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1 Introduction

The persistence of high unemployment in the US and in many other countries after the

2007-2009 Great Recession (henceforth GR) is currently the central issue for macroeconomic

policy around the world. In previous work (Moscarini and Postel-Vinay 2009, 2012, 2013,

resp. MPV09, MPV12 and MPV13) we document empirically and formulate a hypothesis to

explain the pattern of employment decline and recovery during and after a typical recession.

In a nutshell, in a tight labor market high-paying, large employers overcome the scarcity of

unemployed job applicants by poaching employees from smaller, less productive and lower-

paying competitors, whose employment share then shrinks in relative terms. When the

expansion ends, large employers, that were less constrained, have more employment to shed

than small ones. In addition, rising unemployment relaxes hiring constraints on all employers,

particularly the small ones that are less capable of poaching from other firms. As a result,

small employers downsize less in the recession and grow faster (still in relative terms) in the

early recovery. According to this hypothesis, in a prolonged phase of high unemployment, as

we witnessed since 2009, small firms should be leading the charge in job creation, followed

years later by upgrading to larger, better-paying employers.

We call this hypothesis a “dynamic job ladder”. The idea of a stationary job ladder,

a uniform ranking of jobs by all workers, who climb it slowly via job-to-job quits while

occasionally falling off it, is well established in the literature. Our previous work introduced

a business cycle dimension to this hypothesis on worker turnover. In this paper, we confront

this hypothesis with more demanding empirical tests. We still adopt employer size as an

empirical measure of the job ladder ‘rung’, based on the simple fact that employers higher up

in a ladder tend to be larger, as they attract and retain more employment, and also based

on the observed wage/size relationship. We go beyond the net worker flows by size that

we studied in our previous work, and here consider also the model’s implications for gross

worker flows (hires, quits, layoffs) and vacancy postings by employer size. These times series

have been recently made available by the BLS’ Job Openings and Labor Turnover Survey

(JOLTS) program. Specifically, we calibrate the key turnover equations implied by a generic

dynamic job ladder model to fit the monthly time series of net and gross employment flows

by employer size. We extend our investigation to examine the GR and its aftermath, in

comparison with previous cyclical episodes.

We reach the following conclusions. First, the dynamic job ladder model, a parsimonious

setup built on some very strong assumptions, such as homogeneous labor and time-invariant

rank of each employer in the ladder, does a remarkable job at fitting the dynamics of employ-

ment across size classes. The estimated hiring intensity by employer size resembles vacancies
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by establishment size measured in JOLTS, but resolves some puzzling aspects of these data,

specifically the lack of vacancies at the small employer end. Second, a comprehensive assess-

ment of the evidence indicates that the job ladder has slowed down considerably since the

GR. The drastic decline in labor market turnover affected especially direct movements from

smaller, lower-paying to larger, higher-paying employers. Small employers suffered unusual

job losses, relative to large employers and a typical recession, mostly through an increase in

their layoffs, only partially compensated by resilient vacancy posting and hiring.

Further support to our dynamic job ladder hypothesis was recently offered by Kahn

and McEntarfer (2014), who exploit the matched employer-employee microdata from the

Longitudinal Employer-Household Dynamics at the US Census Bureau to isolate the firm

component of wages and to track worker turnover over 1998-2011 at quarterly frequency.

They find that high-paying firms grew faster during the aggregate expansion of the 2000’s,

and shrank more quickly in the 2001 and 2008 busts. Low-paying firms were less sensitive

to the aggregate unemployment rate. Furthermore, this pattern was due entirely to reduced

separations in recessions: while low-paying firms cut hiring more, their separations declined

even more, than high-paying employers. Because separations include layoffs, quits to non-

employment, and quits to other jobs, and the first two components are well-known to be

countercyclical, this collapse in separations at the bottom of the wage ladder in recessions

could only be caused by a collapse in direct quits to higher-paying firms.

We now provide details on our contributions. From an aggregate labor market perspec-

tive, the GR was no exception: job openings went down across the board, job finding rates

plummeted, and layoff rates temporarily spiked, especially around the Fall of 2008 when the

financial crisis erupted. As a result, unemployment soared. As we argued and documented in

our previous work, which covered the four previous recessions, this pattern created relatively

favorable conditions for small, low-paying, less productive employers. High unemployment

meant that there was plenty of cheap labor for them to hire. Vacancy yields soared as an

army of new unemployed lined up for few available jobs. The collapse in aggregate job market

tightness reduced not only the workers’ exit rate from unemployment, as is well understood,

but also the job-to-job quit rate. That is, employers at the bottom of the job ladder were

losing fewer workers to their larger, more productive, higher-paying competitors.

Evidence on job openings and gross worker flows from JOLTS, the monthly Current

Population Survey (CPS) and the Survey of Income and Program Participation (SIPP)

largely corroborates this view. Job-to-job transitions indeed went down markedly during the

GR. The ‘poaching intensity’ (share of new hires that originate from a job-to-job transition)

declined sharply during and after the GR, especially so for larger employers. Finally, while

the share of small establishments in total job openings remained roughly stable throughout
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the GR (if anything, it went up a little), the vacancy yield of small employers sky-rocketed,

in sharp contrast to the comparatively modest (and vanishing) increase in the vacancy yield

of large establishments.

Yet — and this is where the GR differs from previous recessions — small employers

fared worse than large ones in terms of net employment growth. This unusually poor job

creation performance was the result of a brutal (temporary) increase in the layoff rate of

small employers around the Lehman Brothers episode (September 2008), the peak of the

financial crisis. While at that point layoff rates rose sharply at employers of all sizes, small

establishments stood out, possibly because they were hit especially hard by the credit crunch.

Those among small employers that were still hiring did so relatively easily, and benefited

from relatively favorable conditions on the hiring and retention margins.

These findings suggest the following interpretation of the GR and of its aftermath. Small

employers, especially existing ones, faced an unusual credit crunch that led to a wave of

layoffs. To contrast this effect, the sharp increase in unemployment and relaxed hiring

constraints kept small employers hiring at a relatively healthy pace. The collapse in hiring

was concentrated among large employers, and led to a deep freeze in job-to-job upgrading

and attrition up the job ladder, taming the incentives of small employers to post vacancies

and hire unemployed workers.

In Section 2 we present descriptive evidence on labor market flows across employers of

different sizes before, during and after the GR. In Section 3 we present the turnover equations

describing the business cycle dynamics of gross and net workers flows in a dynamic job ladder

model. We also briefly discuss structural equilibrium foundations for this process, and relate

it to the descriptive evidence. In Section 4 we describe our methodology to calibrate turnover

parameters and hiring intensity by firm size in the dynamic job ladder model, so that it

replicates the observed net and gross flows of employment by firm size. In Section 5 we

discuss our empirical results.

2 The dynamic job ladder: Descriptive evidence

We examine the cyclical reallocation of employment among firms and establishments, espe-

cially around the Great Recession, through the lens of the job ladder, namely, the turnover

process that occurs when all workers agree on a ranking of employers and face frictions

in finding and retaining jobs. We begin with descriptive empirical evidence. In order to

make the notion of a job ladder empirically operational, we need a measure of a ladder’s

“rung”. As workers move up the ladder, employers high in the ladder tend to accumulate

more employment, thus to be larger. We focus on an employer’s size as the main empirical
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counterpart of its position in the job ladder, because size is accurately and easily measurable

in the data, unlike other natural candidates such as productivity1 or compensation policy.

We present new evidence on the cyclicality of four relevant types of aggregate labor market

statistics, all broken down by employer size: employment shares; net job creation; gross job

flows (hires, quits, layoffs); and vacancy postings.

Before we proceed, an important caveat: we emphasize that in our analysis we focus

on continuing employers and abstract from entry and exit. The reason for this choice is

threefold. First, and foremost, given our focus on cyclical employment variation, entry and

exit play a relatively minor role. While they are extremely important to determine average

job and worker flows,2 their contribution to cyclical movements in aggregate employment

is positive but modest: in the Business Employment Dynamics,3 the standard deviation

of the net job creation rate HP-filtered with smoothing parameter 1,600 equals .48 for the

whole economy, and is just slightly lower, .435, for continuing establishments, which exclude

openings and closings.4 Second, the prime novel dataset that we employ in this paper, JOLTS

by establishment size, is a survey of pre-existing establishments, where exit is by and large

offset by a monthly sample rotation/refreshment scheme, while entry does not contribute

to the observations. Third, the equations describing workers’ movement on a dynamic job

ladder that we use for our calibration exercise are much simpler when ignoring entry and

exit, although both of them could be accommodated in a limited sense.

To begin, we motivate our hypothesis that size is one relevant (albeit, by no means,

the only possible) empirical counterpart of a job ladder rung. In the Appendix we provide

corroborating empirical evidence, drawing from the Quarterly Census of Employment and

Wages (QCEW)5 for establishments, and from Statistics of US Businesses (SUSB), an annual

census of all employers, for firms. First, it has long been documented that employer size

correlates positively with wage rates, after controlling for observable worker characteristics

1In the US, information on sales at the firm level, necessary to compute TFP, is not available for a
representative sample of firms from all industries.

2Haltiwanger, Jarmin and Miranda (2013) document from an annual longitudinal census of US employers
that in fact entrants create on average more jobs than the whole economy, as continuing establishments and
exits on net destroy jobs.

3A collection of quarterly gross job flows published by the BLS, currently covering 1992Q3-2013Q1 and
nearly the entire US private sector.

