.2

The need for optimal spatial policy is the direct implication of the presence of urban external-
ities. Externalities that enhance the productivity of workers in larger cities have been discussed,
analyzed, and measured at least since Marshall (1920).3 It is natural to hypothesize that these pro-
duction externalities depend on the occupational composition of a city. After all, CNR occupations
require more interactions between knowledgeable workers. As we show in detail in the next section,
the patterns of occupational polarization and wages across space in the U.S. suggest that this is
indeed the case. First, in the absence of technological differences or externalities across locations,
decreasing returns to workers in an occupation imply that relative CNR to non-CNR wages should
decline with the share of CNR workers. We find a large positive relationship even after controlling
for a number of observable worker characteristics.4 Why are CNR workers then making relatively
more in locations where they are abundant? A possible answer is that these locations specialize
in industries intensive in these occupations. The evidence, however, suggests that firms in CNR
abundant cities are even more intensive in CNR workers than suggested by their industrial make
up. What makes demand for these workers so high in these cities? Our take, and an explanation
that reconciles these various facts, is that the abundance of CNR workers itself makes them more
productive: a local occupation-specific externality. Estimating the strength of these externalities
is a central part of our analysis.

The detailed quantitative assessment of optimal spatial policies we propose requires a number
of contributions. These fall along four main dimensions.

First, we develop a spatial equilibrium model with multiple industries and occupations as well
as occupation-specific externalities. Multiple industries, costly trade, and input-output linkages
are all key features of the environment since the demand for different occupations depends on
the occupational intensity of the specific industries in each location. The framework also features

1Lucas (1988), page 38.
2Figure 20 in the Appendix shows CNR shares across U.S. cities.
3See Duranton and Puga (2004) for a review of the literature on externalities in cities.
4General city amenities that would be equally appealing to both occupations are unlikely to be a deciding factor

in attracting the best workers to abundant cities. Indeed, we show that while real wages of CNR workers increase
with a city’s CNR intensity, real wages of non-CNR workers do not. Therefore, amenities alone are not driving the
pattern of wages across space. For an alternative view, see Couture et al. (2018).
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externalities that are allowed to depend on the share of workers in CNR occupations and the total
workforce in the city. Finally, it includes heterogeneous preferences for locations that act as a form
of migration costs.

Second to arrive at an optimal spatial policy requires that we derive efficient allocations in
this setup. We choose to study the efficient allocation that benefit both occupations equally.
Implementing this allocation requires particular transfers between locations and occupations, which
we characterize.

Third, the details of optimal transfers require that we quantify the model and estimate the
parameters that determine the endogenous component of city-industry-occupation specific produc-
tivity. Thus, we first recover productivity across locations, industries, and occupation such that the
equilibrium of our model matches observed data. We then parameterize the relationship between
productivity and the occupational composition and size of cities and estimate this equation using
an instrumental variables approach. As proposed in the empirical literature (e.g. Card (2001)
and Moretti (2004a)), we use past migration flows of particular immigrant groups and the location
of land-grant colleges as instruments. We also present results using model-implied instrumental
variables. Our strategy yields a robust set of results comparable to the existing literature though,
as an improvement, estimated here directly from productivity measures recovered from the general
equilibrium framework we lay out. Our findings imply that the productivity of CNR and non-
CNR workers depends similarly on city size. In addition, the productivity of CNR workers depends
strongly and significantly on the share of CNR workers. We find less evidence that the productivity
of non-CNR workers depends on the composition of occupations.

Finally, informed by these findings, we compute the optimal allocation and discuss its imple-
mentation using particular policy tools. We also highlight important quantitative aspects of this
allocation through various counterfactual exercises.

Our findings propose a new approach to spatial policy. They indicate that the spatial allocation
of workers and industries may be improved by reducing the size of large CNR intensive cities while,
at the same time, increasing their fraction of CNR workers. These “cognitive hubs” take advantage
of scarce CNR workers in the economy by clustering them to maximize externalities. We find that
in equilibrium, the social value of CNR workers is 79% larger than their private value. However, the
industrial make up of cities, as well as their location, does impose limits on the creation of cognitive
hubs. Some large cities, such as Miami or Las Vegas, remain non-CNR abundant since they are
particularly productive in industries where CNR workers are employed less intensively. Cognitive
hubs end up scattered geographically around the country to minimize transport cost with the cities
with which they trade the most.

In order to increase the share of CNR workers while alleviating congestion in larger cities, the
optimal policy prescribes a re-allocation of non-CNR workers to smaller cities with lower CNR
shares. The end result is that under the optimal policy, the smallest cities grow in size by playing
to their strengths and expanding industries in which a large share of their employment already
resides. The corresponding growth of smaller cities also makes it possible for them to sustain more
employment in non-tradable industries such as retail, accommodation, and other services. Hence,
contrary to some previous literature and much of the public discourse, the economics of the problem
suggest that, with the appropriate transfers, small industrial cities in the U.S. should attract non-
CNR workers and not try to become the next San Jose. The concentration of CNR workers in a
few “cognitive hubs” should be encouraged, not scorned. Everyone can benefit from using CNR
workers in the most productive way possible.

Naturally, implementing the optimal allocation requires a number of transfers and taxes that
depend on the location and occupation of an agent. As Fajgelbaum and Gaubert (2018) discuss,
spatial efficiency requires a flat wage tax on all individuals to correct for the differences in the
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marginal utility of consumption generated by heterogeneous preferences for location. In addition
to this tax, in both our frameworks and theirs, implementing the optimal allocation requires a set of
transfers. These transfers insure that non-CNR workers benefit equally from the optimal policy so
that occupational inequality is mitigated despite the creation of cognitive hubs. In our analysis, the
base transfers to non-CNR workers amount to $16,872 (in 2015 dollars) while CNR workers, who
earn substantially more, end up paying a base transfer of $15,255. One interpretation of this base
transfer is that of a “universal basic income” paid to all non-CNR workers. CNR workers still need
to be incentivized to move to CNR intensive cities, and non-CNR workers to move to non-CNR
intensive cities. Therefore, occupation and city-specific transfers are positively correlated with city
size for CNR workers and negatively correlated with city size and the CNR share for non-CNR
workers. Their exact value depends on the particular location and industrial composition of each
city. Ultimately, the policy amounts to a subsidy to non-CNR workers to move to smaller cities
with low CNR shares, and incentives to CNR workers to form even more intensive “cognitive hubs”
in today’s largest cities.

Perhaps surprisingly, a comparison of the current spatial equilibrium to that in 1980 reveals
that the spatial allocation of workers has approached that implied by the optimal policy (with
current fundamentals). Specifically, since the 1980s, CNR workers have become not only more
abundant nationally but also increasingly concentrated in CNR intensive hubs, many of which are
large cities. This formation of cognitive hubs has taken place in parallel with a well documented
increase in wage inequality across space and occupations. Our quantitative framework implies that
both processes were linked through local occupation-specific externalities. Our analysis indicates
that absent these spillovers, the spatial polarization of workers would have been greatly mitigated,
and the welfare gains received by CNR workers smaller than those of non-CNR workers since CNR
workers became more abundant nationally over that time period.

The analysis also makes clear that not all forces pushing towards the spatial polarization of
workers are necessarily welfare-enhancing. This is the case, for instance, of housing regulations
captured here through changes in the productivity of the real estate sector. The cost of these
regulations has been emphasized by, among others, Glaeser and Gyourko (2018), Herkenhoff et al.
(2018) and Hsieh and Moretti (2019). Relatively low real-estate productivity growth in CNR-
intensive cities since 1980 has increased housing prices and led to more polarized CNR hubs. These
changes have thus brought the spatial distribution of occupations closer to that resembling the
optimal allocation. In this case, however, since this more spatially polarized distribution of workers
resulted from reductions in measured real estate productivity in larger cities, “the cognitive hubs”
led to declines in welfare.

Relationship to the Literature A substantial literature has pointed to increasing spatial con-
centration of skilled workers (Berry and Glaeser (2005), Diamond (2016), and Giannone (2017)),
as well as increasing wage inequality across space and within cities (Baum-Snow and Pavan (2013),
and Autor (2019)), with the skill premium increasing the most in large cities. Our paper speaks to
the optimal policy reaction to those trends.

We focus on production externalities as a key driving force behind those spatial patterns. The
estimation of those externalities is a central theme in urban and spatial economics. A robust finding
is the existence of a relationship between city size and productivity (see Melo et al. (2009) for a meta
analysis). While we allow for such agglomeration externalities, our main focus is on externalities tied
to the occupational composition of the city. This is compatible with empirical evidence by Ellison
et al. (2010) that industries with similar occupational make-up tend to be spatially proximate.
Given the correlation between occupational types and skill levels, our findings of strong spillovers
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stemming from the occupational composition of cities mirrors findings by Moretti (2004a; 2004b)
regarding the local external effects of human capital.

There has been ample research on the extent of spatial misallocation in the U.S. economy and
the degree to which it corresponds to heterogeneity in taxation policy (or its local incidence), zoning
laws, or other unspecified sources of distortions. Examples of papers in that vein are Albouy (2009),
Desmet and Rossi-Hansberg (2013), Ossa (2015), Fajgelbaum et al. (2018), Colas and Hutchinson
(2017), Hsieh and Moretti (2019) and, most recently Herkenhoff et al. (2018).

Our paper sheds light on place-based policies in that it highlights the optimal endogenous
expansion of different industries in different locations. A summary of the related literature can
be found in Neumark and Simpson (2015). Rather than evaluating exogenous policies, we derive
the optimal allocation in a quantitative spatial model with local externalities. Our derivation of
optimal policy thus generalizes that of Fajgelbaum and Gaubert (2018) in an environment with
input-output linkages and where trade is differentially costly across industries. Two other recent
papers that discuss the optimal distribution of city sizes are Eeckhout and Guner (2015) and Albouy
et al. (2019).

We integrate industrial, occupational and spatial heterogeneity in a single coherent framework.
Other recent work that has emphasized the joint distribution of industrial and skill composition
within the U.S. are Hendricks (2011) and Brinkman (2014). As in Caliendo et al. (2017), we
allow for trade costs, thus capturing an explicitly spatial dimension, but add to that framework by
also allowing for occupational heterogeneity and local production externalities. Finally, on a more
technical note, our paper adds to the rapidly expanding ‘quantitative spatial economics’ literature
that uses general equilibrium models to address issues related to international, regional and urban
economics. Redding and Rossi-Hansberg (2017) provide a review of the main ingredients in these
models.

The rest of the paper is organized as follows. Section 2 presents stylized facts that constitute
prima-facie evidence for the presence of externalities among CNR workers within cities. Section 3
presents our multi-industry spatial model with occupation specific externalities within cities. Sec-
tion 4 quantifies the model, including our estimation of the externality parameters. It also discusses
the role of externalities in the equilibrium allocation. Section 5 presents the optimal allocation as
well as the resulting transfers and their implementation. Section 6 provides a decomposition of the
impact of fundamental changes in the national CNR employment share and in technology across
sectors and cities between 1980 and the recent data. Section 7 concludes. We relegate many of the
model’s details, additional robustness exercises and counterfactuals to the Appendix.

2 A Motivation for Occupation-Specific Externalities

The main question under consideration is whether there is a role for policy in altering the observed
spatial polarization of employment and, if so, what are its features? We now provide some basic facts
regarding the joint spatial distribution of wages and employment for workers in different occupations
that point to the existence of important occupational externalities. Those facts constitute prima-
facie evidence that the optimal policy may in fact involve reinforcing existing patterns, with the
appropriate transfers, rather than attenuating them.

We separate workers from 2011 to 2015 in two large occupational groups: those that are intensive
in cognitive non-routine (CNR) tasks and the others (non-CNR).5 We calculate the average residual

5Specifically, we follow Jaimovich and Siu (2018), and define CNR occupations to include occupations with SOC-
2 classifications 11 to 29 and non-CNR occupations to include the remainder of SOC-2 classifications. Wage and
employment data is obtained from the American Community Survey.
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Figure 1: Occupational employment share and wage premium

See text for details on definitions of the wage premium and occupation classification. Log wage
premium is depicted as a deviation from employment weighted mean. Each observation refers to a
CBSA. Marker sizes are proportional to total employment.

wages of workers in each occupation and each city after controlling for observable worker socio-
economic characteristics.6 This classification builds on the observation by Acemoglu and Autor
(2011) that one can best understand wage inequality trends through such a task based approach.

Figure 1 shows that across U.S. cities, wages of workers employed in Cognitive Non-Routine
(CNR) occupations, relative to those of workers in other (non-CNR) occupations, increase with
the corresponding share of CNR workers in total employment. This suggests that differences in
relative wages across cities are, to a large degree, driven by differences in relative demand for CNR
workers.7 The size of the scatter-plot markers captures city size. They indicate that large cities
appear to also be CNR intensive.

Focusing on CNR workers, the left panel of Figure 2 indeed shows that real wages of CNR
workers increase with the intensity of CNR employment across cities. Moreover, some of the high
real wage cities include places like San Francisco and New York that on average may provide higher
amenities to CNR workers (see Diamond (2016)). In those cities, therefore, labor demand forces
are seemingly pronounced enough to more than make up for the labor supply inducing effects
of local amenities, such as the variety of retail and entertainment options. If workers differ in
their preferences for where to live, the real wages depicted in the left panel of Figure 2 reflect the
compensating differential to the marginal CNR worker in a given city.

Differences in the relative demand for CNR workers across cities can arise for several reasons.

6We include as control variables education, potential experience, race, gender, English proficiency, number of years
in the U.S., marital status, having had a child in the last year, citizenship status, and veteran status.

7In particular, suppose that technologies were similar across cities, and that the share of CNR workers were driven
by the supply of those workers. Then, with decreasing marginal returns to worker type, increases in the relative
supply of CNR workers would lower their relative wages.
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First, differences in relative demand for CNR workers may arise from exogenous (or historically
determined) differences in industrial composition or regulations. Suppose that the industry make
up of a city, n, is the main determinant of its demand for CNR workers relative to other types.
Then, its wage bill share for CNR workers would be (approximately)

∑
j δ

CNR,jσjn, where δCNR,j

is the national wage bill share of CNR workers in industry j, and σjn is the wage bill of industry
j as a share of that city’s total wage bill. Figure 3 compares the wage-bill shares of CNR workers
implied by the different industrial composition of U.S. cities relative to those observed in the data.
The black line is a 45 degree line. The observed wage bill shares differ from, and in fact increase
more than one-for-one with, those implied by differences in industrial mix alone, thus ruling out
industrial composition as a sole determinant of labor demand across cities.8
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Figure 2: Occupational employment share and real wages

See text for details on definitions of the wage premium and occupation classification. Real wages
are calculated using consumption price indices obtained from the model quantification (See Section
4). Log real wages are depicted as a deviation from employment weighted mean. Each observation
refers to a CBSA. Marker sizes are proportional to total employment.

Differences in the relative demand for CNR workers across cities can also arise endogenously if
more productive workers within occupational types sort themselves into particular cities. Baum-
Snow and Pavan (2013) indeed argue that observable worker characteristics are an important de-
terminant of the city size wage premium. However, the fact that relative wages in Figure 1 are
computed from residuals after controlling for observable worker characteristics suggests that sorting
along these characteristics is not the only driving force underlying that figure. Thus, if sorting is
nevertheless part of an explanation driving the positive relationship between the wage premia of
CNR workers and the employment share of those workers, it must be taking place along dimensions
that are not easily observed. However, assuming that differences in amenities are experienced in
similar ways by CNR and non-CNR workers, high productivity non-CNR workers would then also

8The figure also rules out the production technology for different industries being well characterized by Cobb-
Douglas (i.e. the elasticity of substitution across worker types is likely not equal to 1).
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sort themselves into cities with a high share of CNR workers. The right panel of Figure 2 suggests
that this is not, in fact, the case.9

Finally, differences in relative demand for CNR workers may be explained by endogenous dif-
ferences in productivity, even when not from sorting, if these differences arise from production
externalities that predominantly affect CNR workers. First, to the extent that production exter-
nalities also increase with the concentration of CNR workers in a given city, it is then naturally
the case that the demand for CNR workers would increase with the share of employment in CNR
occupations, as suggested by Figure 1. Second, if production externalities mainly enhance the pro-
ductivity of CNR workers, then real wages of CNR workers would increase with the share of CNR
employment within cities, as in the left panel of Figure 2, but no such effect would be expected
among non-CNR workers, as suggested by the right panel of Figure 2. Third, and most importantly,
Figure 3 shows that observed wage bill shares of CNR workers increase more than one-for-one with
those implied by differences in industrial composition alone. This observation would be expected in
an environment where production externalities intensify the implications of industrial mix. Specif-
ically, CNR workers will concentrate, all else equal, in cities whose industrial composition is tilted
towards industries intensive in CNR workers. In the presence of production externalities, therefore,
this concentration would lead to increases in the productivity of CNR workers. If the elasticity of
substitution between worker types is higher than 1, one would then expect higher wage shares for
CNR workers in those cities relative to those given by industrial composition alone.

3 A Quantitative Spatial Model with Multiple Industries and
Occupations

The economy has N cities and J sectors. We denote a particular city by n ∈ {1, ..., N} (or n′) and
a particular sector by j ∈ {1, ..., J} (or j′). Individuals are endowed with an occupational type
and cannot switch types. There are K occupational types, denoted by k ∈ {1, ...,K} (or k′), with
aggregate number of workers Lk per type (total employment in occupation k aggregated across
industries and cities). Firms in all cities use multiple types of labor but in potentially different
proportions depending on the industry and the city. Aggregate regional land and structures in
region n are denoted by Hn. Labor of all types moves freely across regions and sectors, while
structures are region-specific. Some sectors are tradable while others are not.

Quantities in the economy may be associated with industries, cities, or occupations. For nota-
tional convenience, we denote aggregates across a given dimension by omitting the corresponding
index. Thus, for example, Lkjn is the number of workers employed in occupation k in industry
j in city n, Lkn =

∑
j L

kj
n represents the number of workers employed in occupation k in city n,

Lk =
∑

n L
k
n represents all workers in occupation k, and L =

∑
k L

k is simply total employment.

3.1 Individuals

Workers in each location n ∈ {1, ..., N}, are endowed with labor of type k ∈ {1, ...,K}, and order
consumption baskets according to Cobb-Douglas preferences with shares αj over their consumption
of final domestic goods, Ckjn :

Ckn =
∏
j

(
Ckjn

)αj
,

9The small relevance of sorting to explain differences in wages across cities has in fact been recently verified in
empirical work by Baum-Snow and Pavan (2011) and Roca and Puga (2017).
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Figure 3: Occupational wage bill share: predicted vs actual
See text for details on definitions of the wages and occupation classification. The predicted wage
bill-shares are obtained by assuming that within-industry wage bill shares were equal to national
averages (see text for details). Each observation refers to a CBSA. Marker sizes are proportional to
total employment.

where Ckn is a consumption aggregator. Consumption goods consumed in city n are purchased at
prices P jn in sectors j ∈ {1, ..., J}. Utility is homogeneous of degree one, so that

∑
j α

j = 1.
Workers supply one unit of labor inelastically. The income of a worker of type k residing in city

n is

Ikn = wkn + χk, (1)

where wkn is the wage earned by a worker in occupation k in city n. The term χk represents the
return per household on a national portfolio of land and structures from all cities,

χk = bk
∑

n′ rn′Hn′

Lk
,

where rn is the rental rate on land and structures in that city, and bk denotes the share of the
national portfolio accruing to workers of occupational type k. In what follows, we assume that bk
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is determined such that different worker types receive a share of the national portfolio proportional
to their share of wages in the total wage bill, so

bk =

∑
nw

k
nL

k
n∑

k′,n′ w
k′
n′L

k′
n′
.

