Panel #2: Measurement and Impact of Cyber Risk

- Gilles Hilary, Chaired Professor, Georgetown University
- Patrick Naim, CEO, Elseware
- Denyette DePierro, Vice President, Center for Payments and Cybersecurity, American Bankers Association
- Phil Collett, Director Cyber Risk Assessments, American Express Co.
- John DeLong, Risk Management, Morgan Stanley
- Filippo Curti, Financial Economist, Quantitative Supervision & Research, Federal Reserve Bank of Richmond
Cyber-Incidents & Measurement

Presented by: Gilles HILARY
gilles.hilary@georgetown.edu
ST Return Distribution

Median: -0.5% Mean: -0.7%
FUD vs CURe

Uncertainty Management

Risk Management

Compliance
Thank You!

Gilles.Hilary@georgetown.edu
Panel #2: Measurement and Impact of Cyber Risk

- Gilles Hilary, *Chair Professor, Georgetown University*
- Patrick Naim, *CEO, Elseware*
- Denyette DePierro, *Vice President, Center for Payments and Cybersecurity, American Bankers Association*
- Phil Collett, *Director Cyber Risk Assessments, American Express Co.*
- John DeLong, *Risk Management, Morgan Stanley*
- Filippo Curti, *Financial Economist, Quantitative Supervision & Research, Federal Reserve Bank of Richmond*
Assets, Access and Attackers

A consistent framework for identification, assessment, peer benchmarking and mitigation of cyber risk

Naim, Patrick, Mstar, patrick.naim@elseware.fr
Condamin, Laurent, Mstar, laurent.condamin@elseware.fr

Version 25/03/2019
We propose a consistent method for the structured identification and assessment of cyber risks:

- **The identification of risks** is based on a breakdown of critical Assets, possible Accesses to these assets, and possible Attackers.

- This decomposition by Asset, Access, Attacker can be directly mapped to the Exposure, Occurrence, Impact approach to **Structured Scenario modelling**.

- Structured modelling defines a **loss generation mechanism** which allows an explicit quantification of scenarios and peer benchmarking.

- Structured modelling allows the impact of **mitigation** actions to be assessed.
The cyber risk wheel
Example – CYBER Attack on critical service
Example – CYBER FUND MISAPPROPRIATION
Example – customer data compromise

ATTACKERS
ACCESS
ASSETS
The decomposition of a cyber risk scenario into Asset, Access and Attacker can be used to build a structured assessment of the scenario:
Example – CYBER Attack on critical service

- The decomposition of a cyber risk scenario into Asset, Access and Attacker can be used to build a structured assessment of the scenario:
Cyber Attack Critical service - Quantification

<table>
<thead>
<tr>
<th>DRIVER</th>
<th>TYPE</th>
<th>ASSESSMENT</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of critical services</td>
<td>Objective</td>
<td>5 services: Cards, Transfers, Trade, Loans, Internet Banking</td>
<td>Business Data, Resiliency Team</td>
</tr>
</tbody>
</table>
| Type of Attack | Subjective| Duration: 80%
Magnitude: 20% | SMEs, External Research, ILD & ELD |
| Probability of Cyber Attack | Subjective| [5%-20%] per application | SMEs, External Research, ILD & ELD |
| Dependent Revenue | Objective| Internet Banking: $5m-$10m
Cards, Loans: $10m-$20m | Business Data, Annual Reports |
| Dependent Transactions | Objective| Transfers: $70bn-$80bn
Trades: $4bn-$6bn | Business Data |
| Compensation Rate | Subjective| Transfers: 0-10$ per $1mm trans.
Trades: 0-300$ per $1mm trans. for a duration attack, 0-600$ per $1mm trans. for a magnitude attack | Local model used based on Daily Penalty, Slowdown, Average TTR |
| Loss of Revenue Rate | Subjective| Duration Attack: 20%
Magnitude Attack: 100% | SMEs |
| Time To Recovery | SMEs | Duration Attack: 2-12 days
Magnitude Attack: 0-2 days | Resiliency Team, Business Impact Analysis, External Research |
The scenario structure and the driver assessments are compiled into a Bayesian Network that is sampled through Monte Carlo simulation to estimate the distribution of the potential losses.

REPEAT 1,000,000 times:
- SET the cumulated loss to 0
- SAMPLE the **exposure** from its conditional distribution
- FOR each exposed unit, sample the **occurrence** of the event from its conditional distribution
 - IF the occurrence is TRUE:
 - SAMPLE the **impact** of the event from its conditional distribution
 - ADD the impact to the cumulated loss

Statistics

<table>
<thead>
<tr>
<th>Number of iterations</th>
<th>1 mi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Loss</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>9.5 mi$</td>
</tr>
<tr>
<td>Max Possible</td>
<td>48.5 mi$</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>0.5</td>
</tr>
<tr>
<td>Cumulated Loss</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0$</td>
</tr>
<tr>
<td>Max</td>
<td>119 mi$</td>
</tr>
<tr>
<td>Mean</td>
<td>5.0 mi$</td>
</tr>
</tbody>
</table>
Benefits of the approach

