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Abstract

We slightly extend the Poon et al. (2004) methodology for the estimation of bi-
variate extremal dependence into a multi-asset setting. This is achieved by first split-
ting the portfolio into two sub-portfolios and then estimating the extremal dependence
structure between them. This approach provides important insights for better un-
derstanding international financial contagion and systemic risk. For example, it is
possible to find sub-portfolios that exhibit asymptotic tail dependence even if all pos-
sible bivariate asset pairs within the portfolio are asymptotically independent of each
other. We refer to this situation as “hidden asymptotic dependence” since it cannot
be detected with the standard pairwise dependence analysis. Then, we investigate
its importance for portfolio selection by measuring the diversification benefits for all
possible three-asset portfolios of S&P/IFCI emerging market stock indices. We found
that the diversification benefits are significantly reduced for the portfolios where hid-
den asymptotic dependence is observed. Motivated with this result, we propose new
measures of international financial contagion by extending the existing measures from
the literature in a way to incorporate hidden asymptotic dependencies. Results show
that incorporation of hidden dependencies reveal a much severe picture of potential for
financial contagion.

1 Introduction

Tail dependence or extreme value dependence recently became an important statistical
subject that has interesting financial applications. The catastrophic market crashes
of recent decades proved to be extremely contagious as the markets of different asset
classes became more and more integrated, not only nationally but also globally. Dur-
ing earlier episodes of global distresses, both regulators and academics considered the
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sudden increases in price co-movements or correlations as a breakdown of transmission
mechanisms among financial markets, or contagion. However, changes in correlation
coefficients do not necessarily indicate contagion, as they do not always imply a struc-
tural change in the data generating process. Boyer, Gibson, and Loretan (1997) and
Forbes and Rigobon (2002) argue that unlike markets in normal times, stronger inter-
dependence between different asset classes is observed during market crashes as a con-
tinuation of same data generating process. This observation raised concerns about the
usefulness of Pearson’s correlation coefficient in diagnosing the international financial
contagion. Also, Pearson’s correlation has many pitfalls as a measure of dependence.
For example, Pearson’s correlation can summarize all the information on the depen-
dence of two assets returns only if they are multivariate normally distributed. However,
it is well documented that asset returns are skewed and have fatter tails than the nor-
mal distribution. Also, Pearson’s correlation measures linear dependence only, omitting
any potential nonlinear dependencies. More importantly, analysis based on Pearson’s
correlation likely underestimates the probability of simultaneous crashes in multiple
markets. This is because it gives equal weight to all observations resulting in an aver-
age dependence measure which is dominated by the observations from normal times,
however the dependence during financial turmoil is stronger than what is implied by
this average dependence1.

As a result, more researchers have emphasized the need to develop and use comple-
mentary dependence metrics beyond Pearson’s correlation coefficient when studying
international financial contagion. In particular, tail dependence has become an impor-
tant area of study due to the importance of accurate modeling of catastrophic events
in financial markets. Chan-Lau et al. (2004) developed measures of financial contagion
using extreme value dependence metrics χ and χ̄ which are borrowed from multivariate
extreme value theory literature. Technical details of these measures and their estima-
tion methods are discussed in later sections of our study.

Basically, Ledford and Tawn (1996, 1997 and 1998) developed a joint distribution
specification that differentiates between asymptotically dependent and asymptotically
independent tail structures. The extremal dependence measure χ is defined as:

χ = lim
q→1

Pr(L1 > L1,q|L2 > L2,q), (1)

where L1,q and L2,q stands for the qth quantile of the marginal distribution of the loss
variables L1 and L2, respectively. If χ = 0, then L1 and L2 are said to be asymptotically
independent. If χ = c > 0, then L1 and L2 are said to be asymptotically dependent and
the value of χ determines the strength of asymptotic dependence. Since χ captures
the dependence in the limiting extremes and is equal to zero for all asymptotically
independent variables, Coles et al.(1999) developed a complementary tail dependence
measure, χ̄, that captures the dependence at the finite levels of the extremes. It is
defined as:

χ̄ = lim
q→1

2 log Pr(L2 > L2,q)

log Pr(L1 > L1,q, L2 > L2,q)
− 1. (2)

Under asymptotic independence, higher χ̄ implies slower convergence to zero in the
limiting conditional probability given in (1).

1For a comprehensive discussion on the drawbacks of correlation see Embrechts et al. (1999)
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Besides international financial contagion, researchers found interesting new venues
for empirical applications of these new extreme value dependence measures. For ex-
ample, Poon et al. (2004) investigate the tail dependence among international stock
markets and also provide examples for applications of tail dependence analysis in sharp
ratio targeting, hedging, and option valuation. Balla et al. (2014) used them to quan-
tify the systemic risk in U.S. depository firms; and showed that systemic risk measures
developed from tail dependence metrics can capture the historical downturns in the
banking industry very well. Burkart (2006) used them to quantify the co-movement
of default risk for large reinsurance firms and found that they convey information
above and beyond what is contained in Pearsons correlation coefficient. Kellner and
Gatzert (2013) used them to quantify the basis risk of index-linked hedging strategies
and found that incorporation of tail dependence increases the accuracy of basis risk
estimates. De Carvalho and Rua (2013) used tail dependence in quantifying the interde-
pendence between the output growths in OECD countries and found that cross-country
tail dependence in output growth is much stronger than that implied by correlation
analysis.

