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We generically partition the set of all sectors, N = {1, ..., n}, into two subsets. We denote by Ñ the
set of sectors whose goods are assembled using CES aggregators and whose shares will vary with prices
and quantities over time. We denote by N̄ the set of sectors whose goods are assembled using unit-elastic
aggregators and whose shares will be constant. These two subsets cover all sectors, N = N̄ ∪ Ñ , and are
disjoint, N̄ ∩ Ñ = ∅.

The subset Ñ (or N̄ ) will not always include the same sectors depending on which aspect of the
environment, production, or preferences is being addressed. For example, we denote by Ñ x

j the set of

sectors whose goods are assembled into investment, x, by sector j using a CES technology. Thus, Ñ x
j

would include Durable Goods and IPP Services (in this case ∀j).

1 Preferences

We distinguish between two sets of consumption goods, j ∈ Ñ c and j ∈ N̄ c. Total household expen-
ditures on consumption, e, reflect expenditures on both types of goods with expenditure on goods j ∈ Ñ c

and j ∈ N̄ c denoted by ẽ and ē respectively, where e = ẽ + ē.

1.1 The Homothetic Bundle

Goods j ∈ N̄ c are assembled into a homothetic consumption bundle, c̄, according to the aggregator
(abstracting from the time subscripts),

c̄ = ∏
j∈N̄ c

(
cj

ζ j

)ζ j

, ∑
j∈N̄ c

ζ j = 1.

The Lagrangian associated with the corresponding expenditure minimization problem is

Lc̄ = ∑
j∈N̄ c

py
j cj + pc̄

c̄ − ∏
j∈N̄ c

(
cj

ζ j

)ζ j

 .

Then, we have that,
py

j = pc̄ c̄
cj/ζ j

,

pc̄ = ∏
j∈N̄ c

(py
j )

ζ j .

In addition,
py

j cj = ζ j pc̄ c̄ ⇒ ∑
j∈N̄ c

py
j cj = pc̄ c̄,
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which implies
ē = pc̄ c̄ = ∏

j∈N̄ c

(py
j )

ζ j c̄.

Thus, expenditures on the homothetic bundle, ē, are the product of the utility aggregate, c̄, and the price
index for the utility aggregate.

1.2 The Non-Homothetic Bundle

Goods j ∈ Ñ c are bundled using the aggregator, c̃ = C(cj : j ∈ Ñ c), defined implicitly by

∑
j∈Ñ c

Θ1/σ
j

[
cj/(c̃)ϵj

](σ−1)/σ
= 1, (1)

where Θb = ϵb = 1 for some base commodity b ∈ Ñ c. All other preference parameters satisfy Θj, ϵj ≥ 0
for j ̸= b and σ ≥ 0. The associated expenditure minimization problem is

min ẽ = ∑
j∈Ñ c

py
j cj subject to C(cj : j ∈ Ñ c) = c̃.

The corresponding Lagrangian is,

min ∑
j∈Ñ c

py
j cj + Λ

1 − ∑
j∈Ñ c

Θ1/σ
j

[
cj/c̃ε j

](σ−1)/σ

 .

The FOCs are
py

j =
σ − 1

σ
ΛΘ

1
σ
j c̃

ε j(1−σ)

σ c
−1
σ

j ,

which we can solve for consumption,

cj =

(
σ − 1

σ

)σ

ΛσΘj(py
j )

−σ c̃ε j(1−σ).

Total cost-minimizing expenditures are

ẽ = ∑
j∈Ñ c

py
j cj = Ẽ(py, c̃) =

(
σ − 1

σ

)σ

Λσ ∑
j∈Ñ c

Θj(py
j )

1−σ c̃ε j(1−σ).
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Moreover, we can rewrite the expression for cj as

c
σ−1

σ
j =

(
σ − 1

σ

)σ−1

Λσ−1Θ
σ−1

σ
j (py

j )
1−σ c̃ε j(1−σ) σ−1

σ

⇒ Θ1/σ
j

c
σ−1

σ
j

c̃
ε j(σ−1)

σ

=

(
σ − 1

σ

)σ−1

Λσ−1Θj(py
j )

1−σ c̃ε j(1−σ).

Summing this expression over all commodities and recalling the implicit definition of preferences in
expression (1), we obtain

1 =

(
σ − 1

σ

)σ−1

Λσ−1 ∑
j∈Ñ c

Θj(py
j )

1−σ c̃ε j(1−σ)

⇒ Λ(1−σ)

(
σ − 1

σ

)1−σ

= ∑
j∈Ñ c

Θj(py
j )

1−σ c̃ε j(1−σ).

It follows that Ẽ(py, c̃) =
(

σ−1
σ

)
Λ so that the Hicksian demand functions are given by

cj = Cj(py, c̃) =

(
py

j

Ẽ(py, c̃)

)−σ

Θj c̃ε j(1−σ), j ∈ Ñ c (2)

and the expenditure function is

Ẽ(py, c̃) =

 ∑
j∈Ñ c

Θj(py
j )

1−σ c̃ε j(1−σ)

 1
1−σ

. (3)

1.3 The Household Problem

The representative household solves the utility maximization problem,

max U = (c̄t)
ρt(c̃t)

1−ρt − ∑
j∈N

φj,tℓ
1+γℓ
j,t

1 + γℓ
,

subject to pc̄
t c̄t + E(py

t , c̃t) + ∑
j∈N

px
j,t
[
k j,t+1 − (1 − δj)k j,t

]
= ∑

j∈N
wj,tℓj,t + ∑

j∈N
uj,tk j,t (4)

where ℓj,t and φj,t denote, respectively, labor input and labor supply shifters in sector j while γℓ is the
Frisch elasticity of labor.

Let λt denote the Lagrange multiplier associated with the constraint (4). Turning our attention first to
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the consumption problem, the corresponding FOCs are

ρtut/c̄t = λt pc̄
t ,

(1 − ρt)ut/c̃t = λt
∂E(py

t , c̃t)

∂c̃t
,

where ut = (c̄t)ρt(c̃t)1−ρt .
Taking the ratios of the first two FOCs gives

ρt

(1 − ρt)

c̃t

c̄t
=

pc̄
t

∂Et/∂c̃t
,

which we can solve for pc̄
t c̄t in the budget constraint to obtain

et =
ρt

(1 − ρt)

∂E(py
t , c̃t)

∂c̃t
c̃t + E(py

t , c̃t).

It follows that the expenditure share of the non-homothetic bundle is given by

Et

et
=

[
ρt

(1 − ρt)

∂E(py
t , c̃t)

∂c̃t

c̃t

Et
+ 1

]−1

=

[
ρtη

E
t

(1 − ρt)
+ 1
]−1

, with ηE
t ≡ ∂E(py

t , c̃t)

∂c̃t

c̃t

Et
.

Thus
Et

et
=

(1 − ρt)

ρtηE
t + (1 − ρt)

, (5)

while the expenditure share of the homothetic bundle is

pc̄
t c̄t

et
=

ρtη
E
t

ρtηE
t + (1 − ρt)

. (6)

In the data, pc̄
t c̄t
et

has stayed approximately constant around 0.1 over the last 70 years. Thus, let

pc̄
t c̄t

et
= sc. (7)

It follows that ρt must solve

ρt =
sc

(1 − sc)ηE
t + sc

, (8)

which requires knowing ηE
t .

The expenditure function associated with the non-homothetic bundle, equation (3), repeated here for
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convenience,

E(py
t , c̃t) =

 ∑
j∈Ñ c

Θj,t(py
j,t)

1−σ(c̃t)
ϵj(1−σ)

 1
1−σ

is homogeneous of degree one in prices, py
t , but not in the ‘real’ consumption index, c̃t. In other words,

there is no separate price index for c̃t. The elasticity of non-homothetic expenditures, Et, with respect to
the ’real’ consumption index, c̃t, is

∂E(py
t , c̃t)

∂c̃t

c̃t

E(py
t , c̃t)

=
E(py

t , c̃t)σ
[
∑j∈Ñ c Θj,t(py

j,t)
1−σϵj(c̃t)

ϵj(1−σ)−1
]

c̃t

E(py
t , c̃t)

= E(py
t , c̃t)

σ−1

 ∑
j∈Ñ c

Θj,t(py
j,t)

1−σϵj(c̃t)
ϵj(1−σ)

 ,

that is,

ηE
t =

∑j∈Ñ c ϵjΘj,t(py
j,t)

1−σ(c̃t)
ϵj(1−σ)

∑j∈Ñ c Θj,t(py
j,t)

1−σ(c̃t)
ϵj(1−σ)

. (9)

This expenditure elasticity differs from 1 since for goods other than the base good, ϵj ̸= 1.
Turning our attention next to the labor supply problem, the corresponding FOC is

φj,tℓ
γℓ
j,t = λtwj,t, (10)

where λt solves

ρt

(
c̃t

c̄t

)1−ρt

= λt pc̄
t . (11)

2 Technology

2.1 Investment

The technology used to produce investment goods for a given sector j is given by

xj = X (xij).

