From Population Growth to Firm Demographics: Implications for Concentration, Entrepreneurship and the Labor Share

Hugo Hopenhayn UCLA Julian Neira

Rish Singhania University of Exeter University of Exeter

May 17, 2019

Motivation

Puzzling aggregate trends in the US since 1980s

- Decline in the firm entry rate (14% to 8%)
- Decline in firm exit rate (9.7% to 7.7%)
- Increase in average firm size (20 to 24 employees)
- Increase in (employment) concentration (51% to 58%)
- Decline in the (corporate) labor share (66% to 60%)

Motivation

Puzzling aggregate trends in the US since 1980s

- Decline in the firm entry rate (14% to 8%)
- Decline in firm exit rate (9.7% to 7.7%)
- Increase in average firm size (20 to 24 employees)
- Increase in (employment) concentration (51% to 58%)
- Decline in the (corporate) labor share (66% to 60%)

What explains this?

We look at population growth + firm demographics

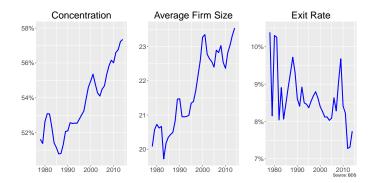
Outline

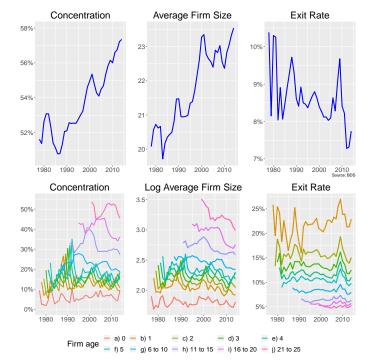
Why population growth + firm demographics?

- Document new facts
- Feedback effects

Theory

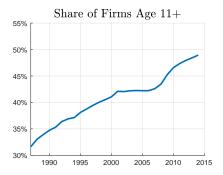
Calibration

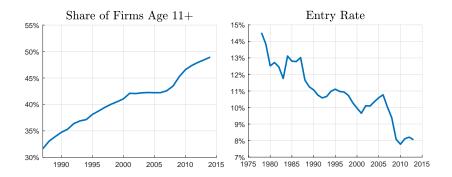

Overview of Results


Reallocation across firm-age groups accounts for

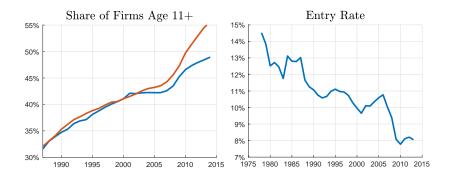
- Concentration
- Average firm size
- Exit rates
- Labor share
- Declining entry rates generate the reallocation
- Declining population growth lowers entry rate

▶ Feedback from firm demographics to entry is 2/3 of the effect


Motivating Evidence



6/43


Firms are Aging

Firms are Aging

Firms are Aging

Average firm size:

$$e_t \equiv N_t/M_t$$

Average firm size:

$$e_t \equiv N_t / M_t$$

Growth Decomposition:

$$\hat{M} = \hat{N} - \hat{e} \tag{1}$$

Average firm size:

$$e_t \equiv N_t / M_t$$

Growth Decomposition:

$$\hat{M} = \hat{N} - \hat{e} \tag{1}$$

• Growth in the number of firms is entry rate minus exit rate

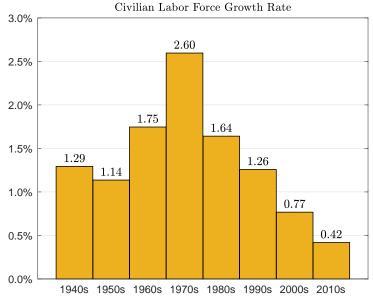
$$\hat{M} = \lambda - \xi \tag{2}$$

Average firm size:

$$e_t \equiv N_t / M_t$$

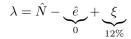
Growth Decomposition:

$$\hat{M} = \hat{N} - \hat{e} \tag{1}$$


Growth in the number of firms is entry rate minus exit rate

$$\hat{M} = \lambda - \xi \tag{2}$$

Combining (1) and (2):


$$\lambda = \hat{N} - \hat{e} + \xi$$

The Rise and Fall of Population Growth

Source: BLS Current Population Survey

Is This Driving Force Enough?

Is This Driving Force Enough?

