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1 Introduction

The Phillips curve—the relationship between inflation and fluctuations in economic activity—is a

central building block of economic models that allow for nominal rigidities and are relied upon by

central banks around the world to gauge cyclical inflationary pressures. The lack of deflationary

pressures during the Great Recession and, more recently, the apparent lack of inflationary pressures

during the recovery have brought into the forefront the question of whether this relationship still

exists in the data.1 More generally, the fact that inflation appears to have become less responsive

to fluctuations in output in employment during the past couple of decades has been documented

for the United States by Roberts (2006); this so-called flattening of the Phillips curve appears to

have occurred in other advanced economies as well (see Beaudry and Doyle (2000) for Canada and

Kuttner and Robinson (2010) for Australia, for example).

Reasons for the apparent attenuation of the relationship between inflation and resource utiliza-

tion are often linked to the rise in globalization, an increase in the cross-border movement of goods,

services, technology, labor, and capital since the 1990s. The resulting greater openness of national

economies implies that a greater share of an increase in domestic demand is satisfied through im-

ports, rather than domestic production. In turn, this implies than an increase in the output gap will

have a smaller effect on domestic marginal costs, thereby reducing the responsiveness of domestic

inflation to changes in economic slack. Increased international trade also gives rise to a common

component for inputs such as commodities, implying that local costs—and hence prices—become

less sensitive to domestic economic conditions. Increased openness of labor markets should also

diminish the link between inflation and economic activity at the local level.2

Although prominent in recent policy discussions, the evidence in favor of a weakening in the

relationship between inflation and economic activity is mixed. Ball (2006) argues that there is

no evidence to suggest that increased trade and globalization attenuates the relationship between

inflation and economic slack. Forbes (2018), on the other hand, shows that global factors play a

more prominent role in determining U.S. inflation outcomes, but that global factors are primarily

linked to the food and energy component of consumer prices and play a diminished, rather than an

increased, role in explaining movements in the core measures of consumer price inflation. Notably,

neither of these studies provides direct evidence on how trade exposure—a commonly used proxy for

globalization—influences the relationship between inflation and fluctuations in economic activity.

In this paper, we re-examine these issues using both U.S. aggregate data on measures of inflation

and economic slack and a rich panel data set containing producer prices, wages, output, and

employment at a narrowly defined industry level. Industries in our data set are defined at the

6-digit North American Industry Classification System (NAICS) level, and the data on prices and

output serve as the basis for the construction of the U.S. producer price index published by the

1Recent work that studies the unusual inflation dynamics during the Great Recession and its aftermath in the
United States and other advanced economies includes Stock and Watson (2010b), Ball and Mazumder (2011, 2018),
Gordon (2013), Friedrich (2016), Berganza et al. (2016), Miles et al. (2017), and Blanchard (2018).

2See Bernanke (2007) for an overview of the various channels through which ongoing global economic integration
can affect inflation dynamics.
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Bureau of Labor Statistics and the industrial production index published by the Federal Reserve

Board. We also measure trade exposure at the industry level—albeit at a somewhat coarser level of

aggregation (i.e., 4-digit NAICS)—using information on exports, imports, and value-added output.

Linking these trade exposures to industry-level prices, wages, employment, and production allows

us to directly determine the extent to which the response of inflation to fluctuations in output

differs systematically across industries that are more or less exposed to international trade.

We begin our analysis by examining the time-series relationship between inflation and economic

activity. We first document that the negative relationship between aggregate inflation—at both the

producer and consumer levels—and economic slack occurs primarily in economic booms. During

downturns, by contrast, this relationship effectively disappears in both economic and statistical

terms. Thus rising marginal costs during expansions appear to fuel inflation, whereas the emergence

of economic slack during downturns by and large puts very little downward pressure on inflation.

These findings alone may be one reason for the disparate views on the likely effect of fluctuations

in economic activity on the cyclical behavior of inflation.

We then consider the extent to which the relationship between inflation and economic activity

has evolved over time. We do this by estimating the sensitivity of both producer and consumer price

inflation to economic slack using 15-year rolling-window regressions, starting in the early 1960s. We

document that this relationship has indeed weakened substantially over the past 50 years or so—the

response of inflation to economic slack has fallen by a factor of two over this time period. These

findings are robust to using both headline inflation measures, as well as core measures of inflation

that remove the direct influence of swings in food and energy prices. They are also robust to

measuring economic slack using alternative concepts such as the output gap or the unemployment

gap.

We next consider the responsiveness of inflation to economic activity at the industry level. In this

analysis, we exploit the rich cross-sectional dimension of our data and can directly control for the

common aggregate component driving both inflation and output. We again find that fluctuations in

output are an important determinant of inflation—indeed, the estimated response of industry-level

inflation to variation in industry-level output is very similar to that obtained from aggregate time-

series data over comparable sample periods. One key difference between our aggregate time-series

and industry-level findings is that inflation at the industry level is more responsive to movements

in output during downturns than during expansions.

Using both the industry-level and aggregate time-series data, we then examine the extent to

which an increase in trade exposure has altered the response of inflation to fluctuations in economic

activity. Here again our findings are consistent across both aggregate and industry-level data. In

the time-series, the rising exposure of the U.S. economy to international trade can indeed explain a

significant fraction of the overall decline in responsiveness of aggregate inflation to economic slack.

This result is buttressed by our cross-sectional evidence, which shows that increased trade exposure

attenuates the response of inflation to fluctuations in output across industries.

The analysis discussed above, however, does not directly determine the causal impact of fluctu-
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ations in economic activity on inflation. While demand shocks typically move inflation and output

in the same direction, supply shocks have the opposite effect. Thus any attenuation in the observed

response of inflation to output may be due to changes in the mixture of demand and supply shocks

that the U.S. economy has experienced over our sample period. To address this issue, we examine

the effect of identified shocks to both aggregate demand and supply on industry-level outcomes. In

this exercise, we are explicitly interested in the extent to which the intensity of trade exposure at

the industry level alters the responsiveness of inflation to such aggregate shocks.

Given the high dimensionality of our industry-level data, we consider the dynamic effects of

identified aggregate demand and supply shocks using a Factor-Augmented Vector Autoregression

(FAVAR) model, whereby the information contained in the large panel of industries is summarized

by a small subset of common factors. Using this framework, we study how shocks to broad financial

conditions (i.e., aggregate demand shocks) and shocks to commodity prices (i.e., aggregate supply

shocks) affect the dynamics of price and wage inflation, output, and employment at the industry

level. We focus on these two aggregate disturbances because we view them as readily identified from

economic and financial time-series data; moreover, these two sources of business cycle fluctuations

account for a sizable fraction of the variability in output and inflation over the past 30 years.

Using the FAVAR approach, we first document that a tightening in broad financial conditions

causes a significant decline in price and wage inflation, as well as in output and employment growth

across all industries. Thus financial shocks deliver the positive comovement between inflation and

output that is typically associated with shocks to aggregate demand. In contrast, commodity

price shocks cause sharp increases in inflation and a significant reduction in economic activity, as

measured by the growth of output. Again, these effects are widespread across industries.

Within the FAVAR framework, we then examine the extent to which responses of inflation

and output to these two shocks differ across industries based on their trade exposure. Our results

indicate that industries with a high trade exposure exhibit a substantially smaller response of

inflation to movements in output induced by the unanticipated changes in broad financial conditions

and to movements in output induced by shocks to commodity prices, relative to industries with

a low trade exposure. This differential dynamics occur despite the fact that the effect of such

shocks on economic activity is virtually identical across these two industrial groupings. Translated

into the movement of inflation—relative to output—our results imply that in response to such

shocks, inflation is three times more responsive to changes in output for industries with a low trade

exposure, compared with industries with a high trade exposure. These findings further support

the argument that trade exposure attenuates the link between inflation and economic activity and

that increased trade exposure is indeed a likely source of the reduced responsiveness of aggregate

inflation to economic slack.

The remainder of the paper is organized as follows follows. Section 2 considers the aggregate

time-series relationship between inflation and economic activity and documents its evolution over

time. Section 3 explores the relationship between inflation and economic activity using industry-

level data and documents the extent to which differences in trade exposure across industries affect
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this relationship. Section 4 provides the FAVAR analysis, which shows how industry-level variables

respond to both financial and commodity price shocks, as well as the extent to which these responses

differ across industries depending on their exposure to international trade. And lastly, Section 5

concludes.

2 Aggregate Phillips Curve

In this section, we establish some stylized facts about the relationship between inflation and eco-

nomic slack using aggregate time-series data. While the vast literature on this topic has focused

largely on consumer price inflation, we analyze inflation dynamics at both the producer and con-

sumer levels; the focus on the former is especially important because movements in producer prices

directly capture the price response of production units to changes in the underlying economic condi-

tions.3 The solid line in Panel A of Figure 1 shows the behavior of prices received by U.S. producers

for their output, measured by the four-quarter percent change in the Producer Price Index (PPI)

for final demand, while the solid line in Panel B shows the four-quarter percent change in the

Consumer Price Index (CPI), a measure of prices paid by urban consumers for a market basket of

consumer goods and services; the dotted lines in each panel show the corresponding core inflation,

which strips out from headline each price index items belonging to the food or energy categories.4

Clearly evident in the data are several distinct inflation regimes. First the 1970s, a period of

high and volatile inflation that early on was influenced importantly by the OPEC-induced increases

in oil prices (Hamilton, 1983, 2003) and later by the Federal Reserve’s overly optimistic view of

the natural rate of unemployment (Orphanides and Williams, 2013). The early 1980s, in contrast,

were marked by a gradual step-down in inflation reflecting the tightening of monetary policy under

Chairman Volcker, who was determined to fight inflation and reverse the rise in inflation expecta-

tions (Lindsey et al., 2005). Since the mid-1980s, inflation—at both the producer and consumer

levels—has stabilized in the narrow range between two and 2.5 percent, a pattern consistent with

the well-anchored inflation expectations engendered by credible monetary policy, aimed at achieving

its so-called dual mandate.5

A striking way to illustrate how inflation is unresponsive to fluctuations in economic activity—

in other words, how flat is the Phillips curve—is to focus on economic downturns. To that end,

Figure 2 examines the relationship between inflation and economic activity during the the past

five recessions, downturns in which supply-side disturbances—which cause inflation and economic

3It is worth noting that the frequency of price changes in the narrow-item categories that are both in the con-
sumer and producer micro-level price data sets collected by the Bureau of Labor Statistics are highly correlated (see
Nakamura and Steinsson, 2008).

4Each quarterly price index is constructed as a simple average of the monthly (seasonally adjusted) index values,
and four-quarter percent changes are computed as 100 times the four-quarter log-difference of the specified series. In
addition, while we use the CPI to measure inflation at the consumer level, all the results reported below are robust
to using the personal consumption expenditure (PCE) price index to track the change in prices of goods and services
purchased by the U.S. consumers throughout the economy.