We write X as a function of two investment bundles, x̃j and x̄j, where

xj =

(
x̃j

ρx
j

)ρx
j
(

x̄j

1 − ρx
j

)1−ρx
j

, ρx
j ∈ (0, 1),
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and

x̃j =

 ∑
i∈Ñx

j

zx
ijx

ϵx
j −1

ϵx
j

ij


ϵx

j
ϵx

j −1

, ∑
i∈Ñx

j

zx
ij = 1, ϵx

j ∈ (0, ∞),

x̄j = ∏
i∈N̄x

j

(
xij

ζx
ij

)ζx
ij

,
n

∑
i∈N̄x

j

ζx
ij = 1.

Concretely, the sub-bundle x̃j consists of Durable Goods and IPP in every sector j.

• The cost minimization problem associated with xj is

min px̃
j x̃j + px̄

j x̄j subject to xj =
[

x̃j/ρx
j

]ρx
j
[

x̄j/
(

1 − ρx
j

)]1−ρx
j

.

The corresponding Lagrangian is

Lxj = px̃
j x̃j + px̄

j x̄j + px
j

xj −
(

x̃j

ρx
j

)ρx
j
(

x̄j

1 − ρx
j

)1−ρx
j
 .

The FOCs are

px̃
j = px

j
xj

x̃j/ρx
j

,

px̄
j = px

j
xj

x̄j/
(

1 − ρx
j

) .

Then
px

j = (px̃
j )

ρx
j (px̄

j )
1−ρx

j .

In addition,

px̃
j x̃j = ρx

j px
j xj,

px̄
j x̄j = (1 − ρx

j )px
j xj.

• The cost minimization problem associated with x̃j is

min ∑
i∈Ñ x

j

py
i xij subject to x̃j =

 ∑
i∈Ñ x

j

zx
ijx

ϵx
j −1

ϵx
j

ij


ϵx

j
ϵx

j −1

.
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The corresponding Lagrangian is

Lx̃j = ∑
i∈Ñ x

j

py
i xij + px̃

j

x̃j −

 ∑
i∈Ñ x

j

zx
ijx

ϵx
j −1

ϵx
j

ij


ϵx

j
ϵx

j −1

 .

The FOCs are

py
i = px̃

j

 ∑
i∈Ñ x

j

zx
ijx

ϵx
j −1

ϵx
j

ij


1

ϵx
j −1

zx
ijx

−1
ϵx

j
ij , i ∈ Ñ x

j .

It follows that

(zx
ij)

ϵx
j
(

py
i

)1−ϵx
j =

(
px̃

j

)1−ϵx
j

 ∑
i∈Ñ x

j

zx
ijx

ϵx
j −1

ϵx
j

ij


−1

x

ϵx
j −1

ϵx
j

ij zx
ij, i ∈ Ñ x

j .

Summing across i ∈ Ñ x
j gives

∑
i∈Ñ x

j

(zx
ij)

ϵx
j
(

py
i

)1−ϵx
j =

(
px̃

j

)1−ϵx
j

 ∑
i∈Ñ x

j

zx
ijx

ϵx
j −1

ϵx
j

ij


−1

∑
i∈Ñ x

j

zx
ijx

ϵx
j −1

ϵx
j

ij ,

so that

px̃
j =

 ∑
i∈Ñ x

j

(zx
ij)

ϵx
j
(

py
i

)1−ϵx
j


1

1−ϵx
j

.

In addition, observe that

py
i xij = px̃

j

 ∑
i∈Ñ x

j

zx
ijx

ϵx
j −1

ϵx
j

ij


1

ϵx
j −1

zx
ijx

ϵx
j −1

ϵx
j

ij ⇒ ∑
i∈Ñ x

j

py
i xij = px̃

j x̃j.

Moreover,
py

i xij

px̃
j x̃j

=
(
x̃j
) 1−ϵx

j
ϵx

j
(
x̃ij
) ϵx

j −1

ϵj zx
ij ⇒ ∑

i∈Ñ x
j

py
i xij

px̃
j x̃j

= 1.

In the special case where ϵx
j = 1, py

i xij

px̃
j x̃j

= zx
ij (i.e., production is Cobb-Douglas).
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• The cost minimization problem associated with x̄j is

min ∑
i∈N̄ x

j

py
i xij subject to x̄j = ∏

i∈N̄ x
j

(
xij

ζx
ij

)ζx
ij

.

The corresponding Lagrangian is

Lx̄j = ∑
i∈N̄ x

j

py
i xij + px̄

j

x̄j − ∏
i∈N̄ x

j

(
xij

ζx
ij

)ζx
ij
 .

Following the derivations above, we have that

py
i = px̄

j
x̄j

xij/ζx
ij

,

px̄
j = ∏

i∈N̄ x
j

(py
i )

ζx
ij .

In addition,
py

i xij = ζx
ij p

xn

j x̄j ⇒ ∑
i∈N̄ x

j

py
i xij = px̄

j x̄j.

Putting these results together gives

px
j = PX

j (py) =

 ∑
i∈Ñ x

j

(zx
ij)

ϵx
j
(

py
i

)1−ϵx
j


ρx

j
1−ϵx

j

︸ ︷︷ ︸
(px̃

j )
ρx

j

∏
i∈N̄ x

j

(py
i )

ζx
ij(1−ρx

j )

︸ ︷︷ ︸
(px̄

j )
1−ρx

j

.

2.2 Materials

The approach here is analogous to that of investment. Thus, we have

pm
j = (pm̃

j )
ρm

j (pm̄
j )

1−ρm
j ,

pm̃ =

 ∑
i∈Ñm

j

(zm
ij )

ϵm
j
(

py
i

)1−ϵm
j


1

1−ϵm
j

,
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pm̄
j = ∏

i∈N̄m
j

(py
i )

ζm
ij .

Together these expressions imply

pm
j = PM

j (py) =

 ∑
i∈Ñm

j

(zm
ij )

ϵm
j
(

py
i

)1−ϵm
j


ρm

j
1−ϵm

j

︸ ︷︷ ︸
(pm̃

j )
ρm

j

∏
i∈N̄m

j

(py
i )

ζm
ij (1−ρm

j )

︸ ︷︷ ︸
(pm̄

j )
1−ρm

j

.

In addition, for i ∈ Ñ m
j ,

py
i mij = pm̃

j

 ∑
i∈Ñm

j

zm
ij m

ϵm
j −1

ϵm
j

ij


1

ϵm
j −1

zm
ij m

ϵm
j −1

ϵm
j

ij ⇒ ∑
i∈Ñm

j

py
i mij = pm̃

j m̃j,

and
py

i mij

pm̃
j m̃j

=
(
m̃j
) 1−ϵm

j
ϵm

j
(
m̃ij
) ϵm

j −1

ϵj zm
ij ⇒ ∑

i∈Ñm
j

py
i mij

pm̃
j m̃j

= 1,

while for i ∈ N̄ m
j ,

py
i = pm̄

j
m̄j

mij/ζm
ij

,

pm̄
j = ∏

i∈N̄m
j

(py
i )

ζm
ij ,

and
py

i mij = ζm
ij pm̄

j m̄j ⇒ ∑
i∈N̄m

j

py
i mij = pm̄

j m̄j.

2.3 Gross Output

Gross output in each sector is produced using value added (from capital and labor), vj, and the
materials bundle, mj, whose price index is derived above. In all sectors j ∈ N , gross output, yj, is
produced according to the Cobb-Douglas technology

yj =

(
vj

γj

)γj
(

mj

1 − γj

)1−γj

,

11



which implies a price index

py
j = PY

j (pv
j , pm

j ) =
(

pv
j

)γj
(

pm
j

)1−γj
.

In addition,

pv
j vj

py
j yj

= γj,

pm
j mj

py
j yj

= (1 − γj).

2.4 Value Added

Similarly, value added is produced using a unit-elastic technology in all sectors, j ∈ N .
Let

vj = zj

(
k j

αj

)αj ( ℓj

1 − αj

)1−αj

︸ ︷︷ ︸
Vj(k j,ℓj)

.

Then the FOCs for capital and labor are

uj = αj pv
j

zjVj(k j, ℓj)

k j
= pv

j zj

(
k j

αj

)αj−1 ( ℓj

1 − αj

)1−αj

= pv
j zj

(
k j

ℓj

)αj−1 ( αj

1 − αj

)1−αj

,

wj = (1 − αj)pv
j

zjV(k j, ℓj)

ℓj
= pv

j zj

(
k j

αj

)αj ( ℓj

1 − αj

)−αj

= pv
j zj

(
k j

ℓj

)αj ( αj

1 − αj

)αj

.

3 Modeling Past Structural Change as an Equilibrium

We interpret the low-frequency evolution of allocations and prices in the data through successive
steady-states of the model and abstract from transition dynamics.

In this section, we take the exogenous drivers zj, zm
ij , zx

ij, ψnx + ψg, and Θj as exogenous, obtained as
described in the main text. Conditional on these exogenous drivers, we describe how to obtain a steady
state equilibrium as a fixed point in the final goods price vector, py.1

Guess a price vector, py = (py
1, ..., py

n)
′.

1For this approach, we take observations on labor, ℓj, as given (labor is exogenous) and use the equilibrium equations to infer
labor supply shocks, φj, consistent with these observations given zj (shocks to labor demand).

12



STEP 1: px
j = PX

j (py) =

 ∑
i∈Ñ x

j

(zx
ij)

ϵx
j
(

py
i

)1−ϵx
j


ρx

j
1−ϵx

j

︸ ︷︷ ︸
(px̃

j )
ρx

j

∏
i∈N̄ x

j

(py
i )

ζx
ij(1−ρx

j )

︸ ︷︷ ︸
(px̄

j )
1−ρx

j

, ∀j ∈ N .

