The Rise of Niche Consumption

Brent Neiman University of Chicago University of Chicago

Joe Vavra

April 2019

Households Concentrating Spending (Within Category)

Economy Spreading Out Spending (Within Category)

How To Reconcile?

- Households increasingly like their "top" products, but differ on what those top products are: growing "niche" consumption!
- Another dimension of growing fragmentation in economy:
 - Digital content (e.g. Aguado et al. 2015)
 - Political idiology (e.g. Gentzkow et al. 2017)
 - Job polarization (e.g. Autor et al. 2006)

Examples of Fragmenting Product Space

 Varieties ↑ and concentration ↓ in each. But household taste not spread evenly over products, so HH concentration ↑

How to Understand These Facts?

- Build a model with following elements:
 - Households choose number of varieties to consume
 - Households spend a lot on some varieties, a little on others
 - Different households consume different varieties

How to Understand These Facts?

- Build a model with following elements:
 - Households choose number of varieties to consume
 - · Households spend a lot on some varieties, a little on others
 - Different households consume different varieties
- Commonly used models won't do
 - Standard love-of-variety: $\mathcal{H}^{HH} = \frac{1}{N}$
 - Standard discrete choice: $\mathcal{H}^{HH} = 1$
 - Representative HHs: $\mathcal{H}^{HH} = \mathcal{H}^{Agg}$

How to Understand These Facts?

- Build a model with following elements:
 - Households choose number of varieties to consume
 - Households spend a lot on some varieties, a little on others
 - Different households consume different varieties
- Commonly used models won't do
 - Standard love-of-variety: $\mathcal{H}^{HH} = \frac{1}{N}$
 - Standard discrete choice: $\mathcal{H}^{HH} = 1$
 - Representative HHs: $\mathcal{H}^{HH} = \mathcal{H}^{Agg}$
- Implications through lens of model:
 - Innovation cost ↓ or idiosyncratic tastes ↑ (isomorphic)
 - Welfare gains from better product selection

Agenda

- Concentration and extensive margin in AC Nielsen Homescan
- A model of a household's variety choice
- · Adding household heterogeneity and aggregating
- Understanding empirical trends
- Implications for market power and product entry

Baseline Data Sample

- Nielsen Homescan 2004-2015
 - All households using sampling weights
 - Non-magnet, non-fresh produce, non-generic items
 - Balanced set of narrow product categories (modules)
- Products are UPCs (baseline) or brand (robustness)
- 107 categories (e.g. carbonated beverages or laundry supplies)
- Average over category concentration measures with constant weights across time to eliminate composition

Measuring Concentration

- Household Concentration:
 - Within categories, **for each household**, calculate product spending shares and Herfindahls
 - Average over households and categories to get average Household Herfindahl by year: $\mathcal{H}_t^{\rm HH}$

- Aggregate Concentration:
 - Within categories, add up all households' product spending, calculate shares and Herfindahls
 - Average over categories to get average Aggregate Herfindahl by year: $\mathcal{H}_t^{\rm agg}$

Fact 1: Household Product Concentration is Increasing

Fact 1: Household Product Concentration is Increasing

• Are these the Autor et al (2017) "super-stars"?

Fact 2: Aggregate Product Concentration is Decreasing

Results are Highly Robust

- Holds whether defining "products" as UPCs or brands
- Pervasive across product categories and locations
- Even within most individual retailers
- Seen within all demographic groups, so not about:
 - rich vs. poor
 - black vs. white
 - college vs. non-college
 - old vs. young
 - urban vs. rural
 - etc. Detailed results

Largely Driven by Extensive Margin (Churning Varieties)

• Trends substantially dampened if restrict to balanced products details

Largely Driven by Extensive Margin (Churning Varieties)

- Trends substantially dampened if restrict to balanced products details
- Trends strongest in retailers with most variety growth:

How to Think about These Patterns?

- We find household consumption segmentation interesting *per se*, consistent with trends in other walks of life.
- But, we develop a model to think about the driving forces and implications for welfare and market power.
- Many models (discrete-choice, basic CES) ill-suited, often specify number of varieties or have identical households

- Concentration and extensive margin in AC Nielsen Homescan
- A model of a household's variety choice
- Adding household heterogeneity and aggregating
- Understanding empirical trends
- Implications for market power and product entry

Setup for Household i

• HHs $i \in [0, 1]$ spend E on goods $k \in [0, N]$ to maximize:

$$U_{i} = \left(\int_{k\in\Omega_{i}} (\gamma_{i,k} C_{i,k})^{\frac{\sigma-1}{\sigma}} dk\right)^{\frac{\sigma}{\sigma-1}} - F \times (|\Omega_{i}|)^{\epsilon}$$

• Let $\tilde{\gamma}_{i,k} = \gamma_{i,k}/p_k$ be price-adjusted taste, distributed Pareto: $Pr\left(\tilde{\gamma}_{i,k} < y\right) = G\left(y\right) = 1 - (y/b)^{-\theta}$,

where larger θ means a flatter distribution of tastes.