Agents of a given occupational type differ in how much they value living in different cities.
These differences are summarized by a vector a = {a1, a2, ..., aN}, with each entry an scaling the
utility value that an individual receives from living in city n. We associate the elements an with
the particular way in which different workers experience the amenities of given cities. Conditional
on living in city n, the problem of an agent employed in occupation k and characterized by amenity
vector a is

vkn (a) ≡ max{
Ckjn (a)

}J
j=1

anA
k
n

∏
j

(
Ckjn (a)

)αj
, subject to

∑
j

P jnC
kj
n (a) = Ikn,

where Akn denotes an exogenous component of city-specific utility common to all individuals of type
k living in city n. All workers in a given occupation living in a given city will choose the same
consumption basket. It follows that Ckjn (a) = Ckjn for all a.

Agents move freely across cities. The value of locating in a particular city n for an individual
employed in occupation k, with idiosyncratic preference vector a, is

vkn (a) =
anA

k
nI

k
n

Pn
= anA

k
nC

k
n.

In equilibrium, workers move to the location where they receive the highest utility so that

vk (a) = max
n

vkn (a) ,

where vk(a) now denotes the equilibrium utility of an individual in occupation k with amenity
vector a. We assume that an is drawn from a Fréchet distribution independently across cities. We
denote by Ψ the joint cdf for the elements of a across workers in occupation k, so that

Ψ (a) = exp

{
−
∑
n

(an)−ν
}
,

where the shape parameter ν reflects the extent of preference heterogeneity across workers employed
in occupation k. Higher values of ν imply less heterogeneity, with all workers ordering cities in
the same way when ν → ∞. The assumption of a Fréchet distribution for idiosyncratic amenity
parameters implies closed form expressions for the fraction of workers in each city:

Lkn = Pr

(
vkn(a) > max

n′ 6=n
vkn′(a)

)
=

(
AknC

k
n

)ν∑
n′
(
Akn′C

k
n′
)νLk. (2)

3.2 Firms

There are two types of firms: those producing intermediate goods and those producing final goods.
There is a continuum of varieties of intermediate goods which are aggregated into a finite number
of final goods corresponding to J sectors. Varieties of intermediate goods are characterized by
the sector in which they are produced, and by a vector of city-specific productivity parameters,
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z = {z1, z2, ..., zN}, with each element zn scaling the productivity of firms in city n producing that
variety.

Final goods are sold in the city where they are produced. Varieties of intermediate goods
are traded across cities. Because of transportation costs, the price earned by intermediate goods
producers need not be the same as the price paid by final goods producers. Intermediate goods
producers operating in city n, sector j, producing a variety indexed by z, produce a quantity, qjn(z),
for which they earn a price pjn(z). Final goods producers operating in city n, sector j, purchase a
quantity Qjn(z) of the variety of intermediate goods indexed by z.

3.2.1 Intermediate Goods

Idiosyncratic productivity draws, z, arise from a Fréchet distribution with shape parameter θ.
Draws are independent across goods, sectors, and regions. Specifically, if we let Φ be the joint cdf
of variety-specific productivity parameters across firms in industry j, then

Φ (z) = exp

{
−
∑
n

(zn)−θ
}
.

Production of intermediate goods a variety indexed by z, in city n, and industry j, takes place
using the technology,

qjn (z) = zn

Hj
n (z)β

j
n

[∑
k

(
λkjn L

kj
n (z)

) ε−1
ε

] ε
ε−1

(1−βjn)
γ

j
n∏

j′

M j′j
n (z)γ

j′j
n (3)

where γj
′j
n ≥ 0 is the share of sector j input expenditures spent on materials from sector j′ in

city n, γjn ≥ 0 is the share of value added in gross output in sector j, and βjn is the share of land
and structures in value added in that sector. The production function is constant returns to scale,∑J

j′=1 γ
j′j
n = 1− γjn. The variable λkjn denotes a labor augmenting productivity component that is

city, industry, and occupation specific. We denote by Hj
n (z) the quantity of structures used by a

firm producing a variety z in industry j operating in city n, by M j′j
n (z) the quantity of material

goods this firm uses from sector j′, and by Lkjn (z) the workers of type k it employs.

Importantly, given the evidence presented in Section 2, we allow λkjn to reflect externalities that
depend on the composition of the labor force. In particular, we let

λkjn = λkjn (Ln),

where Ln = {L1
n, ...., L

K
n } summarizes the occupational make up of the labor force in city n.

3.2.2 Final Goods

A final goods firm operating in industry j in city n produces the quantity Qjn according to the
technology,

Qjn =

∫ [∑
n′

Qjnn′(z)

] η−1
η

dΦ (z)


η
η−1

,

where Qjnn′(z) represents its use of intermediate goods of variety z produced in city n′.
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One unit of any intermediate good in sector j shipped from region n′ to region n requires
producing κjnn′ ≥ 1 units in the origin n′. Therefore, producers of final goods in each sector solve

max
Qj
nn′ (z)

P jnQ
j
n −

∑
n′

∫
κjnn′p

j
n′(z)Qjnn′ (z) dΦ (z) ,

subject to Qjnn′(z) ≥ 0, where P jn is the price of the final good in sector j, city n. Intermediate
goods in non-tradable sectors cannot be shipped between cities.

Final goods firms purchase intermediate goods from the location in which the acquisition cost,
including transportation costs, is the least. Denote by Xj

n the total expenditures on final goods j
by city n, which must equal of the value of final goods in that sector, Xj

n = P jnQ
j
n. Because of zero

profits in the final goods sector, total expenditures on intermediate goods in a given sector are then
also equal to the cost of inputs used in that sector. Following the usual Eaton and Kortum (2002)
derivations, given a final good j produced in city n, the share of intermediate inputs imported from
location n′ is

πjnn′ =

[
κjnn′x

j
n′

]−θ
∑N

n′′=1

[
κjnn′′x

j
n′′

]−θ ,
where

xjn =


(
rβ

j
n
n

βjn

)[
1

1− βjn

∑
k

(
wkn

λkjn

)1−ε] 1−βjn
1−ε


γjn

J∏
j′=1

(
P j
′
n

γj
′j
n

)γj′jn
(4)

is a cost index associated with the production of varieties in sector j, city n. In quantifying the
model, we also allow for two non-tradable sectors for which πjnn = 1.

3.3 Market Clearing Conditions

Within each city n, the number of workers employed in occupation k must equal the number of
those workers who choose to live in that city. Put alternatively,∑

j

∫
Lkjn (z)dΦ(z) =

∫
ζkn(a)dΨ(a), ∀ n = 1, ..., N , k = 1, ...,K. (5)

where ζkn(a) ∈ {0, 1} denotes the location choice of households as a function of their type. Market
clearing for land and structures in each region imply that∑

j

∫
Hj
n (z) dΦ (z) = Hn, n = 1, ..., N. (6)

Final goods market clearing implies that∑
k

LknC
kj
n +

∑
j′

∫
M jj′
n (z) dΦ (z) = Qjn. (7)

Finally, intermediate goods market clearing requires that

qjn(z) =
∑
n′

κjn′nQ
j
n′n(z). (8)
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4 Quantifying the Model

In the model we have laid out, any quantitative statement about efficient allocations will necessarily
depend on the parameterization of occupation-specific externalities. Estimating these externalities
in turn requires that we take the model to the data and recover productivity in different occupa-
tions, sectors, and cities such that the equilibrium of the model matches these data. Observations
used in the model inversion are thus matched by construction. However, other predictions of the
model with respect to recovered productivity or tradable goods prices do not have easily observable
counterparts. In fact, we show that the properties of productivity and prices delivered by the model
are comparable to those found in different recent studies, effectively tying these studies within a
single general equilibrium framework.

The model is mapped into 22 industries and the two large occupational groups (cognitive non-
routine and others) emphasized in Section 2. Of the 22 industries, two are non-tradable, meaning
that all local output is also used locally. The two non-tradable sectors include real-estate services,
which is the single user of land in each city, and a composite sector comprising retail, construction,
and utilities. Tradable industries include 10 manufacturing sectors and 10 service sectors. In
quantifying the model, we focus on the period 2011 to 2015.

The set of parameters needed to quantify our framework fall into two broad types: i) param-
eters that are constant across cities (but may vary across occupations and/or industries) and ii)
parameters that vary at a more granular level and require using all of the model’s equations (i.e.
by way of model inversion) to match data that vary across cities, industries, and occupations.

To obtain an initial calibration for the share parameters γjn, γjj
′

n and αj , we use an average of
the 2011 to 2015 BEA Use Tables, each adjusted by the same year’s total gross output, where we

assume that tradable sectors have γjn = γj that are constant across cities and similarly for γjj
′

n ’s.10

We adopt the convention that all land and structures are managed by firms in the real estate
sector that then sell their services to other sectors. Accordingly, for all sectors other than real
estate, we reassign the gross operating surplus remaining after deducting equipment investment to
purchases from the real estate sector. These surpluses are in turn added to the gross operating
surplus of real estate.11 This convention implies that the share of land and structures, βjn, in the
production of all sectors other than real estate is equal to zero. Observe also that the share, βjn,
helps determine the supply elasticity of real estate services which differs across cities.

We set θ, the Fréchet parameter governing trade elasticities, to 10 or well within the range
of estimates of trade elasticities in the literature, between 3 to 17 (see Footnote 44 in Caliendo
and Parro (2015), as well as Head and Mayer (2014), section 4.2 for comprehensive summaries of
estimates). While estimates of θ have been carried out at various levels of disaggregation, these
can vary somewhat widely for a given sector or commodity across studies.12 For our purposes, this
uncertainty is further compounded by the fact that trade elasticities that are relevant for trade
between countries may not be appropriate for trade between regions or cities.

As mentioned, we assume that two of the sectors (“real estate,” as well “retail, construction,
and utilities”) are non-tradable, so that their transportation costs are treated as infinite. For
the tradable sectors, we follow Anderson et al. (2014) and assume that trade costs increase with

10Since the model does not allow for foreign trade, we adjust the Use Table by deducting purchases from interna-
tional producers from the input purchases and, for accounting consistency, from the definition of gross output for the
sector.

11One can verify that those reassignments do not affect aggregate operational surplus (net of equipment investment),
aggregate labor compensation, and aggregate value added (net of equipment investment).

12For example, while Caliendo and Parro (2015) estimate an elasticity of 7.99 for Basic Metals and 4.75 for
Chemicals, Feenstra et al. (2018) estimate a elasticities of, respectively, 1.16 and 1.46 for those two categories.
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distance. Specifically, in order to ship one unit of good to city n, κjnn′ = (dnn′)
tj units of the good

need to be produced in city n′, with dnn′ the distance between city n and city n′ in miles.13 The
parameter tj is industry specific. For commodities, we directly estimate tj from the Commodity
Flow Survey synthetic microdata using standard gravity regressions based on model trade-shares.
In the tradable services, we use the values obtained by Anderson et al. (2014) using Canadian data.

Ciccone and Peri (2005) summarize estimates for the elasticity of substitution between skilled
and unskilled labor in the literature as ranging between 1.36 and 2. Card (2001) estimates the
elasticity of substitution between occupations to be closer to 10. We adopt ε = 2 as a benchmark.
Finally, we set ν so that the average elasticity of employment with respect to real wages in our
model matches the estimate of 1.36 as in Table A.11, column 4, of Fajgelbaum et al. (2018). This
implies ν = 2.02.14

Given the parameters above, we use data on wages by occupation and location (wkn), as well

as data on employment by occupation, industry and location (Lkjn ), to obtain equilibrium values

of productivity and amenities, λkjn and Akn respectively. Data pertaining to wKn , and Lkjn∑
k′ L

k′j
n

is

available from the American Community Survey (ACS). The ACS also allows us to adjust wages
for individual characteristics so that our data captures city wage premia for each occupation. The

Census provides measures of total employment,
∑

k′ L
k′j
n , from the County Business Patterns (CBP)

that better match BEA industry-level counts. We combine total employment from the CBP with
ACS data on employment shares to obtain Lkjn . The exact procedure that yields λkjn and Akn by
way of model inversion is described in detail in Appendix B.

Table 1 compares the relationships between wages, employment, and employment composition
across different cities highlighted in previous work relative to the data used in our model inversion.
The first three rows of the table show regression coefficients of log wages for CNR workers, non-CNR
workers, and the CNR wage premium, on different measures of city employment and employment
composition. The subsequent rows show similar regression coefficients obtained in previous lit-
erature. The data we use implies relationships that are consistent with those in other work. In
particular, all wages increase with city size, more so for skilled workers. A similar relationship holds
for wages and city composition where proportionally more skilled cities exhibit higher wages for all
workers, more so for skilled workers.15

4.1 Model Validation

We now show that our model-consistent TFP measures and tradable prices compare favorably with
previous empirical work, but within a single general equilibrium framework that can also be used
to guide optimal policy. There exists a large literature that has estimated and studied the role of
agglomeration externalities. Much of this work has relied on a production function approach using
measures of output and factor inputs to estimate Total Factor Productivity (TFP), or using labor
productivity more directly, in exploring how productivity depends on the scale of city employment
or its skill composition. There is also a literature that has sought to understand how tradable goods

13We assume that within city distance is equal to 20 miles.
14Here, ν is somewhat larger than the value obatained by Fajgelbaum et al. (2018). This reflects the fact that ν

is the elasticity of labor supply with respect to consumption rather than wages. Because Fajgelbaum et al. (2018)
abstract from non-wage income, they estimate values for the analogous parameter in their model of between 0.75 and
2.25 depending on identification assumptions.

15An exception is Moretti (2004a) who finds no statistically significant differences in the way that wages of college
educated workers and non-college educated workers vary with employment composition across cities. Our findings,
however, rely on a more recent time period where other work has found an increasingly pronounced relationship
between skill and city size (see Baum-Snow and Pavan (2013)).
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prices vary with city size. We add to those literatures by combining their results with a framework
that can then be used to provide a quantitative assessment of optimal spatial policy.

4.1.1 Tradable Goods Prices and City Size

Recent work by Handbury and Weinstein (2014), using Nielsen home-scanned data on tradable
goods bought in grocery stores, highlights that tradable consumer prices decrease with city size.
Prior to that study, the consensus view, based on more aggregated prices, was that such prices
instead increased with city size.16 Given the detailed nature of Nielsen home-scanned prices, Hand-
bury and Weinstein (2014) are able to control for product buyer and retailer heterogeneity in a
way that is not easily achieved with more aggregate prices. Allowing for those controls reduces the
elasticity of tradable goods bought in grocery stores with respect to city size to zero. When Hand-
bury and Weinstein (2014) further adjust local price indices to reflect differences in the number

16In principle, given that rents generally increase with city-size, tradable consumer prices might indeed follow the
same pattern to the degree that they are partially influenced by local rents as an input cost.

Table 1: Wages, Employment, and City Composition

Dependent Variable ln(Ln) ln
(
LCNR
n

LnCNR
n

)
LCNR
n
Ln

ln
(
wCNR
n

) 0.059
(0.004)

0.338
(0.021)

1.499
(0.089)

ln
(
wnCNR
n

) 0.050
(0.002)

0.223
(0.017)

0.993
(0.072)

ln
(
wCNR
n

wnCNR
n

) 0.022
(0.001)

0.115
(0.008)

0.506
(0.036)

Moretti HS1 — —
0.85

(0.06)

Moretti Some College — —
0.86

(0.06)

Moretti College + — —
0.74

(0.06)

Roca & Puga wage log wage constant2 0.0455
(0.0080)

— —

Diamond log college wage3 —
0.26

(0.11)
—

Diamond log non-college wage4 —
0.18

(0.01)
—

Baum-Snow et al. log wage, 2005-20075 0.065
(< 0.01)

— —

Baum-Snow et al. log wage ratio6 0.029
(< 0.003)

— —

1. Moretti (2004a) "Estimate the social return to higher education: evidence from longitudinal and repeated
cross-sectional data", Table 5.
2. Roca and Puga (2017) "Learning by Working in Big Cities", Table 1.
3. Diamond (2016) "The Determinants and Welfare Implications of US Workers’ Diverging Location Choices by
Skill: 1980-2000", Figure 4.
4. Diamond (2016), Figure 3
5. Baum-Snow et al. (2018) "Why Has Urban Inequality Increased?", Table 1. Standard error reported as less
than 0.01.
6. Baum-Snow et al. (2018), Table 2. Standard error reported as less than 0.003.
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Table 2: Elasticities of Final Goods Prices, P jn, w.r.t. Ln

Sector Elasticity

Food and Beverage −0.010
Textiles −0.022
Wood, Paper, and Printing −0.011
Oil, Chemicals, and Nonmetallic Minerals −0.016
Metals −0.014
Machinery −0.005
Computer and Electronic −0.013
Electrical Equipment −0.003
Motor Vehicles (Air, Cars, and Rail) −0.009
Furniture and Fixtures −0.009
Miscellaneous Manufacturing −0.013
Wholesale Trade −0.007
Transportation and Storage −0.007
Professional and Business Services −0.018
Other −0.011
Communication −0.003
Finance and Insurance −0.011
Education −0.024
Health −0.030
Accommodation −0.012
Real Estate 0.131
Retail, Construction and Utilities 0.047

Average −0.003
Tradable Average −0.012
Manufacturing Average −0.011
Tradable Services Average −0.014

Coefficients from univariate OLS regression of final-goods

prices (lnP jn) on lnLn .

of varieties of goods available in different cities, they find that the price of tradable goods bought
in grocery stores actually decreases with city size, with an elasticity equal to −0.011 (Table 6).
In addition, when calculating this elasticity after purging the effect of local rents on retail costs,
they obtain −0.017 (Table 9 in Working Paper version). In the presence of trade costs, such a
declining relationship indeed emerges when larger cities are generally more productive. It can hold
for certain categories of goods even if the local scarcity of land means that the price of real estate
services is higher, thus driving up the general price level, in larger cities.

Table 2 below summarizes the relationship between prices obtained in our model inversion and
city size. Similar to Handbury and Weinstein (2014), our general equilibrium framework reveals a
decreasing relationship between prices and city size and, in fact, across all tradable sectors with
an average elasticity of −0.012. In the Food and Beverage sector, our model inversion reveals an
elasticity of −0.010, virtually identical to that Handbury and Weinstein (2014) for grocery products.
Remarkably, our finding arises without direct observation of prices. Instead they follow from supply
and demand relationships within a structural trade model where cities produce different goods and
where trade across regions is costly. When informed by the data described above, our model then
implies that large cities are generally more productive thus yielding smaller prices for tradable
goods.
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Figure 4: Relative amenities and city size and composition

Ratio of occupational-specific amenity parameters for each city obtained from the model quantifica-
tion against employment share of CNR workers and log total employment. Each observation refers
to a CBSA. Marker sizes are proportional to total city employment.

4.1.2 Amenities

We now turn to the occupation-specific amenities implied by the model inversion, Akn. The relation-
ship between relative amenities for CNR and non-CNR workers against the size and composition
of cities is depicted in Figure 4. Our findings conform to Diamond (2016) in that cities with more
CNR workers are also relatively more amenable to those same workers. At the same time, larger
cities are relatively more amenable to CNR workers helping account for the concentration of CNR
workers in large cities.

Diamond (2016) provides evidence for a causal impact of local population composition on ameni-
ties. In Appendix E, we show the effect of filtering out the component of amenities that is endoge-
nous to the local labor composition.17 While suppressing those endogenous effects eliminates the
positive relationship between the CNR share and relative amenities, the relationship between rela-
tive residual amenities and city size becomes stronger. Intuitively, given the estimates in Diamond
(2016), large non-CNR populations generate larger congestion effects on CNR workers than on non-
CNR workers. The bottom line, therefore, is that our findings below regarding the optimality of
concentrating CNR workers, computed without endogenous amenities, are if anything conservative.