5The Full Employment and Balanced Growth Act of 1978—more commonly known as the Humprey-Hawkins
Act—established price stability and full employment as national economic policy objectives.
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Figure 1: Producer and Consumer Price Inflation
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Note: All price indexes are seasonally adjusted. The shaded vertical bars denote the NBER-dated recessions.
Source: Bureau of Labor Statistics.

activity to move in opposite directions—were arguably not the dominant factors. The first three

panels of the figure depict the behavior of detrended prices two years before and three years after

each NBER-dated cyclical peak since the early 1980s; the bottom right panel, by contrast, shows

the corresponding dynamics of detrended real GDP, a simple measure of economic slack.

As shown in the top two panels, with the exception of the 2001 recession, producer prices showed

virtually no deceleration during the past five economic downturns, relative to their trends. And

even during the bursting of the tech bubble in 2001, the decline in both the headline and core PPI
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Figure 2: Inflation and Output in Recessions
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Note: The panels depict the behavior of various price measures and real GDP eight quarters before and 12 quarters
after the specified NBER-dated cyclical peak. All series are plotted as deviations from their respective stochastic
trends, estimated using the Hamilton (2017) filter.
Source: Authors’ calculations using data from the Bureau of Economic Analysis; Bureau of Labor Statistics; and
Federal Reserve Board.

is due entirely to the plunge in producer prices in the immediate aftermath of the September 11

terrorist attacks—in October 2001, the Bureau of Labor Statistics reported that the PPI dropped

almost 20 percent at an annual rate.6 As shown in the bottom left panel, the resilience of inflation

in response to the emergence of substantial economic slack is also evident at the consumer level.

6It is also worth noting that the sharp increase in commodity prices prompted by the First Gulf War confounds
the behavior of PPI inflation during the 1990 recession to some extent.
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At the same time, as shown in the bottom right panel, real GDP declined markedly—relative to

its trend—during these five episodes.

2.1 Baseline Estimates

To investigate more formally how the relationship between inflation and fluctuations in economic

activity may have changed over time, we begin by estimating a standard Phillips curve specification,

which expresses inflation as a linear function of expected inflation and a measure of economic slack.

Specifically, letting lower-case variables denote variables in logarithms and defining ∆hxt+h =
400

h
(xt+h − xt), we estimate the following Phillips curve specification:

∆h+1pt+h = µ+ λgapt +
4

∑

s=1

φs∆pt−s + ǫt+h, (1)

where pt denotes the logarithm of a price index (i.e., PPI or CPI) and gapt is a measure of economic

slack, a degree of resource over- or under-utilization. Thus equation (1) posits a relationship between

(annualized) inflation from quarter t−1 to quarter t+h and a measure of economic slack in quarter t,

while the lags of inflation ∆pt−s, s = 1, . . . , 4, are a proxy for expected inflation (see Gordon, 1982;

Stock and Watson, 2009).7 In this canonical formulation, the error term ǫt+h encompasses cost-

push shocks—shock to commodity prices, for example—which are assumed to be uncorrelated with

the contemporaneous economic slack.

Figure 3 shows two measures of economic slack used in our analysis: the output gap and the

unemployment gap. The output gap, denoted by [yt−y∗t ] is defined as (100 times) the logarithm of

the ratio of real GDP to its estimate of potential, while the unemployment gap, denoted by [Ut−U∗
t ],

corresponds to the unemployment rate less its estimate of the natural rate. The estimates of both

potential real GDP and the natural rate of unemployment are taken from the FRB/US model,

a large-scale estimated general equilibrium model of the U.S. economy that has been in use at

the Federal Reserve Board since 1996. While the definition of these two slack measures naturally

produces series of the opposite sign, they paint a very similar picture of cyclical resource utilization

over the last 50 years or so. One exception to this pattern has occurred during the past several

years, a period in which the unemployment rate has moved below its natural rate, whereas the real

GDP has yet to return to its potential.8

Table 1 present estimates of the coefficient λ for producer price inflation at horizons of one

and four quarters (i.e., h = 1, 4), with Panel A showing estimates of λ for headline PPI inflation

and Panel B showing estimates of λ for core PPI inflation; the corresponding estimates of λ for

consumer price inflation—both headline and core—are shown in Table 2.

7An alternative approach to using lagged values of inflation to capture expected inflation would be to use survey
measures of expected inflation. However, as documented by Mankiw et al. (2004), such survey measures do not
appear to be consistent with either rational expectations or adaptive expectations used in specification (1).

8Movements in the output gap can be interpreted as capturing fluctuations in real marginal cost, which micro-
founded models emphasize as a key determinant of inflation dynamics (see Roberts, 1995; Gaĺı and Gertler, 2000;
Gaĺı et al., 2001; Sbordone, 2002; Gaĺı et al., 2007).
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Figure 3: Economic Slack
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Source: Bureau of Economic Analysis; Bureau of Labor Statistics; and Federal Reserve Board.

According to the entries in Panel A of Table 1, fluctuations in economic slack have a significant

effect on the subsequent behavior of producer prices. A decrease in resource utilization of one

percentage point in quarter t—that is, a decline in the output gap or a rise in the unemployment

gap of that magnitude—is estimated to reduce annualized headline producer price inflation over

the next several quarters about 40 basis points. The corresponding estimates for core PPI inflation

shown in Panel B are about one-half as large as those reported in Panel A, though the estimates

are significant in both economic and statistical terms. As shown in Table 2, economic slack is also a

significant determinant of consumer price inflation. In that case, a decrease in resource utilization

of one percentage point is estimated to shave off about 25 basis points from annualized CPI inflation

over the subsequent few quarters.

As a first pass on the question of whether the relationship between economic slack and sub-

sequent inflation may have changed over the past 50 years or so, we report results of two tests.

The first is the well-known Andrews (1993) test of a structural break—at an unknown date—in

the coefficient λ. The second is the Elliott and Müller (2006) test of stability of the coefficient λ,

which encompasses diverse forms of parameter instability—from relatively rare (including a single

break) to frequent small breaks; persistent temporal parameter variation; and breaks occurring

with a regular pattern.9 This statistical analysis, however, yields a mixed picture. Turning first to

producer prices (Table 1), the Andrews (1993) test provides strong evidence of a structural break

9In both tests, the null hypothesis is that the coefficient λ is stable over the sample period. The alternative in the
Andrews (1993) test is that λ = λ1 for t = 1, 2, . . . , τ − 1 and λ = λ2 for t = τ, τ + 1, . . . T , where τ is the unknown
(single) break date. The alternative in the Elliott and Müller (2006) test is λ = λt, where the time variation in the
parameter λt is unspecified and can take on a variety of forms.
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Table 1: Phillips Curve – Producer Price Inflation

h = 1 h = 4

Explanatory Variables (1) (2) (3) (4)

A. Producer Prices

[yt − y∗t ] 0.356∗∗ . 0.414∗∗∗ .

(0.144) (0.153)
[Ut − U∗

t ] . −0.396∗ . −0.469∗

(0.238) (0.257)

Sum: inflation lagsa 0.578∗∗∗ 0.600∗∗∗ 0.470∗∗∗ 0.495∗∗∗

(0.113) (0.113) (0.093) (0.100)
supW b 15.185∗∗∗ 11.345∗∗ 33.370∗∗∗ 23.284∗∗∗

[81:Q2] [91:Q4] [80:Q3] [93:Q4]
qLL

c −6.230 −5.375 −5.297 −4.325
Adj. R2 0.360 0.333 0.392 0.343

B. Core Producer Prices

[yt − y∗t ] 0.186∗∗∗ . 0.223∗∗∗ .

(0.056) (0.067)
[Ut − U∗

t ] . −0.243∗∗ . −0.273∗∗

(0.105) (0.131)

Sum: inflation lagsa 0.776∗∗∗ 0.797∗∗∗ 0.730∗∗∗ 0.755∗∗∗

(0.071) (0.076) (0.071) (0.081)
supW b 21.278∗∗∗ 18.000∗∗∗ 70.033∗∗∗ 39.261∗∗∗

[81:Q4] [93:Q4] [81:Q4] [82:Q3]
qLL

c −9.554∗∗ −7.550∗ −6.304 −5.737
Adj. R2 0.743 0.725 0.760 0.727

Note: Sample: 1962:Q2 to 2017:Q4 for the headline PPI (Panel A); and 1974:Q1 to 2017:Q4 for the core PPI
(Panel B). The dependent variable in each Phillips curve specification is ∆h+1pt+h, the annualized log-difference in
the specified price index from date t−1 to date t+h. Explanatory variables: [yt−y∗

t ] = output gap; and [Ut−U∗
t ] =

unemployment gap. All specifications include a constant and lags 1, . . . , 4 of ∆pt (not reported) and are estimated
by OLS. Asymptotic standard errors reported in parentheses are computed according to Newey and West (1987)
with the “lag-length” parameter equal to four: * p < .10; ** p < .05; and *** p < .01.
a Sum of coefficients on ∆pt−s, s = 1, . . . , 4.
b The Andrews (1993) sup-Wald statistic of the null hypothesis that there is no structural break in the coefficient
on economic slack; the estimated break dates are reported in brackets below.
c The Elliott and Müller (2006) qLL statistic of the null hypothesis that the coefficient on economic slack is constant
over time.

in λ, with the point estimate of a break date generally falling in the early 1980s, a result consistent

with that of Roberts (2006). The evidence of parameter instability from the Elliott and Müller

(2006) test, in contrast, is considerably weaker. A similar picture emerges when we look at con-

sumer prices (Table 2). Here again, the Andrews (1993) test strongly suggest a structural break in

λ that occurred in the early 1980s, whereas the results from the Elliott and Müller (2006) test are

far less conclusive.

All told, the results reported in Tables 1 and 2 clearly indicate an important role—in both
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Table 2: Phillips Curve – Consumer Price Inflation

h = 1 h = 4

Explanatory Variables (1) (2) (3) (4)

A. Consumer Prices

[yt − y∗t ] 0.258∗∗∗ . 0.318∗∗∗ .

(0.075) (0.084)
[Ut − U∗

t ] . −0.321∗∗∗ . −0.380∗∗∗

(0.120) (0.128)

Sum: inflation lagsa 0.779∗∗∗ 0.795∗∗∗ 0.690∗∗∗ 0.709∗∗∗

(0.066) (0.070) (0.068) (0.077)
supW b 34.118∗∗∗ 28.008∗∗∗ 70.231∗∗∗ 44.548∗∗∗

[83:Q1] [83:Q2] [83:Q1] [83:Q1]
qLL

c −8.199∗ −6.892 −6.347 −4.986
Adj. R2 0.657 0.635 0.676 0.632

B. Core Consumers Prices

[yt − y∗t ] 0.176∗∗∗ . 0.265∗∗∗ .

