The Rise of Niche Consumption

Brent Neiman
University of Chicago

Joe Vavra
University of Chicago

April 2019
Households Concentrating Spending (Within Category)

Household Herfindahl

Varieties per HH
Economy Spreading Out Spending (Within Category)

Aggregate Herfindahl

Varieties per Store
How To Reconcile?

- Households increasingly like their “top” products, but differ on what those top products are: growing “niche” consumption!

- Another dimension of growing fragmentation in economy:
 - Digital content (e.g. Aguado et al. 2015)
 - Political ideology (e.g. Gentzkow et al. 2017)
 - Job polarization (e.g. Autor et al. 2006)
Examples of Fragmenting Product Space

Varieties ↑ and concentration ↓ in each. But household taste not spread evenly over products, so HH concentration ↑.
How to Understand These Facts?

- Build a model with following elements:
 - Households choose number of varieties to consume
 - Households spend a lot on some varieties, a little on others
 - Different households consume different varieties
How to Understand These Facts?

• Build a model with following elements:
 • Households choose number of varieties to consume
 • Households spend a lot on some varieties, a little on others
 • Different households consume different varieties

• Commonly used models won’t do
 • Standard love-of-variety: $H^{HH} = \frac{1}{N}$
 • Standard discrete choice: $H^{HH} = 1$
 • Representative HHs: $H^{HH} = H^{Agg}$
How to Understand These Facts?

• Build a model with following elements:
 • Households choose number of varieties to consume
 • Households spend a lot on some varieties, a little on others
 • Different households consume different varieties

• Commonly used models won’t do
 • Standard love-of-variety: \(H_{HH} = \frac{1}{N} \)
 • Standard discrete choice: \(H_{HH} = 1 \)
 • Representative HHs: \(H_{HH} = H_{Agg} \)

• Implications through lens of model:
 • Innovation cost ↓ or idiosyncratic tastes ↑ (isomorphic)
 • Welfare gains from better product selection
Agenda

• Concentration and extensive margin in AC Nielsen Homescan
• A model of a household’s variety choice
• Adding household heterogeneity and aggregating
• Understanding empirical trends
• Implications for market power and product entry
Baseline Data Sample

- Nielsen Homescan 2004-2015
 - All households using sampling weights
 - Non-magnet, non-fresh produce, non-generic items
 - Balanced set of narrow product categories (modules)

- Products are UPCs (baseline) or brand (robustness)

- 107 categories (e.g. carbonated beverages or laundry supplies)

- Average over category concentration measures with constant weights across time to eliminate composition
Measuring Concentration

• **Household Concentration:**
 - Within categories, **for each household**, calculate product spending shares and Herfindahls
 - Average over households and categories to get average Household Herfindahl by year: H_{t}^{HH}

• **Aggregate Concentration:**
 - Within categories, **add up all households’ product spending**, calculate shares and Herfindahls
 - Average over categories to get average Aggregate Herfindahl by year: H_{t}^{agg}
Fact 1: Household Product Concentration is Increasing

Are these the Autor et al. (2017) “super-stars”?
Fact 1: Household Product Concentration is Increasing

• Are these the Autor et al (2017) "super-stars"?
Fact 2: Aggregate Product Concentration is Decreasing
Results are Highly Robust

- Holds whether defining “products” as UPCs or brands
- Pervasive across product categories and locations
- Even within most individual retailers
- Seen within all demographic groups, so not about:
 - rich vs. poor
 - black vs. white
 - college vs. non-college
 - old vs. young
 - urban vs. rural
 - etc.

Detailed results
Largely Driven by Extensive Margin (Churning Varieties)

- Trends substantially dampened if restrict to balanced products
Largely Driven by Extensive Margin (Churning Varieties)

- Trends substantially dampened if restrict to balanced products
- Trends strongest in retailers with most variety growth:

![Graphs showing trends and correlations between HH Herfindahl, Variety Growth, and Agg Herfindahl Growth.](image-url)
How to Think about These Patterns?

