Privately Efficient Wage Rigidity
Under Diminishing Returns

Björn Brügemann
VU University Amsterdam and Tinbergen Institute
b.a.brugemann@vu.nl

June 2014

PRELIMINARY

Abstract
Matching frictions have been shown to reconcile wage rigidity and private efficiency in settings with constant marginal returns to labor. A recent line of research has studied the implications of wage rigidity in models with matching frictions and diminishing returns. I show that the allocation of labor is privately inefficient off the equilibrium path in the models used in this line of research, and thus inconsistent with any theory of wage determination that yields private efficiency. The culprit is rigidity of the wage with respect to firm-level employment. I examine how wage rigidity can be reconciled with private efficiency, focusing on two polar specifications. In the first, wages are rigid with respect to aggregate shocks and flexible with respect to firm-level employment. The labor market responds strongly to aggregate shocks. Yet novel policy implications obtained by this line of research are lost, and thereby shown to be driven by rigidity with respect to firm-level employment. In the second, the wage only adjust when called for by private efficiency, and workers fully appropriate rents in the event of adjustment. Novel policy implications obtained in this line of research are restored, including the existence of unemployment in the limit as matching frictions vanish. But fighting this type of rationing unemployment is much easier than in existing models.

JEL Classification: E24, E32, J41, J64
Wage rigidity is a perennial topic in macroeconomics. Attempts to explain the cyclical behavior of employment frequently invoke some kind of wage rigidity. At the same time, finding a satisfactory microfoundation for rigid wages has long remained elusive. A long-standing challenge is the Barro critique, aimed at models in which rigid wages result in an allocation that is privately inefficient for an employer and its employees.\(^1\) Responding to this challenge, Hall (2005) develops a model with matching frictions in which rigid wages strongly amplify employment fluctuations, without leading to private inefficiencies. Hall builds on the observation by Howitt (1986) that rigid wages can be consistent with private efficiency in a labor market with matching frictions. Rogerson and Shimer (2011) argue that this is in fact the main substantive contribution of search models in the business cycle context. They observe that matching frictions do not directly help in understanding cyclical fluctuations in employment, in the sense that they tend to reduce the magnitude of socially efficient fluctuations. Rather, matching frictions allow for a larger discrepancy between the socially efficient and privately efficient allocations of labor.

Hall studies a setting with constant marginal returns to labor. A recent line of research initiated by Michaillat (2012) introduces diminishing marginal returns into models with matching frictions, and finds that the interaction of wage rigidity with diminishing returns changes the behavior of the labor market qualitatively and delivers several novel policy implications. Michaillat (2012) shows that in contrast to the model with constant returns, unemployment remains positive in the limit as matching frictions vanish. Referring to unemployment in this limit as *rationing unemployment* he finds that the increase in unemployment in recessions is entirely due to an increase in rationing unemployment, whereas frictional unemployment actually declines in recessions. Regarding macroeconomic policy, he shows that any policy instrument that acts like a reduction in matching frictions becomes dramatically less effective at reducing unemployment in recessions. Importantly, with references to the Barro critique and Hall (2005), Michaillat emphasizes that wages respect private efficiency in his theory.\(^2\) Several papers have used a version of Michaillat’s model to study various macroeconomic and labor-market policies. Michaillat’s model to study various macroeconomic and labor-market policies. Michaillat’s model to study various macroeconomic and labor-market policies.

\(^1\)This critique, developed in Barro (1977, 1979), was originally aimed at a particular class of implicit contract models.

\(^2\)See page 1722 and 1726–1727 in Michaillat (2012).
of the business cycle. In their model, optimal UI deviates from the standard Baily-Chetty formula if the level of labor market tightness is socially inefficient, and if UI has an effect on tightness. In a version of the model with rigid wages and constant marginal returns, UI has no effect on tightness and optimal UI is always given by the Baily-Chetty formula. In contrast, with diminishing returns and rigid wages as in Michaillat (2012), they find that in recessions, when tightness is inefficiency low, optimal UI is more generous than the Baily-Chetty formula. Crépon et al. (2013) use a version of the model of Landais et al. (2013) to study the displacement effects of labor market policies.

The first contribution of this paper is to show that the allocation of labor is privately inefficient

off the equilibrium path

in the models used in this line of research. This is in contrast to Hall’s model, in which the allocation of labor is privately efficient both on and off the equilibrium path. It implies that the theory is inconsistent with any privately efficient theory of wage determination, including the double auction used by Hall to characterize wage determination. The culprit is rigidity of the wage with respect to firm-level employment. In Hall (2005) the wage is rigid with respect to aggregate shocks. It also does not respond to firm-level employment, but this is natural and does not interfere with private efficiency in a setting with constant returns. By placing bounds on exogenous aggregate shocks, Hall (2005) ensures that a constant wage is privately efficient, avoiding the need to specify how the wage is adjusted in situations in which this is required to maintain private efficiency. In Michaillat’s (2012) specification the wage is also rigid with respect to both aggregate shocks and firm-level employment. Because of diminishing returns, however, a firm can always trigger a situation in which private efficiency requires a wage reduction via a sufficiently large expansion in hiring. This cannot be ruled out through a simple restriction on exogenous variables, since the private inefficiency is triggered by an endogenous choice of firms.

To reconcile wage rigidity and private efficiency under diminishing returns, it is un-
avoidable to take a stand on how wages adjust in response to firm-level employment. As in the case of constant returns, many wage schedules are consistent with private efficiency. The second contribution of this paper is the analysis of two polar specifications, which span the range of possibilities for how the wage responds to firm-level employment.

In the first specification, wages are rigid with respect to aggregate shocks and fully flexible with respect to firm-level employment. I refer to this as the employment-flexible specification. Wage rigidity with respect to aggregate shocks ensures amplification of employment fluctuations as in Hall (2005). Thus this specification extends the key result of Hall (2005) to a setting with diminishing returns: employment fluctuations are amplified through wage rigidity, without violating private efficiency. At the same time, I find that the novel policy implications obtained by the line of research initiated by Michaillat (2012) are lost if this specification is used. Rationing unemployment does not exist. Policy instruments which act like a reduction in matching frictions retain their effectiveness to reduce unemployment in recessions. In the context of Landais et al. (2013), optimal unemployment insurance should not become more generous in recessions. In the context of Michaillat (2014), the multiplier of government employment is acyclical. By isolating rigidity with respect to aggregate shocks from rigidity with respect to firm-level employment, this analysis demonstrates that it is the latter type of rigidity which drives these policy implications.

The second specification maximizes the extent to which wages are rigid with respect to firm-level employment while maintaining private efficiency. First, wages do not respond at all as long as this is consistent with private efficiency. Second, if an adjustment is required, then the wage remains as high as possible, which implies that the workers fully appropriate rents. Due to the latter feature, I refer to this as the full-appropriation specification. This specification delivers exactly the same equilibrium as Michaillat’s specification across values of the aggregate shocks, and also across the type of policies that have been considered in this line of research. Thus rationing unemployment does exist, and the novel policy implications derived in this line of research all apply. At the same time, the policy implications differ substantially if the government fully compensates firms for recruiting costs. This is ineffective under Michaillat’s specification,
but can restore full employment under the full-appropriation specification. Thus fighting rationing unemployment is much easier in the privately efficient model.

The third contribution of the paper focusses specifically on the existence of rationing unemployment. The analysis of the full-appropriation specification shows that rationing unemployment exists in this case, yet full appropriation may appear very restrictive. This raises the question whether there is any specification of technology and wage schedule that could deliver rationing unemployment without violating private inefficiency and without invoking full appropriation. I show that the answer is negative: if private efficiency is required, then full appropriation is both necessary and sufficient for the existence of rationing unemployment.

1 Model

The model builds on Pissarides (2000, Chapter 1), introducing two modifications. First, it allows for diminishing marginal returns to labor at the firm level. Second, rather than assuming that wages are determined through Nash bargaining, wages are given by a general wage schedule which nests a broad set of bargaining solutions as well as reduced-form rigid wages. Hall’s (2005) model is obtained as the special case with constant returns and rigid wages. Michaillat’s general model is dynamic and stochastic. Here I use a version of the model in which matching and production occur only once. This version suffices for the purposes of this paper. The analysis immediately carries over to the dynamic stochastic model, but presenting it in that context would require heavier notation.

There is a unit mass of ex ante identical firms of unit mass, and a unit mass of workers per firm. All workers are ex ante identical. Each firm operates a technology described by the production function g. If a firm employs a mass n of workers at the time of production, then its output is $g(n,a)$. Here a is the aggregate state of technology. It lies in $[\bar{a}, \bar{a}] \subset (0, +\infty)$. The function g is differentiable and weakly concave in n, satisfies $g(0,a) = 0$ for all $a \in [\underline{a}, \bar{a}]$, and is strictly increasing in both arguments. Workers that are not employed by a firm at the time of production generate zero output. The utility
of workers is given by expected consumption. Firms maximize expected profits.