(0.044) (0.060)
[Ut − U∗

t ] . −0.263∗∗∗ . −0.364∗∗∗

(0.079) (0.107)

Sum: inflation lagsa 0.868∗∗∗ 0.875∗∗∗ 0.787∗∗∗ 0.797∗∗∗

(0.056) (0.060) (0.065) (0.074)
supW b 38.828∗∗∗ 38.420∗∗∗ 112.255∗∗∗ 66.416∗∗∗

[83:Q1] [83:Q1] [83:Q1] [83:Q1]
qLL

c −8.639∗∗ −6.259 −7.278∗ −6.056
Adj. R2 0.802 0.794 0.778 0.750

Note: Sample: 1962:Q2 to 2017:Q4. The dependent variable in each Phillips curve specification is ∆h+1pt+h, the
annualized log-difference in the specified price index from date t−1 to date t+h. Explanatory variables: [yt−y∗

t ] =
output gap; and [Ut −U∗

t ] = unemployment gap. All specifications include a constant and lags 1, . . . , 4 of ∆pt (not
reported) and are estimated by OLS. Asymptotic standard errors reported in parentheses are computed according
to Newey and West (1987) with the “lag-length” parameter equal to four: * p < .10; ** p < .05; and *** p < .01.
a Sum of coefficients on ∆pt−s, s = 1, . . . , 4.
b The Andrews (1993) sup-Wald statistic of the null hypothesis that there is no structural break in the coefficient
on economic slack; the estimated break dates are reported in brackets below.
c The Elliott and Müller (2006) qLL statistic of the null hypothesis that the coefficient on economic slack is constant
over time.

economic and statistical terms—for economic slack as a determinant of cyclical inflation dynamics.

Nevertheless, empirical Phillips curves of the type given by equation (1) predicted a significantly

greater downward pressure on inflation—if not outright deflation—during the Great Recession

than was actually realized. Economists have advanced a number of hypotheses to explain this case

of “missing deflation.” A prominent hypothesis that received a lot of attention in policy circles

argues that the Federal Reserve’s credibility has led businesses and households to discount inflation

outcomes that fall outside the narrow range bracketing the Federal Open Market Committee’s
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inflation target of two percent; this anchoring of agents’ expectations has—through the standard

expectational effects—prevented actual inflation from falling significantly below that level (see

Bernanke, 2010; Yellen, 2013).

Another widely-cited hypothesis posits that the relevant measure of economic slack in empirical

Phillips curves is not the overall unemployment rate gap, but rather the short-term unemployment

rate.10 Compared with the former, this latter indicator of slack increased notably less during

the Great Recession and has also returned more quickly to its pre-recession levels, thus providing

substantially less deflationary impetus. And although it has proven difficult to identify structural

changes in the economy that could account for the diminished sensitivity of inflation to the level

of unemployment, a number of economists have singled out the apparent flattening of the Phillips

curve as an important reason for the fact that the U.S. economy did not experience a Fisherian

debt-deflation spiral during the 2008–2009 global financial crisis (see Ball and Mazumder, 2011;

Simon et al., 2013).11

In light of the results reported in Tables 1 and 2, it seems clear that a further investigation

in the time-varying nature of the relationship between inflation and economic slack is warranted.

However, before analyzing this question further, we document another important empirical feature

of the canonical Phillips curve relationship that could potentially account for the disparate views on

how fluctuations in economic activity affect inflation dynamics. In particular, we examine whether

the relationship between inflation and economic slack is, as suggested by equation (1), symmetric.

To do so, we estimate the following variant of the traditional Phillips curve:

∆h+1pt+h = µ+ λ1gap
(+)

t + λ2gap
(−)

t +

4
∑

s=1

φs∆pt−s + ǫt+h, (2)

where gap(+)

t denotes either a positive output or a positive unemployment gap and vice-versa for

gap(−)

t . In other words, the asymmetric Phillips curve specification (2) allows the sensitivity of

inflation to economic slack to differ between periods of resource over- and under-utilization.

To conserve space, we focus on the forecast horizon h = 4 when estimating specification (2),

though the results for the one-quarter horizon were virtually the same. Table 3 reports the results

for PPI inflation, while those pertaining to CPI inflation are reported in Table 4. Turning first to

producer prices, the entries in Table 3 strongly indicate that the response of inflation to economic

slack is different in periods when the economy is operating above its potential (or the unemploy-

ment rate is below its natural rate) from periods in which the economy is experiencing resource

under-utilization. For example, according to column (1), the coefficient on the positive output

gap is 1.088—and statistically highly significant—compared with the coefficient of −0.184 on the

10Underlying this argument is the idea that workers who have been unemployed for a relatively short time are
the relevant margin for wage adjustment. The longer-term unemployed, by contrast, do not put much downward
pressure on wages because these potential workers are disconnected from the labor market (see Stock and Watson,
2010b; Gordon, 2013; Krueger et al., 2014).

11Gilchrist and Zakraǰsek (2016); Gilchrist et al. (2017), in contrast, emphasize how the interaction of financial
distress and customer markets attenuated deflationary pressures during the Great Recession.
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Table 3: Asymmetric Phillips Curve – Producer Price Inflation

Producer Prices Core Producer Prices

Explanatory Variables (1) (2) (3) (4)

[yt − y∗t ]
(+) 1.088∗∗∗ . 0.422∗∗∗ .

(0.324) (0.160)
[yt − y∗t ]

(−) −0.184 . 0.079 .

(0.219) (0.095)
[Ut − U∗

t ]
(+) . 0.215 . −0.158

(0.344) (0.156)
[Ut − U∗

t ]
(−) . −1.424∗∗ . −0.533

(0.601) (0.389)

Pr > W a 0.009 0.050 0.122 0.427
Sum: inflation lagsb 0.434∗∗∗ 0.487∗∗∗ 0.715∗∗∗ 0.752∗∗∗

(0.089) (0.092) (0.064) (0.077)
Adj. R2 0.456 0.382 0.768 0.730

Note: Sample: 1962:Q2 to 2017:Q4 for the headline PPI (columns 1–2); and 1974:Q1 to 2017:Q4 for the core PPI
(columns 3–4). The dependent variable in each Phillips curve specification is ∆5pt+4, the annualized log-difference
in the specified producer price index from date t − 1 to date t + 5. Explanatory variables: [yt − y∗

t ]
(+) = positive

output gap; [yt − y∗
t ]

(−) = negative output gap; [Ut − U∗
t ]

(+) = positive unemployment gap; and [Ut − U∗
t ]

(−) =
negative unemployment gap. All specifications include a constant and lags 1, . . . , 4 of ∆pt (not reported) and are
estimated by OLS. Asymptotic standard errors reported in parentheses are computed according to Newey and West
(1987) with the “lag-length” parameter equal to four: * p < .10; ** p < .05; and *** p < .01.
a p-value for the test of equality of coefficients on positive and negative economic slack.
b Sum of coefficients on ∆pt−s, s = 1, . . . , 4.

negative output gap, which is statistically indistinguishable from zero at conventional significance

levels; in fact, a formal test rejects the null hypothesis that the two coefficients are equal at a one

percent significance level. As shown in column (2), the same conclusion emerges when economic

slack is measured by the unemployment gap. For core producer prices, columns (3) and (4), the

differences in the coefficients on positive and negative slack are statistically less precise, though

quite meaningful in economic terms.

As shown in Table 4, this form of asymmetry is even more evident in consumer prices. Regardless

of whether economic slack is measured in product markets or the labor market, our estimates

indicate that CPI inflation is highly sensitive to the degree of resource over-utilization in the

economy, whereas resource under-utilization has no discernible effect on the behavior of inflation.

Moreover, this result is robust to using both the headline and core measures of CPI inflation—in

all instances, we strongly reject the null hypothesis that the coefficients on positive and negative

economic slack are equal. The combination of results in Tables 3 and 4 would seem to indicate

that rising marginal costs during expansions fuel inflation, whereas the emergence of economic slack

during downturns puts essentially no downward pressure on inflation. It is not clear, however, what

structural features of the economy could account for this striking asymmetry. But from a purely

empirical perspective, these results help explain the resilience of prices—at both the producer and
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Table 4: Asymmetric Phillips Curve – Consumer Price Inflation

Consumer Prices Core Consumer Prices

Explanatory Variables (1) (2) (3) (4)

[yt − y∗t ]
(+) 0.736∗∗∗ . 0.533∗∗∗ .

(0.183) (0.117)
[yt − y∗t ]

(−) −0.057 . 0.018 .

(0.101) (0.070)
[Ut − U∗

t ]
(+) . 0.089 . 0.028

(0.153) (0.119)
[Ut − U∗

t ]
(−) . −1.037∗∗∗ . −0.911∗∗∗

(0.320) (0.245)

Pr > W a 0.002 0.008 0.002 0.003
Sum: inflation lagsb 0.689∗∗∗ 0.726∗∗∗ 0.798∗∗∗ 0.824∗∗∗

(0.057) (0.072) (0.060) (0.072)
Adj. R2 0.720 0.664 0.800 0.777

Note: Sample: 1962:Q2 to 2017:Q4. The dependent variable in each Phillips curve specification is ∆5pt+4, the
annualized log-difference in the specified consumer price index from date t− 1 to date t+4. Explanatory variables:
[yt − y∗

t ]
(+) = positive output gap; [yt − y∗

t ]
(−) = negative output gap; [Ut − U∗

t ]
(+) = positive unemployment gap;

and [Ut − U∗
t ]

(−) = negative unemployment gap. All specifications include a constant and lags 1, . . . , 4 of ∆pt (not
reported) and are estimated by OLS. Asymptotic standard errors reported in parentheses are computed according
to Newey and West (1987) with the “lag-length” parameter equal to four: * p < .10; ** p < .05; and *** p < .01.
a p-value for the test of equality of coefficients on positive and negative economic slack.
b Sum of coefficients on ∆pt−s, s = 1, . . . , 4.

consumer levels—to the emergence of substantial and prolonged economic slack.

2.2 Time-Varying Estimates

We now return to the question of whether and how has the relationship between inflation and

economic slack changed over time. As a simple and relatively straightforward way to consider the

possibility of time variation in the coefficient λ—as well as in other parameters of the standard

Phillips curve—we re-estimate specification (1) using 15-year rolling windows. We then plot the

time-varying coefficient on the specified measure of economic slack, along with its 95-percent confi-

dence interval. Again, to conserve space, we focus on the Phillips curve specifications for inflation

at the horizon of four quarters (i.e., h = 4). The resulting time-varying estimates of the coefficient

λ, for both the headline and core PPI inflation, are shown in Figure 4, with Panel A showing the

time-varying sensitivity to the output gap and Panel B showing the time-varying sensitivity to the

unemployment gap; the comparable estimates for CPI inflation are shown in Figure 5.12

The left chart in Panel A of Figure 4 shows the evolution of the response of headline PPI

12The convention is that the data point labeled “1995:Q4” represents an estimate based on the 1980:Q1–1995:Q4
sample period. For both the headline producer and consumer price inflation, as well as for the core consumer price
inflation, our sample period—allowing for lags—starts in 1962:Q2, so that the rolling-window estimates begin in
1978:Q1 and run through 2017:Q4, the end of our sample period. Core producer prices, by contrast, start in 1974:Q1,
which implies that the first rolling-window estimates become available in 1990:Q1.
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Figure 4: Time-Varying Coefficient on Economic Slack
(Phillips Curve – Producer Price Inflation)
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A. Economic slack: output gap
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B. Economic slack: unemployment gap

Note: The dependent variable in each Phillips curve specification is ∆5pt+4, the annualized log-difference in the
specified producer price index from date t− 1 to date t+ 4. The solid line in each panel depicts the time-varying
coefficient on the specified measure of economic slack estimated using a 60-quarter moving window; the dashed
lines depict the corresponding time-varying coefficients implied by specifications (3) and (4) in Table 5 (see notes
to the table and the main text for details).

inflation to the output gap. In the early part of the sample, the estimates of λ are greater than one

and significantly different from zero, according to the 95-percent confidence intervals. Starting in

the mid-1980s, however, these estimated sensitivities begin to decline steadily before stabilizing in

the late 1990s. From then onward, the estimates of λ fluctuate in a fairly narrow of range between

zero and 0.5, though for most of this latter sample period, one would not reject the hypothesis that

the coefficient on the output gap is statistically different from zero.