STEP 2: pm
j = PM

j (py) =

 ∑
i∈Ñm

j

(zm
ij )

ϵm
j
(

py
i

)1−ϵm
j


ρm

j
1−ϵm

j

︸ ︷︷ ︸
(pm̃

j )
ρm

j

∏
i∈N̄m

j

(py
i )

ζm
ij (1−ρm

j )

︸ ︷︷ ︸
(pm̄

j )
1−ρm

j

, ∀j ∈ N .

STEP 3: pv
j =

[
py

j

(pm
j )

1−γj

] 1
γj

, ∀j ∈ N .

STEP 4: uj = px
j

(
1
β
− 1 + δj

)
, ∀j ∈ N .

STEP 5:
k j

ℓj
=

[
uj

pv
j zj

(
αj

1 − αj

)αj−1
] 1

αj−1

, ∀j ∈ N .

STEP 6: wj = pv
j zj

(
k j

ℓj

)αj ( αj

1 − αj

)αj

, ∀j ∈ N .

STEP 7 serves as a check while STEP 8 is simply

STEP 8: k j =

(
k j

ℓj

)
ℓj, ∀j ∈ N .

STEP 9: xj = δjk j, ∀j ∈ N .

STEP 10: vj = zjVj(k j, ℓj) =
zj

α
αj
j (1 − αj)

(1−αj)

(
k j

ℓj

)αj

ℓj, ∀j ∈ N .

STEP 11 follows from Shephard’s lemma,

vj =
∂PY

j (pv
j , pm

j )

∂pv
j

yj ⇒ yj =

(
∂PY

j (pv
j , pm

j )

∂pv
j

)−1

vj.

13



Then

STEP 11: vj = γj

(
pv

j

)γj−1 (
pm

j

)1−γj
yj ⇒ yj =

1
γj

(
pv

j

)1−γj
(

pm
j

)γj−1
vj, ∀j ∈ N .

Intermediate input use is determined in the next step, also based on Shephard’s lemma,

STEP 12: mj =
∂PY

j (pv
j , pm

j )

∂pm
j

yj ⇒ mj = (1 − γj)
(

pv
j

)γj
(

pm
j

)−γj
yj.

and

STEP 12: mij = ρm
j (pm̃

j )
ρm

j −1(pm̄
j )

1−ρm
j

 ∑
i∈Ñm

j

(zm
ij )

ϵm
j
(

py
i

)1−ϵm
j


ϵm

j
1−ϵm

j

(zm
ij )

ϵm
j (py

i )
−ϵm

j mj, i ∈ Ñ mj ,

and

STEP 12: mij = (1 − ρm
j )(pm̃

j )
ρm

j (pm̄
j )

−ρm
j ζm

ij

∏i∈N̄m
j
(py

i )
ζm

ij

py
i

mj, i ∈ N̄ mj .

STEP 13 again follows from Shephard’s lemma,

xij =
∂PX

j (py)

∂py
i

xj.

STEP 13: xij = ρx
j (px̄

j )
1−ρx

j (px̃
j )

ρx
j −1

 ∑
i∈Ñ x

j

(zx
ij)

ϵx
j
(

py
i

)1−ϵx
j


ϵx

j
1−ϵx

j

(zx
ij)

ϵx
j (py

i )
−ϵx

j xj, i ∈ Ñ xj .

and

STEP 13: xij = (1 − ρx
j )(px̃

j )
ρx

j (px̄
j )

−ρx
j ζx

ij

∏n
i∈N̄ x

j
(py

i )
ζx

ij

py
i

xj, i ∈ N̄ xj .

STEP 14 finds, for some exogenous shift parameter, ψj, the residual supply of final goods available for
consumption,

STEP 14: cs
j = yj − ∑

i∈N
mji − ∑

i∈N
xji − ψj

pv
j vj

py
j︸ ︷︷ ︸

Ψj

.

STEP 15 then defines total nominal expenditures, e, (from the supply side)

STEP 15: e = ∑
j∈N

py
j cs

j ,

14



which we partition in terms of ē, nominal expenditures on the homothetic bundle, all goods except for
Non-Durable Goods and Services, and ẽ, nominal expenditures on the non-homothetic bundle, Non-
Durable Goods and Services.

STEP 16 then gives us total expenditures on goods in sectors j ∈ N̄ c,

STEP 16: ē = sce

and sectors j ∈ Ñc

STEP 16: ẽ = (1 − sc) e

STEP 17 then gives us the consumption index for goods in sectors j ∈ N̄ c,

STEP 17: ē = ∏
j∈N̄ c

(py
j )

ζ j c̄ ⇒ c̄ =

 ∏
j∈N̄ c

(py
j )

ζ j

−1

ē,

and sectors j ∈ Ñc,

STEP 17: ẽ =

 ∑
j∈Ñc

Θj(py
j )

(1−σ)(c̃)ϵj(1−σ)

 1
1−σ

.

STEP 18 gives us the consumption demand for final goods in each sector, again using Shephard’s
lemma,

cd
j =

∂E
∂py

j
.

Thus, for sectors j ∈ N̄ c, we have,

STEP 18: cd
j =

∂E(py, c̄)
∂py

j
=

ζ j ∏j∈N̄ c(py
j )

ζ j

py
j

c̄, j ∈ N̄ c.

For sectors j ∈ Ñ c, we have,

STEP 18: cd
j =

∂E(py, c̃)
∂py

j
=

 ∑
j∈Ñc

Θj(py
j )

1−σ(c̃)ϵj(1−σ)

 σ
1−σ

Θj(c̃)ϵj(1−σ)(py
j )

−σ, j ∈ Ñc.

The vector py is an equilibrium price when the goods market clears in each sector,

|cd
i − cs

i | < ϵ, ∀i ∈ N . (12)

To find the equilibrium price vector, we implement a tâtonnement process that adjusts py in order to

15



clear the market for consumption goods. That is, we set a new price (py)′ where

(py
i )

′ = py
i + b ×

(
cd

i − cs
i

)
︸ ︷︷ ︸

Excess Demand for Consumption Goods

, b > 0,

and iterate until ∥(py)m+1 − (py)m∥ < ϵ. This tâtonnement process implies that when excess demand is
positive,

(
cd

i − cs
i
)
> 0, prices are adjusted upward, and when excess demand is negative,

(
cd

i − cs
i
)
< 0,

prices are adjusted downward.
To find the parameters and labor supply shifters consistent with observed labor input as well as the

fact that sc is constant in the data, we solve the following steps,

STEP 19: ρ =
sc

(1 − sc)ηẼ + sc
, with ηẼ =

∑j ϵjΘj(py
j )

1−σ(c̃)ϵj(1−σ)

∑j Θj(py
j )

1−σ(c̃)ϵj(1−σ)
.

STEP 20: λ =
ρ

pc̄

(
c̃
c̄

)1−ρ

.

STEP 21: φj =
λwj

ℓγℓ
j

.

An important property of the steady state solution is that it is homogeneous of degree one in py. Ex-
pression (12) describes n residual equations in n unknowns, the price vector py. Although non-homothetic
preferences are not homogeneous of degree one in the utility index (after suitable transformation), they
continue to be homogeneous of degree one in prices. In other words, there are only n − 1 independent
residual equations and we need to normalize the prices in one sector to 1, i.e, choose a numéraire good.

To see this, suppose that py is a solution to steps 1 through 18 above, and that we scale all prices and
factor rentals by some factor λ > 0, p̃y = λpy, p̃v = λpv, p̃m = λpm, etc. Because the price functions
are CRS, the expressions in steps 1 through 4 continue to hold. In step 5, the capital-labor ratio is
independent of λ as the scale factors cancel. In steps 9 through 13, the quantities remain unaffected by
λ since the demand functions are homogeneous of degree zero in prices. Therefore, consumption in step
14, cs, is independent of λ. This means that total expenditures in steps 15 and 16 are scaled by exactly
λ. In step 17, the scale factors cancel since the expenditure functions are homogeneous of degree one in
prices in both the homothetic and non-homothetic cases. It follows that the utility indices, c̃ and c̄, in
step 17 remain unchanged. Since the expenditure function is homogeneous of degree one in prices, the
demand functions are homogeneous of degree zero in prices, and since the utility indices are unchanged,
consumption demand, cd, in (12) is unchanged. Therefore, all equations in steps 1 through 18 continue
to hold. Put simply, if py is an equilibrium price such that excess demand is zero in equation (12), so is
p̃y = λpy.
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4 Counterfactual Allocations and Forecasts as Equilibrium Outcomes

In this section, we take the exogenous drivers zj, zm
ij , zx

ij, Θj, ρ, ψj = ψnx
j + ψ

g
j , and φj as given. The

exogenous drivers are obtained as described in the main text or as forecasts. The derivation of φ is
described in the previous section. Conditional on these exogenous drivers, we describe how to obtain a
steady state equilibrium as a fixed point in the extended final goods price vector, that now includes the
shadow price of consumption, py

λ = (py
1, ..., py

n, λ)′.
Guess an extended price vector, py

λ.
Repeat STEP 1 through STEP 6. STEP 6’ then solves for labor supply.