The model has two stages. In the first stage, each firm decides how many workers to hire. In the second stage, wages and employment are determined in each firm, and production takes place.

For simplicity, I assume that all workers are initially unmatched.\(^3\) Firms can recruit workers by opening vacancies. I specify the matching technology through two functions \(q(\theta)\) and \(f(\theta)\), where \(\theta\) denotes labor-market tightness, \(q(\theta)\) is the probability that a vacancy is filled, and \(f(\theta)\) is the probability than an unemployed worker finds a job. This specification can be derived from a constant-returns-to-scale matching function, with tightness defined as the vacancy-unemployment ratio, and in this case the two functions are linked through the restriction \(f(\theta) = \theta q(\theta)\). I do not impose this restriction in what follows. This turns out to be useful in Section 4. The function \(q : [0, +\infty) \to [0, 1]\) is strictly decreasing, \(f : [0, +\infty) \to [0, 1]\) is strictly increasing, and both functions are continuous.

To hire \(n_1\) workers, a firm must open \(\frac{n_1}{q(\theta)}\) vacancies. Here the subscript of \(n_1\) indicates that hiring is chosen in the first stage. The firm incurs a cost \(c \cdot a\) per vacancy. Here \(c \in [0, +\infty)\) is the parameter governing the cost of recruiting. Vanishing matching frictions are modeled by letting \(c\) converge to zero. To ensure that matching frictions indeed vanish as \(c\) goes to zero, the matching technology satisfies \(\lim_{\theta \to +\infty} f(\theta) = 1\).

Each possible level of hiring \(n_1 \in [0, +\infty)\) by a firm in the first stage leads to a subgame in the second stage, indexed by \(n_1\), in which the wage and the employment level in the firm are determined. This subgame is not modeled explicitly. Instead, its outcome is described as follows. The wage is determined by a general wage schedule \(w(n, a)\), where \(n\) is the employment level at the firm at the time of production. The wage schedule is differentiable in \(n\) and non-negative. As discussed by Michaillat, this specification nests a

\(^3\)Allowing for an initial positive level of employment does not change any of the results derived in this paper. It does create the possibility that the allocation of labor is privately inefficient along the equilibrium path in Michaillat’s model. This happens if the initial employment level is very high, so that firms want to reduce employment rather than hire. Michaillat shows that this does not occur in his quantitative analysis, because exogenous separations between periods are sufficiently high that firms never want to reduce employment further.
broad set of bargaining solutions as well as reduced-form rigid wages. Define the function

$$\Pi(n, a) \equiv g(n, a) - w(n, a)n. \quad (1)$$

It gives the ex-post profits of a firm with employment n, defined as profits excluding recruiting costs sunk in the first stage. Employment in subgame n_1 is assumed to be profit-maximizing. Let

$$N_2(n_1) \equiv \arg \max_{n \in [0, n_1]} \Pi(n, a) \quad (2)$$

denote the set of profit-maximizing employment levels. For simplicity, it is assumed that in case of indifference a firm chooses the highest profit-maximizing employment level, that is, $n_2(n_1) = \max N_2(n_1)$.

I now define an equilibrium. In doing so, I make explicit that employment levels in all subgames are equilibrium objects. I restrict attention to symmetric equilibria in which hiring in the first stage and the outcome in all subgames are the same across firms.

Definition 1 A level of labor market tightness θ, a first-stage employment level n_1, and second-stage employment levels $\{n_2(n_1)\}_{n_1 \in [0, +\infty)}$ constitute an equilibrium for given $a \in [\underline{a}, \bar{a}]$ if

1. $n_1 \in \arg \max_{n \in [0, +\infty)} \left\{ \Pi(n_2(n), a) - \frac{c \cdot a}{q(\theta)}n \right\}$. \quad (3)

2. $n_2(n_1) = \max N_2(n_1)$ for all $n_1 \in [0, +\infty)$.

3. The first-stage employment level n_1 and labor market tightness satisfy

$$n_1 = f(\theta). \quad (4)$$

Condition 1 requires that firms maximize ex-ante profits in the first stage. Condition 2 specifies the outcome of subgame n_1 according to the discussion above. Condition 3 requires that the number of workers n_1 hired by firms for a given level of θ is consistent with the number of matches generated by this level of θ.
2 Private Efficiency

The allocation of labor in subgame \(n_1 \) is privately efficient if the firm and its hires exploit all opportunities for mutual improvement. In the present model, the privately efficient allocation is easy to determine. Since the firm maximizes expected profits while workers’ utility is given by expected consumption, it is clear that private efficiency requires maximization of output. Because the production function \(g(n, a) \) is strictly increasing in \(n \) and since unemployed workers produce zero, private efficiency requires that all hires are employed at the time of production. Hence, for this model, we can define private efficiency in subgame \(n_1 \) as follows.

Definition 2 An allocation of labor \(n_2(n_1) \) in subgame \(n_1 \) is privately efficient if \(n_2(n_1) = n_1 \).

Any theory of wage determination that generates privately efficient outcomes would imply that the allocation of labor is privately efficient in all subgames \(n_1 \in [0, +\infty) \). The following lemma provides a simple characterization of private efficiency in all subgames in terms of the function \(\Pi(n, a) \).

Lemma 1 Let \(\theta, n_1, \) and \(\{n_2(n_1)\}_{n_1 \in [0, +\infty)} \) be an equilibrium for given \(a \). The allocation of labor is privately efficient in all subgames \(n_1 \in [0, +\infty) \) if and only if \(\Pi(n, a) \) is weakly increasing in \(n \).

Proof: Suppose that \(\Pi(n, a) \) is weakly increasing. Consider subgame \(n_1 \). Then \(n_1 \in N_2(n_1) \), and consequently \(n_2(n_1) = n_1 \). Conversely, suppose that \(\Pi(n, a) \) is not weakly increasing. Then there exist two employment levels \(n_H \) and \(n_L \) such that \(n_H > n_L \) and \(\Pi(n_H, a) < \Pi(n_L, a) \). Thus the allocation of labor is privately inefficient in subgame \(n_H \), contradicting private efficiency in all subgames.

In a setting with constant marginal returns to labor, Hall (2005) obtains a rigid wage schedule as an equilibrium outcome by characterizing wage determination in terms of a double auction. In the auction, both the worker and the firm simultaneously propose wages \(w^A \) and \(w^B \), respectively. If \(w^A \leq w^B \), trade occurs at the wage \(w = \kappa w^A + (1 - \kappa)w^B \) where \(\kappa \in (0, 1) \) is a parameter. This auction has the property that any wage that
lies between the reservation wage of the worker and the reservation wage of the firm is a Nash equilibrium. Consequently, with constant returns $g(n, a) = a \cdot n$ any wage in the interval $[0, a]$ is an equilibrium. As a consequence, the wage need not adjust one for one with changes in a. Even a constant wage is possible, as long as it does not lie below the lowest state of technology a. It is the indeterminacy of the double auction which permits wage rigidity to be an equilibrium outcome. The auction permits many alternative equilibrium wage patterns, and Hall’s theory does not aim to explain why a rigid wage pattern is chosen.

Hall’s theory is easily generalized to a setting with diminishing marginal returns by building on the theory of intra-firm bargaining developed by Stole and Zwiebel (1996). Stole and Zwiebel model pairwise negotiations through the Nash bargaining solution. To obtain a theory of intra-firm bargaining, they define a notion of stability. The key feature of this notion is that a breakdown of negotiations between the firm and a given worker is followed by a renegotiation with all remaining workers. It is straightforward to adapt this approach by replacing the Nash bargaining solution with the double auction, retaining the notion of stability proposed by Stole and Zwiebel.

Consider a pairwise negotiation between a worker and a firm when the level of employment is n. In the event of breakdown the worker receives zero, while the firm receives $g_n(n, a) - nw_n(n, a)$ where the subscript n indicates the partial derivative with respect to firm-level employment. To understand this payoff of the firm, notice that if the pairwise negotiation fails, the firm not only loses the marginal product $g_n(n, a)$, but its wage payments to the remaining workers change by $-nw_n(n, a)$. Consequently, the bargaining set in the pairwise negotiation is $[0, g_n(n, a) - nw_n(n, a)]$. According to the Nash bargaining solution the wage $w(n, a)$ is the midpoint of this interval. This yields a differential equation with a unique solution. Replacing the Nash bargaining solution with the double auction, any wage in the bargaining set is a Nash equilibrium in the pairwise negotiation. Thus $w(n, a)$ must satisfy $w(n, a) \geq 0$ and the differential inequality

$$w(n, a) \leq g_n(n, a) - nw_n(n, a).$$
This differential inequality can also be written as \(\Pi_n(n, a) \geq 0 \). This result is summarized in the following proposition.