The left chart in Panel B shows the evolution of the response of headline PPI inflation to the

unemployment gap. We observe roughly the same general pattern in this case. The estimates of λ

start out negative—and large in economic terms—as well statistically different from zero, according
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Figure 5: Time-Varying Coefficient on Economic Slack
(Phillips Curve – Consumer Price Inflation)

Estimate

95% Conf. interval

Trade−share implied estimate

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1978 1983 1988 1993 1998 2003 2008 2013

Consumer prices

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1978 1983 1988 1993 1998 2003 2008 2013

Core consumer prices
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B. Economic slack: unemployment gap

Note: The dependent variable in each Phillips curve specification is ∆5pt+4, the annualized log-difference in the
specified consumer price index from date t− 1 to date t+ 4. The solid line in each panel depicts the time-varying
coefficients on the specified measure of economic slack estimated using a 60-quarter moving window; the dashed
lines depict the corresponding time-varying coefficients implied by specifications (3) and (4) in Table 6 (see notes
to the table and the main text for details).

to the conventional significance levels. Once the late 1980s enter the sample period, however, the

estimates begin to converge rapidly to zero. The estimated response of headline PPI inflation to

the unemployment gap then remains around zero for the remainder of the sample period.

The corresponding right charts of Figure 4 trace out the estimated sensitivities of core PPI

inflation to the output gap (Panel A) and the unemployment gap (Panel B). Although the sample

begins later in this instance, the rolling-window estimates of the coefficient λ in the Phillips curve

for core PPI inflation are much more precisely estimated, compared with their counterparts for

headline inflation. The estimates of λ for the output gap begin at about 0.5 for the sample that

extends from the mid-1970s to the end of the 1980s and then decline monotonically to zero as the
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Figure 6: U.S. Trade Share
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Note: The trade share is defined as the sum of the nominal value of U.S. imports and exports, expressed as a
percent of nominal GDP. The shaded vertical bars denote the NBER-dated recessions.
Source: Bureau of Economic Analysis.

sample period moves forward; in fact, the estimate of λ based on the last 15 years of available data

implies a sensitivity of core PPI inflation to the output gap that is economically and statistically

indistinguishable from zero. The time-series pattern of coefficients on the unemployment gap is very

similar: The estimates of λ start out negative, large in absolute value, and are precisely estimated

and then converge to zero by the end of the 1990s.

Figure 5 shows the time-varying coefficient estimates on economic slack for both the headline and

core measures of CPI inflation. As before, Panel A shows coefficient estimates on the output gap,

while the corresponding estimates for the unemployment gap are shown in Panel B. Consistent

with the full-sample estimates of λ reported in Panel A of Table 2, the time-varying coefficient

estimates of the response of inflation to the output gap for headline CPI inflation are very similar

to those for core inflation, both in terms of their magnitude and their evolution over time. They

also show a pattern similar to that shown in Figure 4: The estimates of λ are positive, economically

and statistically significant in the early part of the sample, and then begin to decline sharply once

the 1990s enter the estimation window. In contrast to the estimated response coefficients for PPI

inflation shown in Panel A of Figure 4, the sensitivity of CPI inflation to the output gap is estimated

to have increased notably at the end of our sample period. That said, these late-sample estimates

of λ, though statistically different from zero, are only about one-fourth of those estimated during

the early part of our sample period. According to Panel B of Figure 5, these patterns are robust

to using the unemployment gap, rather than the output gap, as a measure of economic slack.

While there are a variety of phenomena that may help explain the declining sensitivity of

aggregate inflation to fluctuations in economic activity, we are specifically interested in the extent
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Table 5: Phillips Curve and the Trade Share – Producer Price Inflation

h = 1 h = 4

Explanatory Variables (1) (2) (3) (4)

A. Producer Prices

[yt − y∗t ] 0.968∗∗ . 1.459∗∗ .

(0.449) (0.584)
[yt − y∗t ]× TrdShrt−1 −0.030 . −0.052∗ .

(0.023) (0.027)
[Ut − U∗

t ] . −1.349∗∗ . −1.759∗∗

(0.674) (0.822)
[Ut − U∗

t ]× TrdShrt−1 . 0.047 . 0.063∗

(0.033) (0.038)

Sum: inflation lagsa 0.583∗∗∗ 0.604∗∗∗ 0.479∗∗∗ 0.500∗∗∗

(0.111) (0.108) (0.086) (0.093)
Adj. R2 0.369 0.342 0.440 0.371

B. Core Producer Prices

[yt − y∗t ] 0.903∗∗∗ . 1.125∗∗∗ .

(0.309) (0.305)
[yt − y∗t ]× TrdShrt−1 −0.031∗∗ . −0.040∗∗∗ .

(0.014) (0.014)
[Ut − U∗

t ] . −1.591∗∗∗ . −1.851∗∗∗

(0.596) (0.648)
[Ut − U∗

t ]× TrdShrt−1 . 0.056∗∗ . 0.065∗∗

(0.024) (0.026)

Sum: inflation lagsa 0.751∗∗∗ 0.790∗∗∗ 0.698∗∗∗ 0.747∗∗∗

(0.067) (0.067) (0.058) (0.068)
Adj. R2 0.762 0.742 0.794 0.754

Note: Sample: 1962:Q2 to 2017:Q4 for the headline PPI (Panel A); and 1974:Q1 to 2017:Q4 for the core PPI
(Panel B). The dependent variable in each Phillips curve specification is ∆h+1pt+h, the annualized log-difference in
the specified price index from date t− 1 to date t+ h. Explanatory variables: [yt − y∗

t ] = output gap; [Ut − U∗
t ] =

unemployment gap; and TrdShrt−1 = eight-quarter moving-average of the trade share. All specifications include a
constant and lags 1, . . . , 4 of ∆pt (not reported) and are estimated by OLS. Asymptotic standard errors reported
in parentheses are computed according to Newey and West (1987) with the “lag-length” parameter equal to four:
* p < .10; ** p < .05; and *** p < .01.
a Sum of coefficients on ∆pt−s, s = 1, . . . , 4.

to which increased globalization and trade may have contributed to the flattening of the Phillips

curve. The notion that increased trade may help account for such changes is consistent with the

rising trade intensity in the United States—defined as the sum of exports and imports relative to

GDP—shown in Figure 6. According to this metric, the trade intensity of the U.S. economy has

risen by nearly a factor of three over the past 50 years or so.

To test the hypothesis that increased trade intensity of the U.S. economy may have contributed

to the observed decline of the sensitivity of inflation to economic slack, we estimate the following
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variant of our baseline Phillips curve specification:

∆h+1pt+h = µ+ λ1gapt + λ2

[

gapt × TrdShrt−1

]

+
4

∑

s=1

φs∆pt−s + ǫt+h, (3)

where TrdShrt denotes an eight-quarter moving average of the U.S. trade share shown in Figure 6.

The resulting coefficient estimates of λ1 and λ2 for PPI inflation are reported in Table 5, while

those for CPI inflation are reported in Table 5.

According to the entries reported in Panel A of Table 5, the coefficient on the interaction

term between the output gap and the trailing moving average of the U.S trade share is negative—

though not statistically different from zero—at the one-quarter horizon (column 1) and negative

and marginally significant at the four-quarter horizon (column 3). Similarly, the interaction effect

between the unemployment gap and trade share is positive and imprecisely estimated for h = 1,

whereas the coefficient on the interaction term for h = 4 is positive and statistically different from

zero at the 10-percent significance level. On balance, therefore, the evidence based on headline

PPI inflation does not seem to support strongly the hypothesis that increased trade exposure of

the U.S. economy can explain the decline in the sensitivity of inflation to fluctuations in economic

activity.

As shown in Panel B, however, the corresponding estimates for core PPI inflation paint a very

different picture. The coefficients on the interaction terms between the output gap and trade share

are negative and quite precisely estimated at both the one- and four-quarter horizons (columns 1

and 3). And similarly, the coefficients on the interaction terms between the unemployment gap

and trade share are negative and statistically different from zero for both h = 1 and h = 4

(columns 2 and 4). Moreover, these estimates are economically meaningful. At the four-quarter

horizon, they imply that when the trade share was at the 5th percentile of its distribution, the

sensitivity of core PPI inflation to the output gap was 0.766 (std. error = 0.186) and −1.262 (std.

error = 0.416) when the unemployment gap is used to gauge the degree of resource utilization

in the economy; the corresponding estimates at the 95th percentile, in contrast, are −0.058 (std.

error = 0.122) and 0.092 (std. error = 0.188), respectively. In other words, these results indicate

a robust relationship between the rising trade share and the diminished sensitivity of core PPI

inflation to fluctuations in economic activity.

In Table 6, we report the estimates of coefficients λ1 and λ2 for Phillips curve specifications

involving headline (Panel A) and core (Panel B) CPI inflation. These results again imply an eco-

nomically large and statistically significant reduction in the responsiveness of inflation to economic

slack as the trade share rises. This is true for both the headline and core measures of CPI inflation

and holds at both the one- and four-quarter horizons. Moreover, the strong attenuation of the re-

sponse of CPI inflation to economic slack is robust to using either the output or the unemployment

gap as a gauge of cyclical resource utilization.

To summarize how the increasing exposure of the U.S. economy to international trade over

the past 50 years affected the responsiveness of inflation to fluctuations in economic activity, we
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Table 6: Phillips Curve and the Trade Share – Consumer Price Inflation

h = 1 h = 4

Explanatory Variables (1) (2) (3) (4)

A. Consumer Prices

[yt − y∗t ] 0.728∗∗∗ . 1.093∗∗∗ .

(0.231) (0.311)
[yt − y∗t ]× TrdShrt−1 −0.023∗∗ . −0.038∗∗∗ .

(0.011) (0.013)
[Ut − U∗

t ] . −0.997∗∗∗ . −1.282∗∗∗

(0.353) (0.425)
[Ut − U∗

t ]× TrdShrt−1 . 0.033∗∗ . 0.044∗∗

(0.016) (0.018)

Sum: inflation lagsa 0.801∗∗∗ 0.812∗∗∗ 0.727∗∗∗ 0.734∗∗∗

(0.063) (0.067) (0.063) (0.075)
Adj. R2 0.670 0.645 0.721 0.656

B. Core Consumers Prices

[yt − y∗t ] 0.526∗∗∗ . 0.918∗ ∗ ∗ .

(0.133) (0.200)
[yt − y∗t ]× TrdShrt−1 −0.017∗∗∗ . −0.032∗∗∗ .