Qualitatively yes, quantitatively no.

Cannot explain movements in exit rate

Cannot explain increase in average size

Is This Driving Force Enough?

Qualitatively yes, quantitatively no.

Cannot explain movements in exit rate

Cannot explain increase in average size

In the data

$$\underbrace{\Delta\lambda}_{6\%} = \underbrace{\Delta\hat{N}}_{2\%} - \underbrace{\Delta\hat{e}}_{2\%} + \underbrace{\Delta\xi}_{2\%}$$

Firm Demographics

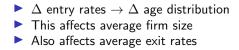
Age	Average firm size	Exit rate (%)
0	6.05	_
1	7.73	21.85
2	8.46	15.86
3	9.14	13.43
4	9.77	11.68
5	10.36	10.48
6-10	11.98	8.30
11-15	15.08	6.40
16-20	18.81	5.56
21-25	24.03	4.99

Δ Population Growth + Firm Demographics

Need to account for firm demographics

Important feedback effects

$$\lambda = \hat{N} - \hat{e} + \xi$$


△ entry rates → △ age distribution
 This affects average firm size
 Also affects average exit rates

 Δ Population Growth + Firm Demographics

Need to account for firm demographics

Important feedback effects

$$\lambda = \hat{N} - \hat{e} + \xi$$

Decrease in population growth implies:

- Decline in entry rate
- Aging of firms

Theory

Environment

- Common discount factor β
- Fixed endowment of a resource (labor) N_t inelastically supplied. Numeraire.
- Firm's idiosyncratic state s
- ▶ $s_t \sim F(s_{t+1}|s_t)$. Persistence.

Environment

- Common discount factor β
- Fixed endowment of a resource (labor) N_t inelastically supplied. Numeraire.
- Firm's idiosyncratic state s
- ▶ $s_t \sim F(s_{t+1}|s_t)$. Persistence.
- Revenue function R(s, n, Z)
 - Aggregate summary state Z
 - Employment function n(s, Z)
 - Profit function $\pi(s, Z)$
 - Both strictly increasing

Environment

- Common discount factor β
- Fixed endowment of a resource (labor) N_t inelastically supplied. Numeraire.
- Firm's idiosyncratic state s
- ▶ $s_t \sim F(s_{t+1}|s_t)$. Persistence.
- Revenue function R(s, n, Z)
 - Aggregate summary state Z
 - Employment function n(s, Z)
 - Profit function $\pi(s, Z)$
 - Both strictly increasing

Accomodates perfect competition and variable markups

An equilibrium for a given sequence $\{N_t\}$ and given initial measure μ_0 are sequences $\{s^*_t,m_t,\mu_t,Z_t\}$

- 1. Exit: Optimal exit condition.
- 2. Entry: No rents for entrants
- 3. Resource constraint holds

Equilibrium: Analysis

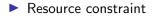
• Guess
$$Z_t = Z^*$$
 for all t , where $v^e(Z^*) = 0$

Equilibrium: Analysis

• Guess $Z_t = Z^*$ for all t, where $v^e(Z^*) = 0$

Exit rates, average firm size, and size distributions by cohorts are time invariant.

Resource Constraint


Define firm demographic variables:

- S_a : Probability an entrant survives at least a periods
- e_a : Average size of cohort of age a

Resource Constraint

Define firm demographic variables:

- S_a : Probability an entrant survives at least a periods
- e_a : Average size of cohort of age a

$$N_t = m_t e_0 + E_t^I$$

Resource Constraint

Define firm demographic variables:

- S_a : Probability an entrant survives at least a periods
- e_a : Average size of cohort of age a

Resource constraint

$$N_t = m_t e_0 + E_t^I$$

Mass of entrants:

$$m_t = \frac{N_t - E_t^I}{e_0}$$

Dynamic Entry Equation

$$m_t = \frac{N_t - E_t^I}{e_0}$$

Employment by incumbents depends on firm demographics

$$E_t^I = \sum_{a=1}^{\infty} m_{t-a} S_a e_a$$

History dependence: Current entry depends on past entry

$$m_t = \frac{N_t - \sum_{a=1}^{\infty} m_{t-a} S_a e_a}{e_0}$$

Feedback of firm demographics on entry

From Population Growth to Entry

1. Long run effects

ê = 0
 Population growth g affects share of age cohorts:

Lower growth implies lower exit rates

From Population Growth to Entry

1. Long run effects

ê = 0
 Population growth g affects share of age cohorts:

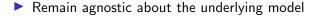
Lower growth implies lower exit rates

2. Adjustment Path

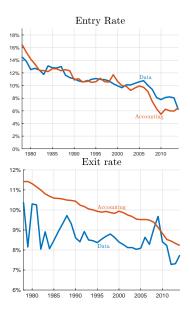
Change in g implies changes in average size

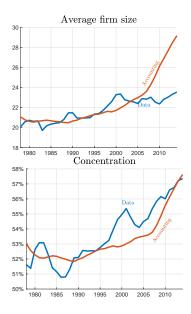
• $\hat{e} \neq 0$ in the transition

Accounting


Accounting Exercise

• Composition effect due to changes in N_t


• Take firm demographics S_a and e_a from data


Feed N_t into dynamic entry equation

$$m_t = \frac{N_t - \sum_{a=1}^{\infty} m_{t-a} S_a e_a}{e_0}$$

Extrapolation necessary due to data limitations • Extrapolation

• Do not observe e_a and S_a for older firms (age > 25)

• Do not observe μ_0 (age distribution in 1940)

Extrapolation necessary due to data limitations • Extrapolation

• Do not observe e_a and S_a for older firms (age > 25)

- Match time-series of average firm size and exit rates of left-censored firms Match
- Do not observe μ_0 (age distribution in 1940)
 - Match time-series of employment weight of left-censored firms Match

Extrapolation necessary due to data limitations • Extrapolation

• Do not observe e_a and S_a for older firms (age > 25)

- Match time-series of average firm size and exit rates of left-censored firms Match
- Do not observe μ_0 (age distribution in 1940)
 - Match time-series of employment weight of left-censored firms • Match

Alternative to extrapolation: calibrate a structural model

Calibration

Calibration strategy

Pick a model: perfect competition

- Homogeneous good
- Aggregate state Z equals market price p

Assume economy in balanced growth path in 1939

- Feed labor force growth rate from 1940 to 2014
- Calibrate to (mostly) 1978 moments
- Look at non-targeted moments

Functional Forms

Production function

$$f(s,n) = sn^{\alpha}; \qquad \alpha < 1$$

• Log-productivity follows AR(1)

$$\log(s_{t+1}) = \mu_s + \rho \log(s_t) + \varepsilon_{t+1}; \qquad \varepsilon_{t+1} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$$

Startups draw productivity from

$$G \sim \log \mathcal{N}\left(s_0, \sigma_0^2\right)$$

Overhead labor is increasing in firm size

$$c_f = c_{fa} + c_{fb} \times h(s)$$

Parameter Values

	Assigned			
	Value	Definition	Basis	
β	0.96	Discount factor	Standard	
α	0.64	Worker's share of output	Standard	
8	0.01	Labor force growth rate (SS)	Standard	

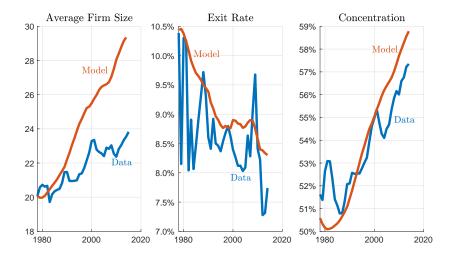
	Jointly Calibrated						
		Parameters	Moments				
	Value	Definition		Data	Model		
Ce	3e-7	Entry cost	$p^* = 1$	_	_		
c _{fa}	3.760	Operating cost intercept	Avg. firm size 1978	20.08	20.08		
cfb	0.007	Operating cost slope	SD log-LP 1993-01	0.58	0.60		
s_0	-11.189	Mean of G	Avg. entrant size 1978	5.40	5.36		
σ_0^2	3.966	Variance of G	Avg. conc. of entrants	5.90%	5.87%		
μ_s	-0.025	Drift in AR(1)	Entry rate 1978	14.75%	14.33%		
ρ	0.973	Persistence of AR(1)	5-year growth rate	70.49%	73.82%		
$\sigma_{\varepsilon}^{ m ho}$	0.073	Variance of AR(1) shocks	5-year exit rate	$48.42\ \%$	45.83%		