Proposition 1 The bargaining outcome given by the functions \(w(n, a) \) and \(\Pi(n, a) \) is a Nash equilibrium of the double auction at every level of employment \(n \) and stable in the sense of Stole and Zwiebel (1996) if and only if \(w(n, a) \) is non-negative and \(\Pi(n, a) \) is weakly increasing in \(n \).

In light of Lemma 1, an immediate corollary is that the wage schedule \(w(n, a) \) gives rise to a privately efficient allocation in all subgames if and only if the bargaining outcome described by the functions \(w(n, a) \) and \(\Pi(n, a) \) is a Nash equilibrium of the double auction at every level of employment and stable in the sense of Stole and Zwiebel.

3 Private Inefficiency in Michaillat’s Theory

In this section I introduce the specification with diminishing marginal returns to labor and rigid wages. I examine the private efficiency properties of equilibrium, and observe that the allocation of labor is privately inefficient in a set of subgames off the equilibrium path.

The production function is

\[
g(n, a) = an^\alpha
\]

with \(\alpha \in (0, 1) \) and the wage schedule is

\[
w(n, a) = \omega a^\gamma
\]

with \(\omega \in (0, +\infty) \) and \(\gamma \in [0, 1) \). Since \(\gamma < 1 \), the wage is rigid in the sense that it does not respond proportionally to changes in the aggregate state of technology. This is the type of rigidity considered by Hall (2005). Importantly, wage schedule (6) exhibits a second type of rigidity: the wage does not respond to the number of workers recruited by the firm. This is natural in an environment with constant marginal returns to labor. With diminishing marginal returns, however, it is this second type of rigidity that leads
to private inefficiency in some subgames. From now on, I refer to equations (5)-(6) as *Michaillat’s specification*. It implies the ex-post profit function

$$\Pi(n, a) = an^\alpha - \omega a^\gamma.$$ \hfill (7)

Solving the maximization problem in equation (2) yields

$$n_2(n_1) = \min\{n_1, n_R(a)\}$$ \hfill (8)

where

$$n_R(a) \equiv \left(\frac{\alpha}{\omega}\right) \frac{1}{1-\alpha} a^{\frac{1-\gamma}{1-\alpha}}.$$ \hfill (9)

Here $n_R(a)$ is the maximal mass of workers the firm is willing to retain after recruiting costs are sunk. Thus employment is given by $n_R(a)$ in any subgame with $n_1 \geq n_R(a)$.

The hiring-stage objective function specified in equation (3) is then given by

$$\begin{cases} an^\alpha - \omega a^\gamma n - \frac{c}{q(\theta)} n, & \text{if } n \leq n_R(a), \\ a(n_R(a))^\alpha - \omega a^\gamma n_R(a) - \frac{c}{q(\theta)} n, & \text{if } n > n_R(a). \end{cases}$$ \hfill (10)

This objective is maximized by

$$n_1 = n^d(\theta, a, c) \equiv \left([n_R(a)]^{-(1-\alpha)} + \frac{c}{aq(\theta)}\right)^{-\frac{1}{1-\alpha}}.$$ \hfill (11)

As long as $\frac{c}{q(\theta)}$ is strictly positive, hiring $n^d(\theta, a, c)$ is strictly below $n_R(a)$. That is, the firm is recruiting fewer workers than it is willing to retain after recruiting costs are sunk. Substituting the optimal level of hiring $n^d(\theta, a, c)$ into equation (4) yields a condition that implicitly determines equilibrium tightness

$$f(\theta) = n^d(\theta, a, c).$$ \hfill (12)

It is easy to check that this equation has a unique solution.

Michaillat studies the behavior of equilibrium employment as matching frictions vanish, and finds that his specification exhibits rationing unemployment if the aggregate
state of technology is sufficiently low.

Definition 3 Given \(a \in [a, \bar{a}] \), suppose that \(n(a, c) \) is an equilibrium level of employment for each \(c \in (0, +\infty) \). Then \(\{n(a, c)\}_{c \in (0, +\infty)} \) exhibits rationing unemployment if \(\lim_{c \to 0^+} n(a, c) < 1 \).

The concept of rationing unemployment involves the thought experiment of what would happen to unemployment as matching frictions vanish. Thus it is defined for a collection of equilibria \(\{n(a, c)\}_{c \in (0, +\infty)} \), one equilibrium for each strictly positive level of the recruiting cost \(c \). Zero recruiting cost are excluded here, so the limit taken in the definition is a righthand limit. This allows for the possibility of a discontinuity at \(c = 0 \), that is, there can be rationing unemployment even if \(c = 0 \) implies full employment.

Let \(\theta(a, c) \) denote the solution to equation (12) for given values of \(a \in [a, \bar{a}] \) and \(c \in (0, +\infty) \). Then the corresponding equilibrium level of employment along the equilibrium path is \(n(a, c) \equiv f(\theta(a, c)) \). Michaillat establishes the following result: if \(n^R(a) < 1 \), then \(\lim_{c \to 0^+} n(a, c) = n^R(a) \); if \(n^R(a) \geq 1 \), then \(\lim_{c \to 0^+} n(a, c) = 1 \).\(^4\) Thus rationing unemployment exists if and only if \(n^R(a) < 1 \). If the firm does not want to retain a unit mass of workers after recruiting costs are sunk, then full employment cannot be attained even as \(c \) converges to zero.

Next, I examine the private efficiency properties of equilibrium. Consider the equilibrium for given values of \(a \) and \(c \). Equation (11) implies that \(n_1 \leq n^R(a) \). Inspecting equation (8), this means that the constraint \(n \leq n_1 \) is binding in subgame \(n_1 \). Thus \(n_2(n_1) = n_1 \), hence the allocation of labor is privately efficient along the equilibrium path.\(^5\)

Equation (8) also implies that the allocation of labor is not privately efficient in any subgame \(n_1 \) in which \(n_1 > n^R(a) \). In any such subgame, a firm has recruited more workers than it is willing to employ given wage schedule (6). In this situation, it would be privately efficient for the wage to adjust such that is optimal for the firm to employ

\(^4\)This is Proposition 4 in Michaillat (2012). The statement given here is slightly more compact, as Michaillat defines \(n^R(a) \) in the proposition. The threshold \(a^R \) used by Michaillat in his statement of the proposition is defined implicitly by \(n^R(a^R) = 1 \).

\(^5\)In his Definition 2, Michaillat (2012) defines when a wage process is privately efficient. This definition only requires private efficiency along the equilibrium path.
all \(n_1 \) hires.

The result that the allocation of labor is \textit{not} privately efficient in some subgames also follows immediately from Lemma 1 in conjunction with the fact that \(\Pi(n, a) \) is strictly decreasing for \(n \geq n_R(a) \). From Proposition 1 it also follows that wage schedule (6) cannot be obtained as the equilibrium of the model of wage determination that combines the double auction used by Hall (2005) with intra-firm bargaining as in Stole and Zwiebel (1996).

It is useful to contrast this result with the case of constant returns, obtained by setting \(\alpha = 1 \). With constant returns and wage schedule (6), the allocation of labor is privately efficient in subgame \(n_1 \) if \(\omega \leq a^{1-\gamma} \). This condition does not depend on \(n_1 \), thus condition \(\omega \leq a^{1-\gamma} \) ensures private efficiency in all subgames \(n_1 \in [0, +\infty) \). Furthermore, private efficiency across all states of aggregate technology can be ensured by assuming that

\[
\omega \leq a^{1-\gamma}.
\]

(13)

This result is a simple generalization of Hall’s (2005) Proposition to the case in which the wage is partially responsive to the aggregate state of technology. If condition (13) is assumed, then there is no need to specify how the wage is adjusted in situations in which the wage schedule (6) would generate private inefficiency, because such situations arise neither on nor off the equilibrium path.

In contrast, with diminishing returns, wage schedule (6) implies that there are always subgames in which the allocation of labor is privately inefficient, irrespective of the level of technology \(a \). Thus there is no simple restriction on exogenous variables which ensures private efficiency in all subgames, short of assuming \(\omega = 0 \). The reason for this difference is that private inefficiency can be triggered via the endogenous choice of employment by the firm. With diminishing returns, private efficiency dictates that the wage schedule \(w(n, a) \) cannot be fully independent of firm-level employment. To reconcile wage rigidity and private efficiency, it is thus unavoidable to take a stand on how wages adjust in response to firm-level employment. Now, private efficiency only requires that \(\Pi(n, a) \) is weakly increasing, so a wide range of possibilities remains. To shed light on possible
outcomes, the next two sections study the implications of two polar specifications which span the range of possibilities.