(0.005) (0.008)
[Ut − U∗

t ] . −0.802∗∗∗ . −1.197∗∗∗

(0.237) (0.340)
[Ut − U∗

t ]× TrdShrt−1 . 0.026∗∗∗ . 0.040∗∗∗

(0.009) (0.013)

Sum: inflation lagsa 0.891∗∗∗ 0.896∗∗∗ 0.831∗∗∗ 0.851∗∗∗

(0.053) (0.058) (0.061) (0.072)
Adj. R2 0.811 0.803 0.815 0.774

Note: Sample: 1962:Q2 to 2017:Q4. The dependent variable in each Phillips curve specification is ∆h+1pt+h, the
annualized log-difference in the specified price index from date t−1 to date t+h. Explanatory variables: [yt−y∗

t ] =
output gap; [Ut − U∗

t ] = unemployment gap; and TrdShrt−1 = eight-quarter moving-average of the trade share.
All specifications include a constant and lags 1, . . . , 4 of ∆pt (not reported) and are estimated by OLS. Asymptotic
standard errors reported in parentheses are computed according to Newey and West (1987) with the “lag-length”
parameter equal to four: * p < .10; ** p < .05; and *** p < .01.
a Sum of coefficients on ∆pt−s, s = 1, . . . , 4.

calculate the time-series evolution of the response coefficients associated with economic slack, as

implied by the estimates of coefficients λ1 and λ2 reported in Tables 5 and 6 and the trajectory

of the U.S. trade share shown in Figure 6. We then plot these estimates, as dashed lines in

Figures 4 and 5, next to their corresponding time-varying estimates based on the 15-year rolling

window. The comparison of solid and dashed lines in the panels of these two figures shows that

this specific parametrization of the time-varying slope of the Phillips curve—a simple interaction

between the trade share and economic slack—can account for about one-half of the decline in the
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responsiveness of PPI and CPI inflation to economic slack observed over the past 50 years. In

addition, this interaction effect captures remarkably well the attenuation in the response of core

PPI inflation to changes in economic slack that we observe during the latter part of the sample

period.

3 Industry-Level Phillips Curve

The combination of a rising trade share with the concomitant decline in the responsiveness of ag-

gregate inflation to fluctuations in economic activity provides suggestive evidence that the observed

flattening of the Phillips curve is at least partly due to increased trade intensity of the U.S. econ-

omy. The variation used to estimate this effect, however, relies solely on the secular increase in

the U.S. trade share over the past 50 years or so and moreover does not fully explain the substan-

tial reduction in the estimated slope of the aggregate Phillips curve. To provide a more thorough

analysis of this phenomenon, we now turn to industry-level data, where we can exploit variation in

trade shares across industries to test whether a differential trade exposure influences the sensitivity

of inflation to economic slack.

3.1 Data Sources and Methods

To construct the panel data set used in this analysis, we utilize the most detailed (i.e., 6-digit

NAICS) industry-level PPIs published by the Bureau of Labor Statistics, which we merge with

the corresponding industry-level data on industrial production—a measure of output—constructed

by the Federal Reserve.13 The resulting data set covers all 6-digit NAICS industries—excluding

those in the Utilities sector (i.e., 2-digit NAICS code 22)—that are used to produce both the

producer price and industrial production indexes for the U.S. economy. The industry-level price

and production data are available at the monthly frequency, and we convert them to quarterly

frequency by simply averaging the values of each index over the three months of each quarter.

The industry-level price and production data are available starting in the early 1970s. However,

the data are not available for every industry from the beginning—that is, the panel is unbalanced—

and there is an especially large expansion in the number of industries covered that occurred in the

mid-1980s. To capture this broad array of industries, we thus begin our sample in 1984:Q1. All told,

our unbalanced panel includes price and production data for 319 industries at the 6-digit NAICS

level, covering the period from 1984:Q1 to 2017:Q4. We complement these industry-level data

on output and prices, with the corresponding data on wages and employment from the Quarterly

Census of Employment and Wages (QCEW), a data collection program that publishes a quarterly

count of employment, total wages, and average weekly wages per employee, reported by companies

13Industrial production indexes are not available for the full set of 6-digit NAICS industries. At such a fine level of
disaggregation, there are in some cases an insufficient number of production units to construct a meaningful estimate
of the index. In those instances, the staff at the Federal Reserve Board aggregates the underlying data across several
of such closely related industries. In our matching algorithm, we assigned such industrial production data to all the
6-digit industries in the index.
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covering more than 95 percent of U.S. jobs. The QCEW data, however, are available only starting

in 1990:Q1. We thus also consider a more in-depth analysis using a balanced panel of 185 industries

for which all of these variables are available over the 1990:Q1–2017:Q4 period.14

To measure trade exposure at the industry level, we rely on the annual (nominal) import

and export data, which are made available by the Center for International Data at University of

California Davis and cover the period from 1972 to 2006.15 The data provided are disaggregated

by country (source for imports and destination for exports) and Schedule B number. These data

were first aggregated to the total annual imports and exports at the industry level using the 5-digit

Standard Industrial Classification (SIC) codes. The annual (nominal) imports and exports for the

2007–2017 period were obtained from the U.S. Census Bureau’s USA Trade Online database and

are available at the 10-digit Harmonized System Code (HTS) level. Using various crosswalks, all of

these data had to be first mapped to industries at the 6-digit NAICS level. At such a fine level of

disaggregation, however, there are numerous missing industry/year observations. Accordingly, we

aggregated trade date to the 4-digit NAICS level. The resulting panel data set was then merged

with the annual 4-digit NAICS data on (nominal) value-added output provided by the Bureau of

Economic Analysis; these data were then used to calculate trade exposure—the sum of imports

and exports relative to output—for each 4-digit NAICS industry.

The solid line in Panel A of Figure 7 shows the time-series evolution of the (unweighted) cross-

sectional median of the four-quarter percent change in PPI inflation across 319 industries in our

unbalanced panel, while the shaded band depicts the corresponding (unweighted) interquartile

range. The dashed line, in contrast, shows the four-quarter percent change based on the published

core PPI. In Panel B, the solid line and the shaded band depict the same moments of the four-

quarter percent change in industrial production across the same set of industries, while the dashed

line shows the corresponding growth rate of total industrial production. As evidenced by the shaded

bands, the inflation rates and output growth vary significantly across industries. At the same time,

the time-series fluctuations in the two medians closely match dynamics of their corresponding

aggregates, an indication that our industry-level data are representative of the economy as a whole.

3.2 Baseline Estimates

To analyze the relationship between producer prices and economic activity at the industry level, we

reformulate our baseline Phillips curve specification given by equation (1) above to accommodate

the cross-sectional aspect of the industry-level data. Specifically, we estimate the following panel-

14The industry-level data exhibit significant seasonal fluctuations. Accordingly, we filtered all industry-level vari-
ables using the Census Bureau’s X12 seasonal adjustment procedure—thus all of our growth rates (i.e., log differences)
are constructed using seasonally adjusted level series. To ensure that our results were not influenced by a small number
of extreme observations, all quarterly growth rates were winsorized at the 0.5th and 99.5th percentiles.

15These data were assembled by Robert Feenstra through the projected funded by a grant from the National Science
Foundation to the NBER; see http://cid.econ.ucdavis.edu/usix.html for further details.
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Figure 7: Industry-Specific Producer Prices and Industrial Production
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Note: All industry-specific price and industrial production indexes are seasonally adjusted. The solid lines depict
the cross-sectional medians of the specified series, while the shaded bands depict the corresponding interquartile
(P75− P25) ranges. The shaded vertical bars denote the NBER-dated recessions.
Source: Authors’ calculations using data from the Bureau of Labor Statistics; and Federal Reserve Board.

data version of the Phillips curve:

∆h+1pi,t+h = λgapit +
4

∑

s=1

φs∆pi,t−s + µi + ηt + ǫi,t+h, (4)

where pit denotes the logarithm of the producer price index for industry i in quarter t and gapit

is a measure of economic slack (or activity) in that industry. This specification also allows for
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Table 7: Industry-Level Phillips Curve

Sample: 1984:Q1–2017:Q4 Sample: 1998:Q1–2017:Q4

Explanatory Variables (1) (2) (3) (4)

[qit − q̃it] 0.014∗∗ . 0.020∗∗∗ .

(0.006) (0.007)
∆4qit . 0.027∗∗∗ . 0.030∗∗∗

(0.008) (0.008)

Sum: inflation lagsa −0.057∗ −0.054∗ −0.082∗∗ −0.079∗∗

(0.031) (0.030) (0.037) (0.037)
Adj. R2 0.220 0.222 0.246 0.246

Panel Dimensions

No. of industries 319 319 319 319
Avg. Ti (quarters) 95.6 95.8 60.4 60.5
Obs. 30,512 30,566 19,266 19,287

Note: The dependent variable in each Phillips curve specification is ∆5pi,t+4, the annualized log-difference in
industry-specific producer price index from date t− 1 to date t+ 4. Explanatory variables: [qit − q̃it] = industry-
specific industrial production gap; and ∆4qit = log-difference in industry-specific industrial production index from
date t−4 to date t. All specifications include industry and time fixed effects and lags 1, . . . , 4 of ∆pit (not reported)
and are estimated by OLS. Asymptotic standard errors reported in parentheses are clustered across industries
and time, according to Cameron et al. (2011): * p < .10; ** p < .05; and *** p < .01.
a Sum of coefficients on ∆pi,t−s, s = 1, . . . , 4.

an industry-specific intercept µi that is estimated using industry fixed effects and a full set of

time dummies—denoted by ηt, t = 1, 2, . . . , T—that capture variation in common factors across

industries. To measure the extent of resource utilization within each industry, we compute the

“industrial production” gaps for each industry—denoted by [qit − q̃it]—as (100 times) the log-

deviation of industrial production index (qit) from its stochastic trend (q̃it), where the latter is

estimated using the Hamilton (2017) filter. As an alternative, we also consider a simple four-

quarter log-difference of industrial production, denoted by ∆4qit.

Columns (1) and (2) of Table 7 report estimates of the Phillips curve at the four-quarter horizon

(i.e., h = 4) for the full sample of industries from 1984:Q1 to 2017:Q4. Columns (3) and (4), on

the other hand, provide comparable estimates for a subsample based on the 1998:Q1–2017:Q4

period, which corresponds to the time period in which the slope of the aggregate Phillips curve

for PPI inflation is estimated to have have stabilized near zero (see Figure 4).16. According to

columns (1) and (2), fluctuations in economic activity—measured either as deviations of industrial

output from its trend or as four-quarter growth in output—are important determinants of producer

price inflation at the industry level. Although precisely estimated, the economic magnitudes of these

coefficients are fairly small: An increase in the industrial production gap of 10 percentage points in

quarter t—an increase of a bit less than one standard deviation—is estimated to boost annualized

16Because our panel data set is unbalanced, the coefficient estimates are not strictly comparable across these two
periods.
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PPI inflation from quarter t − 1 to t + 4 a mere 15 basis points; the same-sized increase in the

four-quarter growth of industrial output leads to a rise in PPI inflation of about a quarter of a

percentage point over the same horizon.