STEP 6’: ℓj =

(
λwj

φj

) 1
γℓ

,

Repeat STEP 7 through STEP 15, which gives us e conditional on the guess py
λ = (py

1, ..., py
n, λ)′.

From the household problem, we have that[
ρηE

(1 − ρ)
+ 1
]

ẽ
e
= 1,

or, alternatively,
ρ

∑j ϵjΘj(py
j )

1−σ(c̃)ϵj(1−σ)

∑j Θj(py
j )

1−σ(c̃)ϵj(1−σ) + 1 − ρ

(1 − ρ)


[
∑j Θj(py

j )
(1−σ)(c̃)ϵj(1−σ)

] 1
1−σ

e
= 1, j ∈ Ñ c.

Therefore, for sectors j ∈ Ñ c, we solve for c̃ from

STEP 16:[
ρ ∑j ϵjΘj(py

j )
1−σ(c̃)ϵj(1−σ) + (1 − ρ)∑j Θj(py

j )
(1−σ)(c̃)ϵj(1−σ)

(1 − ρ)

]

×

[
∑j Θj(py

j )
(1−σ)(c̃)ϵj(1−σ)

] σ
1−σ

e
= 1, j ∈ Ñ c.

STEP 17: ẽ =

[
∑

j
Θj(py

j )
(1−σ)(c̃)ϵj(1−σ)

] 1
1−σ

, j ∈ Ñ c.

STEP 18: ηE =
∑j ϵjΘj(py

j )
1−σ(c̃)ϵj(1−σ)

∑j Θj(py
j )

1−σ(c̃)ϵj(1−σ)
, j ∈ Ñ c.
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STEP 19: ē =
[

ρηE

ρηE + (1 − ρ)

]
e.

STEP 20: ē = ∏
j∈N̄ c

(py
j )

ζ j c̄ ⇒ c̄ =

 ∏
j∈N̄ c

(py
j )

ζ j

−1

ē, j ∈ N̄ c.

As before, STEP 21 gives us the demand for final consumption in each sector from Shephard’s lemma,

cd
j =

∂E
∂py

j
.

Thus, for sectors j ∈ N̄ c, we have,

STEP 21: cd
j =

∂E(py, c̄)
∂py

j
=

ζ j ∏j∈N̄ c(py
j )

ζ j

py
j

c̄, j ∈ N̄ c.

For sectors j ∈ Ñ c, we have,

STEP 21: cd
j =

∂E(py, c̃)
∂py

j
=

 ∑
j∈Ñ c

Θj(py
j )

1−σ(c̃)ϵj(1−σ)

 σ
1−σ

Θj(c̃)ϵj(1−σ)(py
j )

−σ, j ∈ Ñ c.

The vector, (py
1, ..., py

n)
′, is an equilibrium price vector when the goods market clears in each sector,

|cd
i − cs

i | < ϵ, ∀i ∈ N .

To find the extended equilibrium price vector, including λ, we implement a tâtonnement process that
adjusts py

λ in order to both clear the market for consumption goods and equate the shadow price of
consumption to marginal utility. That is, we set a new price (py)′ where

(py
i )

′ = py
i + b ×

(
cd

i − cs
i

)
︸ ︷︷ ︸

Excess Demand for Consumption Goods

, b > 0.

Similarly, we update the shadow price of consumption according to,

λ′ = λ + b ×
(

ρ

∏j∈N̄ c(py
j )

ζ j

(
c̃
c̄

)1−ρ

− λ

)
, b > 0.

We then repeat these steps until ∥(py
λ)

m+1 − (py
λ)

m∥ < ϵ.
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5 Quantifying the Model

5.1 Investment Goods

We observe (abstracting from the time subscripts) ωij =
py

i xij
px

j xj
and need to assign values to ζx

ij, zx
ij, ρx

j

and ϵx
j .

Consider first the set of inputs N̄ x
j with constant cost shares. We have that

px̄
j x̄j = ∑

i∈N̄ x
j

py
i xij,

⇒ (1 − ρx
j )px

j xj = ∑
i∈N̄ x

j

ωij px
j xj

⇒ 1 − ρx
j = ∑

i∈N̄ x
j

ωij.

Moreover,

1 − ρx
j =

pxn

j xn
j

px
j xj

=
pxn

j xn
j

py
i xij

py
i xij

px
j xj

=
1
ζx

ij
ωij

⇒ ζx
ij =

ωij

1 − ρx
j

.

We can then match these shares in the data irrespective of equilibrium prices.
Next, consider the set of sectors i ∈ Ñ x

j with time-varying factor shares. To assign values to ϵx
j and

zx
ij, recall from the FOCs associated with the cost minimization problem,

py
i = px̃j

 ∑
i∈Ñ x

j

zx
ijx

ϵx
j −1

ϵx
j

ij


1

ϵx
j −1

zx
ijx

−1
ϵx

j
ij .

so that
py

i

py
m
=

zx
ij

zx
mj

(
xij

xmj

)−1
ϵx

j ⇒
xij

xmj
=

(
py

i

py
m

)−ϵx
j
(

zx
ij

zx
mj

)ϵx
j

, i, m ∈ Ñ x
j

which implies

log
py

i xij

py
mxmj

= log
py

i xij/px
j xj

py
mxmj/px

j xj
= log

ωij

ωmj
= ϵx

j log
zx

ij

zx
mj

+ (1 − ϵx
j ) log

py
i

py
m

,

subject to ∑i∈Ñ x
j

zx
ij = 1 and ϵx

j ≥ 0.
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To obtain zx
ij,t given ϵx

j , recall that in equilibrium,

py
i = px̃j

 ∑
i∈Ñ x

j

zx
ijx

ϵx
j −1

ϵx
j

ij


1

ϵx
j −1

zx
ijx

−1
ϵx

j
ij .

so that
py

i

py
m
=

zx
ij

zx
mj

(
xij

xmj

)−1
ϵx

j ⇒
xij

xmj
=

(
py

i

py
m

)−ϵx
j
(

zx
ij

zx
mj

)ϵx
j

, i, m ∈ Ñ x
j

which implies

log
py

i xij

py
mxmj

= log
py

i xij/px
j xj

py
mxmj/px

j xj
= log

ωij

ωmj
= ϵx

j log
zx

ij

zx
mj

+ (1 − ϵx
j ) log

py
i

py
m

,

Then, we recover zx
ij as follows. Conditional on ϵx

j , and using the normalization, zx
ij + zx

mj = 1, we have
that

log
zx

ij

zx
mj

=
1
ϵx

j

[
log

ωij

ωmj
− (1 − ϵx

j ) log
py

i

py
m

]
so that

zx
ij

1 − zx
ij
= exp

{
1
ϵx

j

[
log

ωij

ωmj
− (1 − ϵx

j ) log
py

i

py
m

]}
= Z

(
ϵx

j ,
ωij

ωmj
,

py
i

py
m

)
.

Then

zx
ij =

Z
(

ϵx
j , ωij

ωmj
, py

i
py

m

)
1 + Z

(
ϵx

j , ωij
ωmj

, py
i

py
m

) . (13)

5.2 Materials

We follow an analogous approach in quantifying the parameters associated with the production of
materials, ζm

ij , zm
ij , ρm

j .

5.3 Estimating Elasticities

This section discusses the estimation of the elasticities of substitution, ϵm
j and ϵx

j for j ∈ N . We
describe the methods for estimating ϵm

j ; the methods for ϵx
j are analogous.

Let mdur,j,t denote the real value of durables supplied to sector j in year t and similarly for mipp,j,t. We
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estimate ϵm
j using the relationship

∆ log
(

mdur,j,t

mipp,j,t

)
= −ϵm

j ∆ log
(

pdur,t

pipp,t

)
+ ϵm

j ∆ log

(
zm

dur,j,t

zm
ipp,j,t

)
. (14)

Given the linear structure of (14), one is tempted to estimate ϵm
j from a simple regression of ∆ log

(
mdur,j,t

/mipp,j,t
)

onto ∆ log
(

pdur,t/pipp,t
)
, but the potential correlation of ∆ log

(
pdur,t/pipp,t

)
with ∆ log

(
zm

dur,j,t

/zm
ipp,j,t

)
makes this estimator problematic. Instead, we use an IV estimator using ∆ log

(
zdur,t/zipp,t

)
,

the relative growth rates in TFP, as an instrument. We have implemented both Bayes and frequentist
estimators which are discussed in the following subsections.

Before describing the estimators, it is useful to streamline the notation.2 Let

y = ∆ log
(

mdur,j

mipp,j

)
, p = −∆ log

(
pdur

pipp

)
, a = ϵm

j ∆ log

(
zm

dur,j

zm
ipp,j

)
, and x = ∆ log

(
zm

dur,j

zm
ipp,j

)

so that (14) becomes
y = βp + a (15)

where β = ϵm
j is the parameter to be estimated. Suppose that p and x are related via the reduced form

relationship
p = πx + u (16)

where π is an unknown constant and u is an error term. In (15) and (16) we assume that x is uncorrelated
with a and u so that (15) and (16) comprise a standard linear simultaneous equation model.