Parameter Values

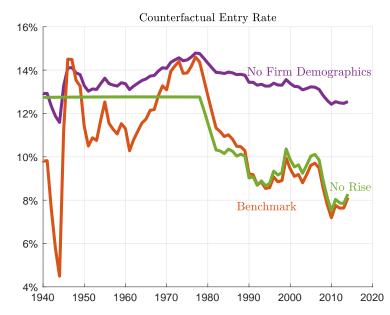
	Assigned			
	Value	Definition	Basis	
β	0.96	Discount factor	Standard	
α	0.64	Worker's share of output	Standard	
8	0.01	Labor force growth rate (SS)	Standard	

	Jointly Calibrated						
		Parameters	Moments				
	Value	Definition		Data	Model		
Ce	3e-7	Entry cost	$p^* = 1$	_	_		
c _{fa}	3.760	Operating cost intercept	Avg. firm size 1978	20.08	20.08		
c _{fb}	0.007	Operating cost slope	SD log-LP 1993-01	0.58	0.60		
	-11.189	Mean of G	Avg. entrant size 1978	5.40	5.36		
σ_0^2	3.966	Variance of G	Avg. conc. of entrants	5.90%	5.87%		
μ_s	-0.025	Drift in AR(1)	Entry rate 1978	14.75%	14.33%		
ρ	0.973	Persistence of AR(1)	5-year growth rate	70.49%	73.82%		
σ_{ε}^2	0.073	Variance of AR(1) shocks	5-year exit rate	48.42~%	45.83%		

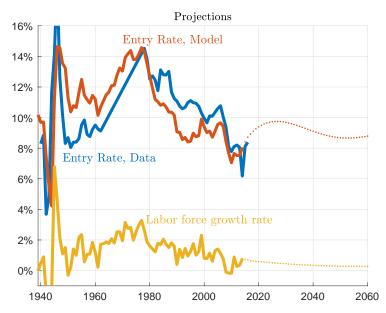
Non-targeted moments on Firm Dynamics?

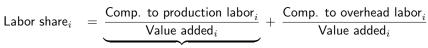

Exit, Size, and Concentration by Firm Age

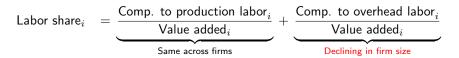
Age	Exi	it rate Average firm		firm size	Concentration	
	Data(%)	Model(%)	Data	Model	Data(%)	Model(%)
0	_	_	6.05	5.35	5.90	5.87
1	21.85	29.22	7.73	6.01	12.29	7.53
2	15.86	18.73	8.46	6.71	13.29	9.07
3	13.43	14.53	9.14	7.47	14.83	10.68
4	11.68	12.18	9.77	8.34	16.45	12.44
5	10.48	10.66	10.36	9.29	17.84	14.43
6-10	8.30	8.40	11.98	12.66	23.00	22.38
11-15	6.40	6.47	15.08	20.52	31.85	37.62
16-20	5.56	5.60	18.81	30.46	40.68	50.85
21-25	4.99	5.12	24.03	41.43	50.47	60.25
26+	4.29	4.53	81.59	72.70	78.91	73.90

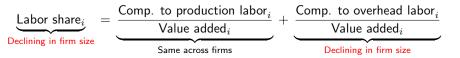

Entry Rate

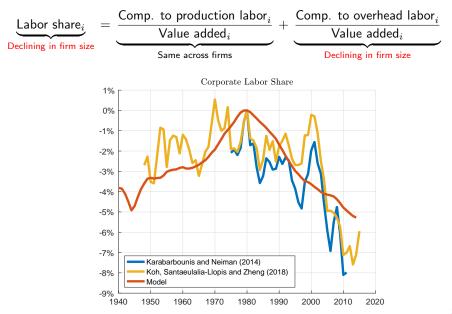
Non-targeted moments


Counterfactuals


Counterfactuals


Projections

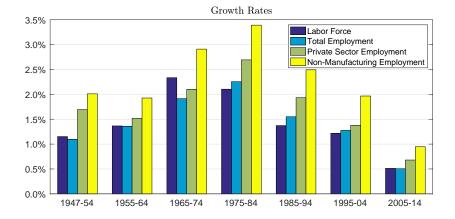



 $\mathsf{Labor \ share}_i \quad = \ \frac{\mathsf{Comp. \ to \ production \ labor}_i}{\mathsf{Value \ added}_i} \ + \ \frac{\mathsf{Comp. \ to \ overhead \ labor}_i}{\mathsf{Value \ added}_i}$