While small in economic terms, these estimates are nonetheless broadly consistent with those

based on the aggregate time-series data. For example, the coefficient on the output gap in the

aggregate Phillips curve for core producer prices estimated over the 1984:Q1–2017:Q4 period is 0.063

(std. error = 0.054), while the corresponding coefficient estimate based on the 1998:Q1–2017:Q4

sample is −0.021 (std. error = 0.056). In other words, the slope of the aggregate Phillips curve

for core PPI inflation is statistically indistinguishable from zero over this period. It is also worth

noting that the estimates of coefficients on economic activity reported in Table 7 are remarkably

stable across the two sample periods. Thus, the industry-level estimates of the response of PPI

inflation to fluctuations in industrial output do not show the same kind of attenuation pattern that

we estimate using the aggregate time-series data.

We next examine whether the responsiveness of PPI inflation to fluctuations in economic activity

at the industry level varies with the state of aggregate economy. To do so, we consider a variant

of specification (4), which also includes an interaction between the industry-specific indicators of

economic activity—[qit − q̃it] or ∆4qit—and the state of aggregate economy. We measure the latter

in a continuous way by the aggregate output gap, [yt− y∗t ], or in a discrete manner by an indicator

variable 1[St ≷ 0], where St < 0 when [yt − y∗t ] > 0 or [Ut − U∗
t ] < 0 and St > 0 when [yt − y∗t ] < 0

or [Ut − U∗
t ] > 0; that is, St < 0 indicates resource over-utilization in the economy, while St > 0

corresponds to an aggregate state of resource under-utilization.

The results of this exercise for our unbalanced panel of industries over the full sample period are

reported in Table 8. According to the entries in the table, the slope of the industry-level Phillips

curve depends on aggregate economic conditions. When using [qit − q̃it] to measures slack at the

industry level (column 1), the coefficient on the interaction term [qit − q̃it] × [yt − y∗t ] is negative,

implying a reduced sensitivity of industry-level PPI inflation to changes in the industry-level slack

when aggregate GDP is above its potential and vice versa. For example, when the aggregate

output gap is at the 5th percentile of its distribution, the slope of the industry-level Phillips curve

is estimated to be 0.031 (std. error = 0.001), whereas at the 95th percentile, the estimated slope is

economically and statistically indistinguishable from zero.

A very similar result emerges when the aggregate state can take on only two values (column 2):

The coefficient on [qit−q̃it] is positive and statistically highly significant only when St < 0, that is, in

periods of aggregate resource under-utilization; when St > 0, however, industry-level PPI inflation

exhibits no sensitivity to changes in the industrial production gap. As shown in columns (3) and (4),

these findings are robust to using the four-quarter growth in industrial output as a measure of

cyclical resource utilization at the industry level. More generally, the results in Table 8 appear to

be at odds with those for the aggregate PPI inflation reported in Table 3, which indicate a much

greater responsiveness of PPI inflation—both headline and core—to changes in economic slack in

periods of aggregate resource over-utilization. This discrepancy, however, likely reflects differences
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Table 8: Asymmetric Industry-Level Phillips Curve

Explanatory Variables (1) (2) (3) (4)

[qit − q̃t] 0.009 . . .

(0.006)
[qit − q̃it]× [yt − y∗t ] −0.005∗∗ . .

(0.002)
[qit − q̃it]× 1[St < 0] . 0.021∗∗∗ . .

(0.008)
[qit − q̃it]× 1[St > 0] . 0.000 . .

(0.008)
∆4qit . . 0.026∗∗∗ .

(0.008)
∆4qit × [yt − y∗t ] . . −0.002 .

(0.002)
∆4qit × 1[St < 0] . . . 0.035∗∗∗

(0.008)
∆4qit × 1[St > 0] . . . 0.015

. (0.011)

Pr > W a . 0.044 . 0.047
Effect at P5b 0.031∗∗∗ . 0.032∗∗∗ .

(0.011) (0.009)
Effect at P95c −0.004 . 0.021 .

(0.008) (0.012)
Sum: inflation lagsd −0.057∗ −0.057∗ −0.055∗ −0.054∗

(0.031) (0.031) (0.030) (0.030)
Adj. R2 0.221 0.221 0.221 0.222

Note: Sample: an unbalanced panel of 319 industries from 1984:Q1 to 2017:Q4. The dependent variable in each
Phillips curve specification is ∆5pi,t+4, the annualized log-difference in industry-specific producer price index from
date t− 1 to date t+ 4. Explanatory variables: [qit − q̃it] = industry-specific industrial production gap; ∆4qit =
log-difference in industry-specific industrial production index from date t−4 to date t; [yt−y∗

t ] = aggregate output
gap; and 1[St ≷ 0] = indicator variable describing the state of aggregate economy, with St < 0 indicating negative
economic slack and St > 0 indicating positive economic slack (see the text for details). All specifications include
industry and time fixed effects and lags 1, . . . , 4 of ∆pit (not reported) and are estimated by OLS. Asymptotic
standard errors reported in parentheses are clustered across industries and time, according to Cameron et al.
(2011): * p < .10; ** p < .05; and *** p < .01.
a p-value for the test of equality of coefficients on positive and negative indicators of aggregate economic slack.
b The average marginal effect of ∆4qit or [qit − q̃it] when the aggregate output gap is at the 5th percentile of its
sample distribution.
c The average marginal effect of ∆4qit or [qit − q̃it] when the aggregate output gap is at the 95th percentile of its
sample distribution.
d Sum of coefficients on ∆pi,t−s, s = 1, . . . , 4.

in the sample periods between these two exercises, as the asymmetry in the aggregate Phillips

curve for PPI inflation is noticeably less pronounced in the post-1984 data. In combination, these

findings suggest that the slope of the Phillips curve may change in response to the frequency and

the type of shocks—aggregate demand vs. aggregate supply—that economy may be experiencing
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Figure 8: Industry vs. Aggregate Producer Price Inflation

−6

−4

−2

0

2

4

6

8

10

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

    

Four−quarter percent change

Industry−weighted

Headline

Core

Note: The solid line depicts a weighted average of producer price inflation across 185 industries, with weights
equal to the corresponding average industry-specific employment shares. The dashed (dotted) line depicts the
overall (core) producer price inflation. The shaded vertical bars denote the NBER-dated recessions.
Source: Authors’ calculations using data from the Bureau of Labor Statistics.

at any given time.

3.3 The Role of the Trade Share

With these results in hand, we now return to the question of whether differences in external

trade exposure across industries influence the sensitivity of PPI inflation to economic slack. A

straightforward way to test this hypothesis would be to estimate our baseline industry-level Phillips

curve given in equation (4) on a sample of “low” trade intensity industries and compare the results

with those based on a sample of “high” trade intensity industries. However, to make a statement

of whether differences in trade exposure across industries matter in the aggregate, we must specify

some kind of a weighting scheme.17 Unfortunately, the value of shipments, which would provide

an economically most sensible weighting scheme for the industry-specific inflation rates, are not

available at the 6-digit NAICS level. As an alternative, we rely on the QCEW employment data and

aggregate the industry-specific PPI inflation rates using the industry-specific average employment

shares as weights. Because the employment data are available only starting in 1990:Q1, we restrict

the analysis to the balanced panel of 185 industries, which ensures that our aggregation scheme is

not affected by changes in the composition of industries over time.

To gauge the reasonableness of our aggregation scheme, the solid line in Figure 8 shows the

time-series evolution of a weighted cross-sectional average of four-quarter PPI inflation rates across

17Note that in the above regression analysis, each industry received an equal weight. As such, the results in Tables 7
and 8 may not provide an accurate picture of the aggregate relationship between inflation and economic slack that is
central to our analysis.
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Table 9: Industry-Level Phillips Curve and the Trade Share
(Weighted vs. Unweighted Estimates)

Industry Category

Explanatory Variables All Low Trade Shr. High Trade Shr.

A. Weighted Estimates

[qit − q̃it] 0.015 0.029∗∗∗ 0.006
(0.010) (0.011) (0.011)

Sum: inflation lagsd −0.060 −0.159∗∗∗ 0.044
(0.041) (0.043) (0.043)

Adj. R2 0.243 0.228 0.306

B. Unweighted Estimates

[qit − q̃it] 0.025∗∗∗ 0.035∗∗∗ 0.014∗∗

(0.007) (0.013) (0.006)

Sum: inflation lagsd −0.060 −0.091∗∗ 0.004
(0.036) (0.042) (0.045)

Adj. R2 0.198 0.198 0.227

Note: Sample: a balanced panel of 185 industries from 1990:Q1 to 2017:Q4 (Obs. = 19,239). The dependent
variable in each Phillips curve specification is ∆5pi,t+4, the annualized log-difference in industry-specific producer
price index from date t−1 to date t+4. Explanatory variables: [qit− q̃it] = industry-specific industrial production
gap. All specifications include industry and time fixed effects and lags 1, . . . , 4 of ∆pit (not reported). In Panel A,
the specifications are estimated by WLS—using average industry employment shares as weights—while in Panel B
they are estimated by OLS. Asymptotic standard errors reported in parentheses are clustered across industries and
time, according to Cameron et al. (2011): * p < .10; ** p < .05; and *** p < .01.
a Sum of coefficients on ∆pi,t−s, s = 1, . . . , 4.

the 185 industries in our balanced panel, while the dashed and dashed-dotted lines show the corre-

sponding behavior of the headline and core producer price inflation, respectively. As can be seen

from the figure, our employment-weighted aggregate inflation broadly tracks a mix of the headline

and core PPI inflation. It is clearly more cyclical than the core inflation and somewhat less cycli-

cal than the headline inflation. Importantly, this aggregation exercise gives us confidence that an

employment-weighted version of the 6-digit industry data captures the cyclical variation that we

see in other time-series aggregates and hence provides a meaningful laboratory from which one can

infer aggregate phenomena from the industry-level estimates.

We use the balanced panel—with the associated average employment shares—to examine the

extent to which the responsiveness of inflation to fluctuations in economic activity differs with the

degree of trade intensity across industries. As noted above, we split our sample of 185 industries

into two groups, based on whether their average trade share is above or below 5 percent. This

cutoff corresponds to the median of the industry-specific average trade shares, weighted by the

industry-specific average employment shares, and implies that the low and high trade intensity

industry groups each account for about one-half of total employment in our balanced panel.

Table 9 reports the results of this exercise for inflation at the four-quarter horizon (i.e., h = 4)
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and using the industrial production gap, [qit− q̃it], to measure slack at the industry level. In the first

column of Panel A, we report the WLS estimates of the coefficient on the industrial production

gap for all industries, while in the second and third column, we report the corresponding WLS

estimates for low and high trade share industry groupings, respectively; for comparison purposes,

Panel B contains the corresponding OLS estimates, which weigh all industries equally.