In addition to risk quantification, several studies investigated the implications of
tail dependence for portfolio selection. For example, DiTraglia and Gerlach (2013)
quantify the tail dependence between the Dow Jones Industrial Average (DJIA) in-
dex and the individual component stocks in it. They conclude that tail dependence is
priced by the investors, i.e., investors require a premium return for those stocks that
exhibit stronger tail dependence with the DJIA index. Chollete et al. (2012) stud-
ies international diversification and finds that the correlation coefficient does not vary
with returns, but extreme dependence vary monotonically with returns. This suggests
that investors require some compensation in good times for the joint downside risk.
Bradley and Taqqu (2004) studied the impact of extremal dependence on the weight
given to the riskier asset in a two-asset portfolio optimization problem for risk averse
investors. Ergen (2014) studied the two-asset portfolio optimization problem for stocks
in emerging markets and found that tail dependence is one of the key drivers of diversi-
fication benefits. Also, tail dependence has better explanatory power for the variation
in diversification benefits compared to the correlation coefficient.

The advantages of tail dependence analysis with respect to mainstream correlation
analysis are investigated thoroughly by all of the aforementioned studies. However,
both approaches share a common shortcoming in that they only measure the depen-
dence between two individual assets. With a multi-asset portfolio, the analysis is
performed for all asset pairs to construct a dependence matrix. However, a depen-
dence matrix doesn’t capture the complicated multivariate dependence relationships
fully unless we believe in the multivariate normality of asset returns. In this paper,
while we are interested in empirical analysis of diversification benefits and financial
contagion among emerging market stocks, we first attack this problem by slightly ex-
tending the extremal dependence estimation methodology proposed by Poon et al.
(2004) to a multi-asset setting. We accomplish this by first splitting the portfolio into
two mutually exclusive and collectively exhaustive sub-portfolios and then estimating
the tail dependence structure between these sub-portfolios. This approach produces
an interesting result that has important implications for better understanding of sys-
temic risk and financial contagion. Basically, we identified some portfolios where the
two sub-portfolios are asymptotically dependent despite the fact that all possible asset
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pairs are asymptotically independent. In other words, the tail dependence between
the sub-portfolios can be stronger than the tail dependence between any of the asset
pairs in a portfolio. We refer to this as hidden asymptotic dependence since it can be
ignored under the standard pairwise dependence analysis. We interpret this finding as
indicative of stronger contagion effect when multiple markets crash compared to when
an isolated individual market crashes. Therefore, we investigate its implications for
diversification benefits and financial contagion.

To explore the impact on diversification benefits, we analyze all possible three-asset
portfolios in our sample of 15 emerging stock indices. Among these three-asset portfo-
lios, we identify the ones that exhibit hidden asymptotic dependence after controlling
for the standard pairwise asymptotic dependence. We also measure the diversification
benefits for each of these three-asset portfolios with the reduction in tail risk mea-
sures, VaR and ES, resulting from investing in the optimal three-asset portfolio rather
than investing in the optimal two-asset portfolio. We find that the existence of hidden
asymptotic dependence significantly reduces diversification benefits but not as much as
the asymptotic dependence between the pairs of assets. We believe that these results
make intuitive sense and provide valuable information to portfolio managers. Portfolios
can not be regarded as resilient to crisis simply based on bi-variate dependence anal-
ysis due the existence of hidden dependencies resulting from complicated underlying
relationships.

We also explore the implications of hidden asymptotic dependence on financial con-
tagion. Chan-Lau et al. (2004) proposed using the ratio of asymptotically dependent
country pairs to all possible country pairs as an indicator of international financial
contagion. This indicator can be loosely interpreted as the average probability of an
isolated crisis in one country to spread to some other country. However, it doesn’t ac-
count for the probability of crisis spreading when multiple countries are in crisis. This
is because it focuses on tail dependencies among individual countries and therefore
doesn’t account for the hidden asymptotic dependencies thereby resulting in underes-
timation of the level of financial contagion. We propose a new metric as a measure
of financial contagion to improve this existing measure. We extend it to incorporate
hidden asymptotic dependencies by analyzing the tail dependence between the indi-
vidual countries and the composite emerging market index. Incorporation of hidden
asymptotic dependence results in a significant increase to the indicators of international
financial contagion because it accounts for the possibility of more widespread distresses
in the emerging markets in a broader sense. Our analysis demonstrates a much severe
picture of potential for financial contagion.

The remainder of this paper is organized as follows. In section 2, we introduce the
tail risk measures, VaR and ES; and the application of the extreme value theory (EVT)
used in tail risk estimation. In section 3, we introduce the extreme value dependence
measures used in this study and the estimation methodology developed by Poon et al.
(2004). In section 4 , we introduce our data set on emerging market equity indices
and present descriptive statistics. In section 5, we describe the concept of hidden
asymptotic dependence after extending the Poon et al. (2004) methodology for the
estimation of tail dependence to a multi-asset setting. Then, we go on to present
our empirical methodology to identify the portfolios that exhibit hidden asymptotic
dependence and analyze its impact on diversification benefits. In section 6, we extend
the existing indicators of international financial contagion to incorporate the hidden
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asymptotic dependencies. Section 7 concludes.

2 Estimation of Tail Risk Measures

In this section, we describe the empirical methodology used in producing the tail risk
measures such as Value-at-Risk (VaR) and Expected Shortfall (ES). This background
review is needed because later in section 5.2, diversification benefits of portfolios are
calculated based on the potential reduction in these tail risk measures.

VaR is the level of loss that is not expected to be breached at a certain confidence
level. More formally, it is an extreme quantile in the tail of a loss distribution and can
be written as:

V aRq = inf{l ∈ < : FL(l) ≥ q}, (3)

where L denotes the loss, FL is the distribution function of losses, and q is the confidence
level or quantile at which VaR is calculated. VaR is heavily criticized based on both
theoretical and empirical grounds for not capturing the tail risk appropriately. For
example, Artzner et al. (1997) define a unified framework for market risks in which
coherent measures of risk satisfy four basic properties: translation invariance, sub-
additivity, positive homogeneity and monotonicity. VaR fails to satisfy the conditions
required to be considered a coherent risk measure. Also, VaR simply provides an
extreme loss level; it fails to summarize the potential severity of losses above that
level.