Same across firms

Discussion

► Labor force and labor supply


► Job Creation and Destruction

► TFP

► CONCLUSION

Alternative Measures of Labor Supply

38 / 43

▶ Back

 $\mathsf{LF}_t = \mathsf{Civilian}$ Noninstitutional Population Age 16 And $\mathsf{Over}_t \times \mathsf{Participation}$ Rate_t

▶ Back

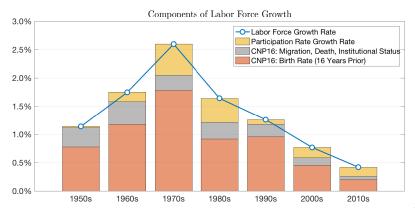
 $\mathsf{LF}_t = \mathsf{Civilian}$ Noninstitutional Population Age 16 And $\mathsf{Over}_t \times \mathsf{Participation}$ Rate_t

LF Growth $Rate_t = CNP16$ Growth $Rate_t + PR$ Growth $Rate_t$

▶ Back

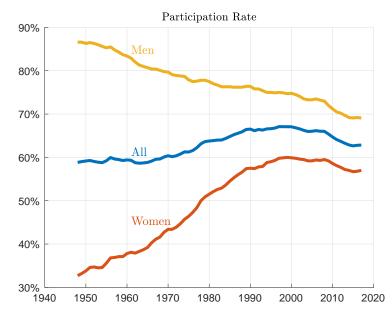
 $LF_t = Civilian Noninstitutional Population Age 16 And Over_t \times Participation Rate_t$

LF Growth $Rate_t = CNP16$ Growth $Rate_t + PR$ Growth $Rate_t$

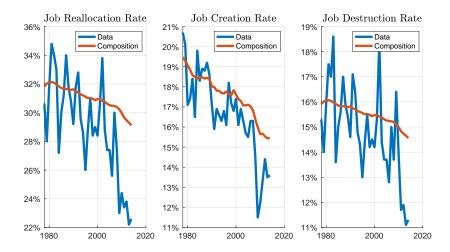

CNP16 Growth Rate_t = Birth Rate_{t-16} + Other(Migration, Death, Instit)_t

▶ Back

 $LF_t = Civilian Noninstitutional Population Age 16 And Over_t \times Participation Rate_t$


LF Growth $Rate_t = CNP16$ Growth $Rate_t + PR$ Growth $Rate_t$

CNP16 Growth Rate_t = Birth Rate_{t-16} + Other(Migration, Death, Instit)_t



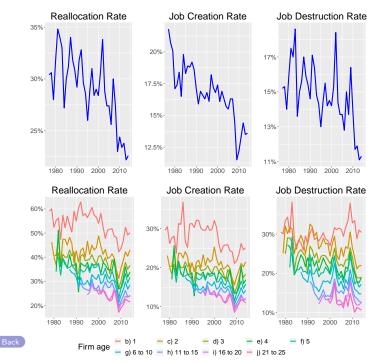
Participation Rate By Gender

Job Reallocation: Accounting Approach

► Back

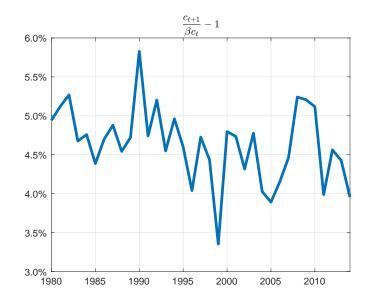
		Model		
	TFP data (%)	measured $\text{TFP}(\%)$	$\mathrm{TFP}(\%)$	
1950s	2.35	0.43	-0.16	
1960s	2.05	0.53	-0.27	
1970s	1.08	0.78	-0.51	
1980s	0.51	0.79	0.46	
1990s	1.03	0.59	0.59	
2000s	0.77	0.39	0.40	
2010s	1.11	0.23	0.47	

• Aggregate production function is $Y = AM^{1-\alpha}N^{\alpha}$.


• TFP is
$$A = \left[\int s^{1/(1-\alpha)} d\mu(s)\right]^{1-\alpha}$$

• Measured TFP is $AM^{1-\alpha}$.