The WLS estimate of the coefficient on economic slack for all industries is a bit smaller than

its corresponding OLS estimate—0.015 vs. 0.025—and also less precisely estimated. More impor-

tantly, the WLS estimates of coefficients on economic slack show a clear difference across the two

industry groupings: In low trade intensity industries, the coefficient on economic slack is positive

and statistically highly significant, whereas in high trade intensity industries, the coefficient on

economic slack is essentially zero, in both economic and statistical terms. These results provide

further support for the argument that globalization and increased international trade may be re-

sponsible, at least in part, for the observed attenuation in the response of inflation to fluctuations

in economic activity. However, swings in producer prices at the industry level are far more likely to

reflect a confluence of demand shocks—which push prices and output in the same direction—and

supply shocks, which push them in opposite directions. Thus one should be cautious in providing

a structural interpretation to the coefficient estimates reported in Table 9.

4 Trade Share and the Effects of Aggregate Shocks

In this section, we employ an alternative approach to investigate the role that international trade

may play in determining domestic inflation outcomes. Specifically, we identify aggregate shocks that

simultaneously influence inflation and output dynamics and trace out their effects on industry-level

outcomes. We then examine the extent to which the industry-level responses of prices, wages, out-

put, and employment to such aggregate shocks differ across industries with a differential exposure

to international trade and thus to global factors.

4.1 Econometric Methodology

As in the previous section, we focus on a balanced panel of 185 industries for which all variables

are available over the 1990:Q1–2017:Q4 sample period. Given the high dimensionality—in both the

cross-sectional and time-series dimensions—of our industry-level data, we use the FAVAR method-

ology proposed by Bernanke and Boivin (2003) Bernanke et al. (2005) to identify aggregate shocks

and trace out their effect on price and wage inflation and the growth of output and employment at

the industry level. To identify aggregate shocks of interest, we study the response of industry-level

variables to both a sudden deterioration in broad domestic financial conditions and an unanticipated

increase in commodity prices. The adverse shock to financial conditions may be broadly interpreted

as a reduction in aggregate demand, while the commodity price shocks arguably capture mostly

supply-side considerations. Both of these two types of disturbances have featured prominently in

recent discussions regarding the source of business cycle fluctuations over the time period under
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our consideration (see Stock and Watson, 2012).

Our estimation and identification procedure broadly follows the empirical methodology outlined

in Gilchrist et al. (2009). In particular, we combine the industry-level data on price and wage

inflation and on the growth of output and employment in an (n1 × 1)-dimensional vector X1t.
18

We then consider a set of macro-level variables that summarize either domestic financial conditions

or price developments in global commodity markets—these series are combined in an (n2 × 1)-

dimensional vector X2t. This data-rich environment can be succinctly represented by an (n × 1)-

dimensional vector Xt = [X ′
1t X

′
2t]

′, where n = n1+n2 and t = 1, 2, . . . , T . We assume that Xt has

a (linear) factor structure, whereby Xit = λ′
iFt+ νit, i = 1, . . . , n, where Ft is a (k× 1)-dimensional

vector of common latent factors (with k ≪ n), λi is the corresponding vector of factor loadings,

and νit is an idiosyncratic random disturbance that is assumed to be uncorrelated across i and t.

When analyzing the dynamic effects of aggregate shocks, we assume that a subset of these

common factors—denoted by a (k2× 1)-dimensional vector F2t—are factors that are specific to the

aggregate variables contained in the vector X2t. These factors do not contemporaneously influence

the industry-level variables in the vector X1t, but they do affect contemporaneously the variables

in the vector X2t. The rest of the factors—denoted by a (k1 × 1)-dimensional vector F1t, where

k = k1 + k2—are assumed to span the information contained in the entire data vector Xt. The

relationship between the observed variables and the unobserved factors is assumed to be linear and

is given by the following system of measurement equations:

[

X1t

X2t

]

=

[

Λ1,1 Λ1,2

Λ2,1 Λ2,2

][

F1t

F2t

]

+

[

ν1t

ν2t

]

, (5)

where

Λ =

[

Λ1,1 Λ1,2

Λ2,1 Λ2,2

]

is an (n× k) matrix of factor loadings.

The latent factors are assumed to follow a vector autoregressive process of the form:

[

F1t

F2t

]

= Φ(L)

[

F1,t−1

F2,t−1

]

+

[

ǫ1t

ǫ2t

]

, (6)

where Φ(L) is a matrix lag-polynomial of finite order p. As it is standard in these models, we

assume that E[νitǫst] = 0, for all i = 1, 2, . . . , n and s = 1, 2, . . . , k; and E[ǫitǫjt] = 0, for all

i 6= j. In this form, our model constitutes a static representation of a dynamic factor model (see

Stock and Watson, 2010a); it is static in the sense that factors enter only contemporaneously in

the system of measurement equations (5).

To identify the aggregate factors F2t, we impose the following restrictions on the system of

measurement equations. First, we assume that Λ1,2 = 0. This restriction on the factor loading

18Note that n1 = 4× 185 = 740; that is, four series for each of the 185 industries.

29



matrix Λ implies that once we have conditioned on the factors F1t, the remaining variation in

the aggregate block X2t has a systematic component that is reflected in its own factor structure.

Although the aggregate factors F2t have no contemporaneous effect on the vector X1t, they affect

the factors F1t and, by extension, the variables in the industry block X1t with a lag through the

autoregressive dynamics of equation (6). The second identifying assumption is that the factors

F1t and F2t are orthogonal, an assumption that separates the residual information content in the

aggregate block from the factors summarizing the state of the economy, as measured by the full set

of industry-specific information contained in the vector X1t.
19

To maintain an identification strategy that favors neither financial or commodity price shocks,

we estimate two separate FAVAR specifications. In the first, the vector X2t includes a broad array

of domestic financial indicators, whereas in the second, the vector X2t contains solely returns on

key global commodities. Specifically, when considering how financial shocks affect industry-level

outcomes, the vector X2t consists of the following five financial indicators: the GZ corporate bond

credit spread and the associated excess bond premium (see Gilchrist and Zakraǰsek, 2012); the

Moody’s Baa-Aaa corporate bond credit spread; the term spread measured as the difference in

yields on the ten- and two-year U.S. Treasury coupon securities; and the option-implied volatility

on the S&P 500 stock price index, the VIX. The GZ and Baa-Aaa credit spreads and the excess

bond premium are widely used indicators of financial strains obtained from the corporate bond

market. The VIX, on the other hand, is a measure of risk appetite in equity markets, while the

term spread primarily reflects investors’ appetite for duration risk. These five indicators provide

a broad summary of domestic financial conditions that are entirely reliant on market prices and,

therefore, should capture changes in broad financial conditions in a timely manner.

When considering the effect of shocks to commodity prices on industry-level outcomes, the

vector X2t consists of quarterly log-returns, calculated using ten price indexes (based on nominal

U.S. dollars) for major commodities. These include the energy sector, beverages and three food-

related sectors, fertilizer, timber and other raw materials, base metals, and precious metals.20 In

both FAVAR specifications, we allow for four common factors in the industry-level block X1t—that

is, k1 = 4—and for one factor in the aggregate block X2t, that is k2 = 1. These choices were based

on the information criteria proposed by Bai and Ng (2002); however, all of the results reported in

this paper are robust to allowing a greater number of factors in either block.21

19We can estimate the FAVAR model given by equations (5) and (6) using a Gaussian maximum likelihood meth-
ods and Kalman filter to construct the likelihood function. However, in the presence of identifying assumptions
with large n, this method is computationally demanding. We, therefore, follow the four-step procedure outlined
in Gilchrist et al. (2009), as it is straightforward to implement and directly imposes the necessary identification
restrictions.

20The monthly commodity price indexes for each of those commodity groupings were obtained from the World
Bank’s commodity price database “The Pink Sheet.” For each index, the quarterly log-return was calculated using
the monthly values of the index corresponding to the last month of each quarter.

21The presence of a single common factor in the cross-section of commodity prices is also consistent with the recent
work of Delle Chiaie et al. (2017), who find that the bulk of fluctuations in commodity prices is well summarized by
a single global factor.
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Figure 9: Implications of an Adverse Financial Shock
(All Industries)
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Note: The solid line in each panel depicts the median response of the specified variable to an adverse financial
shock of one standard deviation across 185 industries; the shaded bands depict the corresponding P75− P25 and
P95− P5 ranges.

4.2 Results

In this section, we present impulse responses of variables in the industry block X1t to the two

identified aggregate shocks. We first consider the dynamic effects of an adverse financial shock and

then turn to results that examine the corresponding implications of a commodity price shock. We

begin by reporting these baseline results for all industries. Lastly, we examine how international

trade exposure influences industry-level inflation dynamics by dividing our sample of industries into

those with a “low” trade exposure and those with a “high” trade exposure.

4.2.1 The Impact of Financial and Commodity Price Shocks

Figure 9 plots the distribution of industry-level outcomes in response to an adverse financial shock

of one standard deviation in quarter zero. Though not shown, this shock causes a broad-based

tightening of domestic financial conditions, implying an increase in the excess bond premium of
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about 30 basis points upon impact.22 The solid line in each panel shows the median industry

response of the specified variable to such a shock, while the dark shaded bands denote the range

of responses between the 75th and 25th percentiles (the P75 − P25 range) and the light shaded

bands denote the range of responses between the 95th and 5th percentiles (the P95 − P5 range).

Recall that the factor F2t is, by assumption, contemporaneously orthogonal to the variables in the

industry block X1t and thus aggregate shocks have has no effect on industry-level outcomes upon

impact.

The identified financial shock is clearly contractionary—it induces a substantial decline in the

growth of industrial production and employment for the median industry. A couple of quarters

after its impact, this shock is cutting 1.2 percentage points from the annualized growth of output

and 0.8 percentage points from the annualized growth of employment at the median. It also causes

a significant step-down in both price and wage inflation: For the median industry, annualized price

inflation is lowered 0.1 percentage points, whereas the reduction in annualized wage inflation is

on the order of 0.4 percentage points. Notably, the reduction in the rate of growth of economic

activity, prices, and wages occurs relatively quickly, peaking a mere two quarters after the shock.

Economic growth remains depressed for several more quarters before recovering slowly, returning

to its long-run level after about eight quarters. Judging by the shaded regions, the estimated range

of industry responses implies that these effects are broad based. The combination of steep declines

in the growth of output, employment, prices, and wages implies that the deterioration in broad

domestic financial conditions delivers a response that is consistent with a reduction in aggregate

demand within a New Keynesian framework.

The same industry-level outcomes in response to an unanticipated one standard deviation in-

crease in the factor driving commodity prices are shown in Figure 10. Such a commodity price

shock, which causes a widespread increase in global commodity prices, leads to a sharp increase in

producer price inflation across all industries. Interestingly, it also leads to a temporary surge in

employment growth and wage inflation; output growth rises initially but then falls substantially.

The rise in inflation, combined with the reduction in output growth, is consistent with the view

that a commodity price shock is a negative supply shock to the U.S. industrial sector.

The temporary expansion in employment and the rise in wages, however, suggests a more

nuanced interpretation. The initial increase in employment growth and wage inflation is consistent

with the notion that firms—in response to a sudden increase in commodity prices—substitute away

from materials and employ more labor. The rise in labor input in the immediate aftermath of

a commodity price shock may also reflect the fact that our identification scheme does not fully

separate demand and supply factors in response to broad-based fluctuations in commodity prices.

In particular, the U.S. economy has in the past couple of decades become a substantial supplier of

commodities, especially of energy, to the global market.