4.1.3 Total Factor Productivity

A substantive literature in urban economics has addressed the relationship between productivity
and city size (i.e. “agglomeration economies”), as well as that between productivity and em-
ployment composition. Baseline estimates of real Total Factor Productivity (TFP) typically rely

17Here, we use the parameterization that Fajgelbaum and Gaubert (2018) obtain based on the estimates by Diamond
(2016).
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on Cobb-Douglas production functions that allow for different types of labor to enter separately.
Within the context of our model, we follow Caliendo et al. (2017) and express measured TFP as

lnTFP jn = ln

∑
n′ πn′nX

j
n′

P jn
− γjnβjn lnHj

n − γjn(1− βjn)
∑
k

δkj lnLkjn −
∑
j′

γj
′j
n lnM j′j

n , (9)

where δkj is the share of occupation k wages in sector j’s wage bill. In the model we have laid
out, and up to a first-order approximation (abstracting from selection effects induced by trade), we
have that for tradable sectors,

lnTFP jn '
∑
k

δkjγj lnλkjn ,

where
(
λkjn
)γj

may thus be interpreted as the component of TFP in sector j and city n associated

with occupation k.18 In the remainder of the paper, we let T kjn =
(
λkjn
)γj

.

Table 3 below shows the city in which TFP recovered from the model is highest by industry.
The results largely conform to intuition. Productivity in Computers and Electronic Equipment is
highest in San Jose, CA; Anchorage stands out for Oil, Chemicals and Nonmetallic Minerals; and
Seattle for Motor Vehicles (which includes aircrafts). It is also interesting to note that the two
largest cities in the country are also top cities in several sectors, with New York dominating in
most service sectors while Los Angeles stands out in several manufacturing sectors.

Table 3: City with Top TFP for each Industry
Industry MSA

Food and Beverage San Francisco, CA
Textiles Los Angeles, CA
Wood, Paper, and Printing Minneapolis, MN
Oil, Chemicals, and Nonmetallic Minerals Anchorage, AK
Metals Los Angeles, CA
Machinery Houston, TX
Computer and Electronic San Jose, CA
Electrical Equipment Los Angeles, CA
Motor Vehicles (Air, Cars, and Rail) Seattle, WA
Furniture and Fixtures Los Angeles, CA
Miscellaneous Manufacturing Los Angeles, CA
Wholesale Trade New York, NY
Transportation and Storage New York, NY
Professional and Business Services San Jose, CA
Other Los Angeles, CA
Communication New York, NY
Finance and Insurance New York, NY
Education New York, NY
Health New York, NY
Accommodation San Francisco, CA

City with top TFP jn in equation (9) by industry defined

Table 4 compares estimates of productivity elasticities with respect to city size and employment
composition obtained from our model inversion to those found in previous work. In particular, we

18See Appendix B for the details of this derivation. For non-tradable sectors, the city-specific share parameters
make it challenging to compare this term across-cities. Furthermore, our data does not allow us to separate the
productivity of the real-estate sector from the stock of housing.
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Table 4: Elasticities of TFP with respect to City Size and Employment Composition

ln (Ln) LCNRn
Ln

Real Nominal Real Nominal

Average1 0.039 0.027 0.807 0.630
Manufacturing Average 0.028 0.017 0.581 0.458
Tradable Services Average 0.053 0.039 1.083 0.840

Melo et. al. Economy2 0.031
(0.099)

—

Melo et. al. Manufacturing
0.040

(0.095)
—

Melo et. al. Services
0.148

(0.148)
—

Moretti College Share3

(Manufacturing)
—

0.846
(0.102)

Average coefficients from univariate OLS regression of lnTFP jn defined
in equation (9) on lnLn and LCNRn /Ln.

1. Excludes non-tradables

2. Melo et al. (2009) "A Meta-analysis of estimates of urban agglomeration economies", Table 2. "By type of response

variable" and "By industry group."

3. Moretti (2004b) "Workers’ Education, Spillovers, and Productivity: Evidence from Plant-Level Production Functions",

Table 2. College share in other industries, Cobb-Douglas production, 1992.

report elasticities with respect to city size from the meta analysis carried out in Melo et al. (2009).
As reported in Table 4, all results point to a positive relationship between TFP and city size.
Moreover, our findings fall within the range of reduced form estimates found in the literature, with
the possible exception of services. However, as in previous literature, the elasticity of (tradable)
services productivity with respect to city size is substantially larger than that of manufacturing.
To the extent that regional prices are not readily available, the relationship between TFP and
city size estimated in some of the existing literature captures variations in nominal TFP, that is
lnTFP jn+lnP jn. In other words, while our model inversion produces measures of P jn, the absence of
local price data can otherwise bias downward empirically estimated elasticities of TFP with respect
to city size. Indeed, our findings indicate that elasticities of real TFP with respect to city-size are
somewhat larger than those of nominal TFP.

We also compare our TFP regressions coefficients with respect to the share of CNR workers to
those estimated by Moretti (2004b) using a panel of firms (we use the CNR share of employment,
whereas he uses the college educated share of employment). Again, our TFP measures are consistent
with semi-elasticities that are of the same sign and comparable in magnitude to those in Moretti
(2004b). As before, the regression coefficients become larger when deflated by the model-consistent
regional price index.

Table 5 shows the coefficients in Table 4 for tradable sectors disaggregated by industry. We find
that the positive relationship between TFP and city size holds uniformly across all tradable sectors.
In addition, we find that the semi-elasticity of TFP in Computer and Electronics with respect to
employment composition across cities is more than twice as large as the average for manufacturing,
replicating the finding by Moretti (2004b) for high-tech sectors.
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Table 5: Sectoral Elasticities of TFP with respect to city size and employment composition

ln(Ln) LCNRn
Ln

Real Nominal Real Nominal

Food and Beverage 0.024 0.014 0.433 0.315
Textiles 0.029 0.007 0.293 0.251
Wood, Paper, and Printing 0.024 0.012 0.575 0.292
Oil, Chemicals, and Nonmetalic Minerals 0.047 0.031 0.933 0.797
Metals 0.024 0.010 0.488 0.265
Machinery 0.018 0.014 0.428 0.368
Computer and Electronic 0.056 0.043 1.480 1.219
Electrical Equipment 0.016 0.013 0.406 0.358
Motor Vehicles (Air, Cars, and Rail) 0.023 0.014 0.539 0.389
Furniture and Fixtures 0.018 0.009 0.177 0.284
Miscellaneous Manufacturing 0.033 0.020 0.640 0.503
Wholesale Trade 0.045 0.037 0.916 0.822
Transportation and Storage 0.032 0.025 0.602 0.501
Professional and Business Services 0.054 0.036 1.145 0.829
Other 0.057 0.046 1.073 0.945
Communication 0.045 0.042 0.995 0.939
Finance and Insurance 0.062 0.051 1.358 1.140
Education 0.076 0.052 1.632 1.104
Health 0.065 0.036 1.424 0.787
Accommodation 0.039 0.027 0.598 0.494

Coefficients from univariate OLS regression of lnTFP jn defined in equation (9)
on lnLn and LCNRn /Ln.

4.2 Estimating Production Externalities by Worker Type

So far, we have described the equilibrium levels of ocupation-specific productivity consistent with

observed data on wages and sectoral employment, T kjn ≡
(
λkjn
)γj

. Having obtained these produc-

tivity measures through the model inversion, we now turn to estimating their relationship to the
scale and population composition of cities.19

We assume that occupational spillovers have the same labor augmenting effect across sectors.
This assumption is consistent with Ellison et al. (2010) who find that aside from natural advantages
and input-output linkages, occupational complementarities are the main source of industrial co-
location. Hence, we let

lnT kjn = τR,kγj ln

(
Lkn
Ln

)
+ τL,kγj ln (Ln) + ln T̂ kjn , (10)

where T̂ kjn is an exogenously determined component of technology. In turn, this term is given by

ln T̂ kjn = ak0 + akZZ
j
n + dkj + ukjn ,

where Zn is a vector of observable city/industry characteristics, dkj denotes a set of industry

dummies, and ukjn captures unobserved city-specific sources of natural advantages in the production
of sector j goods with workers of type k.

19The empirical exercise focuses on tradable sectors, for which our model generates measures of productivity
separate from local housing supply.
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Equation (10) allows for an agglomeration effect that depends on city size, through τL,k, and
an additional effect related to the share of each worker type, through τR,k. The elasticity of
productivity with respect to the agglomeration of a given type k is20

∂ lnλkjn
∂ lnLkn

= τR,k
(

1− Lkn
Ln

)
+ τL,k

Lkn
Ln

. (11)

Therefore, when τL,k < τR,k, individuals in a given occupation, k, have a larger marginal effect
on that occupation in cities where those individuals are less represented. However, there are also
cross-occupational effects. Specifically, for k 6= k′, we have that

∂ lnλkjn
∂ lnLk′n

= −
(
τR,k − τL,k

) Lk′n
Ln

, (12)

which implies negative cross-occupational externalities when τL,k < τR,k. This congestion effect
increases with the share of workers in alternative occupations.

The first column of Table 6 reports the coefficients from a simple OLS regression where we
allow for two-way clustered standard errors by city and industry. These coefficients are positive and
significant. They indicate that individual productivity is enhanced by the presence of other workers
of the same occupational group. The coefficients also indicate the presence of congestion effects since
cross-occupational externalities are negative. These OLS estimates, however, are potentially biased
since workers of a given type may choose to live in cities where they are relatively most productive.
This would induce a correlation between the exogenous component of worker productivity, T̂ kjn ,
and the share of each type of worker in a given city. Moreover, the estimates might be biased if
there are omitted variables which are correlated with both T̂ kjn and the occupational ratio.

To help address the omitted variable bias, Table 6 explores the effects of adding various controls
to our basic OLS regression. Column 2 includes dummies for 9 census divisions interacted with
industry dummies.21 These should absorb many of the geographical and historical components
that may jointly determine amenities and productivity in different places. Column 3 introduces
geographic amenities constructed by the United States Department of Agriculture (USDA) that
include measures of climate, topography and water area.22 These controls allow for the possibility
that the same geographic characteristics that may lead workers to choose certain cities may also
influence their productivity. Column 4 introduces the share of manufacturing workers in 1920 as
a control.23 This aims to extract long standing factors that may influence the industrial com-
position in individual places. Finally, column 5 adds controls for demographic characteristics of
different cities, including racial composition, gender split, the fraction of immigrant population,
and age structure.24 Together, these controls help narrow down the identification of the externality
coefficients to the extent that more productive cities attract individuals of certain demographic
make-up.

20See Glaeser and Gottlieb (2008) for a discussion of the marginal implications those elasticities.
21They are 1. New England, 2. Mid-Atlantic, 3. East North Central, 4. West North Central, 5. South Atlantic, 6.

East South Central, 8. Mountain and 9. Pacific
22Geographic controls include average temperature for January and July, hours of sunlight in January, humidity

in July from 1941 to 1970, variation in topography, and percent of water area.
23Just as with our labor force variables of interest, this and other controls are likewise interacted with the value

added shares γjn.
24Demographic controls are, by city, the percent female, black, hispanic, and percent in the age bins 16-25 and

26-65 (observations related to the younger than 16 population are dropped from the sample, and the age bin 66+ is
omitted from the regression).
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The point estimates of the coefficients on CNR workers change only slightly with the controls,
while they increase the effect of labor market composition on non-CNR workers. These controls
help extract exogenous sources of productivity variation that affect individual location decision.
However, any residual variation in productivity may still be correlated with population levels and
composition. In order to further account for those residual effects, we adopt an instrumental
variable strategy, drawing on the existing empirical literature for candidate sources of exogenous
variation. The key difference here is that we seek to explain productivity measures extracted from
a structural model directly.

4.2.1 Instrumenting for Employment Levels and Composition

In order to isolate the residual simultaneity between exogenous productivity variation and labor
allocation, we resort to variants of instruments proposed in the literature. Specifically, we follow
Ciccone and Hall (1996) and use population a century ago to capture historical determinants of
current population. We also follow Card (2001) and Moretti (2004a), and use variation in early
immigrant population and the presence of land-grant colleges to capture historical determinants of
skill composition across cities. A detailed discussion of the particular instruments is provided in

Table 6: OLS Estimates

(1) (2) (3) (4) (5)

VARIABLES CNR non-CNR CNR non-CNR CNR non-CNR CNR non-CNR CNR non-CNR

γjnlog(L
k
n

Ln
) 0.819*** 0.631*** 0.810*** 0.672*** 0.836*** 0.691*** 0.834*** 0.670*** 0.889*** 0.702***

(0.13) (0.23) (0.12) (0.20) (0.12) (0.22) (0.12) (0.21) (0.12) (0.22)

γjnlog(Ln) 0.422*** 0.345*** 0.419*** 0.344*** 0.409*** 0.346*** 0.410*** 0.343*** 0.386*** 0.322***
(0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04)

Jan. Temp 0.0213 -0.0556** 0.0130 -0.0590** 0.00557 -0.0439**
(0.03) (0.03) (0.03) (0.02) (0.03) (0.02)

Jan. Hrs Sun 0.0747*** 0.0466*** 0.0730*** 0.0477*** 0.0671*** 0.0570***
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02)

July Temp -0.0813*** -0.0266 -0.0750*** -0.0208 -0.0693*** -0.0397**
(0.03) (0.02) (0.02) (0.02) (0.02) (0.02)

July Humid -0.0213 -0.0157 -0.0150 -0.0125 0.000915 -0.0261
(0.02) (0.03) (0.02) (0.03) (0.02) (0.02)

Topography -0.0270* -0.0246** -0.0258* -0.0239** -0.0349*** -0.0177
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

% Water Area 0.0364*** 0.00390 0.0371*** 0.00426 0.0342*** 0.00868
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

% 1920 Mfg Workers -0.00420 0.00787 -0.000532 0.00434
(0.01) (0.01) (0.01) (0.01)

% female -0.0547*** -0.0493***
(0.01) (0.01)

% black 0.00217 0.0379***
(0.02) (0.01)

% hispanic 0.0265* 0.00226
(0.02) (0.01)

% Age 16-25 0.00983 0.0407**
(0.01) (0.02)

% Age 26-65 0.0346** 0.0662***
(0.01) (0.02)

Industry FE X X X X X X X X X X
Census Division FE X X X X X X X X
Observations 7,640 7,640 7,640 7,640 7,560 7,560 7,460 7,460 7,460 7,460
R-squared 0.607 0.770 0.658 0.804 0.668 0.811 0.669 0.814 0.672 0.817

Regressions estimates equation (10). Dependent variable is lnT kjn obtained from model inversion procedure described in text. Standard errors
in parentheses, clustered two-ways by city and by industry. *** p<0.01, ** p<0.05, * p<0.1
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Appendix B.
Table 7 shows the estimation results with instrumental variables and all the controls. The first

column repeats the OLS results in the last column of Table 6, and the second column shows the
corresponding two-stage-least-squares estimates. Those are similar to the OLS estimates, being
well within one standard error from one another. To evaluate the strength of the instrumental
variables, we follow the procedure in Sanderson and Windmeijer (2016) to obtain separate first-
stage F statistics for each of the endogenous variables.25 Since the F-statistics are below the
value of 10 recommended by Staiger et al. (1997), the estimates may have some bias and incorrect
standard errors. The literature on IVs then recommends the use of limited information maximum
likelihood (LIML) estimators. The third column of Table 7 carries out the estimation using a
continuously updated GMM estimator (GMM-CUE), similar to a limited information maximum
likelihood estimator but which allows for clustered and heteroskedastic standard errors. The Stock
and Yogo (2005) critical values in the LIML model for a p-value of 5% to be 10% or better is 6.46,
at or close to our obtained values.

These instruments, inspired from the previous work mentioned above, exploit the idea that
after allowing for controls, all long-term effects of either historical immigration enclaves, land-grant
college location, or historical population on local productivity derive from their impact on current
occupational composition and population. To verify that our empirical strategy indeed identifies
external effects, we carry out the same regressions on data generated by a counterfactual allocation
in which we set τR,k = τL,k = 0 for all occupations k. The results are presented in Table 10
in the Appendix. They confirm that the OLS estimates for the effect of occupation shares on
productivity are biased downward (the coefficients are now negative), whereas the estimates for
the external productivity effects related to population exhibit little bias. More importantly, the
exercise also shows that our IV’s successfully eliminate most of those biases, especially so in the
GMM-CUE estimates.

As a final measure of robustness, we carry out an estimation exercise using IV’s implied by the
model. Recall that, in our framework, the size and composition of population in different locations
is determined simultaneously by local productivity, amenities, input-output linkages, and trade
costs. Thus, we construct a counterfactual allocation where, for each industry and occupation, we
set productivity to be fully exogenous and equal to the averages, across cities, of the productivity
parameters, T kjn . We then use the counterfactual employment shares and totals implied by that
exercise as instruments. The results, presented in Table 11 in the Appendix, confirm the main
findings. Namely, the effect of population composition is larger than that of city size, and the
compositional effect is larger for CNR workers than for non-CNRs.

4.3 The Role of Externalities in Spatial Occupational Polarization

We adopt the GMM-CUE coefficients in the last column of Table 7 as our benchmark. These
coefficients imply that cross-occupational externalities are negative for CNR workers in that τL,CNR

is significantly smaller than τR,CNR. Hence, non-CNR workers create negative congestion effects
for CNR workers. In contrast, for non-CNR workers, the difference between τR,nCNR and τL,nCNR

is not significant indicating no clear evidence of congestion effects from CNR workers to non-CNR
workers.26

25This follows largely the intuition laid out by Angrist and Pischke (2008), that requires strong IVs to predict the
two endogenous variables independently from one another.

26The p-value when testing the hypothesis that τR,k − τL,k is positive is equal to 0.017 for the case of CNRs and
equal to 0.34 for the case of non-CNRs.
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Table 7: Instrumental Variables Estimate

(1) (2) (3)
OLS 2SLS CUE

VARIABLES CNR non-CNR CNR non-CNR CNR non-CNR

γjnlog(L
k
n

Ln
) 0.889*** 0.702*** 1.177*** 0.263 1.304*** 0.835*

(0.12) (0.22) (0.38) (0.51) (0.38) (0.51)

γjnlog(Ln) 0.386*** 0.322*** 0.334*** 0.284*** 0.349*** 0.357***
(0.05) (0.04) (0.06) (0.05) (0.06) (0.04)

Observations 7,460 7,460 7,460 7,460 7,460 7,460
K.P. F 3.912 5.425 3.912 5.425
S.W.F. Lkn Share 5.975 8.369 5.975 8.369
S.W.F. Ln 5.997 8.587 5.997 8.587

Regressions estimates equation (10). Dependent variable is lnT kjn obtained from model inversion
procedure described in text. Standard errors in parentheses, clustered two-ways by city and by industry.
*** p<0.01, ** p<0.05, * p<0.1

The externality effects coming from the local occupational composition are also clearly sub-
stantial. They imply, all else equal, that moving from Winston-Salem, NC with a share of CNR
employment of 36 percent, corresponding to approximately the 76th percentile of the distribution
of CNR shares, to Austin, TX, with share of 42 percent, closer to the 95th percentile, increases T kjn
for CNR workers by approximately 6 percent and reduces that of non-CNR workers by close to 3
percent. Agglomeration externalities are similarly important. Moving from a city near the 75th
percentile, such as Trenton, NJ, with approximately 182 thousand workers, to one near the 88th
percentile such as Rochester, NY, with approximately 433 thousand, would imply a gain of close
to 11% for both types of workers.

In Section 2 we conjectured that occupational externalities account for salient patterns in the
data related to the polarization of occupations and wage inequality across cities. Given the model,
the recovered TFP measure obtained through its inversion, as well as the externalities in TFP we
estimated, we now verify this basic intuition.

Counter-factual equilibrium allocations generated in the absence of externalities (i.e., τR,k =
τL,k = 0 for all k) are presented in the blue dots in Figures 5 and 6. Figure 5 shows that absent
externalities, the relationship between the share of CNR workers and the wage premium indeed
becomes negative, indicating that the relative abundance of CNR workers now decreases their
relative compensation. Furthermore, Figure 6 shows that without externalities, the equilibrium
wage bill share increases less than one-for-one, as opposed to more than one-for-one, with the
wage bill share predicted by the industrial composition across cities. To see why, note that absent
production externalities induced by employment size and composition, productivity is pinned down
exogenously. Therefore, CNR workers in a city that has a comparative advantage in the production
of CNR intensive goods will generally earn higher wages. Firms in that city will consequently
substitute CNR workers for non-CNR workers and, given an elasticity of substitution between
occupations greater than 1, see a reduction in its CNR wage share.