Conclusions


Unified quantitative explanation for long-term changes in

- Entry rate
- Exit rates
- Average firm size
- Concentration
- Labor Share
- Population growth as driving force
- Importance of firm demographics
- Interplay of population and firm demographics explains a large part of these facts

Implied interest rate with log utility

Regression of reallocation rate on firm age

Variable	Specification			
	(1)	(2)	(3)	(4)
Year	-0.423^{***} (0.020)	-0.231^{***} (0.014)	-0.231^{***} (0.011)	-0.231*** (0.011)
AGE:		(<i>/</i>	· /	· /
Age 1		57.421^{***}	60.543^{***}	60.992***
		(0.422)	(0.450)	(0.811)
Age 2		47.321^{***}	50.443***	52.719***
_		(0.429)	(0.455)	(0.823)
Age 3		43.351***	46.473***	48.006***
		(0.437)	(0.460)	(0.836)
Age 4		40.915***	44.037^{***}	45.051***
		(0.446)	(0.465)	(0.848)
Age 5		38.974^{***}	42.097***	42.327***
		(0.454)	(0.470)	(0.862)
Age 6 to 10		35.972^{***}	39.095***	38.718^{***}
		(0.499)	(0.500)	(0.937)
Age 11 to 15		32.761^{***}	35.883^{***}	33.679^{***}
		(0.540)	(0.528)	(1.013)
Age 16 to 20		30.965^{***}	34.087^{***}	30.609^{***}
		(0.588)	(0.561)	(1.108)
Age 21 to 25		30.030^{***}	33.153^{***}	29.323^{***}
		(0.646)	(0.602)	(1.236)
SECTOR CONTROLS	No	No	Yes	Yes
SECTOR×AGE CONTROLS	No	No	No	Yes
Observations	2,817	2,367	2,367	2,367
\mathbb{R}^2	0.141	0.975	0.983	0.985

*** p < 0.01,** p < 0.05,*p < 0.1

Regression of job creation rate on firm age

Variable	Specification			
	(1)	(2)	(3)	(4)
Year	-0.221*** (0.012)	-0.117^{***} (0.010)	-0.117^{***} (0.009)	-0.117^{***} (0.009)
AGE:				
Age 1		31.795^{***}	33.409***	33.507^{***}
		(0.303)	(0.351)	(0.644)
Age 2		24.325^{***}	25.939^{***}	28.023^{***}
		(0.309)	(0.355)	(0.653)
Age 3		22.323***	23.936^{***}	24.811^{***}
		(0.315)	(0.359)	(0.663)
Age 4		21.174^{***}	22.788^{***}	23.092^{***}
		(0.321)	(0.363)	(0.673)
Age 5		20.206***	21.820^{***}	21.702^{***}
		(0.327)	(0.367)	(0.683)
Age 6 to 10		18.476^{***}	20.090***	19.810^{***}
		(0.359)	(0.390)	(0.743)
Age 11 to 15		16.853^{***}	18.467^{***}	17.117^{***}
		(0.389)	(0.412)	(0.803)
Age 16 to 20		16.324^{***}	17.938^{***}	16.088^{***}
		(0.423)	(0.438)	(0.879)
Age 21 to 25		15.908^{***}	17.522^{***}	15.116^{***}
		(0.465)	(0.470)	(0.980)
SECTOR CONTROLS	No	No	Yes	Yes
SECTOR×AGE CONTROLS	No	No	No	Yes
Observations	2,817	2,367	2,367	2,367
\mathbb{R}^2	0.105	0.954	0.964	0.967

*** p < 0.01, ** p < 0.05, * p < 0.1

Regression of job destruction rate on firm age

Variable	Specification			
	(1)	(2)	(3)	(4)
Year	-0.259^{***} (0.014)	-0.125^{***} (0.011)	-0.125^{***} (0.010)	-0.125^{***} (0.010)
AGE:	()		· /	· /
Age 1		34.426^{***}	35.072^{***}	36.933^{***}
-		(0.354)	(0.399)	(0.743)
Age 2		31.192***	31.838***	32.027***
		(0.361)	(0.403)	(0.753)
Age 3		27.792***	28.439^{***}	29.024***
		(0.367)	(0.408)	(0.765)
Age 4		25.842^{***}	26.488^{***}	25.858^{***}
		(0.374)	(0.413)	(0.776)
Age 5		24.119^{***}	24.766^{***}	24.353^{***}
		(0.381)	(0.417)	(0.789)
Age 6 to 10		21.868^{***}	22.514^{***}	21.879^{***}
		(0.419)	(0.444)	(0.858)
Age 11 to 15		19.477^{***}	20.124^{***}	19.707^{***}
		(0.453)	(0.468)	(0.927)
Age 16 to 20		17.825^{***}	18.472^{***}	17.317^{***}
		(0.493)	(0.498)	(1.014)
Age 21 to 25		17.459^{***}	18.106^{***}	17.470^{***}
		(0.543)	(0.535)	(1.131)
SECTOR CONTROLS	No	No	Yes	Yes
SECTOR×AGE CONTROLS	No	No	No	Yes
Observations	2,817	2,367	2,367	2,367
\mathbf{R}^2	0.103	0.956	0.967	0.969