• Price Index:

$$P = P_i = \left(\int_{k \in \Omega_i} (\tilde{\gamma}_{i,k})^{\sigma-1} dk \right)^{\frac{1}{1-\sigma}}$$

=
$$\underbrace{\left(1 + \frac{1-\sigma}{\theta} \right)^{\frac{1}{\sigma-1}} b^{-1}}_{= \text{Ave Price}} \times \underbrace{\left(|\Omega_i| \right)^{\frac{1}{1-\sigma}}}_{\text{Variety Gains}} \times \underbrace{\left(\frac{|\Omega_i|}{N} \right)^{\frac{1}{\theta}}}_{\text{Selection}}$$

Choice of Varieties and Concentration

• Optimal number of varieties given by:

$$|\Omega_i| = |\Omega| = \left(\frac{bE\left(\frac{1}{1-\sigma} - \frac{1}{\theta}\right)\left(1 + \frac{1-\sigma}{\theta}\right)^{\frac{1}{1-\sigma}}N^{\frac{1}{\theta}}}{F\epsilon}\right)^{\left(\epsilon - \frac{1}{1-\sigma} + \frac{1}{\theta}\right)^{-1}},$$

• "Cutoff" variety whose taste satisfies: $\frac{|\Omega|}{N} = 1 - G(\tilde{\gamma}^*)$.

Household Herfindahl

• Closed-form solution for Household Herfindahl:

$$\begin{aligned} \mathcal{H}^{\mathsf{H}\mathsf{H}} &= N \int_{\tilde{\gamma}_{i}^{*}}^{\infty} \left(P_{i}\tilde{\gamma}_{i,k} \right)^{2(\sigma-1)} dG\left(y \right) \\ &= \frac{\left(\eta+1 \right)^{2}}{4\eta} \frac{1}{|\Omega|}, \end{aligned}$$

where $\eta = 1 - 2 \left(\sigma - 1 \right) / \theta \in (0, 1).$

How Does this Fit the Data?

- Concentration and extensive margin in AC Nielsen Homescan
- A model of a household's variety choice
- Adding household heterogeneity and aggregating
- Understanding empirical trends
- Implications for market power and product entry

Rank Function

- All HHs same # varieties |Ω|, price P, and shares (Pγ̃_{i,k})^{σ-1}, but Chobani may have large γ̃ for some HHs and not others
- Assume each HH "ranks" products from favorite to least:

$$r_{i,j} = (1-\alpha)j + \alpha x_{i,j},$$

 $j \in [0, N]$ is common, $x_{i,j} \sim U[0, N]$ is idiosyncratic taste

- If $\alpha = 0$, we have representative HHs
- If $\alpha > 0$, HHs like different products

Key Cutoffs

• Goods $j \in (0, j^*]$ have positive spending, where:

$$j^* = \left(2\alpha |\Omega| N / (1 - \alpha)\right)^{\frac{1}{2}}$$

• Goods $j \in (j^*, N)$ are not purchased (i.e. failed products)

Worst idiosyncratic draw x^{*}_i yielding positive consumption of j:

$$x_j^* = (1 - \alpha) (j^* - j) / \alpha$$

Aggregate Market Shares

• Index HHs by their x_{i,j}'s and integrate spending shares:

$$s_j = \frac{\frac{1}{N} \int_{x=0}^{x_j^*} E \times s_{i,j} dx}{\int_i E di} = \frac{\eta + 1}{\eta j^*} \left(1 - \left(\frac{j}{j^*}\right)^{\eta} \right)$$

• This gives us the Aggregate Herfindahl:

$$\mathcal{H}^{\mathsf{Agg}} = rac{2\left(\eta+1
ight)}{\left(2\eta+1
ight)} \left(rac{1}{2 ilde{lpha}|\Omega|}
ight)^{rac{1}{2}},$$

where we define $\tilde{\alpha} = \alpha N/(1-\alpha)$.

How Does this Fit the Data?

- Given observed $|\Omega|$, pick η and $\tilde{\alpha}$ to match H^{Agg} and $\mathcal{H}^{\mathsf{HH}}$
- Do for overall economy and for each product group:

- Concentration and extensive margin in AC Nielsen Homescan
- A model of a household's variety choice
- Adding household heterogeneity and aggregating
- Understanding empirical trends
- Implications for market power and product entry

What Does Model Say about Herfindahls Trends?

• Using data on $|\Omega^t|$ and on:

$$\mathcal{H}^{\mathsf{HH},\mathsf{t}} = \frac{\left(\eta^t + 1\right)^2}{4\eta^t} \frac{1}{|\Omega^t|} \quad \mathsf{and} \quad \mathcal{H}^{\mathsf{Agg},\mathsf{t}} = \frac{2\left(\eta^t + 1\right)}{\left(2\eta^t + 1\right)} \left(\frac{1}{2\tilde{\alpha}^t |\Omega^t|}\right)^{\frac{1}{2}}$$

• η decreased by 1%. $\tilde{\alpha}$ increased by 68%.

What Drove the Rise of Niche Consumption?

• Conclusion 1:

- Matching empirical $\Delta \mathcal{H}^{Agg} < 0 < \Delta \mathcal{H}^{HH}$ requires $\alpha \uparrow$ or $N \uparrow$
- Pervasiveness within groups suggests $\textit{N}\uparrow$ rather than $\alpha\uparrow$

What Drove the Rise of Niche Consumption?