- We find household consumption segmentation interesting *per se*, consistent with trends in other walks of life.

- But, we develop a model to think about the driving forces and implications for welfare and market power.

- Many models (discrete-choice, basic CES) ill-suited, often specify number of varieties or have identical households.
Agenda

• Concentration and extensive margin in AC Nielsen Homescan
• A model of a household’s variety choice
• Adding household heterogeneity and aggregating
• Understanding empirical trends
• Implications for market power and product entry
Setup for Household i

- HHs $i \in [0, 1]$ spend E on goods $k \in [0, N]$ to maximize:

$$U_i = \left(\int_{k \in \Omega_i} \left(\gamma_{i,k} C_{i,k} \right)^{\sigma-1} dk \right)^{\frac{\sigma}{\sigma-1}} - F \times (|\Omega_i|)^\epsilon$$

- Let $\tilde{\gamma}_{i,k} = \gamma_{i,k}/p_k$ be price-adjusted taste, distributed Pareto:

$$Pr(\tilde{\gamma}_{i,k} < y) = G(y) = 1 - \left(\frac{y}{b}\right)^{-\theta},$$

where larger θ means a flatter distribution of tastes.

- Price Index:

$$P = P_i = \left(\int_{k \in \Omega_i} \left(\tilde{\gamma}_{i,k} \right)^{\sigma-1} dk \right)^{\frac{1}{1-\sigma}}$$

$$= \left(1 + \frac{1 - \sigma}{\theta} \right)^{\frac{1}{\sigma-1}} b^{-1} \times \left(\frac{|\Omega_i|}{N} \right)^{\frac{1}{1-\sigma}} \times \left(\frac{|\Omega_i|}{N} \right)^{\frac{1}{\theta}}$$

= Ave Price \quad Variety Gains \quad Selection
Choice of Varieties and Concentration

• Optimal number of varieties given by:

$$|\Omega_i| = |\Omega| = \left(\frac{bE \left(\frac{1}{1-\sigma} - \frac{1}{\theta} \right) \left(1 + \frac{1-\sigma}{\theta} \right) \frac{1}{1-\sigma} N^{1/\theta}}{F \epsilon} \right) \left(\epsilon - \frac{1}{1-\sigma} + \frac{1}{\theta} \right)^{-1}$$

• “Cutoff” variety whose taste satisfies: $$\frac{|\Omega|}{N} = 1 - G(\tilde{\gamma}^*)$$.
Closed-form solution for Household Herfindahl:

\[H_{HH} = N \int_{\gamma_i^*}^{\infty} (P_i \tilde{\gamma}_{i,k})^{2(\sigma-1)} dG(y) \]

\[= \frac{(\eta + 1)^2}{4\eta} \frac{1}{|\Omega|}, \]

where \(\eta = 1 - 2(\sigma - 1)/\theta \in (0, 1) \).
How Does this Fit the Data?

Model Fit by HH–Product Groups–Year

Slope by Product Group

Estimated η by Product Group

R² of Predictions Within Product Group
Agenda

- Concentration and extensive margin in AC Nielsen Homescan
- A model of a household’s variety choice
- Adding household heterogeneity and aggregating
- Understanding empirical trends
- Implications for market power and product entry
Rank Function

• All HHs same \# varieties \(|\Omega|\), price \(P\), and shares \((P\tilde{\gamma}_{i,k})^{\sigma-1}\), but Chobani may have large \(\tilde{\gamma}\) for some HHs and not others

• Assume each HH “ranks” products from favorite to least:

\[
 r_{i,j} = (1 - \alpha) j + \alpha x_{i,j},
\]

\(j \in [0, N]\) is common, \(x_{i,j} \sim U[0, N]\) is idiosyncratic taste

• If \(\alpha = 0\), we have representative HHs

• If \(\alpha > 0\), HHs like different products
Key Cutoffs

- Goods $j \in (0, j^*]$ have positive spending, where:
 \[j^* = \left(2\alpha |\Omega| N / (1 - \alpha) \right)^{\frac{1}{2}} \]