4 Employment-Flexible Wage Schedule

As discussed in Section 3, wage schedule (6) exhibits two types of rigidity. First, the wage does not respond proportionally to changes in technology. Second, the wage is also rigid in that it does not respond to the mass of workers recruited by the firm. The strength of the first type of rigidity is indexed by the parameter γ. In contrast, the second type of rigidity is absolute. Symmetrically to the first type of rigidity, one can parametrize the strength of the second rigidity by letting the wage respond to firm-level employment with a constant elasticity. This leads to the more general wage schedule

$$w(n, a) = \omega a^\gamma n^\phi,$$

(14)

with $\gamma \in [0, 1)$, $\omega > 0$, and $\phi \in (-\infty, +\infty)$. Here the parameter ϕ controls the second type of rigidity, and Michaillat’s wage schedule (6) is nested as the special case $\phi = 0$. Now consider the specification consisting of production function (5) and wage schedule (14). As discussed in Section 3, with $\phi = 0$ this specification necessarily generates private inefficiency off the equilibrium path. This raises the question for what values of ϕ, if any, wage schedule (14) can be consistent with private efficiency off the equilibrium path. It is easy to see that there is only one such value, namely $\phi = \alpha - 1$. In other words, subject to the restriction that the wage responds to firm-level employment with a constant elasticity, private efficiency off the equilibrium path requires that the wage schedule takes the form

$$w(n, a) = \omega a^\gamma n^{\alpha - 1}.$$

(15)

Let $n^R(a, \phi) \equiv [\alpha/(\omega(1 + \phi))]^{1/(1+\phi-\alpha)}/a^{(1-\gamma)/(1+\phi-\alpha)}$. If $\phi > \alpha - 1$, then $\Pi(n, a) = an^\alpha - \omega a^\gamma n^{1+\phi}$ is strictly decreasing in n on $[n^R(a, \phi), +\infty)$, hence the allocation of labor is privately inefficient in any subgame n_1 with $n_1 > n^R(a, \phi)$. If $\phi < \alpha - 1$, then $\Pi(n, a)$ is strictly decreasing on $[0, n^R(a, \phi)]$, hence the allocation of labor is privately inefficient in any subgame n_1 with $n_1 < n^R(a, \phi)$.
For private efficiency across all states of aggregate technology, condition (13) is necessary and sufficient. Thus the restriction on exogenous variables is exactly the same as in the case of constant returns, and in this sense wage schedule (15) is a natural generalization of Hall’s theory to a setting with diminishing marginal returns. For what follows, I assume that condition (13) holds.

Ex-post profits are given by

\[\Pi(n, a) = [a - \omega a^\gamma] n^\alpha \]

and thus weakly increasing in \(n \) for all levels of \(a \). Thus \(n_2(n_1) = n_1 \) for all \(n_1 \in [0, +\infty) \), ensuring private efficiency. A firm then chooses hiring \(n_1 \) to maximize ex-ante profits

\[[a - \omega a^\gamma] n^\alpha - \frac{c \cdot a}{q(\theta)} n. \]

This yields

\[n_1 = n^d(\theta, a, c) \equiv \left(\frac{q(\theta)}{c} \alpha \left[1 - \omega a^\gamma - 1 \right] \right)^{\frac{1}{1-\alpha}} \]

It follows immediately that here the collection of unique equilibria \(\{n(a, c)\}_{c \in (0, +\infty)} \) does not exhibit rationing unemployment, irrespective of the aggregate state of technology. Consider the equilibrium as \(c \) converges to zero. For rationing unemployment to exist, it must be that equilibrium labor market tightness \(\theta(a, c) \) does not diverge to infinity. But then \(\frac{q(\theta(a, c))}{c} \) converges to zero, which implies that labor demand \(n^d(\theta(a, c), a, c) \) converges to infinity, which is inconsistent with equilibrium.

Is it plausible that wages could be rigid with respect to aggregate shocks but flexible with respect to firm-level employment? Hall’s theory does not speak to this question, since it does not explain why rigidity with respect to aggregate shocks is chosen among the wide variety of privately efficient wage schedules. Hall offers the interpretation of a wage norm, and it is conceivable that the strength and applicability of wage norms differs across different reasons for wage changes. Most recent empirical work on wage rigidity has focussed on the response of wages to aggregate shocks. Less is known about how wages would respond if a firm chooses to expand or reduce hiring. Evidence provided by
Bewley (1999) supports both types of rigidity. However, as discussed by Hall, Bewley’s work is aimed at explaining outcomes that are privately inefficient when viewed through the lens of standard theory. If this evidence accurately portrays the operation of the labor market, then this does not support a theory of wage rigidity insisting on private efficiency, and would instead call for a theory explaining privately inefficient outcomes.

In the remainder of this section I analyze further implications of the employment-flexible specification. Recall that in Section 1 I did not impose a restriction linking the functions \(f(\theta) \) and \(q(\theta) \). Usually these functions are derived from a constant-returns-to-scale matching function, defining tightness \(\theta \) as the vacancy-unemployment ratio. In this case the two functions are linked through the restriction \(f(\theta) = \theta q(\theta) \). Here I adopt the more general specification

\[
f(\theta) = \frac{\theta q(\theta)}{(1 - s)\theta q(\theta) + s}
\]

(16)

where \(s \in [0, 1] \) is a parameter. Furthermore, I assume that \(q(\theta) \) has the Cobb-Douglas functional form

\[q(\theta) = \min \left[\mu \theta^{-\eta}, 1 \right]\]

with \(\mu \in (0, +\infty) \) and \(\eta \in (0, 1) \). The usual case \(f(\theta) = \theta q(\theta) \) is obtained by setting \(s = 1 \). The benefit of the more general specification is that with \(s \) interpreted as the exogenous separation rate, the equations determining equilibrium tightness and employment are exactly the same as the equations determining steady-state tightness and employment in the dynamic version of the model with a Cobb-Douglas matching function.\(^7\) In this way the one-shot model can be used to emulate the response of the steady-state of the dynamic model.

For a given function \(\Pi \), induced by one of the two wage schedules (6) and (15), the labor demand schedule \(n^d(\theta, a, c) \) is defined implicitly by the condition

\[\Pi_n(n^d(\theta, a, c), a) = \frac{c \cdot a}{q(\theta)}\]

(17)

\(^7\)In the equilibrium of the one-shot model we have \(n = f(\theta) \). Substituting this relationship into equation (16) and interpreting \(s \) as the exogenous separation rate, the resulting equation is the usual Beveridge curve relationship between \(\theta \) and \(n \) that must hold in the steady-state of the dynamic model.
Define the labor supply schedule as \(n^s(\theta) \equiv f(\theta) \). Then equilibrium tightness must satisfy the condition

\[
n^s(\theta) = n^d(\theta, a, c).
\] (18)

All of the implications studied below are driven by the properties of labor demand and labor supply elasticities. Thus it is useful to derive these elasticities before considering specific implications. Let \(\epsilon^s_\theta \) denote the elasticity of labor supply with respect to tightness. Differentiating equation (16), it is given by

\[
\epsilon^s_\theta = (1 - \eta) [1 - (1 - s)n].
\] (19)

In the standard one-shot case with \(s = 1 \), this elasticity reduces to \(1 - \eta \), which is simply the elasticity of the job-finding probability with respect to tightness. In the steady-state interpretation of the model with \(s \) representing the exogenous separation rate, the labor supply elasticity is lower when employment is high. This is because fewer workers are available for matching, implying that a given percentage increase in tightness delivers only a smaller percentage increase in employment.

Differentiating equation (17), the elasticity of labor demand with respect to tightness is

\[
\epsilon^d_\theta = \eta \left[\epsilon^{\Pi_n}_n \right]^{-1}
\] (20)

where \(\epsilon^{\Pi_n}_n \) denotes the elasticity of marginal ex-post profits with respect to employment. If \(\eta \) is high, then a decrease in tightness has a strong effect on the probability that a vacancy is filled, and thereby on the cost of hiring a worker, resulting in a stronger increase in labor demand. If marginal ex-post profits decline quickly as employment expands, this dampens the increase in employment.