*** p < 0.01,** p < 0.05,*p < 0.1

Regression of log average firm size on firm age

*** p < 0.01, ** p < 0.05, * p < 0.1

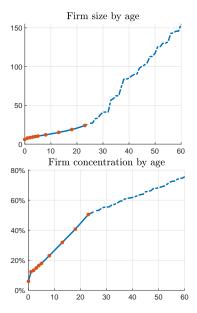
Variable	Specification			
	(1)	(2)	(3)	(4)
Year	0.006*** (0.001)	-0.005*** (0.001)	-0.005*** (0.000)	-0.005*** (0.000)
AGE:				
Age 0		1.839***	1.435*** (0.015)	1.441*** (0.026)
Age 1		(0.023) 2.080***	(0.015) 1.676*** (0.015)	1.717***
Age 2		(0.023) 2.171*** (0.023)	(0.015) 1.767*** (0.015)	(0.026) 1.806*** (0.026)
Age 3		2.247***	1.843***	1.868***
Age 4		(0.024) 2.319***	(0.015) 1.915***	(0.026) 1.941***
Age 5		(0.024) 2.378***	(0.015) 1.974***	(0.026) 2.002***
Age 6 to 10		(0.024) 2.526*** (0.027)	(0.015) 2.122*** (0.016)	(0.027) 2.159*** (0.029)
Age 11 to 15		(0.027) 2.748*** (0.029)	(0.018) 2.344*** (0.017)	(0.029) 2.323*** (0.032)
Age 16 to 20		2.977***	(0.017) 2.573*** (0.018)	(0.032) 2.472*** (0.035)
Age 21 to 25		(0.032) 3.251*** (0.035)	(0.018) 2.847*** (0.019)	(0.033) 2.579*** (0.039)
SECTOR CONTROLS	No	No	Yes	Yes
SECTOR×AGE CONTROLS	No	No	No	Yes
R ² Observations	0.015 2,682	0.978 2,682	0.995 2,682	0.996 2,682

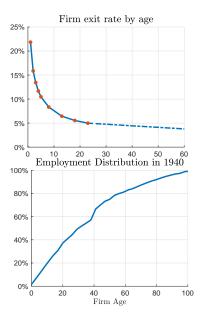
Regression of exit rate on firm age

Variable	Specification			
	(1)	(2)	(3)	(4)
Year	-0.151***	-0.011*	-0.011**	-0.011**
	(0.012)	(0.006)	(0.005)	(0.005)
AGE:				
Age 1		21.780***	19.381***	19.036***
U		(0.178)	(0.188)	(0.342)
Age 2		16.143***	13.744***	12.702***
		(0.178)	(0.188)	(0.342)
Age 3		13.673***	11.274***	10.765***
_		(0.181)	(0.190)	(0.347)
Age 4		12.029***	9.629***	9.380***
_		(0.185)	(0.192)	(0.352)
Age 5		10.753***	8.354***	8.331***
		(0.189)	(0.194)	(0.358)
Age 6 to 10		8.647***	6.247***	6.695***
		(0.208)	(0.206)	(0.390)
Age 11 to 15		6.711***	4.312***	5.160***
ũ		(0.225)	(0.218)	(0.421)
Age 16 to 20		5.901***	3.501***	4.582^{***}
-		(0.246)	(0.232)	(0.461)
Age 21 to 25		5.416***	3.017***	4.420***
Ũ		(0.271)	(0.250)	(0.514)
SECTOR CONTROLS	No	No	Yes	Yes
SECTOR×AGE CONTROLS	No	No	No	Yes
R ²	0.065	0.962	0.976	0.978
Observations	2,358	2,358	2,358	2,358