These exercises point to the patterns identified in Section 2 as being effectively driven by
occupation-specific elasticities. Given the significance of these externalities, the optimal and equi-
librium allocations differ. This in turn creates a role for optimal spatial policy to which we turn
next.
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Figure 5: Occupational share and wage premium - no externalities

Counterfactual values obtained from assuming no externalities (τR,k = τL,k = 0), while keeping
the exogenous part of productivity as originally quantified (blue dots). Grey dots correspond to
equilibrium values in Figure 1

.

5 Optimal Allocation

We now describe the optimal allocation and the policies that implement it. We start by defining
social preferences and setting up the planner’s problem.

5.1 The Planner’s Problem

The planner’s problem takes as given that workers in each occupation can freely move across cities.
Under this assumption, the expected utility of a worker of type k is given by

vk = Γ

(
ν − 1

ν

)(∑
n

(
AknC

k
n

)ν) 1
ν

.

Then, if φk denotes the welfare weights for each occupation, we can postulate the generalized social
welfare function

W =
∑
k

φkU

Γ

(
ν − 1

ν

)( N∑
n=1

(
AknC

k
n

)ν) 1
ν

Lk. (13)
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Figure 6: Occupational wage bill share: predicted vs equilibrium - no externalities

Counterfactual values obtained from assuming no externalities (τR,k = τL,k = 0), while keeping
the exogenous part of productivity as originally quantified (blue dots). Grey dots correspond to
equilibrium values depicted in Figure 3.

where U is an increasing and concave function.27 The planner maximizes the expression in (13)
subject to the availability of labor in each city and occupation (2), the constraints on the use of
labor in each occupation and city (5), the constraints on the use of land and structures (6), the
resource constraints associated with final goods in each city and sector (7), the resource constraints
associated with intermediate goods across all varieties z in each industry j and city n (8), and the
constraints that household consumption of different goods and input flows be non-negative.

The key difference between the optimal and equilibrium allocations stems from a wedge between
the private and social marginal products of labor. Lemma 1 characterizes this wedge.

Lemma 1. Let ∆k
n denote the wedge between the private and the social marginal value of a worker

in occupation k in city n. Then

27This generalized social welfare function nests the leading cases of a utilitarian planner, in which case U is linear,
and the limit in which U becomes infinitely concave and so W approximates the max-min welfare function of a
Rawlsian planner.
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∆k
n =

∑
k′,j

wk
′
n

Lk
′j
n

Lkn

∂ lnλk
′j
n (Ln)

∂ lnLkn
. (14)

This expression for the wedge points to the distortions that the planner seeks to correct. In
particular, it is increasing in the elasticity of worker productivity with respect to the number

of workers in occupation k, ∂ lnλk
′j
n (Ln) /∂ lnLkn, in all industries and occupations. Moreover,

the contribution of this elasticity in a given industry-occupation, for a given city, varies with the

proportion of workers in that industry and occupation, Lk
′j
n /Lkn, as well as their private marginal

product or wage, wkn.
To focus ideas further, consider our case with two occupations, k and k′, where spillover elas-

ticities are the same in all sectors. In that case we have that

∆k
n = wkn

∂ lnλkn (Ln)

∂ lnLkn
+ wk

′
n

Lk
′
n

Lkn

∂ lnλk
′
n (Ln)

∂ lnLkn
.

The estimated externality parameters in Table 7 imply, using equations (11) and (12), that occupa-
tion k’s own elasticity, ∂ lnλkn (Ln) /∂ lnLkn, is positive while the cross-elasticity, ∂ lnλk

′
n (Ln) /∂ lnLkn,

is negative. It follows that the wedge for any given occupation k increases with its wage and de-
creases with the wage of occupation k′. Hence, the planner would like to increase the concentration
of workers of a given occupation in places where those workers are most productive, and in places
where workers in other occupations are less productive. The latter effect is stronger for CNRs than
non-CNRs since ∂ lnλk

′
n (Ln) /∂ lnLkn is substantially larger when k = CNR. The end result is an

increase in spatial polarization.
Given these wedges, the optimal policy is then most intuitively framed in terms of a set of taxes

and subsidies that incentivize workers to move to cities where their spillovers are larger. Put another
way, the planner internalizes the wedge between the private and social marginal productivity of
workers. At the same time, a utilitarian planner also attempts to balance gains between different
type of workers. Proposition 1 provides an exact characterization of this spatial policy.

Proposition 1. If the planner’s problem is globally concave, the optimal allocation can be achieved
by a set of taxes and transfers such that

PnC
k
n = (1− tkL)(wkn + ∆k

n) + χk +Rk,

where tkL = 1
1+ν , and Rk is such that

φkU ′(vk)vkLk =
∑
n

PnC
k
nL

k
n.

The proposition generalizes a key insight in Fajgelbaum and Gaubert (2018) to a multi-industry
environment. Because spillover elasticities are not industry-specific, one need not keep track of
sectoral employment shares in order to determine the optimal subsidy. Therefore, even with multiple
industries, the optimal policy collapses to the special case in which occupational shares and wages
become sufficient statistics.28 Unlike Fajgelbaum and Gaubert (2018), however, it remains that the
optimal allocation does depend on local industry-specific productivity (since they determine local
employment and wages in both occupations), and has implications for the composition of industries
across space. We show below that under the optimal policy, large and small cities expand industries

28As indicated in equation (14), when spillover elasticities are industry-specific, the optimal subsidy requires that
the planner keep track of sectoral employment shares but not the details of intersectoral linkages.

27



in which a large share of their employment already resides, intensive in CNR and non-CNR workers
respectively, while medium-size cities generally diversify across industries.

The condition of global concavity depends, in general, on the concavity of the U function
in the planner’s objective. In our numerical results, we assume that U is sufficiently concave
to guarantee that Proposition 1 holds. Then, the result tells us that the planner’s solution for
household consumption differs from that implied by their budget constraint in two ways. First,
the planner’s solution depends on the social marginal product of labor, given by wkn + ∆k

n, rather
than its private counterpart. Second, in the planner’s solution, consumption increases less than
one-for-one with the (social) marginal product of labor. This second element is optimal because,
given heterogeneity in preferences for locations, households that choose to live in lower wage cities
do so because their marginal utility of consumption is higher in those cities.29

5.2 The Value of Social Wedges Across Cities and Occupations

The wedge between the social and private marginal product of labor, ∆k
n, may be calculated for

each city and occupation using equation 14. Figures 7 and 8 show the deviations of those wedges
from their (employment weighted) means for CNR and non-CNR workers, respectively. The average
wedge for CNR workers is itself fairly large, at $56,358 dollars per worker, or 79 percent of the mean
CNR wage. The average wedge for non-CNR workers is more modest and negative, at -$6,777. The
wedge of non-CNR workers is negative because their presence in a given city is associated with
a reduction in its share of CNR workers which then lowers the productivity of those workers.
On average, non-CNR workers generate a net congestion effect. Together, these values imply an
average gain of $63,135 from switching a non-CNR for a CNR worker. This large value is the result
of the relative scarcity of CNR workers, implying that using them productively makes a substantive
difference. Furthermore, this large gain indicates that education and migration policies that create
and attract CNR workers can potentially have high social value. Here, however, we take the supply
of CNR and non-CNR workers as given.

We find a positive correlation between ∆CNR
n the wedge between the social and private value

of CNR workers, and city size (0.42). In contrast, the correlation between this wedge and the
CNR share across cities is close to zero (0.038). These findings indicate that, given the concavity
of external effects and the fact that there are diminishing returns to each factor, high CNR cities
already exploit CNR externalities to a large degree in the decentralized equilibrium. However, the
correlation with the CNR share becomes positive (0.356) when weighted by city size. Thus, there
nevertheless remain gains to be exploited in larger, CNR intensive, cities. Externalities from CNR
workers appear to be particularly large in New York, Houston, and cities in California and much
less pronounced in Florida and, more broadly, in the South and Mid-West (except, modestly, in
Chicago).

The overall patterns for ∆non−CNR
n , the wedge between the social and private value of non-CNR

workers, are more pronounced in Figure 8. In particular, there exists a clear negative relationship
between the wedge of non-CNR workers and both city size and the CNR share across cities. The
social value of non-CNR workers relative to their private value is positive in many smaller cities.
This wedge is also relatively large in some larger cities such as in Florida, Las Vegas, and Phoenix.
These findings indicate that an optimal allocation would encourage or incentivize non-CNR workers
to move to smaller non-CNR abundant cities. It is in those cities where they can make their largest
contributions.

29Fajgelbaum and Gaubert (2018) show that the heterogeneity in preferences induces the same optimal tax as an
isoelastic negative spillover in amenities. See Davis and Gregory (2020) for a critique of this argument.
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Figure 7: ∆CNR
n (equilibrium values)

∆CNR
n captures the wedge between the social and the private marginal product of labor for CNR

workers, as described in Lemma 1. Figure depicts deviation from employment weighted average
(US$ 56,358). Each marker in the map refers to a CBSA. Marker sizes are proportional to total
employment in each city. ρ and ρ̃ are unweighted and population weighted correlations respectively.

5.3 Quantifying the Optimal Allocation

In computing the optimal allocation, we set U to be concave enough such that the first order
conditions are sufficient for optimality, and set the Pareto weights, φk, such that gains under the
planner’s solution are proportionately equal for both types of workers. Figures 9 and 10 show the
percentage change in employment in the optimal allocation relative to the equilibrium allocation
for CNR and non-CNR workers respectively. The results show that it is generally optimal for
CNR workers to move to larger cities and for non-CNR workers to move to smaller cities, thereby
exacerbating the spatial polarization of occupations. This increased spatial polarization follows
from the spillover coefficient estimates in Section 4.2 which underscore that both types of workers
(but particularly those in CNR occupations) become more productive when clustered with other
workers of their own type.

As Figure 9 shows, increases in CNR workers under the optimal allocation are particularly large
in cities like New York, San Francisco or San Jose, where the wedge between social and private
marginal products of labor for CNR workers is especially large. These cities, together with other
large cities including Chicago, Dallas, and Los Angeles, which are somewhat less CNR intensive,
become cognitive hubs under the optimal allocation. More generally, the optimal policy creates
cognitive hubs in larger cities that are already CNR abundant under the decentralized equilibrium.
Given that trade is costly, cities that gain CNR workers are somewhat uniformly distributed in
space according to overall economic activity. They constitute cognitive hubs in that they absorb
CNR workers and are now surrounded by smaller cities with more non-CNR workers.

Figure 10 illustrates that while the planner generally chooses to incentivize non-CNR workers
to move from large cities, a few large cities do nevertheless become more non-CNR abundant under
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Figure 8: ∆nCNR
n (equilibrium values)

∆nCNR
n captures the wedge between the social and the private marginal product of labor for non-

CNR workers, as described in Lemma 1. Figure depicts deviation from employment weighted average
(US$ -6,777). Each marker in the map refers to a CBSA. Marker sizes are proportional to total
employment in each city. ρ and ρ̃ are unweighted and population weighted correlations respectively.

the optimal allocation. This is the case for cities such as Miami, Las Vegas, Phoenix, and San
Antonio where non-CNR workers have, in the decentralized equilibrium, a social marginal product
that is larger than their private marginal product. These cities become new non-CNR centers.
They specialize in non-CNR intensive industries, such as accommodation and retail, and grow in
size since the inflow of non-CNR workers is larger than the exodus of CNR workers specified by
the optimal allocation.

While the share of CNR workers increases in large cities under the optimal allocation, the top
panel of Figure 11 also shows that these cities lose in overall population while smaller cities increase
in size. The same pattern holds for cities with large and small CNR shares in the bottom panel of
11. New cognitive hubs, therefore, emerge along side growing small and non-CNR abundant cities.
Put another way, the city size distribution evens out under the optimal allocation. This feature
recognizes that while the productivity of CNR workers increases with the number of those workers,
congestion also increases with city size. In particular, as discussed above, non-CNR workers generate
negative congestion effects on the productivity of CNRs. Furthermore, heterogeneous location
preferences imply that attracting the marginal CNR worker to a given city becomes increasingly
difficult.

Along with cities becoming more even in size under the optimal allocation, we observe that both
small and large cities generally increase their degree of industrial specialization, while medium-size
cities tend to move towards greater industrial diversification. Figure 12 highlights this pattern
using changes in the Gini coefficient associated with the distribution of wage bill shares across
industries. The figure illustrates how these changes vary with the share of CNR employment and
depicts a U-shaped pattern. In the efficient allocation, cities with low and high CNR worker
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Figure 9: LCNRn (percentage change from data equilibrium)

Percentage change in employment of CNR workers between equilibrium and optimal values. Each
marker in the map refers to a CBSA. Marker sizes are proportional to total equilibrium employment
in each city. ρ and ρ̃ are unweighted and population weighted correlations respectively.

shares become more specialized. In contrast, cities with intermediate CNR shares exhibit zero or
negative changes in Gini coefficients, indicating no change or greater industrial diversification in
those locations. This finding emerges because concentrating occupations is more valuable in cities
that are particularly productive in industries intensive in a specific occupation. The planner’s
solution, therefore, prescribes further expanding industries intensive in either CNR or non-CNR
occupations in cities that have a more extreme skill mix. Moreover, these cities tend to be at either
end of the size distribution so that the U-shaped relationship shown in Figure 12 also holds, though
somewhat attenuated, with respect to population (see Figure 24 in the Appendix).

As examples of how efficient allocations change the industrial composition landscape, Figure 13
highlights two cities at either end of the CNR share distribution. At one end, San Jose, CA, with
close to 1 million workers, sees its share of CNR workers increase from 51.4% to 90.7%. This change
reflects an increase in industrial specialization, summarized by a 0.11 change in the Gini coefficient
and seen as an outward shift in its Lorenz curve in the left panel of Figure 13. It captures in part an
increase of 19 percentage points in the employment share of San Jose’s top industry, Professional
and Business Services, and a 14 percentage point increase in that industry’s wage bill share. At the
other end, Harrisonburg, VA, with only 50,126 workers, sees instead its share of non-CNR workers
increase from 73.0% to 83.0%. This change stems from the planner emphasizing employment in
the industries in which Harrisonburg’s non-CNR workers are already intensively employed; hence,
the Gini coefficient increases by 0.04. Under the optimal allocation, the employment share in
Harrisonburg’s top industry, Non-Tradables (Retail, Construction, and Utilities), increases by 2.0
percentage points while its wage bill sees a 3.0 percentage point rise.

In the middle of the city size distribution, changes in the Gini coefficient associated with wage
bill shares across industries are generally close to zero or negative. In other words, many of those
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Figure 10: LnCNRn (percentage change from data equilibrium)

Percentage change in employment of non-CNR workers between equilibrium and optimal values.
Each marker in the map refers to a CBSA. Marker sizes are proportional to total equilibrium
employment in each city. ρ and ρ̃ are unweighted and population weighted correlations respectively.

medium-size cities either stay with or diversify their industrial mix. The bottom panel of Figure
13, for example, shows an inward shift of the Lorenz curve for Scranton, PA. Scranton, a city of
around 234,000 workers, sees its Gini coefficient fall by around 0.05 as its employment spreads out
across more industries. The wage bill share of its top industry, namely Health, declines by 7.5
percentage points, while the wage bill share of its new largest industry, Non-Tradables, increases
by 2.1 percentage points.

5.3.1 Taxes and Transfers: Implementing the Optimal Allocation

Implementing the optimal allocation involves transfers specific to each occupation and city. Includ-
ing the transfers, total consumption is equal to total income in each city. These transfers serve
several functions. First, they incentivize agents to move as described above. Namely, they incen-
tivize CNR workers to move to cognitive hubs and non-CNR workers to move to smaller towns.
Second, they guarantee that relative welfare gains are the same across occupations and locations.
Thus, the planner compensates non-CNR workers for moving to smaller and less productive or
amenable cities by implementing transfers from larger to smaller cities. These transfers in turn are
mostly financed by CNR workers in larger cities. Note, however, that since CNR workers gain from
the policy as well, they do not mind making the transfers. The net flow of resources received or
paid by cities (i.e the trade balance) is shown in Figure 14, calculated as the difference between
local nominal per capita consumption and output,

(∑
k PnC

k
nL

k
n −

∑
k w

k
nL

k
n − rnHn

)
/Ln.

As expected, the trade balance of cognitive hubs is large and negative. Cities such as San
Francisco and San Jose that are relatively large and very CNR intensive, specializing, respectively,
in professional and business services and computer and electronics, send net payments of as much
as $40,834 per resident, while some of the smaller cities, such as Jacksonville, NC, specializing in
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Figure 11: City size changes between data and optimal allocation

Each observation refers to a CBSA. Marker sizes are proportional to total employment.

accommodation and retail receive net transfers of close to $18,000. These net transfers in some of
the smaller cities amount to a form of basic income paid to all non-CNR workers in small cities
and financed (in net) by agents living in cognitive hubs. Again, there are some exceptions as some
relatively large cities such as Las Vegas end up receiving net transfers since they become even larger
centers of non-CNR employment.

The pattern of spillover coefficients we estimated, together with our model, implies that the
optimal allocation exacerbates the extent of labor market polarization across space. However, this
pattern does not reveal why labor markets are already as polarized as they are in the decentralized
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Figure 12: Changes in the Gini coefficient between the data and optimal allocation.

Each observation refers to a CBSA. Marker sizes are proportional to total employment. The solid-
black line is a cubic fit on the data. The Gini is constructed using the Lorenz curves depicting
within city wage bill and industry rank.

equilibrium. As indicated in Figure 4, larger cities are relatively more amenable to CNR workers,
a pattern that survives even if we exclude the endogenous component of amenities highlighted by
Diamond (2016). In Appendix E, we show that even with that component excluded, the planner
chooses to create cognitive hubs by concentrating CNR workers in large cities.

The overall gains in welfare from implementing the optimal allocation amount to 0.59% of GDP
for workers in both occupations. These gains are larger than those found in recent work by Bartelme
et al. (2019) at 0.4% of GDP in a study of optimal industrial policy in a multi-country trade model.
One reason why gains are not even larger in our setup is that the observed equilibrium allocation
is already fairly polarized. In fact, in Section 6 we try to account for what has lead to this fairly
polarized state starting from the prevailing conditions in 1980.

To achieve equal welfare gains across occupations, the optimal transfer scheme has two compo-
nents. One that incentivizes agents to go to the ‘right’ location and is related to differences in ∆k

n

across locations. The other is a fixed transfer by occupation (Rk). This fixed transfer guarantees
that all workers obtain equal gains from moving to the planner’s allocation. This fixed transfer
amounts to a negative transfer (a payment) of -$15,255 for CNR workers and a positive transfer of
$16,872 to all non-CNR workers. The latter can be implemented as a universal basic income that
is paid by CNR workers. This transfer may then be considered as the redistribution that CNR
workers are willing to accept to form the cognitive hubs where they can thrive.

The optimal transfers also involve a component that incentivizes CNR worker to move to large,
CNR abundant cities and for non-CNR workers to move to smaller cities with smaller shares of
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Figure 13: Shift in the Lorenz curve between the data and optimal allocation.

Each marker refers to an industry, where the dashed gray line shows the Lorenz curve for the data
equilibrium and the blue line is for the optimal allocation.

CNR workers. This is achieved by giving large incentives to non-CNR workers to move out of large,
and more markedly, CNR abundant cities. Due to externalities that are occupation-specific, this
reallocation yields larger CNR productivity increases in CNR abundant cities, which attracts CNR
workers to these cities and eliminates the need for large net transfers to those workers. In fact,
in a handful of the most CNR abundant cities, this effect is so strong that the planner prefers to
balance it with negative transfers to avoid congestion.