4This conclusion is based on the extreme view that, one quarter after entry, new establishments are
similar to incumbent ones of the same size. More generally, entrants may face a different growth process
than incumbents early in their life cycle; in this case, a cyclical decline in entry may have long run effects
on aggregate job creation that are significantly larger than the small immediate impact that we document
here.

5QCEW is the primary source of information on businesses from the BLS. It publishes a quarterly count
of employment and wages reported by establishment size, covering 98% of U.S. jobs, both private and public
sector, available at the county, MSA, state and national levels by industry.
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(Brown and Medoff, 1989). We confirm that larger employer pay more. Second, as predicted

by the dynamic job ladder hypothesis, the share of employment at large firms or establish-

ments is procyclical: workers climb the job ladder faster in tight labor markets, when they

can make contact with employers at higher rate.

2.1 Worker flows by size

Our main focus in this paper is on business cycles and the resulting dynamic job ladder. In

order to measure worker flows by employer size, we need at least a modicum of longitudinal

links on firms/establishments and workers. JOLTS comprises about 16,000 establishments, a

size-stratified sample from the QCEW frame, surveyed every month according to a rotating

panel structure. JOLTS measures job openings, hires, layoffs, quits, and other separations

at the establishment level. Recently, the BLS published this information also by size of the

establishment, in one of six size classes, with lower bounds equal to 1, 10, 50, 250, 1000, and

5,000 employees. This dataset is central to our exercise.

In JOLTS, an establishment is assigned to a size class according to the maximum size

it attained in the 12 months preceding its inclusion in the sample, independently of how its

size changes while it is part of the sample.6 So, within each survey year we know that the

identity, hence the size quantiles of establishments in each size class are fixed.7 In the analysis

that follows, we will aggregate the largest two size categories available in the JOLTS sample

(1,000-4,999 and over 5,000 employees) into one single category (over 1,000 employees). We

do this for two main reasons. First, the largest size cutoff in the QCEW sample described

above is 1,000 employees. As we get our shares of private sector establishment counts from

QCEW, we will need to merge information from QCEW and JOLTS, which constrains us to

use size cutoffs that are available in both data sets. Second, the 5,000+ category in JOLTS

is very small (it accounts for less than 2.5% of total employment in the JOLTS sample and

covers few establishments), and the data pertaining to this category are somewhat noisy.

The loss of information implied by our aggregation of the largest two size classes into one is

therefore arguably relatively minor.

Finally, and importantly, we should mention that JOLTS by size class covers only the

private sector, while aggregate JOLTS data cover also the public sector, just like its QCEW

6JOLTS (re-)sampling dates are December 2000, December 2003, February 2005, March 2006, and every
March until 2013. A new JOLTS sample is put in place in the month following each re-sampling.

7Because this size classification follows an “initial employment” criterion, it is known to be subject to a
mean reversion bias creating the illusion of a negative size-growth relationship in the presence of a transitory
component to firm size. This issue is likely to matter more in narrower size classes, at the bottom of the
size distribution, where establishment size is more volatile. We will return to this issue when discussing size
misclassification.
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Solid, left scale = Differential net job creation (large minus small), MA−smoothed.
Dash, right scale = Unemployment rate, detrended.
Categories defined within each JOLTS sample as <50 and >1,000.
Shaded areas indicate NBER contractions.
Source: JOLTS, BLS, and authors’ calculations.

Fig. 1: Differential employment growth between establishment size classes.

frame. This is an important caveat for the GR, where the public sector played a dispro-

portionate role in first buffering employment losses and then dragging on the employment

recovery.

Net flows. The cyclicality of employment shares of different size classes of employers,

presented in the appendix, provides limited information on the size of businesses that were

most affected by the Great Recession. As we discussed in MPV12, to avoid the so-called

reclassification bias we need to study business dynamics for at least two consecutive periods

among classes to which employers are assigned based on their initial size. We showed there

that the annual growth rate of employment at initially large (>1,000 employees) minus

small (<50 employees) firms in the US is strongly negatively correlated with unemployment

in 1979-2010. Here we zoom in on the Great Recession using higher frequency, monthly data

updated to cover the post-GR recovery. Figure 1 repeats the exercise using JOLTS data by

size of the establishment (this is an important distinction on which we will return later).

The differential net job creation series in Figure 1 follows a similar pattern as in previous

recessions, but in the GR it peaks later, in fact at the very end of the recession, than one

would have expected based on the evidence reported in MPV12 for previous recessions. It

thus appears that small establishments were hit especially hard by the credit crunch.
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Gross flows. To examine in more detail the nature of these evolutions, we turn to gross

worker flows. This is a unique advantage of JOLTS and, to the best of our knowledge, we

are the first to document the behavior of these flows by employer size around the GR. By

definition, net employment growth in JOLTS equals hires minus the sum of layoffs, quits

and other separations (such as retirement). The latter category is small and fairly acyclical,

thus we focus on hires, layoffs and quits. Figure 2 plots hire rates (new accessions divided

by employment) by establishment size.

Hire rates began to decline before the GR. Surprisingly, during the deepest phase of

the financial crisis, following the Lehman Brothers episode, hire rates collapsed at the larger

establishments and not at the smaller ones; they even briefly spiked in the smaller class in late

2008-early 2009. Given that in Figure 1 smaller establishments fared worse in terms of net

employment growth, especially from the last quarter of 2008 on, it must be the case that their

separations rose disproportionately, and more than compensated their brisker hiring pace.

We in fact see in Figure 3 that layoff rates rose sharply and temporarily, especially at small

establishments. Although not immediately evident from the figure, the increase in layoff

rates was almost exactly proportional across all size classes. Because smaller establishments

report higher layoff rates on average, the absolute increase in layoff rates during the GR was

more pronounced at the bottom of the size ladder.

The third gross worker flow available in JOLTS, the quit rate, is shown in Figure 4. This

flow conflates quits to non-employment and quits to other employers. While quit rates fell

markedly across the board both in 2001 and around 2008, the figure clearly suggests that

the fall during the GR was less sharp for small establishments than for large ones. This fact

corroborates the hypothesis that the worse performance of small establishments during the

GR was entirely driven by a spike in layoff rates, as opposed to higher total quits or reduced

hiring, which actually worked in the opposite direction.

JOLTS, as a survey of employers, provides a meaningful distinction between layoffs and

quits, but not between quits to (or hires from) non-employment, as opposed to (from) other

jobs, a distinction that is crucial to the job ladder. We supplement JOLTS with information

on gross worker flows from the monthly CPS. Specifically, we use the hazard rates of tran-

sition between Employment (E), Unemployment (U) and Non participation (N) estimated

by Fallick and Fleischman (2004) from gross flows (using monthly matched files), starting

in January 1994 and updated by the authors through May 2014. This series begins with

the 1994 re-design of the CPS, which introduced a question on the change of employer that

made it possible to measure the EE hazard, and which greatly improved the reliability of

employment status and thus reduced margin error. Figure 5 plots the EE transition rate,

or hazard. While it is clearly procyclical and dropped significantly during the GR, the most
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Fig. 2: Hire rates by establishment size class.
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Average hire rate by size class, MA−smoothed.
Shaded areas indicate NBER contractions.
Source: JOLTS and authors’ calculations.
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Average layoff rate by size class, MA−smoothed.
Shaded areas indicate NBER contractions.
Source: JOLTS and authors’ calculations.

Fig. 3: Layoff rates by establishment size class.
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Fig. 4: Quit rates by establishment size class.
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Average quit rate by size class, MA−smoothed.
Shaded areas indicate NBER contractions.
Source: JOLTS and authors’ calculations.
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Shaded areas indicate NBER contractions.
Source: CPS compiled by Fallick and Fleischman (2004), and authors’ calculations.

Fig. 5: Total employment-to-employment hazard.
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Fig. 6: Share of hires from other employers, by employer size

striking aspect is the declining trend. Off that trend, the decline during the GR was not

especially pronounced, and the recovery afterwards was significant. But in absolute terms,

i.e. without detrending, the EE hazard remains at an all-time low almost five years into the

post-GR recovery. It is well known that EE transitions include involuntary reallocation and

other events that reduce worker’s earnings (our model explicitly accommodates this possibil-

ity through reallocation shocks — see Section 3). Therefore, per se they provide only limited

information on the extent to which workers climb the job ladder. It is, however, striking

that the EE rate is the most lagging labor market indicator post-GR.

The CPS contains no information on the size of a worker’s employer. For this, we turn

to SIPP, starting with the 1996 panel. We exploit the availability of start and end date of

each job to construct EE transition rates by size of the hiring “workplace”, the phrasing in

the SIPP questionnaire that we interpret to be an establishment. In Figure 6 we show the

share of all hires that originate directly from other employers, thus entail an EE transition,

broken down by size of the hiring establishment. As predicted by the job ladder model, larger

employers always hire more from other employers, and less from non-employment, especially

so late in expansions when the market tightens and competition for workers stiffens. In the

GR, this “poaching” inflow-share collapsed for all size groups. Since total hires also declined

sharply, this is the strongest evidence that the job ladder came to a grinding halt.
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Fig. 7: Vacancies by establishment size class.
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Vacancies by size class.
Shaded areas indicate NBER contractions.
Source: JOLTS, and authors’ calculations.
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Vacancy shares by size class.
Shaded areas indicate NBER contractions.
Source: JOLTS, and authors’ calculations.

Fig. 8: Vacancy shares by establishment size class.
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Fig. 9: Vacancy weights by establishment size class.
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Average vacancy weights by size class.
Shaded areas indicate NBER contractions. All series normalized at 1 in 01/2001.
Source: JOLTS, CEW, and authors’ calculations.
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Average vacancy yield by size class, MA−smoothed.
Shaded areas indicate NBER contractions.
Source: JOLTS and authors’ calculations.