With these baseline results in hand, we now analyze the extent to which differential trade

22Over the 1990:Q1–2017:Q4 period, the standard deviation of the excess bond premium is about 50 basis points.
As a point of comparison, the excess bond premium shot up more than 300 basis points following the collapse of
Lehman Brothers in September 2008.
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Figure 10: Implications of an Adverse Commodity Price Shock
(All Industries)
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Note: The solid line in each panel depicts the median response of the specified variable to an adverse commodity
price shock of one standard deviation across 185 industries; the shaded bands depict the corresponding P75−P25
and P95− P5 ranges.

exposure across industries changes the results reported above. As before, we sort our sample

of industries based on their average trade exposure over the 1990:Q1–2017:Q4 period and group

them into a low and high trade exposure categories. We then separately estimate our two FAVAR

specifications for each of the two groupings, an approach that ensures that we do not artificially

constrain the factor structure to be the same across industries with a differential trade exposure.

As a reminder, recall that each category of industries accounts, on average, for about 50 percent of

total employment in our sample.

Unlike our baseline exercise, this exercise is focused on the implications of the two shocks

for aggregate outcomes. Specifically, for each industry-level endogenous variable, we compute a

weighted average response across industries, where weights are equal to the industry-specific average

employment shares within each group of industries (i.e., low vs. high trade exposure industry

categories). In addition, we report the aggregate responses for all industries by weighting the

industry-specific responses from Figures 9 and 10 with their corresponding average employment
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Figure 11: Implications of an Adverse Financial Shock
(Low vs. High Trade Share Industries)
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Note: The solid line in each panel depicts the employment-weighted average response of the specified variable to
an adverse financial shock of one standard deviation across 185 industries; the dashed (dashed-dotted) lines depict
the corresponding employment-weighted average responses for a subset of industries with a high (low) average
trade share.

shares. These results, corresponding to the adverse financial shock, are shown in Figure 11, whereas

those pertaining to the commodity price shock are shown in Figure 14.23

As shown by the solid lines in Figure 11, the aggregate responses of producer price and wage

inflation and the growth of output and employment to an adverse financial shock follow closely

the contours of the corresponding median industry-level responses shown in Figure 9: Price and

wage inflation, along with output and employment growth, all fall sharply, with peak responses

occurring one to two quarters after the impact of the shock; moreover, these aggregate responses

remain persistently below their respective long-run values for six to eight quarters after the shock.

Note that the (absolute) magnitude of responses for the aggregates—as defined by the

employment-weighted averages of industry-level responses—are somewhat larger than their cor-

23Figures A-1–A-2 and Figures A-3–A-4 in Appendix A show the industry-level responses for the low and high
trade share industry categories when the economy is perturbed by an aggregate financial shock and a widespread
unanticipated increase in commodity prices, respectively.
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Figure 12: Sensitivity of Producer Prices to Output – Aggregate Demand Shocks
(Low vs. High Trade Share Industries)

All

High trade

Low trade

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.00

0.25

0.50

0.75

1.00

1.25

Quarters after the shock

Note: The bars in the figure depict the estimated sensitivity of producer prices to fluctuations in output induced
by aggregate financial shocks (see the text for details).

responding unweighted median responses across industries. In particular, the annualized output

and employment growth both fall by more than one percentage point, while the annualized pro-

ducer price inflation declines about 30 basis points. The estimated decline in the growth of output

in response to a financial shock is consistent with other studies who find that such disturbances lead

to a significant contraction in economic activity (see Gilchrist et al., 2009; Gilchrist and Zakraǰsek,

2012; Boivin et al., 2018). That said, the estimated drop in producer price inflation is both larger

and occurs more quickly than the one estimated by VARs that use aggregate time-series data.

Overall, these results indicate that producer price inflation is fairly sensitive to fluctuations in eco-

nomic activity induced by changes in broad financial conditions—producer price inflation declines

roughly 25 basis points when a tightening of financial conditions induces a one percentage point

decline in the growth of industrial output.

Figure 11 also displays the aggregate responses to an adverse financial shock for high and low

trade industries. As shown in the upper left panel, the dynamics of inflation differ markedly across

industries with a differential trade exposure. Notably, the peak decline in producer price inflation

of 0.5 percentage points for industries with low trade exposure is more than three times as large

as that for industries with high trade exposure. Although the unanticipated tightening of financial

conditions causes a somewhat greater contraction in economic activity among high trade industries,

the responses of output and employment growth are broadly similar—in terms of both timing and

their magnitudes—across the two industry groupings. Wage inflation also behaves in a similar

manner across these two industry groupings, though in high trade industries, the deceleration in

wages occurs more quickly.

A useful way to highlight the difference in inflation dynamics between low and high trade

industries is to compute the cumulative responses of price inflation and output growth. The ratio

of the resulting price response to the output response then provides an estimate of the decline in
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Figure 13: Implications of an Adverse Commodity Price Shock
(Low vs. High Trade Share Industries)
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Note: The solid line in each panel depicts the employment-weighted average response of the specified variable to
an adverse commodity price shock of one standard deviation across 185 industries; the dashed (dashed-dotted)
lines depict the corresponding employment-weighted average responses for a subset of industries with a high (low)
average trade share.

prices relative to output that occurs at different horizons in response to an adverse financial shock.

As shown in Figure 12, in low trade intensity industries, producer prices are estimated to decline

about 0.3 percent for every one percent decline in output at very short horizons and about one

percent for the same-sized reduction in output at the two-year horizon. In high trade intensity

industries, by contrast, producer prices are estimated to decline about 0.1 percent for a one percent

reduction in output at very short horizons and about 0.3 percent at the two year horizon. In sum,

these findings imply that the response of prices relative to output is—at every horizon—three times

larger in low trade industries compared with their high trade counterparts.

Next, we examine how differences in trade exposure across industries affect the dynamics of

aggregate producer price and wage inflation and economic activity in response to a commodity

price shock. As before, we compute aggregate responses as a weighted average of industry-level

responses, with weights equal to the industry-specific average employment shares within each group

of industries. These results are shown in Figure 14. As in the case of a financial shock, the aggregate
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Figure 14: Implications of an Adverse Commodity Price Shock
(Low vs. High Trade Share Industries)
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Note: The solid line in each panel depicts the employment-weighted average response of the specified variable to
an adverse commodity price shock of one standard deviation across 185 industries; the dashed (dashed-dotted)
lines depict the corresponding employment-weighted average responses for a subset of industries with a high (low)
average trade share.

responses of price and wage inflation and of output and employment growth are very similar to their

corresponding unweighted median industry-level responses shown in Figure 10: In response to an

adverse commodity price shock, producer price inflation increases sharply, while output growth—

after rising initially—turns negative after several quarters; employment growth and wage inflation

are also initially positive before sliding into a negative territory.

The differential response of producer prices across the two industry groups indicates that price

inflation in low trade intensity industries is substantially more sensitive to fluctuations in com-

modity prices compared with their high trade intensity counterparts. At the two-quarter horizon,

annualized inflation jumps a full percentage point in low trade intensity industries, while increasing

only about 20 basis points in high trade intensity industries. This stark difference in the response of

producer prices occurs despite the fact that the commodity price shocks causes output, employment,

and wages to behave in a very similar manner in the two industry groupings.

It is once again instructive to focus on the cumulative effects of price inflation and output growth
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to gauge how differences in trade exposure across industries affect the sensitivity of producer prices

to fluctuations in output induced by aggregate supply shocks. The differential dynamics of producer

price inflation in response to a commodity price shock translate into substantial differences in the

sensitivity of inflation to movements in output—at all horizons—between industries with low and

high international trade exposure. At the two-year horizon, producer prices in low trade intensity

industries are estimated to rise one percent for every one percent drop in industrial output; in high

trade intensity industries, by contrast, producer prices are estimated to increase a mere 0.2 percent

for the same-sized decline in output. As in the case of financial shocks, therefore, our estimates

indicate that in industries with a low trade exposure, producer price inflation is significantly more

sensitive to fluctuations in output induced by commodity price shocks compared with industries

with a high trade exposure.

In summary, our FAVAR analysis implies that producer price inflation is three to four times

more responsive to both aggregate demand and aggregate supply shocks in low trade intensity

industries compared with their high trade intensity counterparts. Responses of wages, output, and

employment, by contrast, are strikingly similar across the two industry groupings. These results

are consistent with the notion that the Phillips curve is indeed much flatter in industries that are

more exposed to international trade and are thus broadly consistent with our earlier findings, which

show that the estimated flattening of the aggregate Phillips curves coincides to a substantial degree

with the increased exposure of the U.S. economy to international trade.

5 Conclusion

In this paper, we examine the extent to which the response of inflation to fluctuations in economic

activity has weakened over time. Furthermore, we analyze the role that globalization and rising

trade shares can help account for these shifts. Our evidence points to a significant flattening of the

Phillips curve that occurred in the 1990s. Although there is some evidence of a recent rise in the

responsiveness of CPI inflation to changes in economic slack, it remains the case that both PPI and

CPI inflation are substantially less responsive to fluctuations in economic activity today, relative

to estimates that rely on the pre-1990 data. To a significant degree this reduced responsiveness of

inflation to economic slack coincides with a rising U.S. trade share and increased globalization.

Industry-level data provide further evidence in favor of the notion that trade intensity attenuates

the response of inflation to fluctuations in economic activity. Industry-level estimates of Phillips

curve imply a substantially lower responsiveness of PPI inflation to output in industries with a

high trade share, relative to those with a low trade share. We confirm these results by examining

the response of industry-level PPI inflation and output to identified aggregate demand and supply

shocks. This evidence implies that the inflation-output tradeoff is three to four times larger for

low trade intensity industries compared with their high trade intensity counterparts. In this sense,

increased international trade and globalization do indeed appear to help explain the observed

flattening of the aggregate Phillips curve over the past several decades.
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Appendix

A Supplementary Results

Figure A-1: Implications of an Adverse Financial Shock
(Industries With a Low Trade Share)
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Note: The solid line in each panel depicts the median response of the specified variable to an adverse financial
shock of one standard deviation across a subset of industries with a low average trade share; the shaded bands
depict the corresponding P75− P25 and P95− P5 ranges.
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Figure A-2: Implications of an Adverse Financial Shock
(Industries With a High Trade Share)
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Note: The solid line in each panel depicts the median response of the specified variable to an adverse financial
shock of one standard deviation across a subset of industries with a high average trade share; the shaded bands
depict the corresponding P75− P25 and P95− P5 ranges.

43



Figure A-3: Implications of an Adverse Commodity Price Shock
(Industries With a Low Trade Share)
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Note: The solid line in each panel depicts the median response of the specified variable to an adverse commodity
price shock of one standard deviation across a subset of industries with a low average trade share; the shaded
bands depict the corresponding P75− P25 and P95− P5 ranges.
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Figure A-4: Implications of an Adverse Commodity Price Shock
(Industries With a High Trade Share)
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Note: The solid line in each panel depicts the median response of the specified variable to an adverse commodity
price shock of one standard deviation across a subset of industries with a high average trade share; the shaded
bands depict the corresponding P75− P25 and P95− P5 ranges.
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