As stressed in the paper, we view the model – and in particular the relationship (14) – as a steady-
state relationship that characterizes the long-run trends in the data. Thus, we estimate ϵm

j using only the
variation in these long-run trends. As described in Section 8.1 of this appendix, variation in these trends
are associated with low-frequency cosine weighted averages of the data. (These “cosine transforms” of
the data correspond to the OLS coefficient of the ψj,t regressors introduced in Section 8.1). As discussed in
Müller and Watson (2017) (also see Müller and Watson (2020)), linear relationships between variables such
as (15) and (16) also hold for the cosine weighted averages, and when the variables are I(0), these weighted
averages are (approximately) i.i.d. zero-mean normally distributed random variables with variance given
by the long-run variance of the process. Thus, with (y, p, x) denoting the cosine weighted averages, we
have  yi

pi

xi

 a∼ i.i.d.N(0, Σ) for i = 1, ..., q (17)

2Please note that in this context y, p, x, and ψ do not refer to final goods output, prices, investment, and exogenous final
demand.
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where q denotes the number of cosine weighted averages and Σ is the long-run variance of the (y, p, x)
process. Throughout the paper we set q = 7, so (as discussed in Section 2.3 of this appendix) the analysis
uses variation in the series for periods longer than 2 × T/q = 144/7 ≈ 20 years.

Thus, the estimation problem corresponds to a canonical problem in econometrics: estimation of β

in the simultaneous equation model (15) and (16) using q = 7 i.i.d. normal random variables. The
simultaneous equation model (15)-(16) expresses the conditional distribution of (y, p)|x as a function of
the 5 parameters: β, π, and the unique elements of Ω, the covariance matrix of (a, u).

Because the effective size is q = 7, this is a small-sample estimation exercise. We now review standard
frequentist and Bayes estimators for this problem.

5.3.1 Bayes Estimators and Credible Intervals

Given the small sample size, Bayes estimators are particularly attractive in this context. We have
computed the posterior for β using the following priors for (β, π, Ω).

• β ∼ N(1, 4) truncated so that β ≥ 0.

• π ∼ N(0, 2500) so the prior is essentially diffuse

• Ω ∼ Wishart with covariance matrix I2 and 0.001 degrees of freedom – again, a prior that is essen-
tially diffuse.

The posterior is computed using a standard MCMC (Gibbs) algorithm.

5.3.2 Frequentist Confidence Intervals for ϵm

The standard frequentist estimator for this problem is 2SLS, which corresponds to the maximum
likelihood estimator in this simple model. However, the number of observations is quite small (here q =

7), so that the usual large-sample properties of 2SLS provide a poor guide for estimation and inference.
An alternative exploits the normal distribution of the data to carry out exact small-sample inference.

This can be achieved using Anderson-Rubin (AR) methods. These methods proceed by regressing y − bp
onto x and constructing the t-statistic (say τ(b)) for testing the null hypothesis that the coefficient on x is
equal to zero. When b = β0, the true value of β, the coefficient on x is equal to zero, and under normality
(see (17)), τ(β0) ∼ Student-t with q = 6 degrees of freedom. The 100 × (1 − α) percent Anderson-Rubin
confidence interval for β is

AR(β) = {β||τ(β)| ≤ τ1−α/2}

where τ1−α/2 is the (1 − α/2) percentile Student-t distribution with q − 1 = 6 degrees of freedom.
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Figure 1: Priors and Posteriors for the Sectoral Production Elasticities
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5.3.3 Results

Figure 1 plots the prior and posterior for β. Table 1, an extended version of Table 4 in the paper,
summarizes the posterior and also includes 67 percent AR confidence intervals.

We highlight three results. First, there is considerable uncertainty in the value of the coefficients – this
is unsurprising given the limited information in the small (q = 7) number of observations characterizing
the long-run (periodicities great than 20 years) variation in the series. That said, as shown in Figure 1,
the posteriors are markedly different than the priors; thus the posterior is informed by the sample data.
But, as shown in Table 1, the frequentist confidence intervals are quite wide indicating that there is a
wide range of values of these elasticities that are generally consistent with the low-frequency variability
in the sample data. The implications of the uncertainty about the values of these elasticities for the main
quantitative conclusions in the paper are investigated in Section 9.2 in this appendix.

5.4 Value Added

We observe γj =
pv

j vj

py
j yj

. Thus, for all sectors j ∈ N , we simply use the sample average, γj.
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Table 1: Estimates of Sectoral Production Elasticities

Sectors Construction Durables IPP Nondurables Services
Investment: ϵx

Posterior Mean 1.43 1.26 0.69 1.01 1.08

Posterior Median 1.24 1.14 0.52 0.84 0.93

67% Credible Interval 0.37 to 2.47 0.46 to 2.04 0.17 to 1.20 0.26 to 1.73 0.32 to 1.81

67% AR Confidence Interval -1.93 to 8.91 -0.13 to 2.89 -2.82 to -0.13 -1.15 to 3.12 -0.08 to 4.36

Materials: ϵm

Posterior Mean 2.03 1.69 1.11 0.86 0.69

Posterior Median 2.01 1.59 1.03 0.76 0.51

67% Credible Interval 1.08 to 2.92 0.69 to 2.61 0.37 to 1.79 0.27 to 1.43 0.14 to 1.21

67% AR Confidence Interval 1.44 to 5.22 -2.07 to 2.64 0.49 to 3.82 -0.26 to 1.89 -1.32 to 1.32

5.5 Sectoral Investment Shares in Value Added and Depreciation Rates

Since ψx
j =

px
j xj

pv
j vj

, we use the analogous sample average in the data. Moreover,

px
j xj

pv
j vj

=

(
δj

1
β − 1 + δj

)
ujk j

pv
j vj

=
δj

1
β − 1 + δj

αj.

Thus, we set

δj =

ψx
j

αj

(
1
β − 1

)
1 −

ψx
j

αj

.

5.6 Preferences

We observe θj =
py

j cj

∑j py
j cj

and take as given the homothetic consumption share in total expenditures,

sc = ē
e .

Recall that e = ∑j∈N py
j cj while for the homothetic aggregate, ē = pc̄ c̄ = ∑j∈N̄c py

j cj. Therefore, for
sectors j ∈ N̄c, we have

θj =
py

j cj

∑j py
j cj

=
py

j cj

ē
ē
e
= ζ jsc.

Then
ζ j =

θj

sc .
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For the non-homothetic aggregate preference parameters, we have that

py
j cj

e
=

py
j cj

ẽ
ẽ
e
= ωc

j (1 − sc),

where
ln ωc

j = (1 − σ) ln(py
j /py

b) + (1 − σ)
(
ϵj − 1

)
ln(ẽ/py

b) + ϵj ln ωc
b + ln Θj,

and ωc
j = py

j cj/ẽ. Equivalently, we have

ln

(
ωc

j

ωc
b

)
= (1 − σ) ln

(
py

j

py
b

)
+ (1 − σ)

(
ϵj − 1

)
ln

(
ẽ
py

b

)
+ (ϵj − 1) ln ωc

b + ln Θj.

We set ϵj and σ as in Comin, Mestieri, and Lashkari (2021). We then treat Θj as a preference shifter
obtained as a residual,

ln Θj = ln ωc
j − (1 − σ) ln(py

j /py
b)− (1 − σ)

(
ϵj − 1

)
ln(ẽ/py

b)− ϵj ln ωc
b.

Then,

ωc
j = Θj

(
py

j

py
b

)(1−σ)(
ẽ
py

b

)(1−σ)(ϵj−1)

(ωc
b)

ϵj ,

where ωc
b = 1 − ∑j∈Ñ c ωc

j at observed prices, py and ratio, ẽ
py

b
. Thus, for the non-homothetic consumption

sectors, it follows that
py

j cj

e
=

py
j cj

ẽ
ẽ
e
= ωc

j (1 − sc).

Observe that to obtain the non-homothetic consumption shares, θj,t, j ∈ Ñ c, at observed prices, py,
as an equilibrium of the model, this equilibrium needs to deliver both the observed py and the observed
ratio, ẽ

py
b
. Thus, let h = ẽ

py
b

(as observed in the data) which implies ẽ = h × py
b . Then, in a ‘data matching’

exercise, as described in Section 3, we skip STEP 14 and, since ẽ = (1 − sc) e, we choose e in STEP 15
such that

e =
h × py

b
1 − sc , (18)

where the RHS is all data. By construction, this will ensure that i) ẽ
py

b
= h as in the data, and ii) that ẽ

py
j

matches their counterpart in the data in all sectors since ẽ
py

j
= ẽ

py
b

py
b

py
j
. The goal is then eventually to return

to STEP 14 and use ψ
g
d,t + ψnx

d,t to clear sectoral goods markets in order to support observed prices, py
t .
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5.7 Total Factor Productivity and the Scale of the Model Economy in the Initial Period

We define a steady state equilibrium as a gross output price py
t that clears goods markets for given ex-

ogenous drivers,
(
zt, zm

t , zx
t , ψnx

t + ψ
g
t , Θt

)
. Recall that the goods market clearing condition can be rewritten

as our compositional identity

(
[I − Φt(I − Γd,t)] Γ−1

d,t − Ωtψ
x
d,t − ψ

g
d,t − ψnx

d,t

) (pv
t . × vt)

et
= θt. (19)

Letting ηt =
pv

t ×vt
et

=
(
[I − Φt(I − Γd,t)] Γ−1

d,t − Ωtψ
x
d,t − ψ

g
d,t − ψnx

d,t

)−1
θt, then

sv
t =

ηt

1′ηt
. (20)

At observed prices, py
t , subsections 5.1 through 5.5 show how to match (adjusted versions of) Φt, Γt, Ωt,

ψx
d,t, and θt in part through choice of zm

t , zx
t , and Θt.3 The model then needs to deliver the only remaining

unknown in equation (19), the observed ratio of nominal value added to total consumption expenditures,

ηj,t =
pv

j,tvj,t

et
, as part of the equilibrium to yield bserved prices py

t equilibrium prices.
We obtain sectoral TFP, zt, from KLEMS data. Note that productivity accounting delivers productivity

growth rates in a sector, but not the scale of productivity. In a one-sector economy, the choice of scale
is a simple normalization. In our multi-sector setting with non-homothetic preferences, the scale of the
economy, however, matters for shares. For the initial period, t = 1, we thus choose z1 to match η1 in the
data, which amounts to matching the scale of the model economy in the initial period. For all subsequent
periods, t > 1, sectoral TFP is not chosen to obtain market clearing, but the level of sectoral TFP is
determined by the cumulative sectoral TFP growth calculated from KLEMS data, starting from the just
determined initial TFP, z1. This also means that for t > 1, the model will not exactly yield observed prices,
py

t , as equilibrium prices.4

Abstracting from the time subscripts, given observed prices py (and the partial model inversion de-
scribed in subsections 5.1 through 5.5), we first follow STEP 1 through STEP 4 in section 3.