The optimal transfers are, of course, related to the ∆k
n wedges described in Figures 7 and 8, and
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Figure 14: Trade balance per capita

Trade balance is defined as the difference in the optimal allocation between the value consumed
and value added in each city (

∑
k PnC

k
nL

k
n −

∑
k w

k
nL

k
n − rnHn). Trade balance per capita are

given by those values divided by Ln. Each marker in the map refers to a CBSA. Marker sizes are
proportional to total equilibrium employment in each city. ρ and ρ̃ are unweighted and population
weighted correlations respectively.

further depicted in Figures 15 (for CNR workers) and 16 (for non-CNR workers).30 In the median
city, after incentives are taken into account, CNR workers contribute US$ 2,544. This number in
part reflects the fact that CNR workers are socially valuable (recall that the wedge between the
social and private value of CNR workers is as much as US$ 56,358). Note that CNR workers do not
need to be particularly incentivized to stay in the large, CNR abundant, cities. In fact, as Figure
15 shows, transfers decrease slightly with CNR share and city size. The increases in productivity,
and therefore wages, that result from the enhanced externalities in cognitive hubs is sufficient to
attract these workers. CNR workers are net-recipients of transfers in only 8% of locations but net
payers in 92% of locations. On the whole, payments from CNR workers range on net from US$ 309
(in the 10th percentile city) to US$ 4,422 (in the 90th percentile).31

Once incentive-based transfers are taken into account, non-CNR workers in the median city
receive a net transfer of US$ 8,478, ranging from US$ 1,819 (in the 10th percentile city) to as much
as US$ 10,518 (in the 90th percentile city). Note that non-CNR workers have to be incentivized
to move to smaller cities. However, because cognitive hubs offer a high wage to non-CNR workers
(since those are the most productive cities while also ending up with fewer non-CNR workers),
non-CNR workers in cognitive hubs pay a transfer as well to discourage other non-CNR workers
from joining them. This accounts for the wide range in non-CNR transfers and reduces the average

30More specifically, total transfers are equal to PnC
k
n − wkn − χk = ν

1+ν
∆k
n − 1

1+ν
wkn +Rk.

31Weighing by population net transfers to or from CNR workers range from a net contribution of close to US$
113 (10th percentile) to a contribution close to US$ 10,000 (90th percentile), with the median net contribution being
close to US$ 2,475.
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Figure 15: Optimal transfers to CNR workers (per CNR worker)

Optimal transfers per CNR workers are defined as the difference in the optimal allocation between
the value consumed and the income they would receive given optimal wages and rents but absent
the transfers (PnC

CNR
n −wCNRn −χk). Figure depicts deviation from employment weighted average

(US$ -3,316). Each marker in the map refers to a CBSA. Marker sizes are proportional to total
equilibrium employment in each city. ρ and ρ̃ are unweighted and population weighted correlations
respectively.

net burden on CNR workers.32

6 The Formation of Cognitive Hubs after 1980

The US economy has evolved towards the formation of cognitive hubs at least since the 1980s.
Quantifying our model to 1980 data yields a set of fundamental characteristics of the economy that
allows us to study this phenomenon in detail. In order to compare the spatial structure of the
economy in 1980 to that in 2015, we want to abstract from aggregate technology trends. Thus,
we first build a ‘Baseline’ economy that adds only aggregate changes in technology, population,
and input shares to the 1980 economy.33 The Baseline economy does not include any location-
specific change in productivities across industries and occupations or in amenities. It also does not
include changes in aggregate CNR shares of population. We study the role of these components
by adding them gradually. As shown in Figure 17, in this Baseline 1980 economy, US population
is concentrated in cities where the CNR share of employment was close to average. In the 2011-
15 data, however, there is greater dispersion around the (now larger) average. Figure 17 further
shows the distribution of CNR workers implied by the 2011-2015 planner’s solution calculated

32If we weight by population, transfers and contributions to non-CNR workers range from a net contribution of
about US$ 6,599 (10th percentile) to net receipts of US$ 9,356 (90th percentile), with a median net receipt of about
US$ 3,460.

33For details on the construction of this Baseline economy and other counterfactuals, see Appendix F.
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Figure 16: Optimal transfers to non-CNR workers (per non-CNR worker)

Optimal transfers per non-CNR workers are defined as the difference in the optimal alloca-
tion between the value consumed and value added in each city attributed to non-CNR workers
(PnC

nCNR
n − wnCNRn − χk). Figure depicts deviation from employment weighted average (US$

2,020). Each marker in the map refers to a CBSA. Marker sizes are proportional to total equi-
librium employment in each city. ρ and ρ̃ are unweighted and population weighted correlations
respectively.

above. Together, the histograms imply that the increasing concentration of CNR workers was in
the direction implied by today’s optimal allocation.

Given the move towards cognitive hubs over time, our model allows us to examine the forces
underlying this evolution and obtain a quantitative assessment of their welfare relevance. We do
this with a series of counter-factual exercises that clarify the importance of different forces in driving
national trends. Thanks to the structural model, we can also do the same decomposition in the
absence of externalities. Those exercises then provide us with a measure of the relevance of local
spillovers for observed spatial trends. Table 8 shows how such a decomposition affects the welfare
of CNR and non-CNR workers. The columns depict welfare levels relative to the Baseline 1980
economy for each occupation. The lower panel repeats the exercises for a world without externalities
(i.e., where we set the externality elasticity parameters to zero).

The top row of the table shows that welfare in 1980 was lower for both groups and in all
scenarios, as one would expect given underlying technological trends. The second row shows the
effects of changing input shares. It is well documented that CNR intensive industries have become
a larger part of the US economy, leading to relative gains for CNR workers as compared to non-
CNR workers. The next step (rows 3 and 14) brings total population and average technology in
each city/industry to 2011-15 levels while keeping the relative productivity of CNR and non-CNR
workers at 1980 levels. Relative to the baseline (rows 4 and 15), CNR workers are worse off and
non-CNR workers better off. The difference is accounted for skill-biased technical change. Note
that externalities amplify the effect of skill biased technical change.

Rows 5 and 16 change the composition of employment to 2011-15 levels, with more CNR workers
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Figure 17: Distribution of population by CNR share in city of employment

Share of population in cities with different ratio of CNR workers to total population. Bins refer to
deviation from population weighted average.

and fewer non-CNR workers. Here, externalities play their largest role. Absent externalities, the
model would imply significant losses for CNR workers, as they become more abundant, whereas
standard neo-classical arguments would imply a reduction in their relative wage. In effect, absent
externalities, CNR workers would end up with welfare 14% below the baseline counterfactual,
while non-CNR worker’s welfare would grow by 11%. In contrast, with externalities, both CNR
and non-CNR workers end up gaining about the same as occupations become more polarized across
space.

Rows 6 and 17 add exogenous changes to local technology of non-real estate sectors over and
above what is implied by average national trends. It captures, for example, the fact that computer
and electronics output became particularly more productive in San Jose while finance became
particularly more productive in New York. As shown in Figure 18 those gains were larger in cities
that had high CNR shares in 1980. These location-specific technological changes interact with
externalities to increase the welfare of both types of workers.

Rows 7 and 18 add changes in the productivity of the real estate sector. This exercise encom-
passes the effects of two different underlying processes. On the one hand, real estate productivity
increased more in fast growing cities, as the stock of housing increased in order to accommodate
rising populations. On the other hand, as it has been increasingly recognized (Glaeser and Gyourko
(2018), Hsieh and Moretti (2019) and Herkenhoff et al. (2018)), housing regulations have impeded
development in some very productive areas. The table shows that the net effect of those two forces
would have been positive in the absence of externalities, as housing development may have accom-
modated increasing population in high growing locations. At the same time, their effect is negative
once externalities are accounted for since, as shown in Figure 19, housing productivity also lagged
behind in CNR intensive cities.
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Table 8: Welfare Comparison, Relative to Baseline

CNR-to-
non-CNR

CNR non-CNR Ratio

Full Model
1. 1980 parameters 0.558 0.765 0.730
2. (1) + current input shares 0.708 0.824 0.859
3. (2) + national trends in technology and population 0.927 1.081 0.857
4. (3) + national skill biased technical change (Baseline) 1.000 1.000 1.000

ratio of CNR to non-CNR welfare in Baseline 1.911

5. (4) + change in occ. shares in employment 1.045 1.058 0.987
6. (5) + change in local technology (ex real estate) 1.066 1.079 0.988
7. (6) + change in real estate productivity 1.042 1.060 0.983
8. (7) + change in amenities (2011-15 parameters) 1.039 1.061 0.980

9. Optimal Allocation 1.045 1.067 0.980

10. 2011-15 parameters minus change in real estate productivity 1.054 1.070 0.985
11. Optimal Allocation with parameters in (10) 1.064 1.081 0.985

Model without externalities
12. 1980 parameters 0.488 0.643 0.759
13. (12) + current input shares 0.790 0.893 0.885
14. (13) + national trends in technology and population 0.936 1.057 0.885
15. (14) + national skill biased technical change (Baseline) 1.000 1.000 1.000

ratio of CNR to non-CNR welfare in Baseline 3.767

16. (15) + change in occ. shares in employment 0.858 1.110 0.773
17. (16) + change in local technology (ex real estate) 0.852 1.116 0.763
18. (17) + change in real estate productivity 0.860 1.129 0.762
19. (18) + change in amenities (2011-15 parameters) 0.861 1.129 0.762

20. Optimal Allocation 0.863 1.132 0.762

21. 2011-15 parameters minus change in real estate productivity 0.846 1.109 0.763
22. Optimal Allocation with parameters in (21) 0.849 1.112 0.763

Finally, Rows 8 and 19 add the changes in amenities. In particular, Row 8 corresponds to the
2011-15 equilibrium allocation. Changes in the spatial distribution of amenities appear to add little
to total welfare. That said, in considering the results presented in Table 8, it is important to bear
in mind that the particular sequence in which we added the changes between 1980 and 2011-15 can
have an effect on our results. We chose to present a sequence that is intuitive to us, but the main
findings highlighted above are robust to other sequences.

We calculate optimal allocation under two scenarios. The first scenario, depicted in Rows 9
and 20, corresponds to that depicted in Section 5 above when externalities are included. The
second scenario assesses the role of housing policy in impeding optimal policy. In particular, we
calculate the optimal policy under the assumption that housing productivity was distributed as
in 1980 (the corresponding equilibrium counterfactual welfare is presented in Rows 10 and 21 and
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the corresponding optimal allocation in Rows 11 and 22). We find that the increment in welfare
is more than 50% larger in that scenario than when starting from the actual equilibrium. In other
words, the optimal policy is less effective in some of the cognitive hubs owing to observed changes
in housing supply restrictions .

7 Conclusion

Our aim in this paper has been to understand the extent to which workers are misallocated in space
and the policies that might improve observed allocations. The main culprit of spatial misallocation
is the existence of large occupation-specific externalities combined with potential distortions due
to land use regulations. Our quantitative spatial model allowed us to measure occupation-specific
local productivity by industry which, together with a relatively standard instrumental variable
approach, led us to estimate these externalities for CNR and non-CNR occupations.

Our estimates suggest that both CNR and non-CNR workers become more productive in large
cities, but CNR productivity improves particularly when CNR workers are surrounded by other
CNR workers. These estimates, together with estimated local amenities by occupation, exogenous
productivity differences across industries and locations, and the full set of input-output linkages
and transport costs in the U.S. economy, determine the current allocation of economic activity. We
find that an optimal spatial policy can improve on this allocation for both occupations by 0.59%.
Housing and optimal transfer policies reinforce each other. Hence, combining them (by reverting
the spatial distribution of real estate productivity to that of 1980) leads to welfare gains of close
to 2.4% for CNR workers and 2% for non-CNRs.
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Figure 18: Change in the exogenous part of technology (all non-real estate sectors)

Changes are relative to baseline counterfactual, averaged across all sectors except real estate. Each
observation refers to a CBSA. Marker sizes are proportional to total city employment. Averages
are taken with value added weights. ρ and ρ̃ are unweighted and population weighted correlations
respectively.
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Figure 19: Change in the exogenous component of technology in real estate.

Changes are relative to baseline counterfactual. ρ and ρ̃ are unweighted and population weighted
correlations respectively.

Since the 80’s the U.S. economy has experienced increased skill and occupational polarization
across space. Large cities increasingly have more highly educated CNR workers that earn more. In
contrast, many medium and small cities have suffered an exodus of skilled workers and experienced
persistent population declines. These trends, amplified by local externalities, were also associated
with a rise in income inequality between occupations. This growing gap between top and medium
and small-sized cities has motivated policymakers and city governments to advocate policies to
attract CNR workers to smaller towns in order to reverse their fortunes. Our analysis shows that,
given appropriate transfers, these efforts would be counterproductive.

Our analysis underscores that while CNR workers are extremely useful, they are also scarce.
Furthermore, their productivity is tremendously enhanced by living with other CNR workers. So
attracting them to smaller towns with more mixed populations represents a waste of resources.
CNR workers are too valuable for society to be used in this way. A better policy is to reinforce
existing trends and let them concentrate in cognitive hubs while incentivizing non-CNR workers
to move and help smaller cities grow. Of course, some non-CNR workers will always be needed
in those hubs because of imperfect substitutability of occupations in production. The result is
smaller, more CNR intensive, cognitive hubs in some of today’s largest cities. We show that the
resulting migration of non-CNR workers that allows small towns to grow may be implemented
with a baseline transfer to non-CNR workers, reminiscent of a universal basic income, and a set
of occupation-location specific transfers. Overall, CNR workers transfer resources to non-CNR
workers to generate equal welfare gains.

Our findings suggest that efforts to stop the spatial polarization of occupations are misguided.
In fact, encouraging it further can yield benefits for everyone when accompanied by the necessary
transfers. Implementing these transfers, however, is critical. Otherwise, cognitive hubs might use
other indirect means of pushing out non-CNR workers such as, for example, housing supply con-
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straints, zoning restrictions, or a lack of investment in transportation networks to aid commuting.
Such efforts can generate occupational polarization across space without Pareto gains for all work-
ers. Implementing the necessary transfers would not only help avoid those inefficient policies and
benefit CNR workers, but it would also improve the welfare of non-CNR workers and the many
small and medium sized cities where they would end up living, working, and producing.

Our analysis abstracts from the role that spatial polarization might have on human capital
formation. In principle, the migration of CNR workers towards cognitive hubs may be detrimental
to smaller cities in a setting where the learning technology also features meaningful externalities
from CNR workers. At the same time, however, the transfers that CNR workers are able and willing
to make to non-CNR workers, given the productivity gains they experience from living in cognitive
hubs, might naturally be invested in education and other training in the smaller cities. These
transfers, if directed properly, have the potential to ameliorate, or even reverse, the conceivably
negative effects of spatial polarization on human capital.
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Appendix for online publication

A Model Details

A.1 Household Decisions

In a given occupation, all households living in the same city choose the same consumption basket.
It follows that Ckjn (a) = Ckjn for all a. Moreover, the demand for good j by workers in occupation
k living in city n is

Ckjn = αj
Pn

P jn
Ckn (15)

where Pn =
∏J
j=1

(
P jn
αj

)αj
is the ideal price index in city n.

Agents move freely across cities. The value, vkn (a), of locating in a particular city n for an
individual employed in occupation k, with idiosyncratic preference vector a is

vkn (a) =
anA

k
nI

k
n

Pn
= anA

k
nC

k
n.

In equilibrium, workers move to the location where they receive the highest utility so that

vk (a) = max
n

vkn (a) ,

where vk(a) now denotes the equilibrium utility of an individual in occupation k with amenity
vector a. We assume that an is drawn from a Fréchet distribution. Draws are independent across
cities. We denote by Ψ the joint cdf for the elements of a across workers in a given occupation,
with

Ψ (a) = exp

{
−
∑
n

(an)−ν
}
,

where the shape parameter ν reflects the extent of preference heterogeneity across workers. Higher
values of ν imply less heterogeneity, with all workers ordering cities in the same way when ν →∞.

Assuming that workers of different types can freely move between cities, the average utility of
a worker of type k is given by

vk = Γ

(
ν − 1

ν

)(∑
n

(
AknC

k
n

)ν) 1
ν

, (16)

where Γ(.) is the Gamma function.
Combining this equation with equation (2) describing labor supply yields an expression relating

the value of each occupational type to consumption and employment in particular locations:

vk =

(
Lkn
Lk

)− 1
ν

AknC
k
n.
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A.2 Firms

A.2.1 Intermediate Goods Producers

Cost minimization implies that input demand satisfies:

rnH
j
n (z)

xjn(z)qjn (z)
= γjnβ

j
n, (17)

wknL
kj
n (z)

xjn(z)qjn (z)
=

(
wkn
λkjn

)1−ε

∑
k′

(
wk′n

λk
′j
n

)1−εγ
j
n

(
1− βjn

)
, (18)

P j
′
n M

j′j
n (z)

xjn(z)qjn (z)
= γj

′j
n , (19)

where xjn(z) is the Lagrange multiplier which in this case reflects the unit cost of production. We
can solve for xjn(z) by substituting optimal factor choices into the production function,

xjn(z) ≡ xjn
zn

=
Bj
n

zn

r
βjn
n

Zjn

[∑
k

(
wkn

λkjn

)1−ε] 1−βjn
1−ε


γjn

J∏
j′=1

(
P j
′
n

)γj′jn
(20)

where xjn is a city and industry specific unit cost index such that

Bj
n =

[(
1− βjn

)βjn−1 (
βjn
)−βjn]γjn ∏

j′

(
γj
′j
n

)−γj′jn (γjn)−γjn .
Given constant returns to scale and competitive intermediate goods markets, a firm produces
positive but finite amounts of a variety only if its price is equal to its unit production cost,

pjn(z) = xjn(z) =
xjn
zn
. (21)

A.2.2 Final Goods

Let Qjn(z) =
∑

n′ Q
j
nn′(z) denote the total amount of intermediate goods of variety z purchased

from different cities by a final goods producer in city n, sector j. Given that intermediate goods of
a given variety produced in different cities are perfect substitutes, final goods producers purchase
varieties only from cities that offer the lowest unit cost,

Qjnn′(z) =

{
Qjn(z) if κjnn′p

j
n′(z) < minn′′ 6=n′ κ

j
nn′′p

j
n′′(z)

0 otherwise
,

where we abstract from the case where κjnn′p
j
n′(z) = minn′′ 6=n′ κ

j
nn′′p

j
n′′(z) since, given the distribu-

tional assumption on z, this event only occurs on a set of measure zero.
Denote by P jn (z) the unit cost paid by a final good producer in city n and sector j for a

particular variety whose vector of productivity draws is z. Given that final goods firms only
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purchase intermediate goods from the lowest cost supplier,

P jn (z) = min
n′

{
κjnn′p

j
n′(z)

}
= min

n′

{
κjnn′x

j
n′

zn′

}
. (22)

For non-tradable intermediate goods, firms must buy those goods locally, so that if j is non-tradable,

P jn(z) =
xjn
zn
. (23)

Then, the demand function for intermediate goods of variety z in industry j and city n is given by

Qjn (z) =

(
P jn (z)

P̃ jn

)−η
Qjn, (24)

where P̃ jn the ideal cost index for final goods produced in sector j in city n,

P̃ jn =

[∫
P jn (z)1−η dΦ (z)

] 1
1−η

. (25)

Since the production function for final goods is constant returns to scale, and the market for
final goods is competitive, a final goods firm produces positive but finite quantities of a final good
if its price is equal to its cost index, that is if P jn = P̃ jn.

A.2.3 Derivation of Prices

We follow Eaton and Kortum (2002) in solving for the distribution of prices. Given this distribution
and zero profits for final goods producers, when sector j is tradable, the price of final goods in sector
j in region n solves

(
P jn
)1−η

=

∫
P jn (z)1−η dΦ (z) dz,

which is the expected value of the random variable P jn (z)1−η.

Let P jnn′(z) =
κj
nn′x

j

n′
zn′

denote the unit cost of a variety indexed by z produced in city n′ and

sold in n. Following the steps described in Caliendo et al. (2017), we have that

Pr
[
P jnn′(z) ≤ p

]
= 1− e−ω

j

nn′p
θ

where ωjnn′ =
[
κjnn′x

j
n′

]−θj
. The price of variety z in city n and industry j, P jn(z), is the minimum

across P jnn′(z). Its cdf is,

Pr
[
P jn(z) ≤ p

]
= 1− e−Ωjnp

θ
,

where Ωj
n =

∑
n′ ω

j
nn′ =

∑
n′

[
κjnn′x

j
n′

]−θ
(Ωj

n does not depend on n′ because we are integrating

out the city dimension).