The difference between the wage schedules (6) and (15) manifest itself in the elasticity \(\epsilon^{\Pi_n}_n \). First, consider the employment-flexible schedule (15). Here \(\Pi_n(n, a) = \alpha[a - \omega a^\gamma]n^{-(1 - \alpha)} \). Thus the elasticity is \(\epsilon^{\Pi_n}_n = -(1 - \alpha) \). Here both the marginal product of labor and ex-post marginal labor cost respond to employment with the same elasticity, hence this is also the elasticity of marginal ex-post profits. Next, consider
Michaillat’s wage schedule (6). Here $\Pi_n(n, a) = a\alpha n^{1-\alpha} - \omega a^\gamma$. Thus

$$\epsilon_n^{\Pi_n} = -(1 - \alpha) \frac{1}{1 - \frac{\omega a^\gamma}{a\alpha n^{1-\alpha}}}.$$

Notice that $|\epsilon_n^{\Pi_n}|$ is high if $\frac{\omega a^\gamma}{a\alpha n^{1-\alpha}}$ is high, that is, if the wage is high relative to the marginal product of labor. With wage schedule (15), an increase in employment reduces marginal ex-post profits, but this reduction is muted by the fact that the marginal wage bill also declines. This muting effect is not present under wage schedule (6), since the wage remains constant as employment increases. Thus marginal ex-post profits are more responsive to employment, the more so the higher is the level of the wage relative to the marginal product of labor. Michaillat shows that $|\epsilon_n^{\Pi_n}|$ evaluated at the equilibrium level of employment is decreasing in a. The reason for this is as follows. In equilibrium, the marginal product of labor must cover two types of marginal costs of labor: the wage and the hiring cost $\frac{\omega a^\gamma}{q(\theta)}$. As a increases, the hiring cost increases faster than the wage, both because $q(\theta)$ declines as the labor market tightens, and because of the direct proportional effect of a. Consequently, the marginal product of labor grows faster than the wage, so that the ratio $\frac{\omega a^\gamma}{a\alpha n^{1-\alpha}}$ declines. Thus $|\epsilon_n^{\Pi_n}|$ is high in recessions induced by a low state of aggregate technology, making labor demand unresponsive to changes in labor market tightness. For exactly the same reasons, a recession induced by an exogenous increase in ω is also associated with a high ratio $\frac{\omega a^\gamma}{a\alpha n^{1-\alpha}}$, and thus a high elasticity $|\epsilon_n^{\Pi_n}|$. Generating a recession through high ω is not substantially different from generating a recession through a low level of aggregate technology, since what matters in the model is the level of technology relative to the level of the wage.

4.1 Elasticity of Employment with Respect to Aggregate Technology

The main finding of Hall (2005) is that privately efficient wage rigidity can strongly amplify the response of the economy to changes in the aggregate state of technology. Here I will show that this result carries over to the employment-flexible wage schedule.
The elasticity of equilibrium employment with respect to the state of technology a is

$$
\epsilon_n = \epsilon_a^d \frac{\epsilon_s \epsilon_\theta}{\epsilon_s + |\epsilon_\theta|}.
$$

Here the first term ϵ_a^d measures the shift in labor demand induced by a change in a. The second term measures the slope of labor supply relative to labor demand, and determines how the shift in labor demand translates into a shift in equilibrium employment. The labor demand shift is given by $\epsilon_a^d = [\epsilon_{\Pi_n}^a - 1] \cdot |\epsilon_{\Pi_n}^a|^{-1}$. Substituting this elasticity and the labor supply and demand elasticities from equations (19) and (20) yields

$$
\epsilon_n^{a=1} = \left[(1 - \alpha) + \frac{\eta}{(1 - \eta)[1 - (1 - s)n]} \right]^{-1} \frac{\omega}{1 - \omega}(1 - \gamma).
$$

This formula includes the case of constant marginal returns for $\alpha = 1$. Diminishing returns attenuate the response of employment to a technology change by making labor demand steeper. As firms expand employment in response to an improvement in technology, they run into diminishing marginal returns, and this dampens the response of recruitment. Quantitatively, however, this dampening is not severe for standard parameter values, since labor supply remains much steeper than labor demand. Using Michaillat’s (2012) calibration, the elasticity is only 2% lower compared to the case of constant returns. In this sense, the amplification of changes in aggregate technology found by Hall (2005) remains intact if wage schedule (15) is used in the case of diminishing returns. What matters here is rigidity of the wage with respect to aggregate shocks, and rigidity of the wage with respect to firm-level employment is not needed. Thus specification (15) provides a natural generalization of Hall’s findings to a setting with diminishing marginal returns, reconciling amplification of aggregate shocks through wage rigidity with private efficiency.

8Only the term in square brackets is affected by α, so only the parameters and variables in this term are relevant. In Michaillat’s calibration they take the values $\eta = 0.5$, $s = 0.0095$, $\alpha = 0.666$, and $n = 0.951$. With these values, the term in square brackets is 17.58. Setting $\alpha = 1$ it decreases to 17.24, only 2% lower.
4.2 Elasticity of Tightness with Respect to Recruiting Costs

Michaillat shows that in his model labor market tightness, and thus unemployment, respond less elastically to changes in the recruiting cost \(c \) in recessions. This implies that any policy instrument that acts like a reduction in the recruiting cost becomes less effective at reducing unemployment in recessions. Michaillat demonstrates that this property is quantitatively very important in a calibrated version of the model. I will now show that this property does not apply to the employment-flexible specification.

In Michaillat’s model a recession corresponds to a low value of the aggregate state of technology in \(a \). Let \(\epsilon^\theta_c(a) \) denote the elasticity of tightness with respect to the recruiting cost \(c \), with the potential dependence on the state of aggregate technology made explicit. Michaillat shows that \(|\epsilon^\theta_c(a)| \) is strictly increasing in \(a \) for his specification.\(^9\) He also demonstrates that this property is unique to the specification with rationing unemployment, in the sense that it does not hold for any of the three other specifications of production function and wage schedule he studies. Michaillat considers two specifications with flexible wages, namely constant marginal returns to labor combined with Nash bargaining, and diminishing marginal returns to labor combined with intra-firm bargaining as in Stole and Zwiebel (1996). The two elasticities are always zero for both specifications, and thus trivially independent of \(a \). The third specification combines constant marginal returns with the rigid wage schedule (6). This is the specification that corresponds to Hall (2005). Here the two elasticities are non-zero but do not vary with \(a \).

I will now contrast the behavior of \(|\epsilon^\theta_c(a)| \) for Michaillat’s wage schedule (6) and the employment-flexible wage schedule (15). Implicitly differentiating labor-market equilibrium condition (18) yields

\[
\epsilon^\theta_c(c) = c^d_c(a) \cdot \frac{1}{\epsilon^\theta_c(a) + |c^d_c(a)|}.
\]

The first term \(c^d_c(a) \) captures the shift in labor demand induced by a change in the recruiting cost. The second term translates this into a change in equilibrium tightness,\(^9\)

\(^9\)This is Proposition 6 in Michaillat (2012). The proposition also considers the elasticity of unemployment with respect to recruiting costs. I focus on \(|\epsilon^\theta_c(a)| \), since the analysis of \(|\epsilon^u_c(a)| \) does not contain additional insights.
depending on the elasticities of labor supply and labor demand. Equation (17) implies that the labor demand shift is \(\epsilon^d_c(a) = [\epsilon^\Pi_n(a)]^{-1} \). A decrease in \(c \) reduces the cost of hiring a worker and leads to an expansion of labor demand, but this expansion is muted if marginal ex-post profits decline quickly in firm-level employment. This elasticity is identical to the labor demand elasticity \(\epsilon^d_\theta(a) \), except that the latter also depends on the elasticity \(\eta \) because a change in tightness only affects hiring costs to the extent that it affects the vacancy-filling probability.

Substituting \(\epsilon^d_c(a) \) and the elasticities of labor demand and labor supply derived in equations (19)–(20) into equation (21) yields

\[
|\epsilon^\theta_c(a)| = \left[\eta + \left| \epsilon^\Pi_n(a) \right| u(a)(1-\eta) \right]^{-1}
\]

(22)

where \(u(a) \equiv 1 - (1-s)n(a) \) measures the level of unemployment after production and exogenous separations have occurred, using the steady-state interpretation of the model. Since both demand elasticities \(\epsilon^d_c(a) \) and \(\epsilon^d_\theta(a) \) are inversely proportional to \(\epsilon^\Pi_n(a) \), the term \(\epsilon^\Pi_n(a) \) multiplies the labor supply elasticity in this formula.

To parse this formula, first consider the case of constant marginal returns to labor, which imply that marginal ex-posts profits do not depend on employment, so that \(\epsilon^\Pi_n(a) = 0 \), and the elasticity reduces to \(|\epsilon^\theta_c(a)| = \eta^{-1} \). In this case the first-order condition (17) does not depend on the level of employment, so restoring this condition after a reduction in \(c \) requires that tightness increases to keep the right-hand side \(\frac{\epsilon^\Pi_n(q)}{q(\theta)} \) constant. This adjustment is smaller if the vacancy-filling probability is more responsive to tightness.