- Goods $j \in (j^*, N)$ are not purchased (i.e. failed products)

- Worst idiosyncratic draw x^*_j yielding positive consumption of j:
 \[x^*_j = (1 - \alpha) (j^* - j) / \alpha \]
Aggregate Market Shares

- Index HHs by their $x_{i,j}$’s and integrate spending shares:

$$s_j = \frac{1}{N} \int_{x=0}^{x^*_j} E \times s_{i,j} \, dx = \frac{\eta + 1}{\eta j^*} \left(1 - \left(\frac{j}{j^*} \right)^{\eta} \right)$$

- This gives us the Aggregate Herfindahl:

$$\mathcal{H}^{\text{Agg}} = \frac{2(\eta + 1)}{(2\eta + 1)} \left(\frac{1}{2\tilde{\alpha} |\Omega|} \right)^{\frac{1}{2}},$$

where we define $\tilde{\alpha} = \alpha N / (1 - \alpha)$.
How Does this Fit the Data?

- Given observed $|\Omega|$, pick η and $\tilde{\alpha}$ to match H_{Agg} and H_{HH}
- Do for overall economy and for each product group:
Agenda

- Concentration and extensive margin in AC Nielsen Homescan
- A model of a household’s variety choice
- Adding household heterogeneity and aggregating
- Understanding empirical trends
- Implications for market power and product entry
What Does Model Say about Herfindahls Trends?

- Using data on $|\Omega^t|$ and on:

$$\mathcal{H}_{HH,t} = \frac{(\eta^t + 1)^2}{4\eta^t} \frac{1}{|\Omega^t|} \quad \text{and} \quad \mathcal{H}_{Agg,t} = \frac{2(\eta^t + 1)}{(2\eta^t + 1)} \left(\frac{1}{2\tilde{\alpha}^t |\Omega^t|} \right)^{\frac{1}{2}}.$$

- η decreased by 1%. $\tilde{\alpha}$ increased by 68%.
What Drove the Rise of Niche Consumption?

Conclusion 1:

- Matching empirical $\Delta H^\text{Agg} < 0 < \Delta H^\text{HH}$ requires $\alpha \uparrow$ or $N \uparrow$
- Pervasiveness within groups suggests $N \uparrow$ rather than $\alpha \uparrow$
What Drove the Rise of Niche Consumption?

• **Conclusion 1:**
 - Matching empirical $\Delta \mathcal{H}^{Agg} < 0 < \Delta \mathcal{H}^{HH}$ *requires* $\alpha \uparrow$ or $N \uparrow$
 - Pervasiveness within groups suggests $N \uparrow$ rather than $\alpha \uparrow$

• **Conclusion 2:**
 - Other shocks required since $N \uparrow$ implies $|\Omega| \uparrow$ (counterfactual)
 - Candidates include increases in ϵ or F
What are the Implications of $\mathcal{N} \uparrow$?

- Consider $\mathcal{N} \uparrow$ by 68% as calculated above

- Welfare changes from:
 - Love-of-Variety Gains ($|\Omega|^{\frac{1}{1-\sigma}}$): 1.95%
 - Selection Gains ($\left(\frac{|\Omega|}{N}\right)^{\frac{1}{\theta}}$): 9.10%
 - Fixed Cost Losses ($F \times |\Omega|^\epsilon$): -1.08%
 - Total $d\ln U$: 10.1%

- Shows up partly in the *Ideal* price index, not measured one
What if We Additionally Match $\mathcal{H}^{HH} \uparrow$ and $|\Omega| \downarrow$?