Let F
P jn

(p) denote the cdf of P jn(z), Pr
[
P jn(z) ≤ p

]
. Then, its associated pdf, denoted f

P jn
(p),

is Ωj
nθpθ−1e−Ωjnp

θ.. As in Caliendo et al. (2017), we have that

P jn = Γ (ξ)
1

1−η
(
Ωj
n

)− 1
θ ,
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where Γ (ξ) is the Gamma function evaluated at ξ = 1 + 1−η
θ . The price of goods in tradable sector

j may then also be expressed as

P jn = Γ (ξ)
1

1−η

[
N∑

n′=1

[
κjnn′x

j
n′

]−θ]− 1
θ

.

In a given non-tradable sector j, κjnn′ =∞ ∀n′ 6= n, so that the equation reduces to

P jn = Γ (ξ)
1

1−η xjn.

A.2.4 Trade Shares

Let Xj
n denote total expenditures on final goods j by city n, which must equal of the value of final

goods in that sector, Xj
n = P jnQ

j
n. Recall that because of zero profits in the final goods sector,

total expenditures on intermediate goods in a given sector are then also equal to the cost of inputs
used in that sector, so that P jnQ

j
n =

∫
P jn (z)Qjn (z) dΦ (z). Let Xj

nn′ =
∫
κjnn′p

j
n′(z)Qjnn′(z)dΦ(z)

denote the value spent by city n on intermediate goods of sector j produced in city n′. Further, let
πjnn′ denote the share of city n’s expenditures on sector j goods purchased from region n′. Then,

πjnn′ =
Xj
nn′

Xj
n

.

Observe that, since there is a continuum of varieties of intermediate goods, the fraction of goods
that firms in city n purchase from firms in city n′ is given by

π̃jnn′ ≡ Pr

[
P jnn′ (z) ≤ min

n′′ 6=n′

{
P jnn′′ (z)

}]
.

Following the steps described in Caliendo et al. (2017), we have that

π̃jnn′ =
ωjnn′

Ωj
n

=

[
κjnn′x

j
n′

]−θ
∑N

n′′=1

[
κjnn′′x

j
n′′

]−θ
We can verify that π̃jnn′ = πjnn′ , that is, the share of goods that firms in city n purchase from city

n′ is equal to the share of the value of goods produced in city n′ in the bundle purchased by firms

in city n (see Eaton and Kortum (2002), Footnote 17). Observe also that
∑N

n′=1

[
κjnn′x

j
n′

]−θ
=(

P jn
)−θ

Γ (ξ)
η

1−η . Therefore, we may alternatively write the trade share πjnn′ as

πjnn′ =
Xj
nn′

Xj
n

=

[
κjnn′x

j
n′Γ (ξ)

1
1−η

P jn

]−θ
In non-tradable sectors, πjnn = 1.
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A.3 Market Clearing and Aggregation at the Industry and City Level

Given the labor supply equation (2) and the definition Lkjn =
∫
Lkjn (z)dΦ(z), the labor market

clearing equation (5) may be rewritten as

∑
j

Lkjn = Lk
(
AknC

k
n

)ν∑
n′
(
Akn′C

k
n′
)νk , ∀ n = 1, ..., N , k = 1, ...,K.

Given the definition Hj
n =

∫
Hj
n(z)dΦ(z), the market clearing equation for structures in each city

(6) may be rewritten as ∑
j

Hj
n = Hn, n = 1, ..., N.

Given our definition of total final expenditures, Xj
n = P jnQ

j
n, and the demand function for con-

sumption goods of sector j (15), the market clearing condition for final goods in each city n and
sector j (7) may be expressed in terms of sectoral and city aggregates,∑

k

Lkn

(
αjPnC

k
n

)
+ P jn

∑
j′

M jj′
n = Xj

n.

Finally, given that πjn′nX
j
n′ = Xj

n′n =
∫
pjn(z)κjn′nQ

j
n′n(z)dΦ(z), the market clearing condition for

intermediate inputs (8) may be rewritten in terms of sectoral city aggregates as∫
pjn(z)qjn(z)dΦ(z)︸ ︷︷ ︸

Total value of intermediate goods produced in city n

=
∑
n′

πjn′nX
j
n′ ,

where
∑

n′ π
j
n′nX

j
n′ is the total value of expenditures across all cities spent on intermediate goods

produced in city n.
We can use this last aggregation relationship to obtain aggregate factor input demand equations

as follows,

wknL
kj
n = γjn

(
1− βjn

) (
wkn
λkjn

)1−ε

∑K
k′=1

(
wk′n

λk
′j
n

)1−ε

∑
n′

(
πjn′nX

j
n′

)
,

rnH
j
n = γjnβ

j
n

∑
n′

(
πjn′nX

j
n′

)
,

P j
′
n M

jj′
n = γj

′j
n

∑
n′

(
πjn′nX

j
n′

)
.

Finally, combining these factor demand equations yields the aggregate production function,

∑
n′

πjn′nX
j
n′ = xjn

(∑
k

(
λkjn L

kj
n

)1− 1
ε

) ε
ε−1

(1−βjn) (
Hj
n

)βjnγ
j
n∏

j′

(
M j′j
n

)γj′jn
.
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A.4 Definition of Equilibrium

Equilibrium for this system of cities is given by a set of final goods prices P jn, wages in different
occupations, wkn, rental rates, rn, intermediate goods prices paid by final goods producers, P jn(z),
intermediate goods prices received by intermediate goods producers, pjn(z), consumption choices,

Ckjn , intermediate input choices, Qjn(z), intermediate input production, qjn(z), demand for materials,

M jj′
n (z), labor demand, Lkjn (z), demand for structures, Hn(z), and location decisions, ζkn(a), such

that:
i) Workers choose consumption of each final good optimally, as implied by equation (15) and the

budget constraint,
∑

j P
j
nC

kj
n = PnC

k
n = Ikn, where Pn =

∏
j

(
P jn
αj

)αj
and Ikn is given by equation

(1).
ii) Workers choose optimally where to live as implied by equation (2).
iii) Intermediate input producers choose their demand for materials, labor and structures opti-

mally (as implied by factor demand equations (17), (18) and (19)), and produce positive but finite
amounts only if (21) holds, where xjn in that equation is given by (20).

iv) Final goods producers choose the origin of intermediate inputs optimally, implying that
a producer in city n and industry j imports a variety z from city n′ if and only if κjnn′p

j
n(z) =

minn′′
{
κjnn′′p

j
n′′(z)

}
. The price that they pay for intermediate goods satisfies (22) if the good is

tradable and (23) if it is non-tradable.
v) Final goods producers choose their intermediate input use optimally according to (24) and

produce positive but finite amounts only if (25) holds.
vi) Market clearing conditions for employment (equation 5), land and structures (equation 6),

final goods (equation 7), and intermediate goods (equation 8) hold.

A.5 Aggregate Equilibrium

At the aggregate level, equilibrium is given by values for the prices Pn, P jn, xjn, rn, wkn, aggregate

quantities Ckn, Lkjn , Hj
n, M j′j

n , expenditures, Xj
n, and expenditure shares, πjnn′ , that satisfy the

following equations ∑
k,j′

Lkj
′

n

(
αjPnC

k
n

)
+
∑
j′

P jnM
jj′
n = Xj

n (NJ eqs.) (26)

Lkn =
∑
j

Lkjn =

(
AknC

k
n

)ν∑
n′
(
Akn′C

k
n′
)νLk (NK eqs.) (27)

∑
j

Hj
n = Hn (N eqs.) (28)

Pn =
∏
j

(
P jn
αj

)αj
(N eqs.) (29)

PnC
k
n = wkn + bk

∑
n′ rn′Hn′

Lk
where bk =

∑
nw

k
nL

k
n∑

n,k′ w
k′
n L

k′
n

(NK eqs.) (30)

wknL
kj
n =

(
wkn

λkjn (Ln)

)1−ε

∑
k′

(
wk′n

λk
′j
n (Ln)

)1−εγ
j
n

(
1− βjn

)∑
n′

πjn′nX
j
n′ (NKJ eqs.) (31)
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rnH
j
n = γjnβ

j
n

∑
n′

πjn′nX
j
n′ (NJ eqs.) (32)

P j
′
n M

j′j
n = γj

′j
n

∑
n′

πjn′nX
j
n′
(
NJ2 eqs.

)
(33)

P jn =

Γ (ξ)
1

1−η

(∑
n′

[
κjnn′x

j
n′

]−θ)− 1
θ

if j is tradable

Γ (ξ)
1

1−η xjn if j is non-tradable

(NJ eqs.) (34)

∑
n′

πjn′nX
j
n′

= xjn

(∑
k

(
λkjn (Ln)Lkjn

)1− 1
ε

) ε
ε−1

(1−βjn) (
Hj
n

)βjnγ
j
n∏

j′

(
M j′j
n

)γj′jn
(NJ eqs.) (35)

πjnn′ =

[
κjnn′x

j
n′

]−θ
∑

n′′

[
κjnn′′x

j
n′′

]−θ (N2J eqs.) (36)

This system of equations comprises 2N + 2NK + 4NJ +NKJ +NJ2 +N2J equations in the
same number of unknowns.

By substituting equation (33) into equation (26), adding over all industries (j) and all cities (n)
and rearranging, we arrive at the National Accounting identity stating that aggregate value added
is equal to aggregate consumption expenditures in the economy,∑

n,k,j

Lkjn PnC
k
n =

∑
n,j

γjnX
j
n (37)

At the same time, multiplying both sides of equation (30) by Lkn, adding over city (n) and occupation
(k), and substituting out wkn and rnHn using equations (28), (31) and (32), yields the same national
accounting identity. The fact that we can arrive at that same identity by manipulating different
sets of equations implies that there is one redundant equation in the system, leading to one too
many unknowns relative to the number of equations. The presence of a redundant equation is a
feature of Walrasian systems. In order to pin down the price level, therefore, we need to amend
the system with an additional equation defining the numeraire. Specifically, we set :∑

n,j

ωn ln(Pn) = ln(P̄ ), (38)

where ωn are a set of weights. When computing counterfactuals, we set those weights to be pro-
portional to local nominal consumption: ωn ∝ Pn

∑
k C

k
nL

k
n. Finally, observe that if we substitute

the factor demand equations (31), (32), (33) into (35), we obtain the expression for the unit cost
index,

xjn = Bj
n

rβ
j
n
n

[
K∑
k=1

(
wkn

λkjn

)1−ε] 1−βjn
1−ε


γjn

J∏
j′=1

(
P j
′
n

)γj′jn
. (39)
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A.6 TFP accounting

In the text, we define TFP in equation (9) as

lnTFP jn = ln

(∑
n′

πjn′nX
j
n′

)
− lnP jn − γjnβjn lnHj

n − γjn(1− βjn)
∑
k

δkj lnLkjn −
∑
j′

γj
′j
n d lnM j′j

n ,

where

δkj =

∑
n′ w

k
n′L

kj
n′∑

n,k′ w
k′
n′L

k′j
n′

is the national share of occupation k in the wage bill across all occupations.
From equation (35,)

∑
n′

πjn′nX
j
n′ = xjn

[(∑(
λkjn L

kj
n

) ε−1
ε

) ε
ε−1

]1−βjn (
Hj
n

)βjnγ
j
n∏

j′

(
M j′j
n

)γj′jn
Also, recall that we can write xjn

P jn
= 1

κjnn

(
πjnn
)− 1

θ
, which picks up the role of selection effects

on productivity (see Caliendo et al. (2017)). We take a first order log-linear approximation of∑
n′ π

j
n′nX

j
n′ around national averages to obtain

d ln

(∑
n′

πjn′nX
j
n′

)
' d lnP jn −

1

θ
d lnπjnn + γjn(1− βjn)

∑
k

(
λkjLkj

) ε−1
ε∑

k′ (λ
kjLkj)

ε−1
ε

(
d lnLkjn + d lnλkjn

)
+ γjnβ

j
nd lnHj

n +
∑
j′

γj
′j
n d lnM j′j

n ,

where
(λkjLkj)

ε−1
ε∑

k′(λkjLkj)
ε−1
ε

is the national average of

(
λkjn L

kj
n

) ε−1
ε

∑
k′
(
λkjn L

kj
n

) ε−1
ε

. From manipulating equation (31),

we can verify that: (
λkjn L

kj
n

) ε−1
ε

∑
k′

(
λkjn L

kj
n

) ε−1
ε

=
wknL

kj
n∑

k′ w
k′
n L

k′j
n

If we log-linearize around a national weighted average across cities, where we weight individual
cities by their wage bill, we have that(

λkjLkj
) ε−1

ε∑
k′ (λ

kjLkj)
ε−1
ε

=
∑
n

wknL
kj
n∑

k′ w
k′
n L

k′j
n

×
∑

k′ w
k′
n L

k′j
n∑

n′,k′ w
k′
n′L

k′j
n′

=

∑
nw

k
nL

kj
n∑

n′,k′ w
k′
n′L

k′j
n′

= δkj ,

so that
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d ln

(∑
n′

πjn′nX
j
n′

)
' d lnP jn −

1

θ
d lnπjnn + γjn(1− βjn)

∑
k

δkj
(
d lnLkjn + d lnλkjn

)
+ γjnβ

j
nd lnHj

n +
∑
j′

γj
′j
n d lnM j′j

n

Comparing to the expression for TFP, it follows that, up to a first order approximation,

d lnTFP jn ' −
1

θ
d lnπjnn + γjn(1− βjn)

∑
k

δkj
(
d lnλkjn

)
which, abstracting from selection effects, reduces to

d lnTFP jn = γjn(1− βjn)
∑
k

δkj
(
d lnλkjn

)

Defining T kjn ≡
(
λkjn
)(1−βjn)γjn (

Hkj
n

)βjnγjn
it follows that for tradable sectors (in which case

βjn = 0 and γjn = γj for all n),

d lnTFP jn =
∑
k

δkjd lnT kjn

or

lnTFP jn =
∑
k

δkj lnT kjn + constant independent of n

For the purposes of comparing TFP jn across space, we can omit that constant.

B Quantifying the Model and Model Inversion

We now provide additional detail on how we quantify the model. The set of parameters needed to
quantify our framework fall into broadly two types: i) parameters that are constant across cities
(but may vary across occupations and/or industries) and that are directly available from statistical
agencies, or that may be chosen to match national or citywide averages, and ii) parameters that
vary at a more granular level and require using all of the model’s equations (i.e. by way of model
inversion) to match data that vary across cities, industries, and occupations.

B.1 Details on Parameters That Are Constant Across Cities

Input use shares in gross output (γjn, γjj
′

n ) : To obtain an initial calibration for these
share parameters, we use an average of the 2011 to 2015 BEA Use Tables, each adjusted by the
same year’s total gross output. The Use Table divides the value of the output in each sector j,∑

n′,n π
j
n′nX

j
n′ =

∑
nX

j
n, into the value of input purchases from other sectors j′,

∑
n,j′ P

j′
n M

j′j
n ,

labor compensation,
∑

n,k w
k
nL

kj
n , operational surplus,

∑
n rnH

j
n, and taxes on production and

imports, −
∑

n s
j
nX

j
n,
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∑
n

Xj
n =

∑
n,j′

P j
′
n M

j′j
n +

∑
n,k

wknL
kj
n +

∑
n

rnH
j
n −

∑
n

sjnX
j
n. (40)

Input purchases from other sectors are separated into purchases from domestic producers and
purchases from international producers. Since the model does not allow for foreign trade, we adjust
the Use Table by deducting purchases from international producers from the input purchases and,
for accounting consistency, from the definition of gross output for the sector.

As in Caliendo et al. (2018), for all sectors, we augment material purchases to include the
purchases of equipment. Specifically, we subtract from the operational surplus of each sector 17
percent of their value added and then add the same value back to materials.34 This 17 percent
value is estimated by Greenwood et al. (1997) as the equipment share in output. We then pro-rate
the equipment share of value added to different materials in proportion to their use within each
sector.

We interpret the remaining part of the gross operational surplus in a given sector as compensa-
tion for services provided by real estate. We adopt the convention that all land and structures are
managed by firms in the real estate sector, which then sell their services to other sectors. Accord-
ingly, for all sectors other than real estate, we reassign the gross operating surplus remaining, after
deducting equipment investment, to purchases from the real estate sector. These surpluses are in
turn added to the gross operating surplus of real estate.

It follows that, for all sectors j other than real estate,∑
n

rnH
j
n = 0.

and in each of those sectors,

P real estate
n M real estate,j

n = Purchases from real estate by j

+Operational Surplus of j

−Equipment Investment by j.

In contrast, in the real estate sector,

∑
n

rnH
real estate
n = Total Operational Surplus across all j

−Total Equipment Investment across all j.

One can verify that those reassignments do not affect aggregate operational surplus (net of
equipment investment), aggregate labor compensation, and aggregate value added (net of equipment
investment).

We assume that tradable sectors have a γjn = γj , constant across cities and similarly for γjj
′

n ’s.
The two non-tradable sectors have city specific parameters. Given these adjustments to the Use
Table, the share parameters for tradable sectors follow immediately,

γj =

∑
n,k w

k
nL

kj
n +

∑
n rnH

j
n∑

n(1 + sjn)Xj
n

, γj
′j =

∑
n P

j′
n M

j′j
n∑

n(1 + sjn)Xj
n

. (41)

34When gross operation surplus amounts to less than 17 percent of value added, the entire operational surplus is
deducted.
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Furthermore, we have that, for the non-tradable sectors,

γjn =

∑
k w

k
nL

kj
n + rnH

j
n

(1 + sjn)Xj
n

, (42)

where sjn is an ad-valorem subsidy for city n, sector j, which we introduce to account for the fact
that part of the sectoral value added calculated by the BEA is in fact paid out in indirect taxes.
Finally, since we do not observe use of materials by individual sectors in each city, we assume
that, the proportions of materials used in each city by nontradable sectors if fixed at the national

averages γj
′j
n

1−γjn
is the same for all cities and satisfies equals

∑
n P

j′
n M

j′j
n∑

n,j′ P
j′
n M

j′j
n

γj
′j
n

1− γjn
= γ̂j

′j =

∑
n P

j′
n M

j′j
n∑

n,j′ P
j′
n M

j′j
n

The calibration of γjn and, therefore of γj
′j
n , will require choosing additional parameters as

described below but consistent with the above equations.

Trade costs We assign trade costs to be a log-linear function of distance, that is,

κjnn′ = (dnn′)
tj

where κn,n′ is the amount of goods that need to be shipped from location n′ in order for one unit of
the good to be available in location n, and dn,n′ is the distance (in miles) between the two locations.

From equation (36) we can write

log(πjnn′) = −θtj log(dnn′) + cn + cn′ (43)

where cn and cn′ are n and n′ location-specific factors

cn′ = −θ log(xjn′)

and

cn = − log

(∑
n′′

[
κjnn′′x

j
n′′

]−θ)
We assign trade costs to industries using three different methods. First, we assign two industries

(retail, construction and utilities, and real estate) to be non-tradable. Second, we use the estimates
in Table 1 of Anderson et al. (2014) to obtain gravity coefficients for services. Third, we rely on
equation (43) to obtain the gravity coefficients. In order to do this, we use the 2012 Commodity
Flow Survey Public Use Microdata File. We add up shipment values by industry, origin and
destination and then, for each industry, we regress the log of those averages on log of average
shipment distance between each origin and destination.