Fig. 10: Vacancy yields by establishment size class.
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To take stock, we showed that net job creation by small establishments was especially

poor during the GR, relative to larger establishments and to a typical US recession, and that

this is due entirely to spike in their layoffs, while hires and total quits declined much less

at the bottom of the size distribution. Aggregate job-to-job transitions collapsed, and even

more so towards larger establishments, and never recovered.

2.2 Vacancies by size

We now return to JOLTS to describe the behavior of measured job vacancies by size class.

Vacancies are uniquely valuable as a direct measure labor demand, or intensity of hiring

effort, as opposed to outcomes. Figure 7 reports the time series of total job openings for

each JOLTS size class. Figure 8 further shows vacancy shares by size class, i.e. vacancies

in each size class divided by total aggregate vacancies. If recorded job openings are an

accurate measure of hiring effort,8 then the series plotted in Figure 8 will represent the

sampling probabilities of each size class. Next, Figure 9 shows vacancy shares divided by the

number of establishment in each class from QCEW, and normalized at one in January 2001

to harmonize scales. We refer to those series as the vacancy weights by size class. These

weights measure average hiring effort reported on average by each establishment in a given

size class, relative to aggregate hiring effort.

Figure 7 clearly shows that vacancies plummeted across the board during the GR, with

vacancy levels seemingly tracking each other across the various size classes. At first glance,

Figures 8 and 9 reinforce that impression, as the movements in vacancy shares and weights

appear small relative to the absolute decline seen in Figure 7 which, to a first approximation,

was uniform. On closer inspection, Figures 8 and 9 further suggest that there is no evidence

of a disproportionate impact of the financial crisis (post-September 2008) on the hiring

effort of small establishments: the movements are relatively modest, and the 10-49 employee

class shows the largest change, but upwards. Overall, we conclude that hiring effort fell

proportionally at establishments of all sizes.

Finally, Figure 10 plots the vacancy yield, namely the ratio between hires and vacan-

cies reported a month before, by establishment size.9 Vacancy yields are countercyclical;

specifically, during and after the GR the aggregate yield rose enormously with unemploy-

ment duration, and it became as easy for firms to fill vacancies as it was difficult for the

unemployed to find work. Importantly, Figure 10 shows that this phenomenon was more

8There are good reasons to believe that they are not, as we discuss below in Section 4.
9Note that the yield is greater than 1 for many dates and size classes (Figure 10), suggesting that the

JOLTS measure of job openings misses something about true establishment hiring effort. This ties in with
the results of Davis, Faberman and Haltiwanger (2010), who report that around 40% of hires occur at
establishments that do not report any job openings to JOLTS. We return to this issue below in Section 5.

13



pronounced the smaller the establishment. During the acute phase of the GR, from the Fall

of 2008 onwards, the vacancy yield literally took off at establishments employing 1-9 workers.

At the largest establishments, however, the yield stopped rising. This surprising set of facts

is consistent with the collapse in hires of employed workers, on which larger establishments

rely more, but can also be explained by tightening hiring standards by those large employers.

3 The dynamic job ladder: Model

3.1 Flow equations

In order to interpret the evidence laid out in Section 2, we now propose a turnover account-

ing framework. This is a reduced-form model of employment dynamics, a set of equilibrium

predictions shared by several models of the labor market with on-the-job search. Time

t = 0, 1, 2 . . . is discrete. The labor market is populated by a unit measure of workers, who

can be either employed or unemployed, and by a unit measure of firms. Workers agree on

a ranking of employers, which gives rise to a job ladder. Let x ∈ [0, 1] be the rank of a

firm in the job ladder: workers always prefer firms with higher x. The labor market is af-

fected by search frictions in that unemployed workers can only sample job offers sequentially

with probability λt ∈ (0, 1) at time t. Employed workers draw each period with probability

s ∈ (0, 1] an i.i.d. opportunity to search on the job, thus face a per-period sampling chance

of job offers of sλt. Workers can only send one job application per period and can never

receive more than one offer in any period. Conditional on a contact, workers draw offers

from a sampling distribution with c.d.f. Ft (·), so Ft (x) is the chance that the worker meets

an employer of rank below x. An employed worker is exogenously separated from his em-

ployer and either, with probability δt (x), enters unemployment, or, with probability ρt, is

immediately reallocated to another job, drawn randomly from the available ones according

to Ft (·), without going through unemployment. The displacement shock δt (x) encompasses

both layoffs and quits to non employment that result in a measurable unemployment spell.

The reallocation shock ρt captures such events as moves due to spousal relocation, or dis-

placements followed by immediate re-hiring by another employer. The objects that govern

worker turnover, Ft (·) , δt (·) , λt, ρt are time-dependent realizations of stochastic processes.

We are particularly interested in their business cycle fluctuations.

Let Nt (·) denote the c.d.f. of employment over ranks at time t. So N0 (x) is the date-0

measure of employment at firms of rank weakly below x, a given initial condition, Nt (x) is the

same measure at time t, Nt (1) is total employment, and ut = 1−Nt (1) is the unemployment
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stock (or rate). Let

δ̄t (x) =
1

Nt−1 (x)
·
∫ x

0

δt (q) dNt−1 (q)

denote the average transition rate into unemployment by workers currently at employers of

rank up to x. Applying a Law of Large Numbers to each firm rank, and the definition of

rank in a job ladder, we obtain equations for net and gross workers flows. We present the

equations in terms of cumulated employment Nt. Taking derivatives with respect to rank x

would provide the equivalent equations at each x (for each employer) in the job ladder.

We start with gross flows, the inflow into (outflow from) Unemployment from (resp., into)

employers of rank below x:10

E to U flow: EUt+1 (x) = δ̄t+1 (x)Nt (x) (1)

U to E flow: UEt+1 (x) = λt+1Ft+1 (x) [1−Nt (1)] (2)

In the first line, the chance of exogenous separation δ̄t+1 (x) into Unemployment multiplies

the measure of employed workers. In the second line, the chance of job contact times the

chance that the contact is with a firm of rank below x multiplies the measure of unemployed

job searchers.

The third gross flow comprises workers who leave employers of rank below x to join

another employer of any rank. In turn, this flow includes forced reallocations with chance

ρt+1 and voluntary quits:

E to E flow (Quits): QEt+1 (x) = ρt+1Nt (x) + sλt+1

∫ x

0

F t+1 (x
′) dNt (x

′) (3)

To understand the integral term, note that a worker employed at rank x′ < x receives each

period with chance sλt+1 an outside offer, which is above rank x′ (so the worker accepts)

with chance F t+1 (x
′) = 1−Ft+1 (x

′). A measure dNt (x
′) of workers were initially employed

at rank x′ < x. QE is a gross outflow; some of these workers join other employers whose

rank is still below x, in some cases even below their current job’s rank, if the reallocation is

forced.

The last gross flow is the inflow from other employers into firms of rank at most x. By

an accounting identity, given the three gross flows above, this fourth one gives rise to net

job creation by such firms. Since the net flow is easier to measure empirically, we focus on

the latter, so the fourth gross flow is redundant. The net change in employment at firms of

10In the notation just laid out, we use the letter U to imply non-employment. The model is silent on any
possible distinction between unemployment and non-employment. We will return to this issue momentarily.
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rank up to x evolves as follows:

Nt+1 (x)−Nt (x) = −
[
δ̄t+1 (x) + ρt+1 + sλt+1F t+1 (x)

]
Nt (x)

+ {ρt+1Nt (1) + λt+1 [1−Nt (1)]}Ft+1 (x) . (4)

The first line includes outflow from firms of rank below x due to either exogenous turnover,

to unemployment δ̄t+1 (x) and other employers ρt+1, or to outside offers received from firms

of rank above x. The second line includes the inflow into firms of rank below x, which

are sampled with probability Ft+1 (x) either by workers who are forced-reallocated or by

the unemployed. Notice that the voluntary inflow from other employer is omitted from the

second line, because it can only occur from below x, so it can at best reshuffle the mass of

employment below x, but not increase it.

To make Equations (1)-(4) empirically operational, we need a measure of job ladder rank.

We do not observe the workers’ preferences that define the job ladder, so we rely on their

revealed preferences. Because workers climb the job ladder, from lower to higher ranked em-

ployers, while the contact rates sλt and the forced reallocation rate ρt are rank-independent,

this turnover process makes higher-ranked firms also larger in terms of employment measure.

Thus, when given the opportunity, employed workers tend to move from smaller to larger

employers. Exogenous forced reallocations to unemployment and to other employers inter-

fere with this upgrading process, and maintain a non-degenerate ergodic size distribution

of employers. In order to guarantee that higher rank means larger size in the model, thus

to use firm size as an empirical proxy for rank, we further assume that the inflow rate into

unemployment δt (x) is non-increasing in rank x. This assumption encompasses as special

cases exogenous separations at flat, rank-independent probability δt, as well as endogenous

separations due to match-specific shocks, because workers must be more reluctant to endoge-

nously give up higher-ranked jobs if they are more willing to accept them to begin with. We

can then proceed to estimate turnover rates from Equations (1)-(4) using data on employ-

ment stocks, net and gross worker flows, broken down by employer size. Before doing so, we

briefly discuss structural foundations of the dynamic job ladder, namely of the accounting

Equations (1)-(4), and how they relate to the descriptive evidence illustrated earlier.