Diminishing returns to labor introduce the additional term \(|\epsilon^\Pi_n(a)| u(a)(1-\eta) \) in the formula for \(|\epsilon^\theta_c(a)| \). Thus diminishing returns dampen the response of tightness to a reduction in \(c \). The reason is that now an increase in employment can contribute to restoring first-order condition (17). The strength of this effect depends on two factors. First, the responsiveness of labor supply to an increase in tightness. This factor is responsible for the term \(u(a)(1-\eta) \). Second, the responsiveness of marginal ex-post profits to an increase in employment \(\epsilon^\Pi_n(a) \).
Michaillat’s analysis is concerned with how the elasticity $|e^\theta_c(a)|$ varies with technology a. It is clear from equation (22) that $|e^\theta_c(a)|$ can depend on a only through the elasticity of marginal ex-post profits $|e^\Pi_n(a)|$ and through $u(a)$. I will ignore the dependence through $u(a)$ for now and return to it below. As discussed above, the elasticity $|e^\Pi_n(a)|$ depends on the wage schedule. With the employment-flexible wage schedule, this elasticity is given by $1 - \alpha$ and thus independent of a. In contrast, with Michaillat’s wage schedule (6), a recession induced by low a is associated with a high elasticity $|e^\Pi_n(a)|$, which in turn implies that $|e^\theta_c(a)|$ is low. In such a recession, a reduction in c has little effect on employment, because even a small increase in employment leads to a strong decline in marginal profits, since wages are unresponsive to an expansion of employment, and since the level of the wage is relatively high.

This comparison with the employment-flexible wage schedule (15) highlights that this result is intimately related to the fact that the wage is rigid with respect to firm-level employment. If wages are rigid only with respect to aggregate technology, then a reduction in c is equally effective in reducing unemployment in both booms and recessions.

So far I have ignored the dependence of $|e^\theta_c(a)|$ on a through $u(a)$. In recessions $u(a)$ is high, which increases the labor supply elasticity and thus reduces $|e^\theta_c(a)|$. Quantitatively, however, the strength of this mechanism is negligible. Figure 1 plots the relationship between $|e^\theta_c(a)|$ and $u(a)$ traced out by varying the level of a for both wage schedules under Michaillat’s calibration. Unemployment $u(a)$ is on the horizontal axis, and the elasticity $|e^\theta_c(a)|$ is on the vertical axis. The solid line represents this relationship for Michaillat’s wage schedule (6), replicating Figure 2 in Michaillat (2012). As a increases, $u(a)$ decreases and $|e^\theta_c(a)|$ increases, traveling along the solid line in a northwestern direction. The dashed line shows the corresponding relationship for wage schedule (15). This relationship is also negative, reflecting the direct effect that $u(a)$ has on $|e^\theta_c(a)|$. Yet quantitatively the decline in $|e^\theta_c(a)|$ is negligible as unemployment varies from 0.01 to 0.01. The parameter values are $\delta = 0.999$, $s = 0.0095$, $\mu = 0.233$, $\eta = 0.5$, $c = 0.215$, and $\alpha = 0.666$. Other parameters of the model do not affect this relationship. In particular, this relationship is independent of ω and γ. There is no need recalibrate any of the parameters when moving from wage schedule (6) to wage schedule (15). Michaillat obtains all parameters except α directly from micro- or macro data. The parameter α is pinned down by these parameters, in conjunction with a target for the labor share, and independently of the functional form of the wage schedule.
Figure 1: Relationship between $|\varepsilon_c^\theta(a)|$ and $u(a)$

0.12. Thus the dramatic decline of $|\varepsilon_c^\theta(a)|$ obtained for wage schedule (6) is driven by the effect of a through $\varepsilon_{\Pi n}^\theta(a)$.

4.3 Countercyclicality of the Public-Employment Multiplier

Michaillat (2014) introduces public employment into the model of Michaillat (2012). The government participates in the matching process in exactly the same way as private firms. The level of public employment g is treated as an exogenous variables. The mass of vacancies posted by the government adjusts endogenously to reach this level of public employment. Total labor demand is then

$$n^{td}(\theta,\omega,g) = n^d(\theta,\omega) + g.$$

Here $n^d(\theta,\omega)$ denotes the labor demand of the private sector implicitly defined by equation (17). Here I suppress the dependence of labor demand on a and c to simplify
notation, and instead make the dependence on ω explicit, since Michaillat (2014) models recessions as situations with high ω.

Let $\epsilon^{ld}_\theta(\omega)$ denote the elasticity of total labor demand with respect to tightness. It is given by $\epsilon^{ld}_\theta(\omega) = (1 + \zeta)^{-1}\epsilon^{l}_\theta(\omega)$, where $\zeta = \frac{g}{n}$ denotes the ratio of public and private employment and is assumed to be independent of ω.

The labor market clearing condition is now

$$n^s(\theta) = n^{ld}(\theta, \omega, g).$$

Differentiating with respect to g, the total derivative of total employment with respect to g is

$$\frac{dn}{dg}(\omega) = 1 - \left[1 + \frac{\epsilon^{s}_\theta(\omega)}{|\epsilon^{ld}_\theta(\omega)|}\right]^{-1}.$$ \hspace{1cm} (23)

Here the one captures the direct effect, while the second term is the crowding out effect. The latter is a horse race between the labor supply elasticity and the labor demand elasticity. An increase in g increases labor market tightness. If labor supply is highly responsive to tightness, then the increase in θ needed to restore labor market equilibrium is small, and so is the crowding out effect. If the labor demand elasticity is high, then the increase in θ has a strong negative effect on private labor demand, and crowding out is strong.

Substituting the labor supply and labor demand elasticities from equations (19) and (19) yields

$$\frac{dn}{dg}(\omega) = 1 - \left[1 + (1 + \zeta)\eta(1 - \eta)u(\omega)\left|\epsilon^{\Pi}_n(\omega)\right|\right]^{-1}.$$ \hspace{1cm} (23)

where $u(\omega) \equiv 1 - (1 - s)n(\omega)$ denotes unemployment after production and exogenous separations. Michaillat shows that the public-employment multiplier $\frac{dn}{dg}(\omega)$ is increasing in ω. He concludes that the public-employment multiplier is large in recessions because crowding out is small. From equation (23), it is clear that ω can affect the multiplier only through the elasticity $|\epsilon^{\Pi}_n(\omega)|$ and through $u(\omega)$. As discussed in Section 4.2, the latter effect is negligible. Thus any important effect of ω on the multiplier must act through the elasticity $|\epsilon^{\Pi}_n(\omega)|$. Since a high value of ω has the same effect as low technology a,
the mechanism generating this effect is the same as in Section 4.2. With wage schedule (6), in recessions wages are more important relative to hiring costs as a component of the total marginal cost of labor. Since wages are unresponsive to firm-level employment, this implies a larger absolute value of $|\epsilon^{\Pi_n}(\omega)|$ in recession. In contrast, with the employment-flexible wage schedule (15) this mechanism is absent. The wage is not rigid with respect to firm-level employment, and this ensures that the elasticity $|\epsilon^{\Pi_n}(\omega)|$ is given by $1 - \alpha$ and thus independent of ω. Equation (23) then implies that, apart from the negligible effect through $u(\omega)$, the public-employment multiplier is the same in recessions and expansions.

4.4 Countercyclicality of Optimal Unemployment Insurance

Landais et al. (2013, henceforth LMS) study optimal unemployment insurance (UI) over the business cycle in a general matching model. In their model, optimal UI deviates from the standard Baily-Chetty formula if the level of labor market tightness is socially inefficient, and if UI has an effect on tightness. For a version of the model with rigid wages and constant marginal returns, they show that UI has no effect on labor market tightness, so that UI is always given by the Baily-Chetty formula. In contrast, with diminishing returns and wage schedule (6) they obtain two results, both calling for countercyclical UI. First, they find that UI has a positive effect of tightness. In their model recessions are times in which tightness is below its socially efficient level. As a consequence, optimal UI is more generous than the Baily-Chetty formula in recessions. Second, they show that labor-market tightness is more sensitive to UI in recessions. This interacts with the desirability of increasing tightness in recessions, increasing the departure from the Baily-Chetty formula.

In this section I show that if marginal returns are diminishing and the wage is given by the employment-flexible schedule (15), then tightness is independent of UI in their model. As in the case of constant returns, optimal UI is then given by the Baily-Chetty formula both in booms and recessions.