*** p < 0.01, ** p < 0.05, * p < 0.1

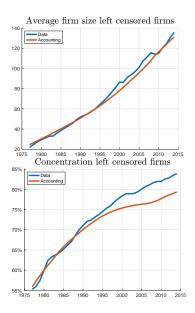
Regression of concentration on firm age

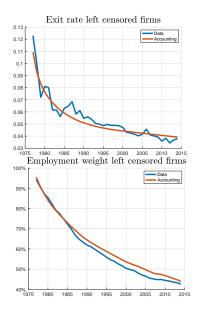



Variable	Specification		
	(1)	(2)	
Year	0.003***	-0.000	
	(0.001)	(0.000)	
AGE:			
Age 0		0.666	
		(0.439)	
Age 1		0.730^{*}	
	(0.439)		
Age 2	0.740^{*}		
		(0.440)	
Age 3		0.756^{*}	
		(0.440)	
Age 4		0.772*	
	(0.440)		
Age 5	0.786*		
1 (10		(0.440)	
Age 6 to 10		0.839*	
Age 11 to 15		(0.440) 0.928**	
Age 11 to 15		(0.928)	
Age 16 to 20		1.017**	
Age 10 to 20		(0.441)	
Age 21 to 25		1.115**	
1.90 11 10 20		(0.442)	
R ²	0.080	0.976	
Observations	301	301	

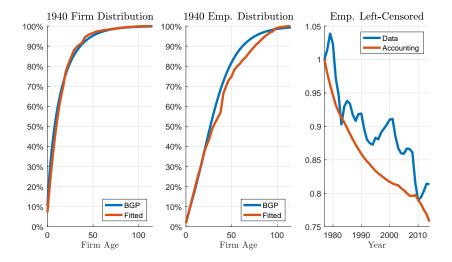
*** p < 0.01; ** p < 0.05; * p < 0.1

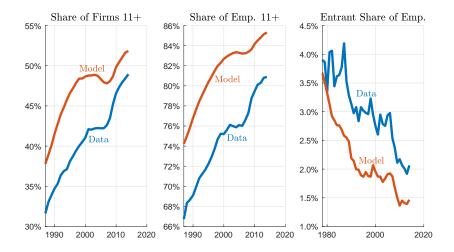
Extrapolation


🕨 Back

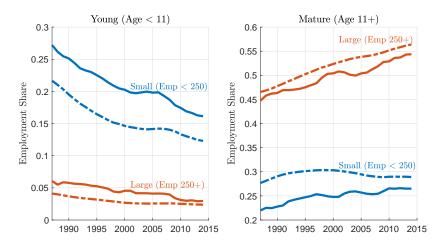


Accounting Exercise: Left-Censored Match

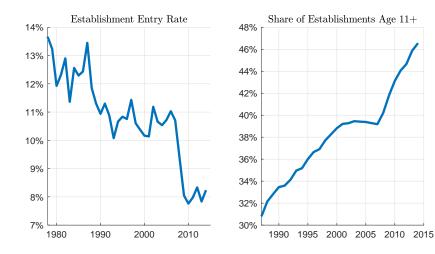




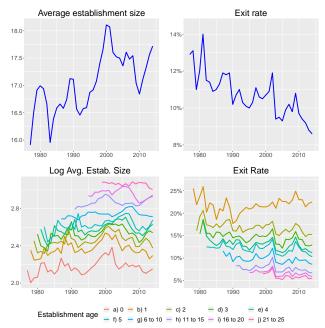
Accounting Exercise: Robustness checks

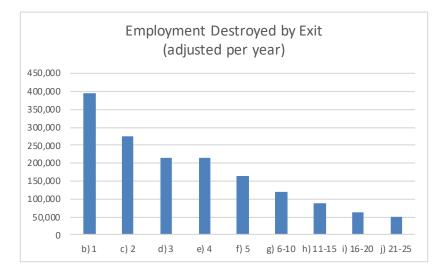


Distributional Moments Match: Competitive Model

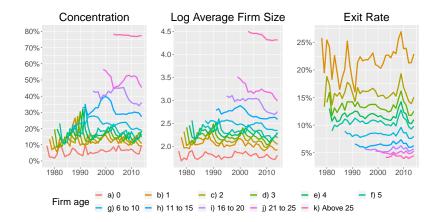


Age-Size Distribution Match: Competitive Model




- Model: Dashed Line
- Data: Solid Line

Establishments



Establishments

Statistics including firms age > 25