3.2 Structural foundations

Equations (1)-(4) describe the accounting of worker flows in a job ladder, namely, in an

environment where all workers agree on the ranking of employers. This type of turnover

process occurs in different frictional models of the labor markets. The prime, but by no

means only, example is a wage-posting model. The canonical framework for the analysis of
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frictional wage dispersion with on-the-job search is Burdett and Mortensen (1998, henceforth

BM). This setup has strong implications also for worker turnover and for the distribution

of firm size, where a firm is identified by a wage policy constrained to pay all workers

the same. In particular, the unique steady state equilibrium of the BM model features a

job ladder by employer size. In MPV09 and MPV13 we introduce aggregate uncertainty

in BM, and accordingly identify a firm as a wage policy, which may now depend on the

state of the aggregate economy, the size of the firm, and the distribution of wage offers by

competitors.11 In the ergodic steady state of the stochastic economy, the unique equilibrium

is always Rank-Preserving. That is, a firm that is larger, and possibly permanently more

productive, will always commit to a stream of payments of higher value to workers, who

then move on a dynamic job ladder, from smaller, lower-paying to larger, high-paying firms,

at all points of the business cycle. Because larger firms pay more and are ranked higher by

workers, equilibrium preserves a stable ranking by size, although not necessarily a stable size

distribution, for any history of aggregate shocks. In this model, firm-level productivity is a

natural, although by no means the only, primitive that determines the rank on the ladder.

Coles and Mortensen (2013) introduce idiosyncratic shocks to firm productivity in a

model that is very close to MPV13’s wage-posting framework, and show the existence of

a Rank-Preserving Equilibrium. In other business cycle models of frictional labor markets

with on the job search, workers agree in equilibrium on the ranking of jobs (matches) at

each points in time. The allocation of jobs to employers is somewhat indeterminate, but can

be chosen to generate a dynamic job ladder and size distribution. Robin (2011) introduces

aggregate uncertainty in Postel-Vinay and Robin (2002)’s sequential auction model of the

labor market, where firms commit to wage offers but can respond to outside offers to their

employees. These models feature random matching. Menzio and Shi (2011) obtain a job

ladder by wage with aggregate shocks in a directed search framework.

3.3 Revisiting the descriptive evidence

These structural models naturally dovetail with the stylized facts illustrated in the previous

section. Wages are increasing in employer size, with causality running primarily from the

former to the latter (paying workers more attracts and retains more of them), but also in

the opposite direction. For example, in MPV13 a larger firm, under the equal-treatment

constraint, is willing to pay its new hires more than a smaller firms would, in order to

pay more and retain its larger existing labor force. A procyclical job contact rate λt and

weakly countercyclical separation rate into unemployment δt (·) then imply that workers

climb the job ladder faster, and fall off the job/size ladder less often, in expansions, and vice

11This structural model does not, but can easily extended to, include reallocation shocks with chance ρt.
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versa in recessions. Hence, both the extra net job creation and the employment share of

larger employers, those that are located higher on the ladder, are procyclical. Employer-to-

employer transitions are directed up the size ladder. Job ladder models are mostly silent on

separations into unemployment, which are assumed exogenous. The cyclicality of vacancy

postings and hires by size are more difficult to discern qualitatively, and require estimating

the model, which is the objective of the next section.

An important role in our analysis is played by reallocation shocks, which move workers

directly from employer to employer without any measurable unemployment spell. These

shocks are meant to capture in the data the sizable flows of workers who move in opposite

directions among employers of different sizes, a phenomenon that is inconsistent with the

idea of a job ladder in its most extreme form. One restriction imposed by Equation (4)

is that of a rank-independent chance ρt of reallocation shocks. Since employed workers

voluntarily quit to accept an outside offer with probability that decreases in the rank of

their current employer, they all move from job to job in the same direction (up, towards

larger employers) on average, although not with probability one. This is a key prediction

that we will test. Another restriction is the rank-independent relative efficiency of employed

and unemployed job search, s. This can be interpreted as a time endowment available to all

employed workers, no matter where currently employed, to search and interview for other

jobs. An alternative interpretation, which would not be consistent with our assumptions, is

that workers control their job search effort, in which case we should expect s to decline in

rank x, as lower-ranked jobs, starting with unemployment at the bottom of the ladder, are

less desirable and motivate more search effort. By assuming a constant s we attribute all

time variation in job contact rates from employment to that in job market tightness, and

all cross-sectional variation in turnover rates among workers to their different positions on

the job ladder: all workers receive offers at the same rate, but differ in their willingness to

accept them.

In the next section, we investigate whether the job ladder hypothesis can be rejected, or

conversely there exists a calibration of model objects such that the resulting job ladder is

consistent with gross worker flows by employer size each month over a long time period.

4 The dynamic job ladder: Calibration

We calibrate the job ladder model using a minimum distance method. Our target empirical

moments are gross and net employment flows by size class of the employer observed in

JOLTS. Given our strong assumptions implying that employer size is a relevant rung of

the job ladder, it is far from obvious that the job ladder dynamic Equations (1)-(4) can
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replicate actual observations on gross and net flows, every month for 12 years, for several

size classes. Among many restrictions, our theory predicts that smaller employers should

lose a larger proportion of workers to job-to-job quits. Testing all joint restrictions of the job

ladder equation is our main goal here. In addition to the parameter s (the search intensity of

employed relative to unemployed workers), Equations (1)-(4) involve six time series — δ̄t (·),
λt, ρt, Ft (·), Nt (·), and the size of the labor force, that in the model we normalized to one,

but is time-varying in the data, or, equivalently, the size of employment and unemployment,

given the unemployment rate 1 − Nt (1). We now explain how we map monthly empirical

observations into our time series of interest. While some of them can be estimated directly,

we need the model to back up ρt, Ft (·) and s.

4.1 Size ranks

Assuming for the time being that employer size is correctly measured, and that size does

reflect rank in the job ladder (i.e., workers always prefer larger employers, when they can

choose), establishments in a given JOLTS size class k = 1, 2, · · · , K will be representative

of all establishments with ranks between two unobserved cutoff values, x ∈ [Xk−1, Xk], with

{Xk}Kk=1 an increasing sequence in [0, 1], which remain fixed so long as the identities of

establishments assigned to size class k do not change. In JOLTS, each month except at

re-sampling dates, 1/12 of the surveyed establishments are replaced with ex ante identical

establishments, which had the same size and industry at the time of sampling; under the

assumption, underlying this gradual rotation scheme, that these are statistically equivalent

establishments, we can effectively treat the identities and size class membership of the JOLTS

establishments as constant between re-sampling times.

The JOLTS sample thus provides observations at (almost) all dates of cumulated em-

ployment Nt (Xk), layoffs, and total quits (and, potentially, sampling probabilities Ft (Xk)

— see below), for K job ladder rank quantiles {Xk}Kk=1 corresponding to K size classes.12

In what follows, we should keep in mind that Xk is the cutoff quantile between size classes

k and k+1. With K size classes, this implies that XK ≡ 1. We will also use the convention

X0 = 0. We now confront Equations (4)-(3) with the JOLTS sample.

4.2 Separations into non-employment

As discussed earlier, a survey of employers like JOLTS reveals whether a separation is a quit

or a layoff from the viewpoint of the surveyed establishment. As workers are neither inter-

12As discussed earlier, the raw JOLTS sample has six establishment size classes: 1 to 9, 10 to 49, 50 to
249, 250 to 999, 1,000 to 4,999, and over 5,000 employees. For reasons discussed earlier, we lump the largest
two classes into one.
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viewed nor tracked after a separation, measured quits are the sum of quits to unemployment

and quits to other jobs, a distinction that is missing in the data but is central to the logic

of the job-ladder model, where the former are part of total separations into unemployment

δ̄t+1 (x)Nt (x), and the latter are upgrades. To estimate δ̄t+1 (x), we thus need some way to

break down quits into those to unemployment and those to other employers. To do so, we

need worker-side information.

Focusing first on the aggregate separation rate (up to rank x = 1), we seek to construct

δ̄t+1 (1) based on Equation (1) as the ratio between the total monthly flow from employment

to non-employment and the total stock of employment. The flow consists of layoffs plus quits

into non-employment. We supplement the JOLTS data with the transition rates estimated

from CPS by Fallick and Fleischman (2004), updated by the authors through 2014. For

every month t we compute the share σCPS
t of total transitions that are employer-to-employer

(EE), as opposed to transitions into non-employment (say, EU):

σCPS
t =

EECPS
t

EECPS
t + EUCPS

t

.