To study optimal UI, LMS introduce endogenous search effort. Workers choose search effort optimally. For present purposes, the details of the optimal choice of search effort by workers are not important. It suffices to say that optimal search effort $e^s(f(\theta), \Delta_c)$ is an
increasing function of $f(\theta)$ and Δc. The latter is an inverse measure of the generosity of UI. Specifically, Δc is the difference in consumption between employed and unemployed workers. Thus both a high probability of finding a job and a high consumption gain from having a job provide incentives to search more intensively. The labor supply curve is then

$$n^s(\theta, \Delta c) = e^s(f(\theta), \Delta c)f(\theta)$$

and the labor market equilibrium condition is

$$n^s(\theta, \Delta c) = n^d(\theta, \omega), \tag{24}$$

where the shape of labor demand depends on the production function, the wage schedule, and the specification of recruiting costs. LMS model recessions as times of high ω, hence the dependence of labor demand on ω is made explicit. For now it is useful to study the impact of UI for a general labor demand function. Let $\epsilon_m \equiv \frac{\Delta c}{1 - n^s} \frac{\partial n^s}{\partial \Delta c}$ denote the elasticity of $1 - n^s$ with respect to UI for constant θ. This would be the elasticity of equilibrium unemployment with respect to UI if equilibrium tightness were unaffected. LMS refer to this as the microelasticity, since it captures the increase in unemployment due to the microeconomic response of workers’ search effort, but ignores the equilibrium adjustment of tightness. Let ϵ^M denote the elasticity of equilibrium unemployment in response to UI, referred to as the macroelasticity by LMS. Differentiating equation (24) yields

$$\epsilon^M(\omega) = \left[1 + \frac{\epsilon^d(\omega)}{|\epsilon^d(\omega)|}\right]^{-1} \epsilon_m(\omega). \tag{25}$$

The macroelasticity is weakly smaller than the microelasticity. A drop in Δc shifts the labor supply curve to the left. Labor market tightness must then increase to close the gap between labor supply and labor demand. This dampens the impact of UI on unemployment. The resulting increase in tightness is larger the less elastic labor demand and labor supply are with respect to θ. However, this increase in tightness only dampens the increase in unemployment to the extent that labor supply responses elastically to the increase in tightness. Consequently, the dampening effect is an increasing function of the
elasticity ratio \(\frac{\epsilon^s_\theta(\omega)}{\epsilon^d_\theta(\omega)} \). The key object in LMS’s analysis is the elasticity wedge \(1 - \frac{\epsilon^M(\omega)}{\epsilon^m(\omega)} \).

Specifically, they establish that when tightness is too low from a social perspective, then optimal UI exceeds the Baily-Chetty formula by a term that is increasing proportionally in the elasticity wedge.

Using equation (25), the elasticity wedge can be written as

\[
1 - \frac{\epsilon^M(\omega)}{\epsilon^m(\omega)} = \left[1 + \frac{|\epsilon^d_\theta(\omega)|}{\epsilon^s_\theta(\omega)} \right]^{-1}.
\]

For Michaillat’s specification, consisting of the diminishing-returns production function (5) and the rigid wage schedule (6), LMS establish two properties of the elasticity wage. First, the wedge is strictly positive.\(^{11}\) Second, the wedge is larger in recessions, where recessions are modeled as times in which the wage parameter \(\omega \) is high.\(^ {12}\)

LMS work with a slightly different specification of the costs of recruiting than Michaillat (2012), which in turn slightly modifies the labor demand curve. Specifically, the input required to post a vacancy is not the consumption good, but time of workers. Posting a vacancy requires \(r > 0 \) workers. If the firm recruits \(n_1 \) workers in the first stage of the model, it needs \(r \cdot \frac{n_1}{q(\theta)} \) workers for recruiting, so only \(n_1 - r \cdot \frac{n_1}{q(\theta)} \) workers are available for production. This means that to have \(n_2 \) workers available for production in the second stage of the model, the firm must hire \((1 + \tau(\theta)) \cdot n_2 \) workers, where \(\tau(\theta) \equiv \frac{r}{q(\theta) - r} \). The function \(\tau(\theta) \) is positive and strictly increasing when \(q(\theta) > r \). The case \(q(\theta) \leq r \) cannot occur in equilibrium, because it implies that recruiting requires more labor than it generates for the firm. For Michaillat’s specification of production technology and wage schedule, the objective of the firm at the hiring stage is then given by

\[
n^\alpha - (1 + \tau(\theta)) \cdot n \cdot \omega.
\]

where technology \(a \) is normalized to one throughout this section. This implies the labor demand function

\[
n^d(\theta, \omega) = \left(\frac{\alpha}{(1 + \tau(\theta)) \cdot \omega} \right)^{\frac{1}{1-a}}, \quad (26)
\]

\(^{11}\)This is Proposition 4 in LMS.

\(^{12}\)This is Proposition 5 in LMS.
which is strictly decreasing in θ. Equation (26) implies that the labor demand elasticity is $|e_\theta(\omega)| = \frac{1}{1-\alpha} \eta \tau(\theta(\omega))$. This elasticity is low in recessions when the wage parameter ω is high and thus tightness is low.

I will now show that the elasticity wage is always zero if wage schedule (6) is replaced with the employment-flexible wage schedule (15). The hiring-stage objective then becomes

$$[1 - (1 + \tau(\theta))] n^\alpha.$$

Thus optimal labor demand is infinite if the term in square brackets is strictly positive and zero if it is strictly negative. If this term is exactly zero, then any value $n \in [0, +\infty)$ is optimal. Thus the labor demand curve is horizontal in (n, θ)-space, which means that $|e_\theta(\omega)| = +\infty$. In equilibrium, tightness must be such that the term in square brackets is zero. Thus equilibrium tightness is determined independently of labor supply, and thus not affect by UI. Notice that the condition determining equilibrium θ is independent of whether marginal returns to labor are constant or diminishing. Consequently, as long as wages are given by the employment-flexible wage schedule (15), the presence of diminishing returns as such does not lead to different policy implications of the model.

For completeness, it should be pointed out that for the specification of recruiting costs used in previous sections of this paper, the wage schedule (15) does not yield an infinite labor demand elasticity. As shown in Section 4.2, the labor demand elasticity is given by $|e_\theta(\omega)| = \frac{\omega}{1-\alpha}$ in this case. Thus the elasticity wedge is strictly positive. However, it does not vary with the wage parameter ω. Furthermore, for the calibration proposed by LMS, this elasticity is very high when compared to elasticities LMS generate via the wage schedule (15), and implies a negligible elasticity wedge. This is discussed in detail in Appendix B.

5 Full-Appropriation Wage Schedule

The employment-flexible wage schedule extends the findings of Hall (2005) to a setting with diminishing returns: the response of the labor market to changes in the aggregate state of technology is amplified through rigid wages, without violating private efficiency.
At the same time, this wage schedule does not deliver the novel policy implications obtained in the line of research initiated by Michaillat (2012). In this section I examine a privately efficiency wage schedule which is at the other end of the spectrum as far as rigidity with respect to firm-level employment is concerned. It maximizes this type of rigidity subject to the requirement of private efficiency, by keeping the wage constant as long as this is consistent with private efficiency, and keeping the wage as high as possible if private efficiency requires an adjustment. Rather than writing down the wage schedule implied by these requirements, it is more convenient to write down the wage bill $w(n, a)n$:

$$w(n, a)n = \begin{cases}
\omega a^\gamma n, & n \leq n^R(a), \\
\omega a^\gamma n^R(a) + g(n, a) - g(n^R(a), a), & n \geq n^R(a).
\end{cases}$$

The associated ex-post profit function coincides with (7) on $[0, n^R(a)]$, but on $[n^R(a), +\infty)$ it is flat rather than strictly decreasing, thereby ensuing private efficiency.

As long as the recruiting cost is strictly positive, this specification delivers exactly the same equilibrium allocation as Michaillat’s specification. Under Michaillat’s specification it is never optimal to expand hiring beyond $n^R(a)$, because ex-post profits are strictly decreasing above $n^R(a)$, implying that the firm would never want to retain more than $n^R(a)$ workers. With the full-appropriation wage schedule, firms are willing to retain any number of workers, but receive no reward for any expansion of hiring beyond $n^R(a)$. Consequently, as long as the recruiting cost is strictly positive, equilibrium employment will always remain below $n^R(a)$. In both cases, the range of employment levels $[n^R(a), +\infty)$ is irrelevant in the sense that firms will never go there if the recruiting cost is strictly positive.

Since the equilibrium allocation is identical, it follows that all the implications of Michaillat’s specification discussed so far carry over to the full-appropriation specification. There is rationing unemployment given aggregate technology level a if $n^R(a) < 1$. And the elasticity of labor demand ε_d^θ is lower in recessions induced by low a or high ω, with all the associated policy implications.

Thus full appropriation beyond $n^R(a)$ is a simple modification of wage schedule (6) that reconciles the findings of the line of research initiated by Michaillat (2012) with pri-
vate efficiency. Making this explicit is useful, because it naturally leads to the important question whether full appropriation is a plausible specification. There exist theories of bargaining in which the renegotiation of existing wage agreements leads to full appropriation of the remaining rents by workers in situations in which private efficiency requires a downward adjustment of the wage. As discussed by Hall (2005), however, this type of theory is not directly applicable here, because what matters in the current context is the rigidity of wages of newly hired workers. Hall offers the interpretation of this rigidity as a wage norm, specifically a wage norm which does not prevent adjustment if called for by private efficiency. However, he does not aim to provide a theory of how the wage is adjusted under such circumstances.