Acerbi and Tasche (2002) show that the Expected Shortfall (ES) is a coherent
risk measure which resolves the deficiencies of Value-at-Risk. Besides having nice
theoretical properties, ES also provides a more detailed picture of risk as it summarizes
more information regarding potential losses beyond VaR. Expected Shortfall can be
intuitively defined as the expectation of loss given that the loss has already breached
the V aRq level. More formally, it is given by:

ESq =
1

1− q

∫ 1

q
V aRu(L)du (4)

In this paper, both tail risk measures are calculated using EVT methods. McNeil
(1999) found that EVT methods provide more accurate tail estimation with respect
to conventional distributional approaches. This finding is confirmed by many other
studies2. EVT models the extreme tail of the data as a separate distribution instead
of imposing a single distribution on the entire sample. According to EVT, the distri-
bution of losses above a high threshold uniformly approaches the Generalized Pareto
Distribution (GPD) as the threshold is increased. More formally,

lim
u→lo

Pr(L− u ≤ y|L > u) = Gξ,β(u) for 0 < y < lo − u . (5)

where L is the loss, u is a high threshold, `o is the right end point of the support of
L, ξ is the shape, and β > 0 is the scale parameter of the limiting GPD. This result
holds regardless of the original distribution of the loss data. Therefore, EVT can be
considered as a central limit theorem for extremes.

2See Ergen (2014,a), Gencay and Selcuk (2004), Bali(2003 and 2007), Furiò and Climent (2013) and
Rossignolo (2013).
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Implementation of the EVT method in practice requires the selection of a high
threshold and fitting the GPD to the exceedance data above this threshold. However,
if the threshold is selected too low, this will result in bias since the exceedance data will
be far away from the limiting GPD. Within a simulation framework using fat-tailed
distributions, McNeil and Frey (2000) found that selecting the threshold at the 90th
percentile of the data results in quantile estimates with relatively low bias. Since the
sample size in this study is quite large we will select the threshold at the 95th quantile;
exceeding their minimum recommendation. Once GPD is fit to the tail data, it is
straightforward to show that VaR and ES at quantiles higher than the threshold can
be calculated as below3:

V aRq = u+
β̂

ξ̂

(
(

1− q
1− F`(u)

)−ξ − 1
)
, 4 (6)

ESq =
V aRq + β − ξu

1− ξ
(7)

3 Extremal Dependence Measures

Multivariate extreme value theory (MEVT) has been a useful tool in the develop-
ment of new tail dependence measures. Although the standard implementation of
MEVT assumes asymptotic dependence by default, Ledford and Tawn (1996, 1997,
1998) made an important contribution by differentiating between two different tail de-
pendence structures: asymptotically dependent and asymptotically independent. This
distinction is very important because it implies either the existence of or lack thereof
dependence in the limiting joint extremes. It is possible that such extremes have never
been observed in the data; however dependence at those levels is what matters most for
risk management against catastrophic losses. Formally, the tail dependence measure χ
is defined as:

χ = lim
q→1

Pr(L1 > L1,q|L2 > L2,q); χ ∈ [0, 1]. (8)

where L1,q and L2,q denotes the qth quantile of the marginal distribution of the loss
variables L1 and L2, respectively. More intuitively, χ can be thought of as the limiting
probability of an extreme crash in an asset conditional on an extreme crash in some
other asset. If χ = 0, then the two loss variables L1 and L2 are called asymptotically
independent. If χ = c > 0, then the two loss variables are called asymptotically
dependent. It is important to note that asymptotic independence doesn’t imply exact
independence. It only implies that the two loss variables L1 and L2 become independent
in their limiting joint extremes. However, at finite levels of extremes, they can still
exhibit strong tail dependence. Since χ captures the limiting dependence and it is
equal to zero for all asymptotically independent variables, Coles et al. (1999) developed
another dependence measure, χ̄, in order to measure the strength of tail dependence
within the asymptotically independent family. It basically captures the tail dependence

3For more detailed description of the Extreme Value Theory and the calculation of tail risk measures see
McNeil et al. (2005), chapter 7.

4F`(u) in 6 can be estimated non-parametrically as 0.95 since we select the threshold, u, at the 95th
quantile of the data.
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at the finite levels of extremes and is given by:

χ̄ = lim
q→1

2 log Pr(L2 > L2,q)

log Pr(L1 > L1,q, L2 > L2,q)
− 1; χ̄ ∈ [−1, 1]. (9)

In the case of asymptotic independence, χ̄ measures how slow the limiting proba-
bility in (8) converges to zero. Therefore, a higher χ̄ implies stronger tail dependence
at finite levels of extremes for asymptotically independent variables. Coles et al (1999)
also showed that in case of asymptotic dependence, chibar hits its upper boundary,
i.e., χ̄ = 1. Therefore, we have:

χ̄ = 1 iff χ = c > 0

χ̄ < 1 iff χ = 0. (10)

Using these theoretical results, Poon et al. (2004) developed a hypothesis testing
framework for the existence of asymptotic dependence which essentially tests the null
hypothesis of χ̄ = 1. The methodology works in three steps. In the first step, the loss
variables, (L1, L2), are transformed into unit Frechet distributed variables by using
probability integral transformations:

Z1 =
−1

logFL1(l1)
and Z2 =

−1

logFL2(l2)
, (11)

where FL1 and FL2 are the marginal distribution functions of L1 and L2, respectively5.
In our implementation, we use the empirical distribution up to the 95th quantile of
the data and a GPD fit for the tail beyond the 95th quantile in place of FL1(l1) and
FL2(l2). It is important to note that (11) is a monotonic transformation which does not
change the order of the data and therefore does not have any impact on the extremal
dependence measures. In other words, χL1,L2 = χZ1,Z2 and χ̄L1,L2 = χ̄Z1,Z2 .