All EE transitions are quits in the job ladder model; some are voluntary upgrades, others

are forced reallocations. Assuming that the CPS-based share σCPS
t applies to the workers

employed by the JOLTS sample of establishments, we multiply total separations in JOLTS

by 1 − σCPS
t to obtain an estimate of aggregate separations into non-employment, EUt (1),

that is consistent with the JOLTS data. The corresponding aggregate separation rate is then

δ̄t+1 (1) = EUt (1) /Nt (1).
13

This procedure further gives us the share of all EU separations that are quits. As men-

tioned earlier, JOLTS has a measure of total layoffs and discharges, which we can subtract

from our newly constructed time series EUt (1) to obtain total quits into non-employment in

JOLTS. Subtracting the latter from total quits, we obtain a JOLTS-based measure of quits to

other employers, or job-to-job outflow. We now introduce the ancillary — yet economically

meaningful — parameter ψt (x), defined as the share of total EU separations from employers

of rank x that are quits to non-employment, and

ψ̄t (x) =
1

δ̄t (x)Nt−1 (x)
·
∫ x

0

δt (x
′)ψt (x

′) dNt−1 (x
′) ,

the same share from employers of rank up to x. In this notation, ψ̄t+1 (1) is the share

of quits in aggregate separations into non-employment, EUt (1), that we obtain from our

13To the best of our knowledge, ours is the first attempt to exploit information from both the employer
and the employee sides to draw empirically the distinction between the three main types of separations:
layoffs, quits to non-employment, and quits to other employers. Worker surveys such as CPS and SIPP
are notoriously plagued by noise in the layoff/quit distinction when the worker loses a job. Administrative
datasets do not typically contain information about the reason for separation.
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Fig. 11: Average separation rate into non-employment δt+1 (1) and its components

procedure, the remaining share being layoffs. The aggregate layoff probability is then δ̄t+1 (1)·(
1− ψ̄t+1 (1)

)
, and the probability of quitting into non-employment is δ̄t+1 (1) ψ̄t+1 (1). Both

of those, plus the total aggregate transition rate into non-employment δ̄t+1 (1), are plotted

in Figure 11.14 While most of this figure has the familiar feature of a largely a-cyclical

probability of transition into non-employment, the GR stands out as a striking exception,

with a sudden (and short-lived) surge in layoffs in the immediate aftermath of the collapse

of Lehman Brothers in September 2008.

The Fallick and Fleischman (2004) series are only available at the aggregate level. There-

fore, making our quit/layoff distinction operational at lower levels of size aggregation (x < 1,

which we shall need later in the calibration) requires additional assumptions. The identi-

fying assumption that we opt for here is that the probability with which workers quit into

non-employment, ψt+1 (x) δt+1 (x), is independent of their employer’s rank x. That is to

say, for all x, ψt+1 (x) δt+1 (x) ≡ ψ̄t+1 (1) δ̄t+1 (1). Since the total separation rate into non-

employment δt+1 (x) is non-increasing in (size) rank x, this assumption implies that both

total separation rates and layoff rates are decreasing in x. Both implications hold in the

JOLTS data.15 This additional identifying assumption enables us to construct total separa-

14All the raw JOLTS series are smoothed using a 6-month moving average around each point prior to
calibration, to remove the fairly large amount of high-frequency noise in those series.

15Any assumption we make at this point is necessarily arbitrary to some degree. An alternative is to
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tions into non-employment from employers with rank up to Xk, namely δ̄t+1 (Xk)Nt (Xk),

for all cutoff quantiles Xk corresponding to the JOLTS size classes, as the sum of total lay-

offs from employers in size classes up to k (directly available from the JOLTS data), plus

total quits into non-employment from those employers, equal to ψ̄t+1 (1) δ̄t+1 (1)Nt (Xk) by

assumption. Given observations on the cumulated employment distribution Nt (Xk), this

allows to directly estimate the desired total probability of transition into non-employment

by size class, δ̄t+1 (Xk).

4.3 Job contact probability

Equation (4) applied to the top quantile x = 1 gives the law of motion of aggregate employ-

ment: Nt+1 (1) =
[
1− δ̄t+1 (1)

]
Nt (1) + λt+1Ut, where Ut = 1 − Nt (1) is non-employment.

From this equation, we can back out the job finding rate from non-employment, which is

also the baseline job contact rate:

λt+1 =
Nt+1 (1)−

[
1− δ̄t+1 (1)

]
Nt (1)

Ut

=
UEt (1)

Ut

.

Construction of λt+1 from this equation thus requires knowledge of the stock of non-employed

job seekers, Ut. Here again, we call on the Fallick and Fleischman (2004) CPS series, which

offers a breakdown of the total non-employment to employment flow (UEt (1) in our nota-

tion) into the flow from unemployment into employment and the flow from inactivity into

employment. Taking the (average) ratio of the latter to the former gives us an estimate

of the relative job finding rate of inactive workers to the unemployed, say s0, so that the

job finding probability of non-participants is s0λt+1, we then construct the effective pool of

non-employed job seekers as:

Ut

Nt (1)
=

uCPS
t

1− uCPS
t

+ s0

(
1− eCPS

t

eCPS
t

− uCPS
t

1− uCPS
t

)
,

where uCPS
t is the CPS unemployment rate and eCPS

t is the CPS employment-population

ratio. The value of s0 thus calibrated is 0.2, and the resulting job finding rate series is

plotted in Figure 12. While it exhibits the familiar cyclicality, including a vertiginous drop

during the GR, its level is fairly low because it includes transitions to employment from

inactivity, which are a small fraction of the stock of inactive individuals.

assume that the share of EU separations that are quits is independent of rank, i.e. that ψt+1 (x) ≡ ψ̄t+1 (1)
for all x. This implies that not only the layoff rate, but also the quit rate into non-employment is decreasing
in employer size, or rank thereof. Results based on this alternative assumption, available upon request, are
qualitatively identical, and quantitatively very close, to the ones we present here.
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Fig. 12: Job finding rate λt+1

4.4 Sampling distribution and employer-to-employer transitions

We now turn to the last, and arguably most salient, gross flow of workers predicted by the job

ladder, namely job-to-job quits QEt (x), given in Equation (3). We show how this equation,

combined with the net flow Equation (4) and with the JOLTS data, allows identification of

the sampling distribution Ft+1 (·), the reallocation shock ρt+1, and the relative intensity of

employed search, s.

One easy option to estimate the sampling distribution Ft+1 (·) would be to set it equal

to the observed distribution of job openings by size class, which is readily available from

JOLTS. However, the sampling distribution that is consistent with the model will only

coincide with the empirical distribution of job openings if (a) job openings are measured

accurately in JOLTS, and (b) job opening counts are a good measure of actual hiring effort

(in particular, all vacancies have equal sampling weights). Both of these are questionable

assumptions: for example, Davis, Faberman and Haltiwanger (2010) have recently forcefully

argued that neither was true, especially at the low end of the establishment size distribution.

Vacancies posted by different types of establishments may have different visibility, or small

establishments may rely more on informal hiring channels, rather than vacancies.

Luckily, the law of motion of employment in RPE offers an alternative solution to estimate

Ft+1 (·). Equation (4) defines the sampling distribution at cutoff quantilesXk and at all dates
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as:

F t+1 (Xk) =

[Nt+1 (1)−Nt+1 (Xk)]− (1− ρt+1) [Nt (1)−Nt (Xk)] + δ̄t+1 (1)Nt (1)− δ̄t+1 (Xk)Nt (Xk)

ρt+1Nt (1) + sλt+1Nt (Xk) + λt+1Ut

(5)

that we will use to estimate sampling probabilities Ft (·), employed search efficiency s, and

reallocation shocks ρt+1, using the time series for separation and accession probabilities

δ̄t+1 (Xk) and λt+1, and the stock of non-employment from CPS, Ut, all estimated as above,

plus the stock of employmentNt (Xk) in size classes up to k from JOLTS. Later, we will gauge

how close the estimated sampling distribution from (5) (consistent with RPE employment

dynamics by construction) is to the empirical distribution of job openings across size classes.

Knowledge of the sampling distribution Ft (·) allows the construction of total job-to-job

quits in any size class k which, following Equation (3), equal

QEt (Xk)−QEt (Xk−1) = ρt+1 [Nt (Xk)−Nt (Xk−1)] + sλt+1

∫ Xk

Xk−1

F t+1 (x) dNt (x) , (6)

The empirical counterpart are total quits in JOLTS size class k, minus quits into non-

employment from employers in that size class, which were estimated in subsection 4.2 as

ψ̄t+1 (1) δ̄t+1 (1) · [Nt (Xk)−Nt (Xk−1)]. Fitting (6) to this JOLTS counterpart at each date t

and size class k allows, in principle, to identify both the (constant across dates and classes)

search intensity of employed workers s and the (constant across classes) reallocation shock

ρt.

This last statement must be qualified as follows. First, in order to limit the computational

cost of this calibration, and to attain more precise identification, we further restrict the

reallocation probability ρt to equal a constant (ρ) times the baseline job finding rate λt.

While not strictly necessary, this restriction considerably reduces the number of parameters

to estimate, from one value of ρt for each month in the sample (140 in total) down to a

single scalar, ρ. This restriction follows, for example, if ρ is the probability that the worker’s

spouse is seeking a better job that would require the entire household to move, a job search

that is successful with probability λt. Second, Equation (6) is not exactly implementable,

as the transformed net flow Equation (5) only gives the sampling distribution at the cutoff

quantiles Xk, whereas in principle we would need it over its entire support to calculate the

integral in (6). We approximate the integral using a simple trapezoidal rule on the grid of

points at which Ft (·) is known.
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4.5 Misclassification

The issue. So far we assumed that an establishment’s size, as measured in JOLTS, is the

“relevant” measure of size, in the sense that it reflects the relevant rank of that establish-

ment. There are at least two reasons to doubt that this is always the case. The first one is

random fluctuations in establishment size. While the job ladder model uses a large number

approximation and treats establishment size as evolving deterministically over time, in real-

ity establishment size will fluctuate randomly around the mean value predicted by the job

ladder. If, at the time of JOLTS re-sampling, an establishment has an exceptionally high

(say) realization of the random component of its size, that establishment may be assigned to

the “wrong” size class, i.e. to a size class that reflects its transitory larger size rather than

its long-run smaller size. This will be especially true of smaller establishments, both because

the large-number approximation is less accurate for small establishment, and also because

the small size classes (1-9 and 10-49 employees) are narrower than the larger ones.16

The second reason to suspect that establishment size does not perfectly reflect the rele-

vant rank in the ladder is that many establishments are part of multi-establishment firms.