- Explicit definition of Cyber Scenarios and their boundaries
- Consistent reporting of events – and use of external events
- Direct mapping to structured assessment
- Identification of KRI
- Quantification of risk scenarios
- Possibility to benchmark assessment with peers
- Evaluation of mitigation actions
Panel #2: Measurement and Impact of Cyber Risk

- Gilles Hilary, Chair Professor, Georgetown University
- Patrick Naim, CEO, Elseware
- Denyette DePierro, Vice President, Center for Payments and Cybersecurity, American Bankers Association
- Phil Collett, Director Cyber Risk Assessments, American Express Co.
- John DeLong, Risk Management, Morgan Stanley
- Filippo Curti, Financial Economist, Quantitative Supervision & Research, Federal Reserve Bank of Richmond
FSSCC Cybersecurity Profile
- An Overview -
2016 Survey: **40%** of Information Security teams’ time on avg spent on reconciliation of cyber expectations

(ISC)2: Gap of cyber pros growing, with a **gap of 3 million** projected for 2019

FSB (2018): **72% of jurisdictions** reported plans to issue new cyber requirements
Over the past 2 years –
- FSSCC Coalition;
- BITS and ABA co-lead;
- **50+ working sessions**;
- **300+ participants**;
- **150+ financial institutions represented**.

Financial Services and Other Agencies –
- **Provided material for incorporation**, notably:
 - FRB;
 - OCC;
 - FDIC;
 - SEC;
 - CFTC;
 - FINRA;
- NIST workshop on risk/impact scaling.
Benefits Explored - Efficiencies Gained

- **73% Reduction for Community Institution Assessment Questions.** For the least complex and interconnected institutions, it is expected that they would answer a total of 145 questions (9 tiering questions + 136 Diagnostic Statement questions). As compared to another widely-used assessment tool’s 533 questions, this represents a 73% reduction.

- **49% Reduction in Assessment Questions for the Largest Institutions.** For the most complex and interconnected institutions, the reduction also is significant. With the Profile, it is expected that such institutions would answer 279 questions (2 tiering questions + 277 Diagnostic Statement questions) as compared to the other widely-used assessment’s 533, a 49% reduction.
PART I: The Profile’s Underlying NIST Architecture

NIST CSF and CPMI-IOSCO

- Supply Chain/Dependency Management
- Recover
- Detect
- Protect
- Identify

Added in Response to Regulation

Functions
- Governance

Categories
- SAME Column as in NIST CSF
- SAME Column as in NIST CSF

Subcategories
- Except that some categories have been moved and some have added to fit with new “5 + 2” Function concept.
- Except that some categories have been moved and some have added to fit with new “5 + 2” Function concept.

NEW Column
The risk-based diagnostic statements knit together the multitude of regulatory expectations and the NIST-centric Subcategories; Will aid regulatory agencies with their oversight and examination responsibilities.

Added in Response to Regulation

FFIEC CAT Inspired Addition

Diagnostic Statements

FS Specific Regulatory References
- CPMI-IOSCO, NIST CSF, ISO Standards
- FFIEC CAT and IT Handbooks
- SEC, CFTC, FINRA, NAIC
- NYDFS
- SAMA Information Security Survey
Part II: Sector-Wide Impact Assessment

National or Global Impact – Tier 1
- Systemically important and/or multinational firms.
- GSIBs, GSIFIs, systemically important market utilities.

Subnational (Regional) Impact – Tier 2
- Firms offering mission critical services or have over 5 million customer accounts.
- Super-regional banks, large insurance firms.

Industry-wide scaling achieved through collaboration with NIST, Federal Reserve, OCC, FDIC, SEC, FINRA.
- 40+ firms implementing the Profile or actively exploring implementation for 2019/2020.

Sector Only Impact – Tier 3
- Firms with a high degree of interconnectedness, and between 1-5 million customer accounts.
- Regional banks, large credit unions.

Customer/3rd Party Impact Only – Tier 4
- Applies to the firms with a relatively small number of customers.
- Community banks, small broker dealers/investment advisors.
Benefits of the Profile Approach

Financial Institutions

- **Optimization of cyber professionals’ time** “at the keyboard,” defending against next gen attacks – *complete once per cycle, report out to many.*
- **Improved Boardroom and Executive engagement,** understanding and prioritization.
- Enhanced, *efficient third-party vendor management.*

Supervisory Community

- **Examinations more tailored to institutional complexity,** enabling *“deeper dives”* in those areas of greater interest to that particular agency.
- **Enables supervisory agencies to better discern the sector’s systemic risk,** with more agency time for specialization, testing and validation.
- Enhanced *visibility of non-sector and third-party cyber risks.*

The Ecosystem

- **Based on NIST and ISO, it allows for greater intra-sector, cross-sector and international cybersecurity collaboration and understanding.**
- Enables *collective action to better address collective risks.*
- **Greater innovation as technology companies, including FinTech's,** are able to evidence security against the standardized set of compliance requirements.
The Profile: A NIST Cybersecurity Framework Extension to Align with Financial Services Requirements and Supervisory Expectations

NIST Cybersecurity Framework provides a **globally accepted** organizational structure and taxonomy for cybersecurity and cyber risk management