The gravity coefficients used are summarized in Table 9, below.
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Table 9: Estimated Gravity coefficients (−θtj)

Industry Gravity Coefficient Source

Retail, Construction and Utilities −∞ Non-tradable
Food and Beverage -1.24 own estimate
Textiles -0.88 own estimate
Wood, Paper, and Printing -1.36 own estimate
Oil, Chemicals, and Nonmetalic Minerals -1.32 own estimate
Metals -1.20 own estimate
Machinery -0.81 own estimate
Computer and Electric -0.77 own estimate
Electrical Equipment -0.64 own estimate
Motor Vehicles (Air, Cars, and Rail) -0.90 own estimate
Furniture and Fixtures -1.18 own estimate
Miscellaneous Manufacturing -0.83 own estimate
Wholesale Trade -0.563 Anderson et al. (2014)
Transportation and Storage -0.617 Anderson et al. (2014)
Professional and Business Services -0.928 Anderson et al. (2014)
Other -0.724 Anderson et al. (2014)
Communication -0.297 Anderson et al. (2014)
Finance and Insurance -0.678 Anderson et al. (2014)
Real Estate −∞ Non-tradable
Education -1.01 Anderson et al. (2014)
Health -1.42 Anderson et al. (2014)
Accomodation -0.927 Anderson et al. (2014)

See text for own estimation details. Coefficients from Anderson et al. (2014) are extracted from Table 1.

B.2 Model Inversion for the Granular Parameters

From the ACS, we obtain data pertaining to wkn, and Lkjn∑
k′ L

k′j
n

. The spatial distribution of CNR

shares (Lkn/Ln) is depicted in Figure 20 below. The Census County Business Patterns (CBP)

provide us measures of total employment
∑

k′ L
k′j
n that better match BEA industry-level counts,

which we combine with the ACS data to obtain Lkjn . From the BEA, we obtain regional price parity
(RPP) indices for each city, disaggregated into goods, services and rents. As explained below, we
use the level of rents and the relative price of goods and services, providing us with 2(N − 1)
additional restrictions (we deduct 2 since prices in any given city are only defined relative to those
in other cities). Furthermore, we can use the BEA Use Tables to calculate the national share of
income from land and structures in the production of real estate, providing us with one additional
equation. Lastly, as we explain in more detail below, we can apply J normalizations to each sector.

The data plus normalizations above impose NK +NKJ + 2N + J − 1 independent restrictions
that allows us to solve for NK values for amenity parameters, Akn, NKJ scaling factors in produc-

tion, T kjn ≡
(
Hj
n

)γjnβjn (
λkjn
)γjn(1−βjn)

, (N − 1) shares of non-residential structures in value added in

the real estate sector, βreal estate
n , (N − 1) shares of value added in non-tradable output, and J − 1

independent values for consumption share parameters, αj .35

35Furthermore, additional restrictions imposed on αj and βj , specifically that αj ∈ [0, 1], and βj ∈ [0, 1], imply
some overidentifying restrictions.
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CNR share of employment
in data (deviation from mean)

< -0.115

[ -0.115 , -0.0577 )

[ -0.0577 , 0 )

[ 0 , 0.0577 )

[ 0.0577 , 0.115 )

>= 0.115

Population 13,000 3,927,000 7,842,000
Figure 20: CNR share from 2011-2015

Each marker in the map refers to a CBSA. Marker sizes are proportional to total equilibrium
employment in each city.

The steps below describe the model inversion.

1. Computing consumption shares, αj. We first add up equation (26) across n and j. We then

use the factor demand equations (31) and (32) to obtain γjnX
j
n =

(∑
n rnH

j
n +

∑
n,k w

k
nL

kj
n

)
,

and the national accounting identity (37) to substitute out Xj
n’s and Ckn’s from the aggregated

equation (26):

αj
∑
j′

∑
n

rnH
j′
n +

∑
n,k

wknL
kj′
n

+
∑
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P jnM
jj′
n =

∑
n

rnH
j
n +

∑
n,k
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n +

∑
n,j′

P j
′
n M

j′j
n .

The ACS does not provide data on rnH
j
n,
∑

j′ P
j
nM

jj′
n or their sum across cities. While the BEA

provides data on sectoral aggregates, those cover the whole country as opposed to only MSA’s.

Thus, we rely instead on ratios,
∑
n rnH

j
n∑

n,k w
k
nL

kj
n

and
∑
n,j′ P

j′
n M

jj′
n∑

n,k w
k
nL

kj
n

obtained from the Use Tables, which

we can then combine with data on
∑

n,k w
k
nL

kj
n and the above equation. Specifically,
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kj′
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( ∑
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kj′
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+ 1

)
+
∑
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∑
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wknL
kj′
n

=
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∑
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n M
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,

or
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αj
∑
n,j′,k

wknL
kj′
n

(
%j
′

H + 1
)

+
∑
j′,n,k

wknL
kj′
n %jj

′

M

=
∑
n,k

wknL
kj
n

(
%jH + %j

′j
M + 1

)
,

where %jH and %j
′j
M denote, respectively, the ratio of national aggregate rental income and the ratio

of national aggregate material inputs usage from sector j′ to national aggregate wage income in
sector j which are consistent with the Use Tables. The J equations above can be solved for J values
of αj . One can verify that any value of αj obtained from those equations will satisfy

∑
j α

j = 1.

One complicating factor is that in each sector j, αj must live in [0, 1]. However, because of
measurement inconsistencies between ACS and BEA data, the procedure generates negative values
of αj in three out of 22 sectors. One of those sectors (“Oil, Chemicals, and Nonmetallic Minerals”)
indeed has much of its employment located outside of urban areas. We use information from
the Use Tables to calibrate αj in that sector, setting it equal to 5.57 percent. The other two
sectors (“Wood, Paper, and Printing”, and “Metals”) are to a large degree producers of inputs for
other industries, so that we set their consumption shares to 0. To ensure that all equations hold

while satisfying those restrictions, we allow %j
′j
M ’s to deviate somewhat from those obtained from

the Use Tables. This requires adjusting γj and γj
′j for the tradable sectors, since those satisfy

γj =
1+%jH

1+%jH+
∑j′ %j

′j
M

, γj
′j =

%j
′j
M

1+%jH+
∑j′ %j

′j
M

.

2. Expressing gross output and rental income from each sector and city as functions of share
parameters and wage bills. Using the labor demand equations (31), we obtain

∑
n′

πjn′nX
j
n′ =

∑
k w

k
nL

kj
n(

1− βjn
)
γjn
. (44)

In the non-tradable sectors, πjnn = 1 and πjn′n = 0 for n′ 6= n so that

Xj
n =

∑
k w

k
nL

kj
n(

1− βjn
)
γjn
.

For all sectors other than real estate, we have that βjn = 0, so that rnH
j
n = 0. For the real

estate sector, we have from the first-order conditions in that sector that

rnH
real estate
n =

βreal estate
n

1− βreal estate
n

∑
k

wknL
k,real estate
n .

Since real estate services are the only sector with positive rental income, this is also equal to
the total rental income in each city.

3. Computing the shares of land and structures in value added for the real estate sector, βreal estate
n .

We use equations (30) to substitute out PnC
k
n in equations (26). We then apply the relation-

ships from equation (44) to substitute out gross output in (31) to (33), and use the resulting
equations to substitute out factor demands in (26). Given that in the non-tradable sectors
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(“real estate” and “retail, construction, and utilities”), expenditures are equal to gross out-
put, this implies that, for j ∈ {“real estate”,“retail, construction, and utilities”}, we have
that

1

1− βjn

∑
k w

k
nL

kj
n

γjn

= αj
∑
k

wknL
k
n

+ αj
∑
k

Lkn
Lk
bk
∑
n′

(
βreal estate
n′

1− βreal estate
n′

∑
k′

wk
′
n′L

k′,real estate
n′

)

+
∑
j′

1− γj
′
n

γj
′
n (1− βj

′
n )
γ̂jj
′∑
k

wknL
kj′
n ,

where we are using the fact that βjn = 0 for all sectors other than real estate. Given that we
have two non-tradable sectors, this is a system of 2N equations, in N values for γjn and N
values of βreal estate

n .

4. Computing individual values for nominal expenditures, Xj
n, in tradable sectors. We use equa-

tions (30) to substitute out PnC
k
n in equations (26). We then apply the relationships from

equation (44) to substitute out gross output in (31) to (33), and use the resulting equations
to substitute out factor demands in (26). In the tradable sectors, this gives us

Xj
n = αj

∑
k

wknL
k
n

+ αj
∑
k

Lkn
Lk
bk
∑
n′

(
βreal estate
n′

1− βreal estate
n′

∑
k′
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′
n′L

k′j′

n′

)

+
∑
j′

γjj
′

n

∑
k w

k
nL

kj′
n(

1− βj
′
n

)
γj
′
n

Given values for βjn from the previous step, values for Xj
n are then immediately determined

from the data.

5. Computing relative cost indices for tradable goods, x̃jn. For N(J − 2) tradable sectors (all but
“real estate,” as well as “retail, construction, and utilities”), we now solve for (N − 1)(J − 2)

values of the cost index, xjn∑
n′ x

j

n′
, for each j ∈ {1, ..., J} from the system of (N − 1)(J − 2)

independent equations,

∑
k w

k
nL

kj
n(

1− βjn
)
γjn

=

N∑
n′=1

πjn′n
(
xj
)
Xj
n′ ,

where xj = {xj1, ..., x
j
N} is the vector of unit production costs. This system comprises only

(N − 1)(J − 2) independent equations since, for each j, adding up the right-hand-side and
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left-hand-side over n gives the same result on both sides irrespective of xj . At the same time
πjn′n

(
xj
)

is homogeneous of degree 0 in xj for each j in equation (36), so that we can still

solve for the ratio, x̃jn ≡ xjn∑
n′ x

j

n′
. 36

6. Computing relative tradable consumer prices, P̃ jn, in every sector and city. Substituting x̃jn
from the previous step into equation(34) and rearranging, we have that for the tradable
sectors,

P jn = Γ (ξ)
1

1−η

(∑
n′

[
κjnn′ x̃

j
n

]−θ)− 1
θ

×
∑
n′

xjn′ ,

which gives a system of N(J − 2) equations. We can thus determine

ΞjP ≡ Γ (ξ)
1

1−η

∑
n′ x

j
n′

P j
=

∑$j
n

(∑
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[
κjnn′ x̃

j
n

]−θ)− 1
θ

−1

for each j by imposing
∑

n$
j
nP

j
n = P j , where $j

n are model-consistent expenditure weights

given by Xj
n/
∑

n′ X
j
n′ obtained in step 4. We may then then obtain for all tradable j′s

P̃ jn ≡
P jn
P j

= ΞjP

(∑
n′

[
κjnn′ x̃

j
n

]−θ)− 1
θ

.

Note that data on P j is only available in changes from a base period. Thus, we define the
base period to be 2011-2015, our benchmark period, and set P j = 1 in all sectors in that
period. For the remainder of the analysis, therefore, P̃ jn = P jn.

7. Computing non-tradable consumer prices. In the non-tradable sectors, we have that P jn =

Γ (ξ)
1

1−η xjn for all n and j, and for those sectors, we determine prices based on data from
the Regional Price Parity (RPP) indices calculated by the BEA. We directly obtain val-

ues for Γ (ξ)
1

1−η xreal estate
n ≡ P real estate

n from the RPP estimates of the price of real estate
services in different cities. For the other non-tradables (“retail, construction, and utili-

ties”), we choose P retail, etc.
n = Γ (ξ)

1
1−η xretail, etc.

n so that the price of services (other than
real estate) relative to tradable goods in the model matches its counterpart in the RPP.
To carry out this calculation, observe that the price index for services can be defined by

P Services
n = Πj∈Services

(
Σj′∈Servicesα

j′P jn
αj

) αj

Σj′∈Servicesα
j′

where the service sectors include retail,

etc., wholesale trade, transportation and storage, professional and business services, other,
communication, finance and insurance, education, health, and accommodation. The price
index for goods can be defined analogously where the goods sector includes all remaining
sectors other than real estate.

8. Computing firm productivity in different sectors, j, and cities, n, associated with occupation
k, λkjn . From equations (31), we have that

36Numerically, the system is easier to solve for
(xjn)θ

j

∑
n′(xj

n′)
θj

from which we can easily obtain values for xjn’s.
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wknL
kj
n =

(
wkn
λkjn

)1−ε

∑
k′

(
wk′n

λk
′j
n

)1−ε

∑
k

wknL
kj
n ,

which can rewrite as

wknL
kj
n =

(∑
k′ λ

k′j
n

λkjn
wkn

)1−ε

∑
k′

(∑
k′ λ

k′j
n

λk
′j
n

wk′n

)1−ε

∑
k

wknL
kj
n .

Thus, for each city n and industry j, we can use K − 1 of those equations to solve for K − 1

ratios, λ̃kjn = λkjn∑
k′ λ

k′j
n

. With some rearrangement, those can be written as

λ̃kjn =

(
wkn
) ε
ε−1

(
Lkjn
) 1
ε−1

∑
k′ (w

k′
n )

ε
ε−1

(
Lk
′j
n

) 1
ε−1

.

From equations (45) (obtained by substituting the factor demand equations (31), (32) and
(33) into equations (35)), and the value for rnHn obtained in step 2, we obtain

Hγjnβ
j
n

n

(∑
k′

λk
′j
n

)γjn(1−βjn)

Γ (ξ)
− 1

1−η (45)

=
Bj
n

x̃jnΞjP


∑

j

βjn

1− βjn

∑
k

wknL
kj
n

βjn [
K∑
k=1

(
wkn

λ̃kjn

)1−ε] 1−βjn
1−ε


γjn

J∏
j′=1

(
P j
′
n

)γj′jn
,

where we set Γ (ξ)
− 1

1−η = 1 since it is common to all sectors and cities and thus immaterial
in any counterfactual exercise. Recall that the use of land and structures as inputs has been
folded in the real estate sector that then sells real estate services to all other sectors (i.e.
βjn = 0 in all sectors but real estate). Then, multiplying both sides of equation (45) by the

ratios
(
λ̃kjn
)γjn

gives NK(J − 1) values for the productivity of firms in different sectors, j,

and cities, n, associated with occupation k, T kjn ≡
(
Hj
n

)γjnβjn (
λkjn
)γjn(1−βjn)

, which, in the

special case where one abstracts from differences in occupational composition across cities,
reproduces measured regional and sectoral productivity in Caliendo et al. (2018).

9. Computing the idiosyncratic amenity distribution parameter ν and amenity shifters Akn for
each city n and occupation k

To compute ν we match the estimate for local labor supply elasticity with respect to local
wage estimated by Fajgelbaum, Serrato and Zidar (2018) of 1.14. In our setup, for any

occupation k and city n, this elasticity is ν wkn
PnCkn

. The average elasticity is equal to 1.14 if

ν = 2.017. Given ν, we can now back-out amenities from the labor supply equation 2.37

37For given k, labor supply is homogeneous of degree zero in Akn. This implies that amenities are only determined
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B.3 Instrumenting for Employment Level and Composition

In order to isolate the residual simultaneity between exogenous productivity variation and labor
allocation, we resort to variants of instruments proposed in the literature. Specifically, we follow
Ciccone and Hall (1996) and use population a century prior to our data period to capture historical
determinants of current population, and we follow Card (2001) and Moretti (2004a), and use
variation in early immigrant population and the presence of land-grant colleges to capture historical
determinants of skill composition of cities. We now discuss the particular instruments in more detail.

Population in 1920 Ciccone and Hall (1996) argue for the validity of historical variables as
instruments under the assumption that, after allowing for the controls described above, original
sources of agglomeration only affect current population patterns through the preferences of workers,
and not through their effect on the residual component of productivity. This reasoning motivates
using population almost one hundred years prior to our data period as an instrument and will also
serve as motivation for the other instruments, described below.

Irish immigration in 1920 Next, we use the fraction of Irish immigrants in the population of
each city in 1920. This instrument is motivated by Card (2001), who uses the location of immigrant
communities as an instrument for labor supply in different occupations. For our purposes, we
focus on the location of Irish immigrants following evidence reviewed by Neal (1997), and further
studied by Altonji et al. (2005), showing that attending catholic schools substantially increases the
likelihood of completing high school and college education. We use as an instrument the fraction of
Irish immigrants, rather than the overall catholic population, because Irish immigrants represented
the first wave of catholic immigration to the U.S. and, therefore, historically were the first to invest
in education. As additional validation for this instrument, we compile data on the current location
of catholic colleges, and observe that MSAs in which catholic colleges are present had in 1920 more
than three times the fraction of Irish immigrants as other locations.

The Presence of land-grant colleges Lastly, following Moretti (2004a), we also use as an
instrument the presence of a land-grant college within the city. Land-grant colleges were established
as a result of the Morrill Act of 1862, and extended in 1890, a federal act that sought to give states
the opportunity to establish colleges in engineering and other sciences. Since the act is more than a
century old, the presence of a land-grant college in the city is unlikely to be related to unobservable
factors affecting productivity in different cities over our base period, 2011 − 2015. At the same
time, as shown in Moretti (2004a), the presence of land-grant colleges is generally correlated with
the composition of skills across cities.

B.4 A check on the instruments: Estimates in Counterfactual without Exter-
nalities

Table 10 below shows the results from carrying out the same estimation exercises as in Table 7
using employment and productivity values obtained from a counterfactual equilibrium in which
externality elasticities, τR,k and τL,k, are set to zero but all other model parameters are kept at
their original levels.

up to an arbitrary, occupation-specific scaling constant, that is, we can change An|k to Ãkn so that Ãkn = mkAkn
without any observable implications.
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Table 10: Estimates with data generated by counterfactual without externalities

(1) (2) (3)
OLS 2SLS CUE

VARIABLES CNR non-CNR CNR non-CNR CNR non-CNR

γjnlog(L
k
n

Ln
) -0.986*** -0.167 -0.276 -0.917 -0.0660 0.0778

(0.29) (0.47) (0.72) (0.94) (0.72) (0.93)

γjnlog(Ln) 0.0174 -0.0371 -0.0267 -0.0693 0.00385 0.00174
(0.06) (0.04) (0.06) (0.04) (0.06) (0.04)

Observations 7,460 7,460 7,460 7,460 7,460 7,460
K.P. F 7.445 7.516 7.445 7.516
S.W.F. Lkn Share 11.77 11.83 11.77 11.83
S.W.F. Ln 14.64 16.96 14.64 16.96

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

B.5 Model-Implied IV

In this exercise, we estimate externalities using an IV implied by the model. This is obtained
by calculating the counter-factual allocation associated with an economy where, for any given
industry/occupation category, productivity is constant across cities, and using the resulting counter-
factual labor allocation as instruments.

This instrument will correct for a reverse causality problem since, by construction, there is
no exogenous variation in productivity across cities. Table 11 below shows the estimates. The
F-statistics are very large, implying no need to explore GMM-CUE estimates. Moreover, the
coefficients present the same general pattern as our baseline estimates: occupational externalities
are generally stronger than those associated with total population.

C The Planner’s Problem

This section describes the solution to the planner’s problem taking as given that workers in different
occupations can freely choose in which city to live. Under this assumption, the expected utility of
a worker of type k is given by equation (16). Given welfare weights for each occupation, φk, the
utilitarian planner then solves

W =
∑
k

φkU

Γ

(
ν − 1

ν

)( N∑
n=1

(
AknC

k
n

)ν) 1
ν

Lk, (46)

where recall that Ckn aggregates final goods from different sectors:

Ckn =
∏
j

(
Ckjn

)αj
. (47)

The planner maximizes (46) subject to the resource constraints for final goods,
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Table 11: Externality estimates with Model Implied IV’s

(1) (2)

OLS 2SLS

VARIABLES CNR non-CNR CNR non-CNR

γjnlog(L
k
n

Ln
) 0.889*** 0.702*** 0.752*** 0.454**

(0.12) (0.22) (0.12) (0.21)

γjnlog(Ln) 0.386*** 0.322*** 0.405*** 0.308***
(0.05) (0.04) (0.05) (0.04)

Observations 7,460 7,460 7,460 7,460
K.P. F 600.2 595.5
S.W.F. Lkn Share 1187 1205
S.W.F. Ln 1705 1778

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

∑
k

LknC
kj
n +

∑
j′

∫
M jj′
n (z)dΦ(z) =

∫ [∑
n′

Qjnn′(z)

] η−1
η

dΦ(z)


η
η−1

, (48)

where Qjnn′(z) are the purchases of intermediate goods produced in city n′ by final goods firms in
city n, the resource constraints for intermediate goods of all varieties z and industries j produced
in all cities n ∑

n′

Qjn′n(z)κjn′n = qjn(z), ∀z ∈ R+
n , (49)

where

qjn(z) = zn

Hj
n(z)β

j
n

[∑
k

(
λkjn (Ln)Lkjn (z)

) ε−1
ε

] ε
ε−1(1−βjn)

γ
j
n∏

j′

M j′j
n (z)γ

j′j
n ,

labor markets constraints in all locations,∑
j

∫
Lkjn (z)dΦ(z) = Lkn, (50)

where labor supply in each city, Lkn, satisfies

Lkn =

(
AknC

k
n

)ν∑
n′
(
Akn′C

k
n′
)νLk, (51)

the resource constraints in the use of land and structures,
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∑
j

∫
Hj
n(z)dΦ(z) = Hn, (52)

as well as non-negativity constraints applying to both household consumption of different goods
and input flows:

Ckjn ≥ 0 and Qjn′n(z) ≥ 0.