Depending on the degree of decentralization and devolution in the parent firm’s management,

the relevant rank for those establishments may be at the level of the parent firm, in which

case the size measure that will best reflect rank is not the size of the establishment, but

that of the parent firm, which we do not observe in JOLTS. Indeed, in MPV12 we document

from the Census’ Business Dynamics Statistics that the average size of an establishment first

grows with the size of the parent company, but levels at about 60 employees when the size of

the firm reaches 250, and is still about 60 workers per establishment at firms employing over

10,000 workers in total. So very large firms own hundreds or even thousands of separate,

relatively small establishments (national banks and retailers come to mind), whose workers

benefit from the productivity and compensation policy of the parent company.17

For both reasons, observed size classes in JOLTS and true rungs on the job ladder may

not coincide. We propose to tackle those two issues and to reconcile size and rank classes by

modeling misclassification explicitly. To avoid any confusion, we now introduce a distinction

16Mean-reverting innovations in establishment size are easily detected by the size/growth relationship.
While growth in an establishment’s employment is strongly decreasing in its beginning-of-period size, it is
nearly uncorrelated with the average size of the same establishment over the same period. Hence, Gibrat’s
law holds approximately, and the negative size/growth relationship originates from a classic regression to
the mean fallacy.

17In his discussion of our paper, using administrative data IDA from Denmark, Rasmus Lentz reported
that the variation of wages across the establishments of a typical firm, although not zero, is substantially
lower than in the population of establishments as a whole. The variation of establishment size, on the other
hand, is almost as large within a firm as in the wider population of establishments. We thank Rasmus Lentz
for pointing out this evidence, which speaks to the misclassification issue.
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between size class k, defined based on the JOLTS sample as the set of establishments whose

observed size falls between two given cutoff values (e.g. 50 to 249 employees), and rank class

k, defined as the set of establishments whose unobserved rank on the job ladder falls within

the quantile interval [Xk−1, Xk].

Modeling misclassification. Consider an establishment with job ladder rank x, whose

“true” (or model-predicted) size at date t is ℓt (x) = dNt (x) /dx. We assume that this

establishment’s observed size is the true size ℓt (x
′) of an establishment with rank x′ drawn

at random from some conditional distribution M (x′|x) which, to attain identification, we

assume to be time-invariant. To lighten notation, we now drop the time index, but we should

keep in mind that employment measures, observed or reclassified, are time-varying, while

the reclassification distribution M is assumed constant over time.

Size classes with misclassification. Next consider size classes. We can define size

class k as the set of all establishments whose observed size ℓo falls within some interval

[ℓ(Xk−1), ℓ(Xk)]. Observed employment in size class k is therefore:

no
kt =

∫ 1

0

mk (x) ℓt (x) dx, (7)

where mk(x) =M (Xk | x)−M (Xk−1 | x) for all x ∈ [0, 1] is the probability of an establish-

ment of rank x being observed as belonging to size class k.

To gain some tractability and amenability to calibration, we further restrict misclassifi-

cation weights mk(x) to be constant within rank classes, i.e. we impose mk(x) ≡ mk|k′ for

x ∈ [Xk′−1, Xk′ ]. With this approximation,18 (7) becomes:

no
kt =

K∑
k′=1

mk|k′nk′t,

where nkt = Nt (Xk)−Nt (Xk−1) is true employment in rank class k.

Collating all rank classes, our misclassification model implies:

no
t :=

no
1t

no
2t
..
.

no
Kt

 =

m1|1 m1|2 · · · m1|K
m2|1 m2|2 · · · m2|K
.
..

. . .
.
..

mK|1 mK|2 · · · mK|K

n1t

n2t

..

.
nKt

 := Mnt, (8)

which in turn implies that “true” employment in rank class k can be inferred from observed

employment in size class k as nt = M−1no
t . Misclassification weights mk|k′ (the entries of

the matrix M) are unknown, and added to the set of parameters to calibrate.19

18This is necessarily an approximation, as the boundaries of size classes in terms of productivity, the Xk’s,
are likely to change at each JOLTS re-sampling date.

19Note that by construction:
∑K

k=1mk|k′ = 1 for all k′.
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Measurement equations with misclassification. The transition rates λt, δ̄t (1) are es-

timated only off aggregate magnitudes and are not sensitive to size misclassification. With

our assumption of a rank-independent probability of quitting into non-employment, neither

is said probability (ψ̄t (1) δ̄t (1)). Misclassification, however, does affect observed job-to-job

quits from establishments in class k. To see how, note that observed total quits, to non-

employment and to other jobs, from employers in rank class k are:

Qo
kt =

∫ 1

0

[
ψ̄t+1 (1) δ̄t+1 (1) + ρt+1 + sλt+1F t+1 (x)

]
mk (x) dNt (x) .

Under the assumption of constant misclassification weights in each rank class and over time,

the expression for total observed quits from class k becomes:

Qo
kt =

(
ψ̄t+1 (1) δ̄t+1 (1) + ρt+1

)
no
kt + sλt+1

K∑
k′=1

mk|k′

∫ Xk′

Xk′−1

F t+1 (x) dNt (x) .

This implies:

sλt+1


∫ X1

X0=0
F t+1 (x) dNt (x)

...∫ XK=1

XK−1
F t+1 (x) dNt (x)

 = M−1Q⋆
t ,

where M is the conversion matrix defined in (8), and the vector Q⋆
t has K elements:

Q⋆
kt = Qo

kt −
(
ψ̄t+1 (1) δ̄t+1 (1) + ρt+1

)
no
kt

Dividing by employment in rank class k and using nt = M−1no
t we thus obtain

sλt+1

∫ Xk

Xk−1

F t+1 (x)
dNt (x)

nkt

=
Q⋆

kt

nkt

. (9)

This equation highlights the importance of introducing misclassification in our JOLTS data.

The l.h.s. of (9) is the conditional expectation of F t+1 (x) within rank class k; the r.h.s. is

a measure of the rate of job-to-job quits from the size class that are motivated by better

offers. The job-ladder model predicts unambiguously that both sides of the equation should

be decreasing in size class k: larger employers are ranked higher and have an easier time

retaining employees. Because ψ̄t+1 (1) δ̄t+1 (1) + ρt+1 is constant across size classes k, this

requires total quits to decline in k. In the JOLTS data by establishment size, which is split

into six size classes, the observed quit rate, Qo
kt/n

o
kt actually increases between size classes

k = 1 and k = 2 in all months, and often during the sample period also between k = 2 and

k = 3. We reconcile some of these observations with the job ladder by allowing some of the

small establishments to be part of very large firms.
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4.6 Implementation: Summary

For given reallocation shock arrival rate ρλt, search efficiency s and misclassification weights

M, using observations on employment stocks and total quits by size class, we can calculate

Q⋆
kt, and the cumulated sampling probabilities at size cutoffs F t (Xk) from (5) (using nt =

M−1no
t ). We then look for values of ρt, s, and M that minimize the distance between both

sides of (9) over the entire sample period.20 Therefore, by construction the only worker

flow that our model can miss to replicate exactly are job-to-job quits by size of the current

employer. This final stage of our calibration protocol thus uses 3K + 2 parameters (the 3K

independent entries of M plus ρ and s) to match a number of moments which is equal to K

times the number of months in our sample (the K moments in (9) in each month). With

K = 4 size classes, this adds up to 14 parameters and 560 moments.

5 Results

We find that no sensible misclassification scheme can easily remedy the basic fact that

the total quit rate, to non-employment and to other establishments, originating from the

smallest establishment size class in JOLTS, “1-9 employees”, is significantly lower than that

from the second-largest class, “10-49 employees”. In the data, it appears that a large group

of small establishments have unexpectedly (based on the job-ladder model) low rates of

attrition; therefore, their size is not an accurate reflection of their rank or desirability. The

reason may be that small employers are largely of a different nature than larger one, and

more likely to “break ranks” and not comply with the job ladder. For example, these small

establishments may be young and growing and not have joined yet their long-run size class.21

At the other end, the largest class of establishments with more than 5,000 employees has a

very small sample size in JOLTS and is therefore somewhat noisy.

For both reasons, to calibrate the model we aggregate size of JOLTS establishments into

K = 4 classes: 1-49, 50-249, 250-999, and at least 1,000 employees. This partition, albeit

coarser, still allows for significant heterogeneity, and can be fitted quite well by the job-ladder

model. While we acknowledge the simple job ladder model’s inability to accurately describe

quits at the lower end of the size distribution as an unambiguous failure of the model, we still

argue that this model, given its parsimony, does a remarkable job of simultaneously fitting

20In so doing, we add a penalty term to the criterion that we minimize (the norm of the difference between
the two sides of (9)) to avoid large values of ρt that would imply negative corrected net quits Q⋆

kt at some
dates, for the highest productivity class K.

21As a manifestation of a similar phenomenon in the Danish matched employer-employee dataset IDA,
the wage-size relationship is monotonically increasing except at the very beginning, as very small firms pay
higher wages than slightly larger ones. We thank our discussant Rasmus Lentz for pointing out this parallel.
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Size Job ladder rank class k
range 1 2 3 4

1-49 0.977 0.000 0.000 0.651
M 50-249 0.023 0.846 0.000 0.000

250-999 0.000 0.154 1.000 0.000
1,000 plus 0.000 0.000 0.000 0.349

ρ 0.0145 Sample mean of ρλt = 0.0021
s 0.2034 Sample mean of sλt = 0.0300

Table 1: Parameter estimates

the level and cyclicality of both gross and net unemployment flows by four, very different

size classes.