Then, from STEP 4 , we have

uj =

(
1
β
− 1 + δj

)
px

j = ∆j px
j .

Let k̃ j = k j/ℓj denote the capital-labor ratio in sector j. We have expressions for real value-added and the

3These subsections assume that some rows of Φt, Ωt, and θt are constant so that the implied value added shares in equation
(20) will not match their counterparts in the data exactly.

4Alternatively, one can choose zt to match ηt in the data period by period. In this case, the model is used to infer TFP.
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FOC for optimal capital,

vj = zj

(
k j

αj

)αj ( ℓj

1 − αj

)1−αj

= zjκj k̃
αj
j ℓj with κj =

1

α
αj
j (1 − αj)

1−αj
,

uj = pv
j αjzjκjk

αj−1
j ℓ

1−αj
j = zj pv

j αjκj k̃
αj−1
j .

We can then solve for the optimal capital-labor ratio,

k̃ j =

(
zj pv

j αjκj

uj

)1/(1−αj)

,

and substitute this result into the expression for the price of value-added times real value-added to obtain
nominal value-added, pv

j vj,

pv
j vj = pv

j zjκj

(
zj pv

j αjκj

uj

)αj/(1−αj)

ℓj

=
(

pv
j zjκj

)1/(1−αj)
(

αj

uj

)αj/(1−αj)

ℓj

=
(
zj
)1/(1−αj)

[(
pv

j κj

)1/(1−αj)
(

αj

uj

)αj/(1−αj)

ℓj

]
=
(
zj
)1/(1−αj) Ṽj,

where Ṽ denotes normalized or unit nominal value added.
Let ηj =

pv
j vj

e as observed in the data. Then we need zj to satisfy

ηj =
pv

j vj

e
=

(
zj
)1/(1−αj) Ṽj

h×py
b

1−sc

,

or

z̃j =
ηj ×

h×py
b

1−sc

Ṽj
, (21)

where z̃j =
(
zj
)1/(1−αj).
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6 Allocations, Prices, and Model-Implied Shares

6.1 Investment Input Shares, Ω

Investment input shares in sector j are given by

py
i xij

px
j xj

, i ∈ N ,

which we denoted in the data by ωij =
py

i xij
px

j xj
.

At the model solution, we should have for sectors i ∈ N̄ ,

py
i xij

px
j xj

=
py

i xij

px̄
j x̄j

px̄
j x̄j

px
j xj

= ζx
ij(1 − ρx

j ),

and given our calibration, 1 − ρx
j = ∑i∈N̄ ωij, ζx

ij = ωij/1 − ρx
j ,

py
i xij

px
j xj

= ωij.

In other words, for the sectors with unit elasticity of substitution, the model-implied investment input
shares should match their counterpart (average) in the data exactly with ∑i∈N̄ ωij = 1 − ρx

j .

For sectors i ∈ Ñ , the model solution implies

py
i xij

px
j xj

=
py

i xij

px̃
j x̃j

px̃
j x̃j

px
j xj

=
(
x̃j
) 1−ϵx

j
ϵx

j
(
x̃ij
) ϵx

j −1

ϵx
j zx

ijρ
x
j .

Observe that for those sectors, ∑i∈Ñ
py

i xij
px

j xj
= ρx

j so that across all sectors, investment input shares sum to

1, ∑N
py

i xij
px

j xj
= ∑i∈N̄

py
i xij

px
j xj

+ ∑i∈Ñ
py

i xij
px

j xj
= ρx

j + (1 − ρx
j ) = 1.

6.2 Materials Input Shares, Φ

Materials input shares in sector j are given by

py
i mij

pm
j mj

, i ∈ N ,

which we denote in the data by ϕij =
py

i mij
pm

j mj
.
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At the model solution, we should have for sectors i ∈ N̄ ,

py
i mij

pm
j mj

=
py

i mij

pm̄
j m̄j

p
m̄j
j m̄j

pm
j mj

= ζm
ij (1 − ρm

j ),

and given our calibration, 1 − ρm
j = ∑i∈N̄ ϕij, ζm

ij = ϕij/1 − ρm
j ,

py
i mij

pm
j mj

= ϕij.

In other words, for the sectors with unit elasticity of substitution, the model-implied materials input
shares should match their counterpart (average) in the data exactly with ∑i∈N̄ ϕij = 1 − ρm

j .

For sectors i ∈ Ñ , the model solution implies

py
i mij

pm
j mj

=
py

i mij

pm̃
j m̃j

pm̃
j m̃j

pm
j mj

=
(
m̃j
) 1−ϵm

j
ϵm

j
(
m̃ij
) ϵm

j −1

ϵm
j zm

ij ρm
j .

Observe that for those sectors, ∑i∈Ñ
py

i mij
pm

j mj
= ρm

j so that across all sectors, materials input shares sum to 1,

∑i∈N
py

i mij
pm

j mj
= ∑i∈Ñ

py
i mij

pm
j mj

+ ∑i∈N̄
py

i mij
pm

j mj
= ρm

j + (1 − ρm
j ) = 1.

6.3 Value Added Shares in Gross Output, Γ

By construction, at the model solution, we have for for sectors i ∈ N ,

pv
j vj

py
j yj

= γj,

the sample average of
pv

j vj

py
j yj

observed in the data.

6.4 Consumption Shares, θ

For the sectors associated with the homothetic consumption index, j ∈ N̄ c we have that

py
j cj

e
= ζ jsc = θj.

For the sectors associated with the non-homothetic index, j ∈ Ñ c, we have

py
j cj

e
=

py
j cj

ẽ
ẽ
e
= ωc

j (1 − sc),
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where

ωc
j = Θj

(
py

j

py
b

)(1−σ)(
ẽ
py

b

)(1−σ)(ϵj−1)

(ωc
b)

ϵj ,

with ωc
b = 1 − ∑j∈Ñ c ωc

j .

By construction, we have that ∑j∈N̄ c
py

j cj

e + ∑j∈Ñ c

py
j cj

e = sc + (1 − sc) = 1.

7 Data

We construct a five-sector decomposition of the US economy based on detailed industry KLEMS data,
input-output data, and investment flow data.

7.1 KLEMS Data

The KLEMS dataset contains quantity and price indices for inputs and outputs of 44 sectors from
1948 to 2022. The growth rate of an industry quantity index is defined as a Divisia index given by the
value-share weighted average of its disaggregated component growth rates. Labor input is differentiated
by gender, age, education, and labor status. Labor input growth is then defined as a weighted average
of growth in annual hours worked across all labor types using labor compensation shares of each type
as weights. Similarly, intermediate input growth reflects a weighted average of the growth rate of all
intermediate inputs averaged using payments to those inputs as weights. Finally, capital input growth
reflects a weighted average of growth rates across 53 capital types using payments to each type of capital
as weights. Capital payments are based on implicit rental rates consistent with a user-cost-of-capital
approach. Total payments to capital are the residuals after deducting payments to labor and intermediate
inputs from the value of production. Put another way, there are no economic profits. An industry’s TFP
growth rate is defined in terms of its Solow residual, specifically output growth less the revenue-share
weighted average of input growth rates. This approach is consistent with the maintained assumption of
this paper: that markets are competitive and production is constant returns-to-scale.

Our calculations are based on the official 2023 version of the ILPA KLEMS dataset which covers the
period 1987-2021, and the experimental ILPA KLEMS dataset for the period 1947-2016.5 The experimental
ILPA data from 1947-1963 cover 42 SIC private industries, the federal government, and state and local
governments, while the experimental ILPA data from 1963-2016, and the official ILPA data from 1987-
2018, cover 61 private NAICS industries, the federal government, and state and local governments. Thus,
at the most detailed level of disaggregation for the full sample 1947-2016 we have 44 sectors: 42 private

5The official ILPA dataset for 1987-2021 is downloaded from https://www.bea.gov/data/special-topics/

integrated-industry-level-production-account-klems and the experimental ILPA dataset for 1947-2016 is downloaded
from https://www.bls.gov/mfp/special_requests/tables_detail.xlsx. See Fleck et al. (2014) and Corby et al. (2020) for a
detailed description of the official ILPA data, and Eldridge et al. (2020) for the experimental ILPA data.
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and 2 government. We splice the experimental and official ILPA data in 1987, using experimental data
before 1987 and official data from 1987 onwards.