From the resource constraint on local labor markets (50), and the labor supply condition (51),

it follows immediately that national labor markets clear (i.e.,
∑

n,j

∫
Lkjn (z)dΦ(z) = Lk).

C.1 Solving the Planner’s Problem

We solve the Planner’s problem for interior allocations, (i.e., where Ckn and Lkn are strictly greater
than zero for all n and k). For each city n and sector j, let P jn be the Lagrange multiplier
corresponding to the final goods resource constraint in city n, sector j (48), P̃n the multiplier
corresponding to the aggregation of sectoral goods in each city (47), and p̃jn(z) the multiplier
corresponding to the intermediate goods resource constraints (49). For each city n and occupation
k, let wkn be the multiplier corresponding to regional labor market clearing (50), W k

n the multiplier
corresponding to the definitions of employment in each occupation and sector (51). Finally, for
each city n, let rn denote the multiplier corresponding to market clearing for structures (52).

The first-order conditions associated with the planner’s problem are:

∂Ckjn : P̃nα
j C

k
n

Ckjn
= P jnL

k
n, (53)

which also defines an ideal price index,

Pn =
P̃n
Lkn

=
∏
j

(
P jn
αj

)αj
. (54)

In addition,

∂Ckn : φkU ′
(
vk
)
vk

(
AknC

k
n

)ν∑
n′
(
Akn′C

k
n′
)ν 1

Ckn
Lk (55)

= LknPn −
N∑

n′=1

∂ζkn′
(
Ck
)

∂Ckn
W k
n′ ,

where

vk = Γ

(
ν − 1

ν

)(∑
n′

(
Akn′C

k
n′

)ν) 1
ν

and

∂ζkn′
(
Ck
)

∂Ckn
=


(
ν
Ckn

)(
1− Lkn

Lk

)
Lkn if n′ = n

−
(
ν
Ckn

)(
Lk
n′
Lk

)
Lkn if n′ 6= n

.
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Also

∂Lkn :
J∑
j=1

P jnC
kj
n − w̃kn +W k

n = 0. (56)

where

w̃kn = wkn (57)

+
∑
j

∫ ∂zn

Hj
n(z)β

j
n

[∑
k′′

(
λk
′′j
n (Ln)Lk

′′j
n (z)

) ε−1
ε

] ε
ε−1(1−βjn)

γ
j
n

J∏
j′=1

M j′j
n (z)γ

j′j
n

∂Lkn
p̃jn (z) dz

denotes the total social marginal value of an extra worker of type k in city n. On the production
side, efficient allocations dictate

∂Qjnn′(z) :

 Qjnn′(z) > 0 if κjnn′ p̃
j
n′(z) = P jn

(
Qjn
) 1
η
[∑N

n′=1Q
j
nn′(z)

]− 1
η
dΦ(z)

Qjnn′(z) = 0 if κjnn′ p̃
j
n′(z) > P jn

(
Qjn
) 1
η
[∑N

n′=1Q
j
nn′(z)

]− 1
η
dΦ(z)

. (58)

This last equation delivers efficient trade shares, πjnn′ , and prices, P jn, using the usual Eaton and
Kortum derivations. In addition,

∂Lkjn (z) : γjn(1− βjn)
qjn(z)

Lkjn (z)

(
wkn(

λkjn (Ln)
)
)1−ε

∑
k′

(
wk′n(

λkjn (Ln)
)
)1−ε p̃

j
n(z) = wkndΦ(z), (59)

∂Hj
n(z) : γjnβ

j
n

qjn(z)

Hj
n(z)

p̃jn(z) = rndΦ(z), (60)

∂M j′j
n (z) : γj

′j
n

qjn(z)

M j′j
n (z)

p̃jn(z) = P j
′
n dΦ(z). (61)

With the usual manipulations of these equations, one obtains

p̃jn(z) ≡ pjn(z)dΦ(z) =
xjndΦ(z)

zn
, (62)

where

xjn = Bj
n

rβjnn
∑

k

 wkn(
λkjn (Ln)

)
1−ε

1−βjn
1−ε


γjn∏

j′

(
P j
′
n

)γj′jn
, (63)

and Bj
n is defined as above.
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D Characterization of the Planner’s Solution

In the decentralized equilibrium, the budget constraint of a household of type k in city n satisfies

PnC
k
n = wkn + χk,

where χk = bk
∑
n′ rn′Hn′∑
n′,j L

k,j

n′
. In contrast, we now show that the consumption of a household of type k

in city n implied by the planner’s solution satisfies

PnC
k
n =

ν

1 + ν
w̃kn + χk +Rk,

and recall that w̃kn is the social marginal product of labor associated with occupation k in city n.

Proof:
Equation (55) may alternatively be expressed as

φkU ′(vk)vk
Lkn
Ckn

= LknPn −
(
ν

Ckn

)
LknW

k
n +

N∑
n′=1

(
ν

Ckn

)(
Lkn′

Lk

)
LknW

k
n′ ,

where vk is defined in equation (16). Alternatively, we have that

φkU ′(vk)vk −
∑
n′

ν

(
Lkn′

Lk

)
W k
n′︸ ︷︷ ︸

(1+ν)(χk+Rk)

= PnC
k
n − νW k

n .

Substituting for W k
n from (56) in this last expression gives

PnC
k
n = ν

(
w̃kn − PnCkn

)
+ (1 + ν) (χk +Rk)

or
PnC

k
n =

ν

1 + ν
w̃kn + χk +Rk. (64)

�

Observe that we can also use (56) to write χk + Rk as a function of prices, w̃kn, Pn, and
consumption, Ckn. In particular,

χk +Rk =
φkU ′(vk)vk

1 + ν
− ν

1 + ν

∑
n′

(
Lkn′

Lk

)(
w̃kn − Pn′Ckn′

)
.

We can then obtain an expression for the total consumption expenditures of households of type k
by adding (64) across cities n, with the expression for χk +Rk substituted in,

φkU ′(vk)vkLk =
∑
n

PnC
k
nL

k
n. (65)

Substituting out φkU ′(vk)vk back into the expression for χk +Rk and rearranging, we obtain

χk +Rk =

∑
n PnC

k
nL

k
n

Lk
−
∑
n

νk

1 + ν

(
Lkn
Lk

)
w̃kn.
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Finally, note that
∑

n,k PnC
k
nL

k
n =

∑
n,k

(
wknL

k
n + rnHn

)
, so that∑

k

Lk(χk +Rk) =
∑
n,k

1

1 + ν
wknL

k
n −

∑
n,k

ν

1 + ν

(
w̃kn − wkn

)
Lkn +

∑
n

rnHn (66)

The individual values for χk are determined to be such that equation (66) is satisfied.

D.1 The Social and Private Marginal Value of Workers of type k in city n (Proof
of Lemma 1)

Solving the derivative in the equation defining the social value of workers of type k in city n (57),
we obtain

w̃kn − wkn

=
∑
j

∫ ∂zjn

Hj
n(z)β

j
n

[∑
k′

(
λk
′j
n (Ln)Lk

′j
n (z)

)1− 1
ε

] ε
1−ε(1−βjn)

γ
j
n

J∏
j′=1

M j′j
n (z)γ

j′j
n

∂Lkn
pjn(z)dΦ(z)

where pjn(z)dΦ(z) = p̃jn(z). This expression is equivalent to

w̃kn − wkn =
∑
j,k′

(1− βjn)γjn

(
wk
′
n

λk
′j
n (Ln)

)1−ε

∑
k′′

(
wk′′n

λk
′j
n (Ln)

)1−ε
1

λk
′j
n (Ln)

∂λk
′j
n (Ln)

∂Lkn
qjn(z)pjn(z)dΦ(z).

Rearranging and integrating equation (59) yields

wknL
kj
n = (1− βjn)γjn

(
wkn

λkjn (Ln)

)1−ε

∑
k′

(
wk′n

λk
′j
n (Ln)

)1−ε

∫
qjn(z)pjn(z)dΦ(z),

so that the expression for the deviation of private from social marginal product of labor simplifies
further to

w̃kn − wkn =
∑
j,k′

wk
′
n

Lk
′j
n

Lkn

∂ lnλk
′j
n (Ln)

∂ lnLkn
. (67)

D.2 Implementation (Proof of Proposition 1)

We now discuss the implementation of the optimal policy. One possible implementation is to
combine a direct employment subsidy to firms that is specific to cities and occupations (∆k

n), a
linear occupation-specific labor income tax (tkL), combined with occupation-specific transfers (Rk).

With externalities in occupations, the social and private marginal products of labor differ. The
first step in the implementation of optimal allocations, therefore, is to subsidize firms in different
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locations to hire different occupation types. We define w̃kn to be the after-subsidy wage associated
with workers in occupation k living in city n such that

w̃kn = wkn + ∆k
n,

where ∆k
n is a per-worker subsidy offered to firms in city n hiring workers of type k. With these

subsidized wages in place, we take advantage of various additional taxes and transfers to implement
optimal allocations. In particular, equation (1) becomes

Ikn = (1− tkL)w̃kn + χk +Rk, (NK eqs.) . (68)

where transfers have to be such that the government budget balances,∑
n,k

LknR
k =

∑
n,k

tkLw
k
nL

k
n −

∑
n,k

(1− tkL)∆k
nL

k
n. (69)

We also have that labor demand depends only on pre-subsidy wages, wkn,

wknL
kj
n (z) =

(
wkn

λkjn (Ln)

)1−ε

∑
k′

(
wkn

λk
′j
n (Ln)

)1−εγ
j
n

(
1− βjn

)
pjn(z)qjn(z), (NKJ eqs.) (70)

xjn = Bj

rβjnn
∑

k

(
wkn

λkjn (Ln)

)1−ε


1−βjn
1−ε


γjn∏

j′

(
P j
′
n

)γj′jn
, (71)

Definition 1. An equilibrium with taxes and transfers is defined as the equilibrium without taxes
and transfers but with the additional conditions that i) Ikn is given by equation (68), ii) the first-
order condition describing intermediate goods producers’ labor demand is given by (70), iii) the
cost index xjn is given by (71), and iv) the government budget constraint (69) is satisfied.

Proposition. Let

tkL =
1

1 + ν

∆k
n =

∑
k′j

wk
′
n

Lk
′j
n

Lkn

∂ lnλk
′j
n (Ln)

∂ lnLkn

and Rk such that
φkU ′(vk)vkLk =

∑
n

PnC
k
nL

k
n.

Then, if the planner’s problem is globally concave, the equilibrium with taxes and transfers
implements the optimal allocation.
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Proof. 1) The first order condition for household consumption choice (15) is identical to the first
order condition for consumption in the planner’s problem, (53). The modified budget constraint
for the household (68) implies a relationship between consumption and prices identical to equation
(64), which is derived from the first order conditions (55) and (56) in the planner’s problem. At
the same time, the optimal location decision for the household, (2) is identical to the free mobility
constraint in the planner’s choice (51) for a given set of consumption Ckn.

2) The first order condition for factor demand for intermediate input producers, (17), (19) and
(70) are identical to the first order conditions for the planner’s problem (59), (60) and (61) once
one uses equation (67) to substitute w̃kn out of (59).

3) The condition that a producer in city n and industry j imports a variety z from city n′ if
and only if κjnn′p

j
n(z) = minn′′ κ

j
nn′′p

j
n′′(z) is implied by the first order condition for the planner’s

problem (58), given that Qjn(z) =
∑

n′ Q
j
nn′(z), p̃jn(z)dΦ(z) = pjn(z).

4) The first order condition associated with the optimal use of different varieties by final goods
producers (24) is implied by (58) given that Qjn(z) =

∑
n′ Q

j
nn′(z), p̃jn(z)dΦ(z) = pjn(z), and

P jn(z) = minn′ κ
j
nn′p

j
n′(z).

5) The market clearing conditions for employment (equation 5), structures (equation 6), final
goods (equation 7) and intermediate goods (8) are identical to the resource constraints faced by
the planner, respectively, (50) combined with (51), (52), (48) and (49).

6) In the planner’s solution, equation 65 has to hold.

E A Counterfactual Economy After Eliminating Endogenous Ameni-
ties

We now verify whether the planner solution would be likely to change if one were to adjust local
amenities to remove the components that Diamond (2016) argues are likely to be endogenous.
For that purpose, we carry out two counterfactual exercises. For both exercises, we first extract
the exogenous component of amenities as implied by the mapping of Diamond’s (2016) estimates
into amenity spillovers described in Fajgelbaum and Gaubert (2018). Specifically, we calculate a

value of Ak,exon such that Ak,exon
∏(

Lk
′
n

)τk′ka
Ckn = 1, with τCNR,CNRa = 0.77, τnCNR,CNRa = −1.24,

τCNR,nCNRa = 0.18 and τnCNR,nCNRa = −0.43. In the first exercise, we calculate a counterfactual

equilibrium where the labor supply equations are given by Lkn =

(
Ak,exon Ckn

)−νk
∑
n′
(
Ak,exo
n′ Ck

n′

)−νk . In the second

exercise, we calculate the optimal allocation in that counterfactual environment.
Figures 21 below show the relationship between relative the exogenous part of amenities implied

by that exercise and city size and composition, further discussed in the text.
Figure 22 shows how the distribution of CNR workers in the optimal allocation compares with

the counterfactual equilibrium. As in our baseline economy, the planner has an incentive to increase
labor market polarization by concentrating proportionately more CNR workers in larger cities.
Figure 23 shows that, as in our baseline analysis, this increased polarization is matched by transfers
from the large cities to the small ones.
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Figure 21: Relative amenities and city size and composition (exogenous part)

Ratio of occupational-specific amenity parameters for each city obtained after extracting the en-
dogenous part of amenities implied by the parametrization used by Fajgelbaum and Gaubert (2018).
Each observation refers to a CBSA. Marker sizes are proportional to total city employment.
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Figure 22: Optimal LCNRn /Ln with counterfactual amenities (change from counterfactual equilib-
rium)

Each marker in the map refers to a CBSA. Marker sizes are proportional to total equilibrium
employment in each city. ρ and ρ̃ are unweighted and population weighted correlations respectively.

73



Net transfers (per capita)
< -18900

[ -18900 , -9460 )

[ -9460 , 0 )

[ 0 , 9460 )

[ 9460 , 18900 )

>= 18900

Population 45,000 1,799,000 3,553,000

-30

-15

0

15

0.2 0.4 0.6

CNR share in
counterfactual

ρ = -0.902 , ρ̃ = -0.951

N
et

tr
a
n
sf
er
s

(p
er

ca
p
it
a,

’0
0
0s
)

-30

-15

0

15

11 12 13 14 15

Log population in
counterfactual

ρ = -0.615 , ρ̃ = -0.756

N
et

tr
a
n
sf
er
s

(p
er

ca
p
it
a,

’0
0
0
s)

Figure 23: Optimal transfers with counterfactual amenities

Optimal transfers defined as the difference in the optimal allocation between the value consumed
and value added in each city (

∑
k PnC

k
n −

∑
k w

k
nL

k
n − rnHn). Each marker in the map refers to

a CBSA. Marker sizes are proportional to total equilibrium employment in each city. ρ and ρ̃ are
unweighted and population weighted correlations respectively.

F Quantifying the Model for 1980 and Counterfactual Exercises

F.1 Quantifying the Model for 1980

In order to quantify the model for 1980, we follow similar steps as described in Section B, with
modifications to accommodate data constraints.

Regional Price Parities data are not available for 1980. In the baseline model quantification,
we used those in order to calculate the productivity of the non-tradable sectors. To obtain the
productivity of the real estate sector in 1980, we match instead changes in CoreLogic HPI data,
available by county. As for the productivity of the non-tradable sector, we assume that its spatial
distribution does not change. In addition, the model inversion exercise carried out for our 2011-15
benchmark does not pin down the national average level of productivity for each industry, only its
occupational and spatial variation. In order to obtain the time variation of those levels, we choose
average 1980 productivity levels to match national level sectoral price series made available by the
BEA.

To obtain wages and the occupational composition of cities and industries, we use the 5% sample
of the 1980 Census data which is comparable to the ACS. The 1980 Census has data for 213 MSA’s
that account for approximately 85% of U.S. employment in that year. For the remaining MSA’s,
we impute wages and employment by occupation and by sector by taking the predicted values of a
regression of those variables on 1980 CBP employment by sector and housing prices.
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F.2 Details of Counterfactual Exercises

In the counterfactual exercises described in Section 6, we separate average changes in productivity
or amenities from their geographical and occupational dispersion.

The first step is to study the consequences of changing factor shares. We focus on the con-
sequences of those changes to factor demand, while keeping unit costs in individual cities and
industries fixed. This exercise implies a set of alternative productivity parameters for 1980, which
we then take as our base for comparison with the current period.38 Productivity changes then refer

to changes in T kjn =
(
Hj
n

)βjn (
λkjn
)γjn(1−βjn)

.39 The average change in productivity between 1980 and

2011-15 for a given industry is a Tornqvist type index: a geometric weighted average of the changes
in productivity across cities, with the weights given by the value added by each city/industry as
a fraction of total industry value added. Those shares are first calculated separately for the 1980
and 2011-15 periods, and the weights correspond to the arithmetic average of those shares.40

The model does not allow us to pin down an aggregate trend in amenities since changing
amenities in all cities by a common scaling parameter leaves the equilibrium unchanged. We thus
assume that there was no such trend so as to focus on the welfare implications of endogenous
changes in equilibrium variables. For the baseline economy, this implies keeping a Tornqvist type
index of amenities constant relative to the 2011-15 period: specifically, we keep a weighted geometric
average of changes in amenities equal to 1, with the weights given by employment shares by city
(again the shares are taken for the baseline and 2011-15 periods separately and the weights are
given by an arithmetic average).

38One advantage of this procedure is that, given that changes in factor shares can be city-specific, implied produc-
tivity changes may otherwise depend on scaling parameters adopted for the different inputs.

39Specifically, when calculating the average change in productivity for a given sector j and occupation k we set

ln
(
T kj,counterfactual
n

)
= γjn

∑
n′ ω

kj
n′

1

γ
j

n′
ln
(
T kjn′

)
, where ωkjn =

wknL
kj
n∑

n′ wk
n′L

kj

n′
, and analogously for other averages.

40We carry out a similar calculation in order to obtain productivity trends by city/industry/occupation

75



9 10 11 12 13 14 15 16

Log population in data

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

C
ha

ng
e 

in
 G

in
i c

oe
ff

ic
ie

nt
 f

ro
m

da
ta

 e
qu

ili
br

iu
m

 to
 o

pt
im

al
 a

llo
ca

tio
n

Figure 24: Changes in the Gini coefficient between the data and optimal allocation.

Each observation refers to a CBSA. Marker sizes are proportional to total employment. The solid-
black line is a cubic fit of the data. The Gini is constructed using the Lorenz curves depicting within
city wage bill and industry rank.
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