5.1 Calibration Results

Estimates of the various rates of separation into non-employment and of the job finding rate

were already shown in Sub-sections 4.2 and 4.3, respectively. Here we report estimates of the

remaining scalar parameters, namely the relative intensity of reallocation shocks ρ = ρt/λt

and search by employed workers s, and the conversion matrix M, i.e. the misclassification

weights mk|k′ , (k, k
′) ∈ {1, · · · , K}2. All those values are gathered in Table 1.

The misclassification weights in Table 1 suggest that high-rank establishments (from

class K = 4) have the largest (.65) probability of being misclassified, and almost always

mistaken for establishments from size class 1 (1-49 employees). Apart from rank class 4,

the estimated conversion matrix M has most of its weight on the diagonal, suggesting that

misclassification is less of an issue for low to intermediate rank levels (classes k = 1 to 3).

This finding is consistent with an interpretation of misclassification as arising primarily from

the establishment/firm distinction, as some very productive — and large — firms are split

into many small establishments, very often no larger than 50 employees. The calibrated

matrix M places some small weight on the subdiagonal, meaning that some establishments

are actually seen as larger than their productivity would warrant under the job ladder

assumption. We interpret this as a consequence of transitory noise or measurement error in

establishment size: for example, an establishment whose long-run size is, say, 248 (and thus

would normally belong to size class 2), can temporarily be seen reaching a size slightly above

250, and thus be misclassified into size class 3 (recall that JOLTS assigns establishments to

size classes according to the largest size achieved over the 12 months prior to sampling).22

22To adhere more strictly to the large firms/small establishments interpretation, we can also calibrate
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The relative search intensity of employed workers is calibrated at s = 0.203, a value which

is in the region of typical estimates based on worker micro data. This puts the sample mean

monthly probability of receiving an outside offer to 0.03. Finally, the reallocation shock

intensity is estimated to equal ρ = 0.0145. This value may seem small when compared, for

instance, to the value of s, however it still implies that the share of EE transitions that are

forced reallocations (as opposed to voluntary transitions), is about a half (49.7% on average).

This share is calculated as the sample mean of

ρλtNt (1)

ρλtNt (1) + sλt
∫ 1

0
F (x) dNt (x)

.

The relatively large value of this share, given the relatively high odds of receiving an outside

offer vs. a reallocation shock (s:ρ is about 14:1), indicates that many offers are rejected by

employed workers. This, in turn, is a consequence of the fact that the sampling distribution

of productive types Ft (·) is skewed toward the lower end of its support. We now turn to the

analysis of that distribution, and the corresponding EE quit patterns.

5.2 Establishment sampling probabilities and quit patterns

Figure 13 plots the r.h.s. of (9), namely the estimated values of sλt+1F (Xk), for k = 1, · · · , 4
(solid lines), together with the l.h.s. of (9), Q⋆

kt/nkt (dashed lines), thus offering a pictorial

assessment of the job ladder’s capacity to fit the quit patterns by establishment size observed

in the JOLTS sample. Figure 14 further plots the estimated sampling c.d.f. F (Xk) for

k = 1, · · · , 4 (solid lines), together with F JOLTS (Xk) (dashed lines), the empirical c.d.f. of

job openings, directly taken from the JOLTS data, corrected for misclassification using the

probabilities and weights as explained earlier in this section. The vertical dotted lines in

Figure 14 indicate JOLTS re-sampling dates.

We can see in Figure 13 that our calibration ensures that the sampling distribution con-

structed by fitting the RPE dynamic Equation (5) to net employment flow data from JOLTS

is by and large consistent with the gross flow data on job-to-job quits by establishment size

over the period covered by JOLTS. Although the data exhibit a slight downward trend in the

job-to-job quit rates of the highest two rank classes (3 and 4) which the model fails to fully

capture, we still conclude that the model, including its correction for the misclassification

of employers into size classes, offers a remarkably good description of this data, especially

considering its parsimony. In particular, EE transition rates, once corrected for misclassifi-

cation, are indeed neatly ordered by rank class, as predicted by the job ladder model. We

stress that this outcome was not at all guaranteed ex-ante.

the model imposing that M be upper-triangular. Imposing this constraint only affects the model fit very
marginally, and produces visually identical results (available upon request).
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Fig. 14: The sampling distribution.

k=1

k=2

k=3

k=4

.5
.7

.9
1.

1
1.

3
1.

5
1.

7
1.

9
2.

1
 

20
01

m
1

20
03

m
1

20
05

m
1

20
07

m
1

20
09

m
1

20
11

m
1

20
13

m
1

 
Shaded areas indicate NBER contractions. All series normalized at 1 in 01/2001.
Source: JOLTS, CPS, CEW and authors’ calculations.

Fig. 15: Calibrated average class vacancy weights, normalized 01/2001 = 1.
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A further striking lesson from Figure 13 is that job-to-job exit rates from all but the

highest rank class declined sharply during the GR, especially at the lower end, and remained

low thereafter. Again, our simple job ladder model captures this pattern well, albeit with a

slight lag for the lowest rank class, k = 1. This is one of our central findings: the GR was

a time when job-to-job quit rates declined sharply, not only in the aggregate as was already

known, but especially from smaller, less productive employers. Because these are always the

main source of job-to-job reallocation, we conclude that workers almost stopped climbing

the job ladder during the GR, and the recovery was almost absent.

Looking more closely at the calibrated sampling distribution (Figure 14), we first see that

the empirical distribution of job openings, F JOLTS (·), vastly underestimates our calibrated

Ft (·) for all rank classes, but more severely so at the lower end of the job ladder. This is

(qualitatively) consistent with the findings of Davis, Faberman and Haltiwanger (2010), who

report that 41.6 percent of all hires occur at establishments with zero posted job opening in

the micro data underlying JOLTS, with that proportion ranging from 76.9 percent for the

small JOLTS size class down to roughly 7 percent for our largest size class. Second, there is

a very slight upward time trend in the sampling distribution at all cutoff points Xk.
23 This

is consistent with the empirical observation that the average size of US establishments has

declined over recent decades, while that of the average firm has increased, so misclassification

in the sense that affects our data has arguably become worse.

Finally, Figure 15 shows the model counterpart of what we called average vacancy weights

in our description of the data (Section 2), i.e. the sampling probabilities divided by the

number of employers in each class,24 normalized to one in January 2001 to harmonize scales.25

This is a measure of hiring effort by each employer per size class, relative to the aggregate

hiring effort. We can clearly see that, as the financial crisis unfolded, hiring effort by each

employer rose in relative terms at the bottom of the size of the distribution, and fell at the

top. This is a symptom of a failing job ladder by employer size. Comparing Figure 15 to its

empirical counterpart based on JOLTS vacancies (Fig. 9), we see that our sampling weights

are estimated to differ at the top of the size distribution from the JOLTS vacancy weights.

In this sense, the model provides an important filter to the data.

23A linear time trend is found positive and statistically significant for all k in both Ft+1 (Xk) and
F JOLTS
t+1 (Xk).
24Consistently with our procedure to correct for misclassification, we use the number of establishments in

each size class in QCEW, corrected for misclassification using the conversion matrix M, as our measure of
the number of employers in each size class.

25The non-rescaled series, available on request, are nicely increasing with size class. This tallies with the
prediction of the dynamic job ladder model, according to which larger employers post more vacancies (see
MPV13).
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5.3 Discussion

We now take stock of our results. Figure 15 indicates that during both the 2001 recession

and the first half of the 2008 recession the vacancy weights and sampling probabilities of

high-rank employers increased, while those of low-rank employers stayed flat or even declined.

This fact in itself is striking in the light of MPV12’s finding that recessions are typically times

when small (or low-rank) employers are growing relative to large ones. It also suggests that

the vacancy yield of small employers must have increased by much more than that of large

ones during those recessions, a hypothesis that finds some support in the raw data (Figure

10). Perhaps even more striking is the sudden reversal of this pattern at the end of 2008,

immediately after the Lehman Brothers episode: at that point, the sampling probability of

the high-rank class collapsed, while that of the lowest-rank class soared, in relative terms.

This, combined with a very low baseline job finding rate λt (Figure 12) suggests that at

that point high-rank firms froze their demand for new labor, and that whatever little hiring

took place happened at the lower-rank end of the population of employers. This is indeed

what we observe when examining JOLTS hire rates by employer size after reclassifications.

Even more than in the raw data (Figure 2), hire rates rise sharply and temporarily at the

lower end of the size distribution, while upgrading to better jobs slow down considerably,

as evidenced by the durably low EE quit rates that ensued (Figure 13). In short, the job

ladder failed, starting from the upper rungs.

Reclassification does not change, and if anything reinforces, the qualitative time series

pattern of layoffs by establishment size that we found in the raw data (Figure 3). Layoffs

significantly contributed to the increase in unemployment during the GR, but the persistence

of high unemployment in the four years after the end of the GR is entirely accounted for by the

failure of job finding rates to recover and the persistent increase in unemployment duration.

After reclassifying establishments into rank classes so as to fit the job ladder model, the

spike in layoff rates is much sharper among low-rank employers. The contemporaneous shift

in sampling weights towards the bottom of the size distribution that we documented earlier

suggests that the employers that were least affected by the GR, especially after September

2008, took advantage of rising unemployment to hire; because in the job ladder model each

low-rank employer is more dependent on the reservoir of unemployed, it responded more,

i.e. cut its vacancies by less. In addition, recall that the job ladder has a hard time fitting

the raw data at the very low end of the size distribution, as quit rates from very small

establishments are low relative to those in the two subsequent size classes. This observation

suggests very significant heterogeneity among small establishments. Some are small because

unproductive. Others are temporarily small but very productive and attractive because still

growing. Indeed, Fort, Haltiwanger, Jarmin, and Miranda (2012) draw a sharp distinction
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between the cyclical dynamics of net employment growth at young and old small firms, in

Census data that break down net employment flows by age and size, but lack information

on gross workers flows. So it appears that the small class as a whole shed much more

employment by actively laying workers off, but also hired more by taking advantage of high

unemployment and the dynamism of young employers.