- **Same $N \uparrow$ plus $\epsilon \uparrow$ 4%?:**
 - Love-of-Variety Losses $(|\Omega|)^{\frac{1}{1-\sigma}}$: -3.11%
 - Selection Gains $\left(\frac{|\Omega|}{N} \right)^{\frac{1}{\theta}}$: 11.71%
 - Fixed Cost Losses ($F \times |\Omega|^\epsilon$): -0.46%
 - Total $d\ln U$: 7.87%

- **Same $N \uparrow$ plus $F \uparrow$ 25%?:**
 - Love-of-Variety Losses $(|\Omega|)^{\frac{1}{1-\sigma}}$: -3.11%
 - Selection Gains $\left(\frac{|\Omega|}{N} \right)^{\frac{1}{\theta}}$: 11.71%
 - Fixed Cost Losses ($F \times |\Omega|^\epsilon$): -0.83%
 - Total $d\ln U$: 7.46%
Agenda

• Concentration and extensive margin in AC Nielsen Homescan
• A model of a household’s variety choice
• Adding household heterogeneity and aggregating
• Understanding empirical trends
• Implications for market power and product entry
Does Rise in Niche Consumption Affect Market Power?

- Herfindahls classically used to comment on market power

- Unlike standard CES, elasticity of demand reflects intensive and extensive margins:

 \[\epsilon_j = \left[\left(1 - \left(\frac{j}{j^*} \right)^\eta \right)^{-1} \cdot \left\{ \frac{\theta}{2} - (\sigma - 1) \right\} \right] > \sigma \]

 \(\text{Intensive Margin} + \text{Extensive Margin} \)

- Extensive margin becomes more important as \(j \to j^* \) so markups increase with market share
Approximate Elasticity of Demand for Good j
Will $N \uparrow$ Change Aggregate Profits?

- Define “aggregate” markup, μ^{Agg}, as:

$$
\mu^{\text{Agg}} = \frac{\text{Total Revenues}}{\text{Total Costs}} = \frac{\int_{0}^{j^*} s_j \, dj}{\int_{0}^{j^*} s_j \frac{\epsilon_j - 1}{\epsilon_j} \, dj} = \left[\frac{\theta + (\sigma - 1)^2}{\sigma^2} - \frac{1}{2} \frac{\eta \theta^2}{\sigma^2} \left(\frac{\eta + 1}{2 + \theta} \right) \right] \times 2F_1 \left(1, \frac{1}{\eta}; 1 + \frac{1}{\eta}; \frac{2\sigma}{2 + \theta} \right)
$$

- Note that μ^{Agg} is only a function of σ and θ

- Changes in α, N, F, and ϵ matter for H^{HH} or H^{Agg} and have distributional impact, but unrelated to “aggregate” markup
Math:

- \(N \) only enters \(s_j \) and \(\epsilon_j \) through \(j^* \)
- \(s_j \) and \(\epsilon_j \) only functions of \(\frac{j}{j^*} \)
- Since integrate from \(j \) to \(j^* \), change of variables shows \(\mu^{\text{Agg}} \) independent of \(j^* \)

Intuition:

- Two opposing forces exactly cancel
- Selection Effects ↑: For fixed \(j \) an increase in \(j^* \) → lower extensive margin, greater market power and \(\mu_j \) ↑
- Competition ↑: \(j^* \) ↑ → decline in sales and profits for initial high markup items
Summary and Next Steps

- Increasing importance of niche consumption – HHs are concentrating while the aggregate economy is not
- Model and data suggest key role for increased product entry
- Greater welfare from better product selection (unmeasured)
- Differing importance of extensive/intensive margins imply markup differences across products. Cancel in aggregate.
HH Result Holds Within Demographic Groups

Trend by Income

- 2004 to 2015
- Herfindahl index for different income brackets: <$20k, $20−35k, $35−60k, >$60k

Trend by Education

- 2004 to 2015
- Herfindahl index for College and Non-College groups

Trend by Race

- 2004 to 2015
- Herfindahl index for White and Black populations

Trend by Age

- 2004 to 2015
- Herfindahl index for different age groups: <35, 35−49, 50−64, >=65
Aggregate Result Holds Within Demographic Groups

Trend by Income

Trend by Education

Trend by Race

Trend by Age

Trend by Age
Largely Driven by Extensive Margin (Churning Varieties)
Online Spending?