In the second step, Poon et. al (2004) show that for two unit-Frechet distributed
variables Z1 and Z2, we have χ̄Z1,Z2 = 2ηT − 1 where ηT is the tail index for the
univariate variable T = min(Z1, Z2). Basically, the tail index is a parameter that
governs the decay rate in the tails of sub-exponential univariate distributions. Its
properties are well studied in the literature and Hill’s estimation became the standard
methodology for its estimation. Therefore, the problem of tail dependence estimation
reduces to a tail index estimation for the univariate variable T = min(Z1, Z2)

6. To
perform that, we calculate T = min(Z1, Z2) in the second step of the procedure and
estimate its tail index using Hill’s (1975) estimator in the third and final step. We will
skip the technical details for Hill’s estimator for the purpose of conciseness. As shown
in Poon et al. (2004) one can eventually obtain:

χ̄ =
2

Nu

i=Nu∑
i=1

log

(
ti
u

)
− 1 (12)

where u is a high threshold for the univariate variable t and Nu is the number of
observations above u7. Inference can be performed using the maximum likelihood
properties of Hill’s estimator.

5The inverse distribution function (quantile function) for unit Frechet distribution is given by −1/log(x)
6Assumingly, this is the motivation for Poon et al. (2004) to convert marginal variables to unit Frechet

in the first step of the procedure because they know that a solution to the problem exists in the unit Frechet
world.

7In this paper we used the 95th percentile of the variable T as the high threshold.
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4 Data and Descriptive Statistics

We use daily equity index data from 15 emerging markets: Brazil, Chile, Mexico,
Peru, China, India, Indonesia, Malaysia, Philippines, South Korea, Taiwan, Thailand,
Turkey, Check Republic and Hungary. The source of the data is Standard & Poors
(S&P) and we downloaded it from Bloomberg. The International Financial Corpora-
tion (IFC) of the World Bank started to collect these index data on June 30, 1995,
but was later acquired by S&P. It is the most reliable emerging market equity index
data for both academic literature and industry practitioners, and it is known as the
S&P/IFCI equity price index. The indices are market capitalization weighted averages
of the prices for equities that are available for trade by international investors and they
are dollar denominated. Therefore, returns calculated from these index data reflect the
perspective of a U.S. investor. Our time series starts from June 30, 1995 when these
index data were starting to be collected and runs to May 3, 2012 for all countries.
Therefore, it is a balanced panel containing 4,351 observations for each country. We
present the descriptive statistics of daily log-return data in Table 1. The minimum
and maximum daily returns reflect the extremely volatile nature of emerging mar-
ket returns series along with the standard deviation. The mean and median returns
have generally been positive in our sample period. The excess kurtosis is very erratic
for some countries which is a reflection of the extremely fat-tails of portfolio return
distributions.

Country nobs Minimum Maximum Mean Median Stdev Skewness Kurtosis
Brazil 4351 −16.85 16.40 0.06 0.11 2.33 −0.32 6.84
Chile 4351 −11.64 14.78 0.03 0.02 1.29 −0.34 10.82
Mexico 4351 −15.03 16.13 0.05 0.08 1.80 −0.08 7.09
Peru 4351 −11.78 11.34 0.06 0.05 1.61 −0.34 6.44
China 4351 −15.34 13.94 0.03 0.02 2.08 −0.12 5.97
India 4351 −12.72 19.04 0.03 0.05 1.76 −0.13 6.79
Indonesia 4351 −40.88 25.55 0.02 0.03 2.84 −0.97 25.09
Malaysia 4351 −23.68 22.99 0.01 0.00 1.66 0.65 34.64
Philippines 4351 −13.86 21.33 0.00 0.00 1.72 0.44 12.44
South.Korea 4351 −21.56 26.82 0.02 0.02 2.52 0.14 12.42
Taiwan 4351 −11.07 8.24 0.01 0.00 1.73 −0.06 2.40
Thailand 4351 −17.09 16.54 0.00 0.00 2.07 0.20 7.97
Turkey 4351 −27.02 22.67 0.04 0.01 3.10 −0.08 6.21
Czech.Republic 4351 −14.77 20.82 0.05 0.05 1.81 −0.08 9.50
Hungary 4351 −20.19 20.33 0.04 0.07 2.32 −0.25 8.35

Table 1: Summary Statistics

The skewness and excess kurtosis observed in the return data justifies our approach
to estimate risk measures VaR and ES using EVT methods. These tail risk measures
are presented in Table 2 for all countries in our sample at several extreme quantiles.
Indonesia stands out as the most risky stock market among its peers for this sample
period. Turkey, Hungary, South Korea and Brazil follows it with a large margin.
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VaR ES
Country 99 99.9 99.99 99 99.9 99.99
Brazil 6.67 13.42 24.96 9.56 18.36 33.42
Chile 3.53 7.92 17.23 5.43 11.95 25.76
Mexico 4.97 9.97 18.18 7.11 13.48 23.95
Peru 4.72 9.36 16.13 6.71 12.26 20.34
China 5.92 11.01 18.05 8.10 14.02 22.23
India 5.17 8.73 12.47 6.71 10.35 14.17
Indonesia 8.38 20.79 46.73 13.75 32.00 70.16
Malaysia 4.78 10.23 18.72 7.11 13.86 24.39
Philippines 4.93 8.62 12.90 6.52 10.46 15.03
South.Korea 7.33 14.37 24.47 10.34 18.69 30.66
Taiwan 4.78 7.25 9.47 5.86 8.22 10.34
Thailand 5.69 10.67 17.90 7.81 13.76 22.40
Turkey 8.56 16.27 27.81 11.86 21.20 35.21
Czech.Republic 5.04 9.97 17.99 7.15 13.40 23.56
Hungary 6.62 13.50 24.90 9.56 18.38 32.96

Table 2: VaR and ES estimates

Next, we follow the Poon et al. (2004) methodology to determine the asymptotic
dependence structure for pairs of emerging markets. Point estimates of χ̄ and their
associated probability values for the null hypothesis of χ̄ = 1 are presented in Table 3.