The Profile extends the NIST Cybersecurity Framework to be **more inclusive** of financial services requirements and supervisory expectations

The following countries are either exploring its use or promoting it through translation –

- Bermuda
- Brazil
- Canada
- Israel
- Italy
- Japan
- Malaysia
- Mexico
- Philippines
- Saudi Arabia
- Switzerland
- United Kingdom
- Uruguay

Extended NIST to highlight 2 special categories of particular (& appropriate) regulatory focus:

- Governance
- Supply Chain/ Dependency Management

The following international governments and organizations have expressed positive interest in the Profile –

- Argentina
- Brazil
- China (Mainland and Hong Kong)
- Chile
- Colombia
- European Union
- International Standards Organisation
- Japan
- Organization of American States
- Singapore
- United Kingdom
Websites

- https://www.fsscc.org/Financial-Sector-Cybersecurity-Profile
- https://www.fsscc.org/The-Profile-FAQs
Executive Summary

The Issue: Domestic and international regulatory agencies asking the same question in many different ways, stretching already scarce cybersecurity talent.

The Profile as a Solution: The Profile, which is a common, standardized approach that can act as a baseline for examination and future cyber regulation - *fill out once per exam cycle, report out many.*

Voluntary with Many Benefits, Including:
- Provides more consistent and efficient processing of examination material by both firms and regulators.
- Allows Regulators and Firms to focus on systemic risk and risk residual to firms.
- Establishes an Industry best practice beyond regulatory use.

Supporting Associations:

[Logos of supporting associations]
Panel #2: Measurement and Impact of Cyber Risk

- **Gilles Hilary**, Chair Professor, Georgetown University
- **Patrick Naim**, CEO, Elseware
- **Denyette DePierro**, Vice President, Center for Payments and Cybersecurity, American Bankers Association
- **Phil Collett**, Director Cyber Risk Assessments, American Express Co.
- **John DeLong**, Risk Management, Morgan Stanley
- **Filippo Curti**, Financial Economist, Quantitative Supervision & Research, Federal Reserve Bank of Richmond
Risk Quantification

Problem Statement:
An increasing number of control frameworks and regulations trend toward using less prescriptive language in favor of an emphasis on taking a ‘risk-based approach’. However, many firms struggle to design and implement operationally feasible, repeatable, and accurate risk quantification methodology and tooling.

Analysis of Risk Quantification Methods:

<table>
<thead>
<tr>
<th>Cyber Risk Methodology</th>
<th>Precision</th>
<th>Agility</th>
<th>Quantification</th>
<th>Ease of Use</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor Analysis Information Risk (FAIR)</td>
<td>70</td>
<td>100</td>
<td>85</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>CDRA</td>
<td>70</td>
<td>90</td>
<td>85</td>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td>ISRAM</td>
<td>65</td>
<td>90</td>
<td>85</td>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td>Facilitated Risk Analysis Process</td>
<td>60</td>
<td>90</td>
<td>85</td>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td>COBRA</td>
<td>55</td>
<td>85</td>
<td>85</td>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td>OACTIVE ALLEGRO</td>
<td>55</td>
<td>85</td>
<td>85</td>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td>NIST 800-30</td>
<td>50</td>
<td>85</td>
<td>85</td>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td>ISO 30101:2009</td>
<td>45</td>
<td>85</td>
<td>85</td>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td>COBIT</td>
<td>40</td>
<td>85</td>
<td>85</td>
<td>0</td>
<td>85</td>
</tr>
</tbody>
</table>
Quantification Accuracy

It is better to be consistent (precise) by using a single source of truth for inputs such as asset value, control strength, and threat frequency. Once precision is achieved, focus on calibrating the inputs to achieve accuracy.
Quantification Adoption

Improve risk assessment speed and accuracy by sourcing as many risk assessment inputs as possible from either metrics or pre-aligned values.

Sample Risk Assessment Inputs:
- Assessment scope
- Identify relevant threats
- Identify relevant assets
- Identify applicable controls
- Threat actor capability
- Threat frequency
- Effectiveness of applicable controls
- Controls ability to reduce likelihood
- Controls ability to reduce impact
- Primary losses based on asset
- Reputation costs based on asset
- Response costs based on asset
- Potential fines and legal fees
Example: Threat Input Quantification

This sample shows how a single source of truth for **attack types** and **threat actor communities** can save an assessor from having to speculate on the threat event frequency in a risk assessment using FAIR.

Values in this sample are mockups and do not represent actual/real-world data.
Thank You
Panel #2: Measurement and Impact of Cyber Risk

- Gilles Hilary, Chaired Professor, Georgetown University
- Patrick Naim, CEO, Elseware
- Denyette DePierro, Vice President, Center for Payments and Cybersecurity, American Bankers Association
- Phil Collett, Director Cyber Risk Assessments, American Express Co.
- John DeLong, Risk Management, Morgan Stanley
- Filippo Curti, Financial Economist, Quantitative Supervision & Research, Federal Reserve Bank of Richmond
2019 Cyber Risk Workshop

John DeLong
Operational Risk
Discussion & Questions