• Conclusion 1:

- Matching empirical $\Delta \mathcal{H}^{Agg} < 0 < \Delta \mathcal{H}^{HH}$ requires $\alpha \uparrow$ or $N \uparrow$
- Pervasiveness within groups suggests $\textit{N}\uparrow$ rather than $lpha\uparrow$

• Conclusion 2:

- Other shocks required since $N \uparrow \text{implies } |\Omega| \uparrow (\text{counterfactual})$
- Candidates include increases in ϵ or F

What are the Implications of $N \uparrow ?$

- Consider $N \uparrow$ by 68% as calculated above
- Welfare changes from:
 - Love-of-Variety Gains $(|\Omega|)^{\frac{1}{1-\sigma}}$: 1.95%

• Selection Gains
$$\left(\frac{|\Omega|}{N}\right)^{\frac{1}{\theta}}$$
: 9.10%

- Fixed Cost Losses ($F \times |\Omega|^{\epsilon}$): -1.08%
- Total *d* In *U*: 10.1%
- Shows up partly in the *Ideal* price index, not measured one

What if We Additionally Match $\mathcal{H}^{HH} \uparrow$ and $|\Omega| \downarrow$?

- Same $N \uparrow$ plus $\epsilon \uparrow 4\%$?:
 - Love-of-Variety Losses $(|\Omega|)^{\frac{1}{1-\sigma}}$: -3.11%
 - Selection Gains $\left(\frac{|\Omega|}{N}\right)^{\frac{1}{\theta}}$: 11.71%
 - Fixed Cost Losses ($F imes |\Omega|^\epsilon$): -0.46%
 - Total *d* In *U*: 7.87%
- Same $N \uparrow$ plus $F \uparrow 25\%$?:
 - Love-of-Variety Losses $(|\Omega|)^{\frac{1}{1-\sigma}}$: -3.11%
 - Selection Gains $\left(\frac{|\Omega|}{N}\right)^{\frac{1}{\theta}}$: 11.71%
 - Fixed Cost Losses ($F imes |\Omega|^\epsilon$): -0.83%
 - Total *d* In *U*: 7.46%

- Concentration and extensive margin in AC Nielsen Homescan
- A model of a household's variety choice
- Adding household heterogeneity and aggregating
- Understanding empirical trends
- Implications for market power and product entry

Does Rise in Niche Consumption Affect Market Power?

- · Herfindahls classically used to comment on market power
- Unlike standard CES, elasticity of demand reflects intensive *and* extensive margins:

$$\epsilon_{j} = \underbrace{\sigma}_{\text{Intensive Margin}} + \underbrace{\left(1 - \left(\frac{j}{j^{*}}\right)^{\eta}\right)^{-1} \left[\theta/2 - (\sigma - 1)\right]}_{\text{Extensive Margin}} > \sigma$$

• Extensive margin becomes more important as $j \to j^*$ so markups increase with market share

Approximate Elasticity of Demand for Good j

Will $N \uparrow$ Change Aggregate Profits?

• Define "aggregate" markup, μ^{Agg} , as:

$$\begin{split} \mu^{\text{Agg}} &= \frac{\text{Total Revenues}}{\text{Total Costs}} \\ &= \frac{\int_{0}^{j^*} s_j dj}{\int_{0}^{j^*} s_j \frac{\epsilon_j - 1}{\epsilon_j} dj} \\ &= \left[\frac{\theta + (\sigma - 1)^2}{\sigma^2} - \frac{1}{2} \frac{\eta \theta^2}{\sigma^2} \left(\frac{\eta + 1}{2 + \theta} \right) \times {}_2F_1\left(1, \frac{1}{\eta}; 1 + \frac{1}{\eta}; \frac{2\sigma}{2 + \theta} \right) \right] \end{split}$$

• Note that μ^{Agg} is only a function of σ and θ

 Changes in α, N, F, and ε matter for H^{HH} or H^{Agg} and have distributional impact, but unrelated to "aggregate" markup

Explanation

- Math:
 - N only enters s_j and ϵ_j through j^*
 - s_j and ϵ_j only functions of $\frac{j}{j^*}$
 - Since integrate from j to $j^*,$ change of variables shows $\mu^{\rm Agg}$ independent of j^*
- Intuition:?
 - Two opposing forces exactly cancel
 - Selection Effects ↑: For fixed j an increase in j^{*} ⇒ lower extensive margin, greater market power and μ_j ↑
 - Competition ↑: j* ↑ ⇒ decline in sales and profits for initial high markup items

Summary and Next Steps

- Increasing importance of niche consumption HHs are concentrating while the aggregate economy is not
- Model and data suggest key role for increased product entry
- Greater welfare from better product selection (unmeasured)
- Differing importance of extensive/intensive margins imply markup differences across products. Cancel in aggregate.

HH Result Holds Within Demographic Groups

Aggregate Result Holds Within Demographic Groups

Largely Driven by Extensive Margin (Churning Varieties)

Online Spending?