The pairs with probability values above 5% are shown in bold font. Out of the
105 emerging market stock index pairs, 91 of them are asymptotically independent of
each other and there are only 14 country pairs asymptotically dependent to each other.
The point estimates of χ for these 14 country pairs and their standard errors are given
in Table 4. We observe a pattern for asymptotically dependent pairs. Out of the 14
asymptotically dependent pairs, 11 of them are in geographic proximity in the sense
that they are either both South East Asian or both Latin American countries.

5 Hidden Asymptotic Dependence and Diversi-

fication Benefits

In this section, we extend the Poon et al. (2004) methodology for the estimation of
bivariate extremal dependence into a multi-asset setting. This is performed by split-
ting the portfolio into two sub-portfolios that are mutually exclusive and collectively
exhaustive and then analyzing the extremal dependence structure between them. Es-
sentially, we are implementing the Poon et al. (2004) methodology after reducing the
dimensionality of the problem to two. Although this is a direct extension of Poon et al.
(2004) method, the empirical results and their implications provide important insights
and help to develop a deeper understanding of financial contagion and systemic risk
phenomena. For simplicity, we considered only three-asset portfolios in this study, but
our empirical approach is generic and can easily be extended to portfolios of higher
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Bra Chl Mex Per Chn Ind Idns Mal Phil Kor Twn Thai Tur Chk Hun

Bra

Chl

Mex

Per

Chn

Ind

Idns

Mal

Phil

Kor

Twn

Thai

Tur

Chk

Hun

0.91
(0.507)

0.96
(0.735)

0.98
(0.897)

0.57
(0)

0.57
(0)

0.48
(0)

0.46
(0)

0.53
(0)

0.56
(0)

0.53
(0)

0.43
(0)

0.65
(0.002)

0.71
(0.012)

0.72
(0.016)

1
(1)

0.89
(0.402)

0.66
(0.003)

0.66
(0.002)

0.45
(0)

0.48
(0)

0.52
(0)

0.57
(0)

0.49
(0)

0.46
(0)

0.69
(0.007)

0.87
(0.293)

0.72
(0.018)

0.93
(0.582)

0.66
(0.003)

0.66
(0.002)

0.4
(0)

0.47
(0)

0.48
(0)

0.52
(0)

0.42
(0)

0.47
(0)

0.77
(0.054)

0.91
(0.472)

0.74
(0.026)

0.47
(0)

0.71
(0.012)

0.34
(0)

0.35
(0)

0.38
(0)

0.4
(0)

0.42
(0)

0.35
(0)

0.68
(0.005)

0.71
(0.011)

0.71
(0.012)

0.68
(0.005)

0.7
(0.01)

0.51
(0)

0.63
(0.001)

0.7
(0.009)

0.73
(0.022)

0.68
(0.005)

0.55
(0)

0.72
(0.015)

0.7
(0.01)

0.63
(0.001)

0.45
(0)

0.59
(0)

0.6
(0)

0.56
(0)

0.52
(0)

0.58
(0)

0.75
(0.032)

0.68
(0.005)

0.91
(0.492)

0.78
(0.071)

0.69
(0.006)

0.51
(0)

0.86
(0.25)

0.36
(0)

0.6
(0)

0.52
(0)

0.7
(0.01)

0.69
(0.007)

0.43
(0)

0.67
(0.003)

0.48
(0)

0.43
(0)

0.48
(0)

0.7
(0.008)

0.6
(0)

0.83
(0.172)

0.3
(0)

0.46
(0)

0.48
(0)

0.67
(0.004)

0.79
(0.09)

0.51
(0)

0.51
(0)

0.52
(0)

0.5
(0)

0.49
(0)

0.57
(0)

0.65
(0.002)

0.37
(0)

0.46
(0)

0.52
(0)

0.57
(0)

0.58
(0)

0.74
(0.026)

Table 3: χ̄ Estimates and Probability Values for Daily S&P/IFCI Losses

Country Pair χ Prob.Value
Bra-Chl 0.44 0.03
Bra-Mex 0.52 0.03
Bra-Per 0.38 0.02
Chl-Mex 0.42 0.03
Chl-Per 0.36 0.02
Chl-Chk 0.31 0.02
Mex-Per 0.36 0.02
Mex-Tur 0.31 0.02
Mex-Chk 0.33 0.02
Inds-Mal 0.38 0.03
Inds-Phil 0.36 0.02
Inds-Thai 0.33 0.02
Phil-Thai 0.33 0.02
Kor-Thai 0.33 0.02

Table 4: χ Estimates and Standard Errors for Daily S&P/IFCI Losses

dimensions. In a three-asset setting, our approach requires the estimation of the ex-
tremal dependence structure between the sub-portfolios generated by two of the assets
given by:

wiZi + wjZj ,
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and the third asset Zk. We present an example in Figure 1 that illustrates the concept
of hidden asymptotic dependence. In this example, we use a portfolio that consists of
Turkey, Indonesia and Mexico. First, the portfolio is split into two sub-portfolios. The
first sub-portfolio consists of a combination of Turkey and Indonesia, and the second
sub-portfolio consists of only Mexico. The horizontal axis designates the weight of
Turkey, wTurkey, in the first sub-portfolio, and the vertical axis designates the estimate
of χ̄ between the two sub-portfolios. The solid line shows the point estimate of χ̄
whereas the dashed lines are the 95 percent confidence intervals for the estimate of χ̄.
On the very left end of the curve where wTurkey = 0, we estimate χ̄ between Mexico and
Indonesia as 0.4, and the asymptotic dependence hypothesis (H0 : χ̄Mexico−Indonesia =
1) is rejected because χ̄ = 1 point falls outside of the confidence interval designated
with dashed lines. On the very right end of the curve where wTurkey = 1, we estimate χ̄
between Mexico and Turkey as 0.64, and the null hypothesis of asymptotic dependence
(H0 : χ̄Mexico−Turkey = 1) is rejected again since χ̄ = 1 point lies above the 95 percent
confidence interval. On another note, Turkey and Indonesia are also estimated to be
asymptotically independent (not observable on this plot). Therefore, all possible asset
pairs are asymptotically independent from each other in this example. However, there
are some sub-portfolio weights for which Mexico is asymptotically dependent with the
sub-portfolio generated by Turkey and Indonesia (0.6 ≤ wTurkey ≤ 0.8).