We consolidate the detailed sectoral data into 5 aggregate sectors that produce structures, durable
goods, Intellectual Property Products (IPP), nondurable goods, and services. The construction sector pro-
duces structures. The sector producing durable goods contains the durable goods manufacturing sectors
from wood products to apparel. The sector producing IPP contains two service industries: information
and professional, scientific, and technical services. The sector producing non-durable goods covers the
non-durable goods manufacturing industries, agriculture and forestry, mining, and utilities. The service
sector covers trade, housing, government, and all service industries, excluding IPP services. Aggregates
of quantity indices are constructed as Divisia indices from the underlying sectoral series.

For the five consolidated sectors we have real quantity indices and implied price indices for gross
output, (yj, py

j ), value-added, (vj, pv
j ), intermediate aggregates, (mj, pm

j ), capital services, (k j, uj), and
labor services, (ℓj, wj). Value-added shares in gross output are γj = pv

j vj/py
j yj, capital income shares are

αj = ujk j/pv
j vj, and industry TFP, zj, is the Solow residual from industry value-added and capital and

labor services. Since sector quantity indices are Divisia indices, their growth rates are defined, but their
initial levels are arbitrary normalizations. The same applies to the implied price indices.

7.2 Input-Output Tables

We use the BEA input-output tables to parameterize the industry use of intermediate goods and
the industry sources of final demand. The use tables describe how commodities (rows) are used as
intermediate inputs in industries and final demand (columns). The make table describes which industries
(rows) produce what commodities (columns). The requirement table is the transformed make table where
each commodity column consists of the industries’ shares in its production.

In our model, we do not distinguish between commodities and industries in the production of goods,
rather industries produce distinct goods for intermediate and final use. To match our model to the input-
output data, we transform the commodity-by-industry use table into an industry-by-industry use table
through the application of the make table. We pre-multiply the use tables with the requirement table to
obtain a mapping from industry production to intermediate input and final use.

We start with the BEA use and make tables from 1947 to 2021.6 The most detailed information on
intermediate input use and final demand for the full sample covers 47 industries and 13 final demand
categories. We consolidate the 47 industries into the five sectors defined for the KLEMS data, and final
demand into private and government consumption, investment, and net exports plus inventory invest-
ment.

From the consolidated industry-by-industry use tables we calculate intermediate input shares, ϕji,
industry source shares of private consumption, θj, and the ratios of government consumption and net-

6The use and make tables are downloaded as spreadsheets from the BEA’s Interactive Data Tables, https://www.bea.gov/
itable/input-output.
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exports to value-added, ψ
g
j and ψnx

j .
A comment on our use of input-output data, which includes imports and exports, to parameterize a

closed-economy model. Imports are implicit in the use table to the extent that industries use commodities
that are not domestically produced but imported. Effectively, we assume that imported and domestically
produced commodities are perfect substitutes and that the input-output production structure is indepen-
dent of the source of the commodities.

7.3 Investment Flows

Our investment flows, that is, industry sources of industry investment are based on vom Lehn and
Winberry (2021) (vLW). The vLW investment flows have the input-output use structure, that is, they are
commodity-by-industry, but they include only the purchase of new capital goods and ignore transactions
involving used capital goods. We modify vLW industry investment flows to incorporate the purchase
of used capital goods. We then transform the commodity-by-industry investment flows to industry-
by-industry investment flows by pre-multiplying them with the industry requirement table from the
input-output tables.

The investment category of final demand in the input-output use tables includes used capital goods
transactions in the two commodity categories ‘scrap’ and ‘noncomparables’. We modify vLW industry in-
vestment flows by allocating total investment in used capital goods to industries subject to the constraints
that (1) an industry’s total investment adds up to that industry’s total investment in the Fixed Asset Ta-
bles, and (2) the commodity sources across all industries’ investment add up to the commodity source in
final demand investment. We choose industry investment flows to minimize the difference between the
vLW commodity shares in industry investment and the commodity shares in new investment from the
modified investment flows.

The vLW investment flows cover 41 private sectors and 2 government sectors from 1947-2018. We
again consolidate the modified industry-by-industry investment flows into the five sectors defined in the
KLEMS section. By construction, the total investment is consistent with investment in final demand of
the input-output tables. From the investment flows we calculate the industry source shares of investment,
ωji.

8 Trend Estimation and Forecasting

This section augments the discussion in Sections 2.3 and 3.2 and Appendices A and B in the paper
that describes our approach to estimating and forecasting the long-run trends in sectoral shares and other
time series used in the analysis. The discussion proceeds in four steps. Section 8.1 defines the long-run
trends used in our analysis. Section 8.2 describes how we use in-sample values of long-run trends to
construct long-horizon forecasts (and prediction intervals) for future values of these trends. Section 8.3
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describes how the methods can be adapted to construct in-sample and forecasts of long-run trends for
vectors of shares – that is, vectors of variables that are bounded between zero and one, and sum to unity.
Additional formulas are provided in Section 8.4

The analysis in Sections 8.1, 8.2 and 8.4 is largely based on methods presented in Müller and Watson
(2020), and much of the notation is borrowed from that paper.

8.1 Estimating the Long-Run Trend Value of a Time Series

We are interested in constructing a long-run trend for an n × 1 vector-valued time series xt. By ‘long-
run trend,’ we mean a version of xt that includes its ‘level,’ any ‘linear trend’ component, and the series’
low-frequency oscillations around this level/trend. To simplify the presentation, we ignore the linear
trend throughout much of this section; Section 8.5 describes the necessary modifications required for its
inclusion.

With this background, we begin by representing xt in terms of its level, the n× 1 vector µ, and residual,
et

xt = µ + et. (22)

Suppose we have observations on xt for t = 1, ..., T and we are interested in extracting the ‘low-
frequency’ or long-run components of xt over this sample period. We do this by regressing xt onto a
constant and q periodic regressors, ψj,t for j = 1, ..., q, where ψj,t =

√
2 cos(jπ(t − 0.5)/T). The regressor

ψj,t has period 2T/j, so that by including ψj,t for j = 1, ..., q the regression captures periodicities longer
than 2T/q. In our application, the sample covers 1947-2018, so that T = 72 years, we use q = 7, and so
the regression capture periodicities longer than 2 × 72/7 ≈ 20 years.

The fitted values from this regression (estimated by OLS) are the long-run trends used in our analysis.
We denote these trend values as x̂t,(1:T) where the (cumbersome, but useful) notation emphasizes that the
trend value of xt is computed from the sample data available from time period 1 through T.

8.2 Forecasting the Long-Run Trend Value of a Time Series

Suppose that interest is focused on x̂t,(1:T) for values of t and T that extend beyond the end of sample
period. For example, in our application, the sample ends in 2018 and in various places in the paper,
we present forecasts for trend values in t = 2038, computed from hypothetical regressions that extend
from 1947 through T = 2090. In this section we describe how we construct a forecast (and predictive
distribution) for this trend value.

Some notation will prove useful. Let TIS denote the “in-sample” value of T; in the example TIS = 72
and includes the sample period from 1947 through 2018. Let TFS denote the “full-sample” value of T; in
the example TFS = 144 and includes the sample period from 1947 through 2090. Let t∗ denote the forecast
period of interest; in the example t∗ = 2038. The goal is to construct a forecast of x̂t∗,(1:TFS) using the
in-sample trend values x̂t:(1:TIS) for t = 1, ..., TIS.
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The forecasting problem is simplified by two key features of the problem.

1. First, x̂t,(1:T) are fitted values from an OLS regression where the regressors (1 and ψj,t) are deter-
ministic functions of time. Thus, the randomness and uncertainty in x̂t,(1:T) arises from the OLS
coefficients, not the regressors. Using notation from Müller and Watson (2020), let X0

T denote the
OLS coefficients used to construct x̂t,(1:T). The in-sample value of the OLS coefficient can be calcu-
lated from the in-sample data, that is, X0

TIS
is known. Because TFS extends beyond the in-sample

period, the full-sample value X0
TFS

is unknown. The problem is to forecast X0
TFS

given X0
TIS

.

2. The second key feature of the problem is that, in setting like those considered in our analysis,
(X0

TIS
, X0

TFS
) are approximately normally distributed when TIS and (TFS − TIS) are large. The distri-

bution of X0
TFS

given X0
TIS

is then readily calculated from the standard multivariate normal formula.

8.3 Long-Run Trends for Shares

The analysis in Sections 8.1 and 8.2 did not impose constraints on the support of xt. However, a time
series of “shares” contains series that are non-negative and that sum to unity for each date t; these are
sometimes called “compositional” variables. A standard approach to modelling and forecasting composi-
tional variables is through the use of functions, such as the logit, that map series with unbounded support
into series that satisfy the support constraints for compositional data. (See Aitchison (1986) for a textbook
discussion.) We provide an overview here.

Let yt denote an (n + 1)× 1 vector of shares, that is yi,t ≥ 0 with ∑n+1
i=1 yi,t = 1 for all t. Let xt denote

an n × 1 vector of variables with unconstrained support. Then yt are derived from xt via the function
yt = F(xt) where F : Rn 7→ ∆n.