To summarize: during the GR all employers temporarily raised their layoff rates, expe-

rienced slower attrition, and reduced their vacancy postings and hire rates; small employers

laid off more and simultaneously reduced less their hiring effort, even hired more, but also

experienced more of the decline in job-to-job quits, because hiring effort and hires at the top

almost vanished; the job ladder slowed down at the bottom and almost stopped at the top.

We can briefly speculate on the reasons behind these events. One distinguishing feature

of the GR, relative to previous recessions, was the credit crunch in late 2008 and early 2009.

After the financial crisis erupted, businesses, especially small ones, suddenly found difficult to

secure working capital to cover payroll at the end of each month, while they also experienced

sharply falling attrition through quits to other employers and nonemployment, so they had to

actively reduce their workforce through layoffs. The contemporaneous reduction in vacancy

postings that affected disproportionately large employers does not support more traditional

theories of credit constraints, where firms, especially small ones, have a hard time securing

new financing to invest and to create new jobs.

6 Conclusions

We study labor reallocation, both through unemployment and directly from job to job,

across employers of different productivities. We focus on the US economy around the Great

Recession. In order to impose structure on our empirical investigation, we formulate a

dynamic job-ladder model, where employers that are ranked more highly by workers, for

example because higher-paying, spend more hiring effort and, conditional on contacting

another worker, are more likely to succeed in hiring. As a consequence, an employer’s size

is a relevant proxy for rank. We use newly available monthly time series from JOLTS on

employment net and gross flows by size of the establishment. We find that our parsimonious

turnover model of a dynamic job ladder fits the facts well, and implies “true” vacancy

postings by size that are more in line with gross flows and intuition than JOLTS’ measures

of vacancies, previously criticized by other authors. Our main finding is that the job ladder

stopped working in the GR and is yet to fully resume. Job-to-job quits, especially from

the bottom of the size/rank distribution, collapsed, further reducing voluntary attrition and

thus the incentives of small employers to post vacancies and to hire unemployed workers.
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Appendix

A Additional descriptive evidence

A.1 The wage-size job ladder

It has been long documented that employer size correlates positively with wage rates, after

controlling for observable worker characteristics (Brown and Medoff, 1989). In this paper

we focus on employer-level data and take the extreme view that workforce quality is homo-

geneous across employer sizes, so that any wage differential related to size can be thought

of as a wage premium. This is in the spirit of the model we presented earlier. If wage/size

differentials reflected entirely different types of workers at employers of different sizes, we

would still have to explain why workers sort by the size of their employer.

For establishments, we draw information from QCEW. Information is also published at

annual frequency (covering the first quarter of the year) by establishment size, in one of ten

size classes, with lower bounds 1, 5, 10, 20, 50, 100, 250, 500, and 1,000 employees.26 From

this we draw the distribution of establishment counts, employment and weekly earnings per

worker, all averaged over the first quarter of the year, by establishment size, for each year

from 1990 to 2012 included, for the U.S. and all industries combined.27

Table 2 reports the results of an establishment-level OLS regression of earnings per worker

on size and other establishment characteristics. The dependent variable is a measure of

real weekly earnings, the ratio between CPI-deflated total quarterly payroll and average

employment among all establishments in the “cell”, for each year from 1990 to 2012 included.

The cell depends on the specification, and is indicated by which dummies we include among

the covariates. So the dependent variable varies across specifications, which are not directly

comparable. Size dummies and year dummies are always included. In specification II, each

cell includes all establishments in the same size class and 2-digit NAICS industry. In III,

each cell includes all establishments in the same size class, 2-digit NAICS industry, and

located in the same US state. And so on. Information on geographic location is available

only at the 2-digit industry level, due to potential disclosure risk. The regression is weighted

by the number of establishments per cell. The results clearly indicate a wage ladder, except

26http:// www.bls.gov/cew/cewsize.htm accessed 2/23/2013.
27For earnings at the national level, all industries, we find two outliers, possibly the result of some coding

error in collating the semi-aggregated data, in size class “10-19 employees” in year 1999 and in size class
“1,000 employees and up” in 1995. We replace those two values of earnings with the average of the entries
in adjacent years for the same size class. Although this averaging introduces measurement error, the year-
over-year changes implied by the BLS original entries differ from all the rest of the sample by two orders of
magnitude.
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Establishment size class I II III IV V
1 to 4 (omitted)
5 to 9 −27.62

(0.001)
−17.01
(0.01)

5.59
(0.02)

−24.83
(0.008)

5.93
(0.02)

10 to 19 −13.62
(0.001)

−4.02
(0.01)

27.04
(0.03)

−8.04
(0.01)

34.82
(0.02)

20 to 49 3.80
(0.002)

23.45
(0.01)

50.05
(0.03)

5.70
(0.01)

52.37
(0.03)

50 to 99 28.61
(0.003)

38.38
(0.02)

64.23
(0.05)

29.81
(0.02)

68.96
(0.05)

100 to 249 55.22
(0.004)

48.12
(0.03)

73.24
(0.07)

55.15
(0.02)

81.47
(0.06)

250 to 499 101.94
(0.009)

76.23
(0.06)

88.30
(0.15)

102.19
(0.05)

82.21
(0.13)

500 to 999 158.14
(0.014)

112.73
(0.10)

95.43
(0.27)

156.93
(0.08)

70.93
(0.22)

1000 and up 272.12
(0.02)

226.22
(0.14)

174.40
0.38

263.51
(0.12)

131.98
(0.31)

industry dummies N 2-digit 2-digit N 5-digit
state dummies N N Y Y N
R2 0.94 0.87 0.56 0.60 0.78

Source: QCEW and authors’ calculations. Dependent variable: average weekly

earnings per worker in each establishment (1983$). Standard errors in parentheses.

All regressions include year dummies.

Table 2: The wage-size premium.

at the very bottom when not controlling for industry and location. Because average weekly

earnings in the omitted (smallest) size class are about $330, top-to-bottom pay differentials

between largest and smallest establishments are in the order of 80% in specification I, and

lower when controlling for industry and location. Employer-level TFP in our model may be

in part a result of the industry in which the employer operates, so controlling for industry

composition may not be appropriate.

For firms, the Statistics of US Businesses (SUSB) program at the Bureau of the Census

publishes annual data on total employment, payroll and (every five years) receipts by firm

size, disaggregated in 17-20 size categories, from 1992 to 2010, 2004 excluded (the size

classification is coarser in 1992-1993). The Census defines a firm by grouping establishments

by legal form and control structure. Figure 16 reports evidence from the SUSB on wage/size

premia at the firm level. We take total annual payroll per worker for each size class, divide

by that of the smallest class 1-4 employees, and subtract one. We omit the size class ‘0’

employees, which includes entrants, because it reports payroll but not employment. The

results speak for themselves. The wage differential between the largest and smallest firms

is less than 50%, significantly smaller than or establishments, also taking into account that

the largest firm size class starts at the higher 1,500 employees cutoff. As we will discuss
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Fig. 16: Wage differential with respect to firms of size 1-4 employees.

later in more detail, this may be due to the fact that large firms that only comprise large

establishments may be the highest-paying of all. So, when combining them with equally

large multi-establishment firms, their average pay premium declines.

A.2 Employment and establishment shares by size class

Figure 17 illustrates that employment shares by size of the establishment in QCEW are

relatively stable over time, but do exhibit the cyclical pattern documented by MPV12 for

firms; namely, the share of larger employers declines in the three recessions in the sample

period. The GR is no exception.28

Our empirical exercise is based on the assumptions that the distribution of employers

by rank in worker preferences is time-invariant and coincides with their distribution by size.

28We can draw the same information on employment shares by firm size, at a finer degree of size classifi-
cation, from two BLS datasets, where a firm is identified by a federal tax Employer Identification Number
(EIN). First, the Business Employment Dynamics (BED) program collects information on job flows and
stocks, from the same QCEW universe, at quarterly frequency starting in 1992, and presents them by size of
the parent company. Second, the Current Employment Statistics (CES) program is the well-known monthly
“pay-roll survey” of about 145,000 businesses and government agencies from the QCEW frame, representing
approximately 557,000 individual work sites. The survey provides timely and detailed industry data on
employment, hours, and earnings of workers on nonfarm payrolls. In both datasets, once again, the share of
employment at small firms is countercyclical. In the GR, it rose especially in the second, deeper half of the
downturn. Results are available upon request.
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Fig. 17: Employment shares by establishment size class.
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Shaded areas indicate NBER contractions.
Source: CEW.
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Fig. 18: Shares of establishments by establishment size class.
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One implication of this assumption is that the distribution of establishment counts by size

classes should be relatively stable at business cycle frequencies. This is true in JOLTS size

data by construction of the dataset, so the identity of the establishments is fixed, at least

within each sampling year typically March to February. Across years, Figure 18 illustrates

these shares in QCEW, which is the frame from which JOLTS is drawn. Shares are in log

scale to make them visible, because the distribution of establishment counts is much more

compressed at the low end. We can see a very modest trend and cyclical component. By

and large, the distribution of establishment counts is stable, much more so than that of

employment.
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