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0
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Sub−Portfolio Weight given to Turkey

C
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Figure 1: Portfolio Level Hidden Asymptotic Dependence

This finding seems counter-intuitive at first since more diversification is expected
to reduce risk. However, we believe that it is consistent with the idea that there are
limits to diversification due to the existence of systemic risk and contagion effects.
More intuitively, our finding implies that a crash in a portfolio composed of Turkey
and Indonesia is more likely to spread to Mexico as compared to an isolated crash in
either Turkey or Indonesia. We believe that this intuition makes sense since a crisis
in multiple emerging markets should be more likely to spread compared to an isolated
crisis in a single country. Basically, at times of severe stress in global financial markets,
diversification benefits are lost. Unfortunately, these are also the times when investors
need diversification benefits most.
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In the rest of the paper, we will refer to portfolios as in the above example as
“hidden asymptotic dependent” because the conventional pairwise dependence anal-
ysis cannot identify it. Portfolio managers analyzing the dependence between every
possible asset pair in their portfolio may feel secure if they observe no asymptotic de-
pendence. However, such analysis may prove insufficient if hidden dependencies exist
in the portfolio that are not explicit at the surface. We conjecture that the existence of
hidden asymptotic dependence can be important and can have significant implications
for portfolio selection. Next, we will investigate this conjecture.

5.1 Identification of Hidden Asymptotic Dependence

The methodology to identify the existence of hidden asymptotic dependence is de-
scribed above with a visual aid presented in Figure 1. In this section, we describe
our algorithmic implementation more formally in detail. We investigate every possible
three-asset portfolio from our emerging market stock index data. Triples of countries
can be chosen in 455 different ways from our pool of 15 countries. We classify each
one of these country-triples into one of three groups according to their tail depen-
dence structure. First, the conventional bivariate dependence analysis is administered
between all pairs of countries. If any two countries in the triple are asymptotically
dependent with each other, we place such triples into the first group and label them
as “asymptotically dependent” triples. This group has 158 country-triples. For the
remaining 297 triples, we perform an analysis similar to what is presented in Figure
1. We construct two sub-portfolios where the first sub-portfolio consists of the combi-
nation of first two assets wiLi + wjLj and the second sub-portfolio is the third asset
Lk alone. For the first sub-portfolio, we use all possible weights from 0 to 1 using a
grid of 0.01 increments. Therefore there are 101 different ways to construct the first
sub-portfolio upon fixing the country to be the single asset second sub-portfolio. Then,
we estimate the χ̄ between the two sub-portfolios. This procedure gives us 101 point
estimates of χ̄ which can potentially be used to make a plot similar to Figure 1.

Then, we rotate the third asset, i.e. we also analyze the tail dependence structure
between sub-portfolios Li and wjLj + wkLk; and the tail dependence between sub-
portfolios Lj and wiLi +wkLj . For the example presented in figure 1, this amounts to
using Indonesia alone as the second sub-portfolio and then Turkey alone as the second
sub-portfolio. As a result, there are 303 different ways of constructing sub-portfolios.
If there is at least one case out of these 303 different constructions where the sub-
portfolios are asymptotically dependent with each other, we categorize these triples
into the second group and label them as “hidden asymptotic dependent”. We found
that 190 country-triples exhibit hidden asymptotic dependence. Finally, the remaining
107 triples exhibit neither bivariate asymptotic dependence nor the hidden asymptotic
dependence.

5.2 Calculation of Diversification Benefits

In order to investigate the impact of hidden asymptotic dependence on portfolio selec-
tion, we need to develop a measure of diversification benefits. Some finance practition-
ers argue that the primary purpose of diversification is to achieve risk reduction. Elton
and Gruber (1995) didn’t find any evidence for international CAPM, and therefore ar-
gued that the risk averse investors who cannot forecast expected returns would prefer
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to simply minimize the risk. Following this idea, Li, Sarkar and Wang (2003) measured
the benefits of international diversification by the reduction in portfolio variance. Er-
gen (2014) argued that strongly risk averse investors would minimize VaR or ES rather
than variance because their motive is to guard against extreme losses. This also makes
sense from a regulatory perspective since diversification benefit is primarily measured
by the reduction in risk by regulators. Therefore, in this study we define diversification
benefits simply as the reduction in tail risk measures. In a two-asset portfolio selection
problem, this can be defined as the percentage reduction in VaR and ES achieved by
the optimal two-asset portfolio as compared to the optimal single-asset portfolio as
in Ergen (2014). In other words, it is the additional benefit from diversifying into a
second asset. Here, in a three-asset setting, we measure it by the reduction in VaR and
ES achieved by the optimal three-asset portfolio compared to the optimal two-asset
portfolio. More intuitively, our measure can be thought of as the additional benefit
from diversifying into the third asset. In order to calculate the diversification benefits
as such, we construct three-asset linear portfolios as:

Z(w) = w1Z1 + w2Z2 + w3Z3, (13)

where Zi is the percentage loss of individual assets, and w ∈ G = {w : w1 +w2 +w3 =
1, 0 ≤ wi ≤ 1, wi = 0.01k, k ∈ Z}. Therefore, portfolio weights are constructed using
a grid with equal weight increments of 0.01. This grid generates 5,050 possible portfolio
weights. Figure 2 provides a visual aid for better understanding of the construction
of portfolio weights. The weights assigned to first and second assets are shown on
the x and y axes, respectively. The weight given to the third asset is determined by
1−w1 −w2. The three corners of the triangle correspond to three single-asset portfo-
lios, and the three sides correspond to two-asset portfolios. 8

Then, the VaR an ES for all 5,050 portfolios are calculated following the EVT
methodology described in Section 2. Then diversification benefits for an country-triple
are calculated as:

DBV aR = 100

(
1− minw∈B V aRα(Z(w))

minw∈G V aRα(Z(w))

)
, (14)

DBES = 100

(
1− minw∈B ESα(Z(w))

minw∈GESα(Z(w))

)
, (15)

where B = {w : w1 + w2 + w3 = 1; 0 ≤ wi ≤ 1; wi = 0.01k; k ∈ Z; ∃ i wi = 0}
is the boundary set which is shown with the bullet circles on the sides and in the
corners of the triangle in Figure 2. On the other hand, the global set G includes all
the points in the figure. As such, set B restricts the investor to invest in at most two
assets whereas the set G doesn’t impose any restrictions. Therefore, the diversification
benefits calculated using these formulae quantifies the reduction in VaR and ES that
result from diversifying into a third asset from a two-asset optimal portfolio.

8In this figure, we present the portfolio weights with 0.05 increments for illustrative purposes to make it
visually clear, but in our analysis we use increments of 0.01.
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Figure 2: Weights Used in the Three Asset Portfolio Problem

5.3 Empirical Results

We classify each three-asset-portfolio into one of three groups as described in section
5.1: asymptotically dependent, hidden asymptotic dependent, and asymptotically in-
dependent. We also calculate the diversification benefits for each of the three-country
portfolios as described in section 5.2. In order to make comparisons among the three
groups of asset-triples, we use the mean and median diversification benefits. The results
based on VaR at several extreme quantiles are presented for all three groups in Table 5.

Asymptotically Hidden Asymptotic Asymptotically
Dependent Dependent Independent

0.975 1.50 2.65 2.91
Mean 0.99 1.46 2.58 3.00

0.999 1.39 2.35 3.52
0.975 0.36 1.97 2.22

Median 0.99 0.37 1.84 2.58
0.999 0.57 1.46 2.29

Table 5: Mean and Median Diversification Benefits based on VaR for Different Dependence
Structures

At the 99.9th quantile, the average diversification benefit for the 158 triples that
exhibit pairwise asymptotic dependence is 1.39 percent. For the 190 triples that ex-
hibit hidden asymptotic dependence, the average diversification benefit is 2.35 percent.
Finally, the average diversification benefit for the 107 triples that do not exhibit nei-
ther pairwise nor hidden asymptotic dependence is 3.52 percent. The same pattern
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is observed for 99th and 97.5th quantiles as well. The median diversification benefit
for the asymptotically dependent portfolio group is 0.57 percent. It is 1.46 percent for
portfolios exhibiting hidden asymptotic dependence and 2.29 percent for the asymp-
totically independent portfolio group. The same increasing pattern for diversification
benefits is observed for other quantiles as well.

The average and median diversification benefit based on ES at several extreme
quantiles are presented for all three groups in Table 5.3. The pattern of average di-
versification benefits for the three groups stays the same. They are lowest for those
triples with pairwise asymptotic dependence and highest when there is no asymptotic
dependence at all. Triples with hidden asymptotic dependence provide diversification
benefits in-between the other two.

Asymptotically Hidden Asymptotic Asymptotically
Dependent Dependent Independent

0.975 1.15 2.24 2.87
Mean 0.99 1.13 2.11 3.01

0.999 2.26 3.44 4.71
0.975 0.17 1.59 2.45

Median 0.99 0.23 1.46 2.28
0.999 1.55 2.58 3.16

Table 6: Mean and Median Diversification Benefits based on ES for Different Dependence
Structures

These results imply that the existence of hidden asymptotic dependence reduces
the diversification benefits, but not as severely as the pairwise asymptotic dependence.
We think that these results are intuitive and support our earlier conjecture that hidden
asymptotic dependence has significant implications for portfolio selection.

6 International Financial Contagion

Chan Lau et al. (2004) rightly argued that financial contagion to be defined as the
probability of simultaneous large loss observations across different financial markets
rather than increases in correlations. Therefore, they used the extremal dependence
coefficients to develop new measures of international financial contagion for a number
of mature and emerging equity markets. Using stock price indices of these countries,
they estimated χ̄ for each country pair and then calculate the ratio of country pairs
that are asymptotically dependent to the total number of country pairs given by

IFC =

∑
i

∑
j 6=iAsympDepi,j

N × (N − 1)
(16)

where AsympDepi,j is a binary variable taking value of 1 if the countries i and j are
asymptotically dependent and 0 otherwise. They found that this new indicator captures
the downturns in the emerging markets quite well. For example, during the Mexican
peso crisis in 1995 and during the Asian crisis of 1997, the ratio of asymptotically
dependent countries went up significantly. This measure can be loosely interpreted as
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the probability of an extreme crash in one country to spread to another country. How-
ever, this metric suffers from the pairwise nature of the analysis. Since the dependence
is estimated between the pairs of individual countries, it cannot identify and simply
ignore the hidden asymptotic dependencies. In other words, it doesn’t provide informa-
tion about the probability of further propagation of a crisis when markets in multiple
countries crash simultaneously. This leads to underestimation of the chances of crisis
propagation to new countries and therefore, it doesn’t provide a complete picture of
the real severity of financial contagion.