With this background, we construct long-run trends for yt in three steps: (1) Compute xt = F−1(yt); (2)
compute x̂t,(1:T) as described in Section 8.1; construct the long-run trend in yt as ŷt = F(x̂t,(1:T)). Forecasts
and predictive distributions for ŷt are computed from the predictive distribution for x̂t:(1:T) which in turn
is computed using the procedure outlined in Section 8.2.

A standard choice for F is the logit function where

yi,t =
exp(xi,t)

1 + ∑n
j=1 exp(xj,t)

for i = 1, ..., n

and

yn+1,t = 1 −
n

∑
i=1

yi,t.

Inverting this function yields

xi,t = ln
(

yi,t

yn+1,t

)
for i = 1, ..., n.

The reduced-form trends and forecasts shown in Section 2 of the paper use the logit function. The
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structural model in Sections 3 of the paper provides a model-based version of F, where the variables in
xt are the exogenous variables in the structural model.

8.4 Additional Formula

This subsection provides further details underlying the estimation and forecasting of long-run trends.
Let x1:T = (x′1|x′2|...|x′T) denote the T × n matrix of sample observations and where | denotes vertical

concatenation. With e1:T defined analogously, then (from (22)) the T observations can be written as

x1:T = (1T ⊗ µ′) + e1:T.

where 1T is a T × 1 vector of 1s.
Let Ψj(s) =

√
2 cos(jsπ) denote a cosine function on s ∈ [0, 1] with period 2/j. Let Ψ(s) = [Ψ1(s), Ψ2(s), . . .

, Ψq(s)
]′ denote a vector of these functions with periods 2 through 2/q. Let ΨT denote the T × q matrix

with t-th row Ψ ((t − 1/2)/T)′. Let Ψ0
T = [1T, ΨT] . The long-run trend is defined as the fitted value from

the regression of x1:T onto Ψ0
T. For the n variables in xt, these are given by the columns of the T × n matrix

x̂1:T = Ψ0
T(Ψ

0′
T Ψ0

T)
−1Ψ0′

T x1:T. (23)

The construction of the weights Ψ0
T lead to a convenient formula for x̂1:T:

x̂1:T = Ψ0
T(Ψ

0′
T Ψ0

T)
−1Ψ0′

T x1:T

= Ψ0
TX0

T

where X0
T are the regression coefficients W′

Tx1:T with W′
T = (Ψ0′

T Ψ0
T)

−1Ψ0′
T .

For forecasting, partition the data into in-sample and out-of-sample observations: say x1:TIS and
xTFS+1:TFS with x1:TFS = (x1:TIS |xTIS+1:TFS). Recall that q, the number of cosine terms in the regression reflects
the long-run periodicity, and we set these periodicities to be (approximately) equal for the in-sample and
full-sample trends. Thus, let qIS denote the in-sample value of q and qFS denote the full-sample value.
Let Ψ0

TIS
,WTIS , X0

TIS
, etc. denote the values of these variables constructed using the in-sample observations

using qIS. Note that

X0
TIS

= W′
TIS

x1:TIS

= W̃′
TFS

x1:TFS

where

W̃TFS =

[
WTIS

0

]
where 0 is (TFS − TIS)× (1 + qIS) matrix of zeros.
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As described in Section 8.2, we construct forecasts of X0
FS given X0

TIS
based on a joint-normal dis-

tribution of (X0
TIS

, X0
FS). This normal distribution follows from large-sample results discussed in Müller

and Watson (2020). Essentially, these results imply that, when et follows an I(0) process with long-run
covariance matrix Σ, the large sample approximation to the distribution of (X0

TIS
, X0

FS) is the same as the
exact distribution that obtains when et ∼ i.i.d.N(0, Σ), and when ∆et ∼ I(0) with long-run covariance
matrix Σ, the large-sample approximation coincides with the exact distribution for ∆et ∼ i.i.d.N(0, Σ). To
simplify the presentation we make these i.i.d Gaussian assumptions here and refer the reader to Müller
and Watson (2020) for the associated large-sample approximations. Thus, we assume

et ∼ i.i.d.N(0, Σ) (et ∼ I(0)) (24)

or
∆et ∼ i.i.d.N(0, Σ) (et ∼ I(1)) (25)

We need an assumption about the values of the level parameter µ. In particular, we assume

µ ∼ N(0, κΣ) (26)

When κ is large, this yields a diffuse prior for the elements of µ.7

Under these assumptions, straightforward calculations show that[
vec(X0

TIS
)

vec(X0
TFS

)

]
∼ N(0, Ω) (27)

where Ω = Σ ⊗ Υ with

Υ =

[
W̃′

TFS

W′
TFS

] [
κ1TFS 1′TFS

+ Λ
] [ W̃′

TFS

W′
TFS

]′
(28)

where Λ is TFS × TFS with Λ = ITFS under (24) and Λ(i, j) = min(i, j) under (25).

Partitioning Ω conformably with

[
vec(X0

TIS
)

vec(X0
TFS

)

]
as Ω =

[
Ω11 Ω12

Ω21 Ω22

]
, (27) yields the predictive

distribution for X0
TFS

:

vec(X0
TFS

)|vec(X0
TIS

) ∼ N(Ω21Ω−1
11 vec(X0

TIS
), Ω22 − Ω21Ω−1

11 Ω12).

8.5 Time Trends and Implementation Details

Many of the long-run trends and associated forecasts in the paper use a modified version of the
formulas presented above that incorporates a linear trend in xt. That is, it allowed ∆xt to have a non-zero

7Müller and Watson (2020) discuss the implied equivariance properties of forecasts and prediction intervals using such diffuse
priors for µ.
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mean. In this case, equation (22) becomes xt = µ′zt + et, where zt = (1 t)′ and µ′ is n × 2, with columns
that include intercepts and trend slopes. This leads to three changes in the formulae given above.

• First, the periodic functions, Ψj(s), are changed. As noted in Müller and Watson (2008), the cosine
functions used above are the eigenvectors of the covariance matrix of a demeaned random walk,
where the demeaning eliminates the constant term in the regression. With a time trend included, we
instead use the eigenvectors of a detrended random walk. Analytic formulae for these eigenvectors
are given in Müller and Watson (2008), but they are readily computed numerically. Periodicities
longer than 2T/q are captured using the eigenvectors corresponding to the q− 1 largest eigenvalues,
so the regression continues to include q + 1 regressors.

• Second, the matrix of regressors Ψ0
T now includes the linear trend, so that Ψ0

T = [Z1:T, ΨT] where
Z1:T = (z′1|z′2|...|z′T).

• Third, the analysis requires an assumption about the trend coefficient: it replaces (26) with vec(µ) ∼

N(0, Σvec(µ)) where Σvec(µ) = κ(Σ⊗ I2). This changes (28) to Υ =

[
W̃′

TFS

W′
TFS

] [
κZ1:TFS Z′

1:TFS
+ Λ

] [ W̃′
TFS

W′
TFS

]
.

With these changes, the analysis proceeds as described above.
We end with a few additional details describing the calculations reported in the paper:

• Unless noted otherwise in the paper, the results used the linear trend specification with I(1) errors.

• We use qIS = 7 and TFS = 2 × TIS = 2 × 72 = 144 so that qFS = 2 × qIS = 14.

• The forecasting procedure requires an estimate of Σ, the long-run covariance matrix of e (I(0) model)
or ∆e (I(1) model). We used a Newey-West estimator (i.e., a Bartlett kernel) with two lags applied
to the demeaned value of xt (I(0) model) or ∆xt (I(1) model).

9 Additional Results

9.1 Preference Bundle Shift

Figure 2 plots the time-variation in the relative weight of the homothetic bundle of consumption in
preferences, ρc

t . As noted in the paper, this compensating variation in bundle weights is small and assures
that the share of the homothetic bundle in total consumption is constant, as indicated in the empirical
results.

9.2 Robustness of Production Elasticities

Table 4 of the paper indicates that the elasticities that we estimate have wide 68% posterior intervals.
Figures 3 and 4 repeat Figures 10 and 12 from the paper, assuming that all elasticities are at the low end
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Figure 2: Shift in Preference Bundle
Homothetic versus Non-Homothetic Consumption, ρc

t

1940 1950 1960 1970 1980 1990 2000 2010 2020

0.05

0.06

0.07

0.08

0.09

0.1

of the range or at the high end of the range. The top panel of each Figure shows the benchmark results,
the middle panel shows the results if all elasticities are on the low end of the range, and the bottom panel
shows the results if all elasticities are on the top end of the range. Note that these are extreme exercises
since they assume that all elasticities are jointly higher or lower than the benchmark. The figures are
on the whole similar across panels, both in terms of how the model matches the data (Figure 3) and
the relative importance of each channel (Figure 4). That is, despite the wide range of uncertainty in our
elasticity estimates, our model results are largely robust to alternative parameterizations.
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Figure 3: Structural Change: Model vs. Data with Difference Elasticities
Consumption (red), Consumption and Production (cyan), Value Added (blue)
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Figure 4: Cumulative Decomposition of Value Added Shares with Different Elasticities
Homothetic Preferences with TFP (thin dots), Non-homothetic Preferences with TFP (thick dots),

with IBTC (dash), with Preference Shifts (dash-dot), with Labor Supply Shifts (thin),
with Government and Net Exports (thick)
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