While all the policy implications discussed so far carry over from Michailla t’s specification to the full-appropriation specification, this does not mean that there are not other policy interventions for which the response of the economy differs across the two specification. For both specifications, a marginal reduction in the recruiting cost becomes ineffective in recessions. In contrast, the implications of making recruiting costless differ dramatically across the two specifications. With $c = 0$, Michaillat’s specification implies that equilibrium employment is $n^{R}(a)$. In the first stage firms are indifferent between all hiring levels in the interval $[n^{R}(a), +\infty)$. This is because for any hiring level $n_{1} \in [n^{R}(a), +\infty)$, firms reduce employment to $n^{R}(a)$ in the second stage. Thus any level of hiring $n_{1} \in [n^{R}(a), 1)$ is consistent with equilibrium. In this sense there is multiplicity, but all equilibria have the same level of equilibrium employment $n^{R}(a)$ at the time of production. Notice that here equilibria with $n_{1} > n^{R}(a)$ do exhibit private efficiency along the equilibrium path. The level of equilibrium unemployment at $c = 0$ coincides with the level of rationing unemployment, that is, there is no discontinuity of unemployment as a function of the recruiting cost at $c = 0$.

In contrast, the full-appropriation specification implies that firms always retain all workers in the second stage. Once again, all levels of hiring $n_{1} \in [n^{R}(a), 1)$ in the first stage are consistent with equilibrium, but now the equilibrium level of employment differs across equilibria. In particular, full employment is an equilibrium. Given this, the government may be able to coordinate the economy on the full employment outcome, or
at least on an outcome that is better than $n_R(a)$. In this sense, fighting rationing unemployment is much easier under the full-appropriation specification than under Michaillat’s specification.

6 Full Appropriation and Rationing Unemployment

The employment-flexible specification does not exhibit rationing unemployment, while the full-appropriation specification does reconcile rationing unemployment with private efficiency. As discussed before, however, it is unclear whether full appropriation is plausible. This raises the question whether there are any other privately efficient specifications that generate rationing unemployment without invoking full appropriation. In this section I show that the answer to this question is negative. Specifically, I show that if private efficiency is required, then rationing unemployment exists if and only if the wage schedule exhibits full appropriation.

So far I only discussed full appropriation in the context of the specific wage schedule (15). I now provide a formal definition that applies to any wage schedule.

Definition 4 Let $a \in [a, \bar{a}]$ be a productivity level and $\bar{n} \in [0, +\infty)$ a level of employment. The function Π exhibits full appropriation for productivity a beyond employment \bar{n} if $\Pi(n, a)$ is constant as a function of n on $[\bar{n}, +\infty)$.

If Π exhibits full appropriation for productivity a beyond employment \bar{n}, then with aggregate technology level a a firm will never expand hiring beyond \bar{n} as long as the recruiting cost is strictly positive. This is because full appropriation makes it impossible to recoup any positive recruiting costs, no matter how small.

Proposition 2 Fix $a \in [a, \bar{a}]$. Suppose that for each $c \in (0, +\infty)$, $n(a, c)$ is employment along the equilibrium path in an equilibrium in which the allocation of labor is privately efficient in all subgames. Then $\{n(a, c)\}_{c \in (0, +\infty)}$ exhibits rationing unemployment if and only if Π exhibits full appropriation for productivity a beyond employment \bar{n} for some $\bar{n} < 1$.

31
The proof is given in the appendix. The basic logic is as follows. The requirement of private efficiency in all subgames ensures that an expansion of hiring cannot strictly reduce ex post profits. If there is also no full appropriation, then firms are strictly rewarded ex-post for expanding hiring to the level needed for full employment. This ensures that the economy approaches full employment as recruiting costs converge to zero.
References

A Proofs

Proof of Proposition 2 Suppose Π exhibits full appropriation for productivity a beyond employment \bar{n} for some $\bar{n} < 1$. For any positive level of recruiting costs, this implies that hiring more than \bar{n} workers in the first stage cannot be optimal. Thus $\lim_{c \to 0^+} n(a, c) \leq \bar{n} < 1$.

Conversely, suppose $\lim_{c \to 0^+} n(a, c) < 1$. Then there exists $\varepsilon > 0$ and a sequence $\{c_k\}_{k=0}^\infty$ such that $\lim_{k \to \infty} c_k = 0$ and $n(a, c_k) < 1 - \varepsilon$ for all $k = 1, 2, \ldots, \infty$. Let $\bar{\theta} \equiv f^{-1}(1 - \varepsilon)$. Then $\theta(a, c_k) < \bar{\theta}$ for all $k = 1, 2, \ldots, \infty$. Since $q(\theta(a, c_k)) > q(\bar{\theta}) > 0$ for all $k = 1, 2, \ldots, \infty$, we have

$$\lim_{k \to \infty} \frac{c_k \cdot a}{q(\theta(a, c_k))} = 0.$$ \hspace{1cm} (27)

Now suppose that there does not exist $\bar{n} < 1$ such that Π exhibits full appropriation for productivity a beyond employment \bar{n}. Then there exists $n_H \geq 1$ such that $\Pi(n, a) < \Pi(n_H, a)$ for all $n \in [0, 1)$. Let $n_L \equiv 1 - \frac{1}{2} \varepsilon$. Thus by construction $n_L > 1 - \varepsilon$ and $\Pi(n_H, a) > \Pi(n_L, a)$. Now consider the firm problem in equation (3) for a given a level of tightness θ. Since $n_2(n_1) = n_1$ in all subgames, n_1 must maximize

$$\Pi(n, a) - \frac{c \cdot a}{q(\theta)^n}.$$ \hspace{1cm} (28)

Equation (27) implies that there exists k such that

$$\Pi(n_H, a) - \Pi(n_L, a) > n_H \frac{c_k \cdot a}{q(\theta(a, c_k))}.$$ \hspace{1cm} (29)

Since $\Pi(n, a)$ is weakly increasing in n, we have

$$\Pi(n_L, a) \geq \Pi(n, a) - \frac{c_k \cdot a}{q(\theta(a, c_k))} n$$ \hspace{1cm} (30)

for all $n \leq n_L$. Combining the previous two inequalities yields

$$\Pi(n_H, a) - \frac{c_k \cdot a}{q(\theta(a, c_k))} n_H > \Pi(n, a) - \frac{c_k \cdot a}{q(\theta(a, c_k))} n$$ \hspace{1cm} (31)
for all \(n \leq n_L \). Thus in the equilibrium associated with tightness \(\theta(a, c_k) \), any choice of hiring below \(n_L \) is strictly dominated. This implies \(n(a, c_k) \geq n_L > 1 - \varepsilon \). This contradicts the fact that the sequence \(\{c_k\} \) has been constructed in such a way that \(n(a, c_k) < 1 - \varepsilon \) for all \(k = 1, 2, \ldots, \infty \).

B Quantitative Exploration of the Elasticity Wedge

LMS carry out a quantitative evaluation of the elasticity wedge and the associated levels of optimal UI for the steady state of a dynamic version of their model. As discussed in Section 1, the only difference is that the labor supply elasticity must be multiplied by the unemployment rate. The labor supply elasticity is \(\varepsilon^s = (1 + \varepsilon^d)(1 - \eta)u \) where \(\varepsilon^d \). With wage schedule (6) and LMS's specification of recruiting costs, equation (XX) then implies the elasticity wedge

\[
1 - \frac{\varepsilon^M}{\varepsilon^m} = \left(1 + \eta \frac{\alpha}{1 - \eta} \frac{1}{1 + \varepsilon^d} \frac{\tau(\theta)}{u}\right)^{-1}.
\]

With wage schedule (15) and the specification of recruiting costs given in Section 1, the elasticity wedge is

\[
1 - \frac{\varepsilon^M}{\varepsilon^m} = \left(1 + \eta \frac{1}{1 - \eta} \frac{1}{1 + \varepsilon^d} \frac{1}{1 + \varepsilon^d} \frac{1}{u}\right)^{-1}.
\]

In their quantitative exploration, LMS set \(\eta = 0.7, \alpha = \frac{2}{3} \), and \(\varepsilon^d = 0 \). The consider a range of values for the unemployment rate. Here I contrast two of the values they consider: 5.2\% and 11\%. For these unemployment rates, equation (33) implies elasticity of wedges of 0.0074 and 0.0155. To evaluate equation (32), LMS also need to specify \(\tau(\theta) \), which is the fraction of workers involved in recruiting. They choose \(\tau(\theta) = 0.025 \) and \(\tau(\theta) = 0.0033 \) for unemployment of 5.2\% and 11\%, respectively. Equation (32) then implies elasticity wedges of 0.3132 and 0.8872, respectively. The wedges implied by equation (33) are an order of magnitude smaller, and one can check that they induce only negligible departures from the Baily-Chetty formula.