In this section, we extend the financial contagion metric proposed by Chan Lau
et al. (2004) to incorporate hidden asymptotic dependencies. In the previous section,
we found that a portfolio of Turkey and Indonesia to be asymptotically dependent
with Mexico although the individual countries are asymptotically independent of each
other (See Figure 1). We argued that this is because it is more likely for a crash in
a portfolio of Turkey and Indonesia to spread to Mexico as compared to an isolated
crash in either Turkey or Indonesia. Expanding on this idea, it should be more likely
for a widespread systemic stress in emerging markets to spread to one of the unaffected
countries compared to an isolated crash in only one emerging market. Therefore, if
there was a systemic composite index of emerging market stock prices, it is expected
to have significant asymptotic dependence with the individual countries. Since the
composite index would be a portfolio of all countries in the sample, its tail dependence
with individual countries would implicitly incorporate the hidden asymptotic depen-
dencies. Fortunately, such systemic composite index data is readily available from our
data source. S&P/IFC has been collecting stock index data not only for the individual
emerging markets, but also they calculate an emerging markets composite index from
the country level data. The EM composite index is the market capitalization weighted
average of all emerging market stocks9. We propose that tail dependence analysis to be
performed between the countries and the EM composite index and financial contagion
be measured with the ratio of asymptotically dependent countries to the total number
of countries. More formally, we propose to measure the financial contagion with

IFCnew =

∑
AsympDepi,comp.index

N
(17)

where AsympDepi,comp.index is a binary variable that takes a value of 1 if the country i is
asymptotically dependent with the emerging markets composite index and 0 otherwise.
We use a 6 year rolling window sample of daily returns to calculate both our proposed
measure and the chan-Lau et al.(2004) measure given in (16). We slide our sample
by one quarter in each iteration dropping the earliest quarter from the sample and
adding one more quarter to the end. For example the data from 1995Q3-2001Q2 is
used to calculate the measures for 2001Q2; the data from 1995Q4-2001Q3 is used to
calculate the measures for 2001Q3 and so on. The time series plot of both measures is
presented in Figure 3. As we conjectured earlier, the results confirm that the degree
of international financial contagion is in fact much severe than implied by the pairwise
dependence analysis.

Poon et al. (2004) demonstrates that a great deal of asymptotic dependence is
driven by the volatility clustering in multiple markets. Their finding is confirmed
by multiple studies subsequently. Therefore, they propose to filter out this volatility

9It includes more countries than in our sample.
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Figure 3: IFC Plot

impact by using Generalized Autoragressive Conditonal Heteroscedasticity (GARCH)
type models first and then implementing the extremal dependence analysis to the
filtered returns. To check the robustness of our results, we also follow this approach
by fitting univariate GARCH(1,1) models to the individual country returns as well as
the composite emerging market index returns. We extract the standardized residuals
from these fits and estimate asymptotic dependence between the residuals. Both the
GARCH(1,1) fits and the analysis of extremal dependence on standardized residuals
are performed using 6 year rolling window samples as explained above. Time series
plot of both contagion measures is presented in Figure 4.

As suggested by earlier studies, the number of cases with asymptotic dependence
are reduced significantly due to the filtering of returns but our main conclusion remains
well supported and actually even more pronounced in this case. Incorporation of hidden
asymptotic dependence provides a more complete picture of the severity of financial
contagion. The plots presented in both Figures 3 and 4 indicate that the severity of
financial contagion is significantly stronger than implied by existing measures that rely
on pairwise extreme value dependence analysis.

7 Conclusion

In this study, we extended the Poon et al. (2004) methodology for estimation of
extremal dependence to a multi-asset setting by analyzing the tail dependence structure
between the sub-portfolios within a multi-asset portfolio. This lead us to the discovery
of hidden asymptotic tail dependencies that cannot be identified with the pairwise tail
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Figure 4: IFC Plot with GARCH filtering

dependence analysis between the individual assets. simply put, it is a situation where
all possible asset pairs within the portfolio are asymptotically independent of each other
but it is possible to split the portfolio into two sub-portfolios that are asymptotically
dependent. This finding implies that there are limits to diversification due to systemic
risk and contagion effects.

We investigated the impact of hidden asymptotic dependence on diversification
benefits formally. We assumed that the investors guarding against extreme losses
would seek to minimize tail risk measures such as VaR and ES. For all possible three-
asset portfolios, we measured the diversification benefits with the reduction in these tail
risk measures as a result of investing in the optimal three-asset portfolio rather than
investing in the optimal two-asset portfolio. We found that the existence of hidden
asymptotic dependence significantly reduces the benefits from diversification but not
as much as the asymptotic dependence between the pairs of assets. We believe that
these results make intuitive sense and offer valuable information to portfolio managers.
Portfolio managers may believe that they built a safe portfolio when all asset pairs
in their portfolio are asymptotically independent of each other. However, pairwise
dependence analysis may not be sufficient if hidden dependencies exist that are not
explicit at the surface.

More intuitively, our results indicate that a crisis in multiple emerging markets
is more likely to spread to other countries compared to an isolated crisis in a single
country. However, pairwise dependence analysis cannot capture this effect, leading to
underestimation of chances for simultaneous crashes in multiple markets. Motivated
with our results and these ideas, we proposed a new measure of international financial
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contagion that incorporates the hidden asymptotic dependencies. Our results indicate
that the severity of financial contagion is significantly stronger than implied by existing
measures that rely on extreme value dependence analysis of country pairs.

This research can be extended in several ways. As discussed in the introduction,
the tail dependence measures have been used in many financial applications such as
hedging, options pricing, Sharpe ratio targeting, measurement of the systemic risk in
the banking industry and financial contagion in international markets. In this paper, we
documented the hidden asymptotic dependence and its implications for diversification
benefits and the measurement of financial contagion. We believe that similar extensions
can be made in other financial applications particularly in the field of systemic risk.
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