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This paper constructs a theory of industry growth through innovation and selection-
driven creative destruction. Firms’ ideas determine their productivity and stochasti-
cally evolve over time. Firms innovate to improve their ideas and endogenously exit
if unsuccessful. Entrants adopt the ideas of incumbents. In this model, when bet-
ter ideas are innovated or adopted, they selectively replace worse ideas. Innovation
externalities vary based on firm productivity: ideas generated by more productive
firms create 1) longer-lasting positive externalities due to knowledge diffusion and
2) stronger negative externalities due to the displacement of other firms. Therefore,
the net externalities of innovation are heterogeneous, and market equilibrium mis-
allocates innovation across firms. Solving for the optimal allocation shows that the
instruments of innovation policy should depend on firm productivity. A calibration
of the model to firm-level data from US manufacturing and retail trade suggests quan-
titatively large misallocations that create first-order considerations for policy design.
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1 Introduction

Our canonical theories of economic growth champion firm-level innovation as the main engine of
productivity growth. Inspired by this idea, over the past decades governments around the world
have employed policies such as R&D tax incentives and research grants to promote and support
innovation among private businesses.1 These programs are typically justified as instruments to
internalize the externalities that growth theories attribute to firm innovation. In particular, in
models of creative destruction (Aghion and Howitt, 1992; Grossman and Helpman, 1990) inno-
vating firms generate positive knowledge spillovers for other firms while negatively impacting the
business of their product market rivals through displacement effects (e.g., business stealing). A
burgeoning literature has recently begun to use this theoretical framework to examine the im-
pact of innovation policies on aggregate productivity growth and to study their optimal design
(Acemoglu et al., 2013; Lentz and Mortensen, 2014; Atkeson and Burstein, 2015; Akcigit et al.,
2016).

In bringing theories of firm innovation to the design of innovation policy, accounting for firm
heterogeneity has emerged as a key consideration.2 Firm heterogeneity matters to the extent
that innovation externalities vary across firms with different productivity and size (Atkeson and
Burstein, 2015). The available empirical evidence suggests that the two types of innovation ex-
ternalities discussed above may in fact be heterogeneous across firms (Bloom et al., 2013). If so,
we have to examine the incidence of innovation policy across different firms, or even to employ
policy instruments that differentiate among them. To analyze such situations, most prior work
has relied on the workhorse model of Klette and Kortum (2004), modeling innovating firms as
entrants that build on the knowledge of an incumbent and simultaneously displace it in the mar-
ket. Despite its conceptual and analytical elegance, this head-to-head account of competition also
creates some limitations. In particular, it mechanically ties together the two conceptually dis-
tinct positive and negative externalities of innovation: receiving knowledge spillovers from an
incumbent firm always coincides with displacing that firm in the market.

This paper proposes an alternative formulation for the process of creative destruction that dis-
entangles knowledge spillovers from displacement effects. Knowledge spillovers stem from the
diffusion of productive ideas to new firms, while displacement effects are driven by the selection of
unproductive ideas out of the industry.3 In the model, entrants can adopt the ideas of productive

1For broad examples of these programs across developed and developing countries, see OECD (2012) and World
Bank (2010). For more information on the design and scope of R&D tax incentives, see OECD (2010) and OECD
(2011).

2When firms vary in productivity, the reallocation of market shares from less to more productive firms may also con-
tribute to aggregate productivity growth (Syverson, 2011). Studies have found that, among these reallocations, the
margin of firm entry and exit constitutes a particularly large component of productivity growth across different
industries (e.g., Foster et al., 2001, 2006; Bartelsman and Haltiwanger, 2009). Therefore, to provide a quantitatively
sound micro-macro link, our theories of firm-level innovation have to account for the contribution of these reallo-
cations, both in the intensive and extensive margins, to aggregate growth.

3I use the broad term displacement effect, rather than business stealing, to accommodate multiple related externali-
ties. Note that in standard models of creative destruction there are already two distinct negative externalities tied
to firm displacement. The first one is the (static) business stealing effect whereby an innovating firm steals the prof-
its of a displaced firm and negatively impacts its outcomes. The second one arises since the innovating firm also
displaces the incumbent’s ability to innovate in that market (see Lentz and Mortensen, 2014, for a clear illustration
of this point). Crucially, the model presented in this paper will feature yet other displacement externalities despite
the fact that the static business stealing inefficiencies are removed due to the CES assumption.
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firms to displace unproductive firms in the market. I show that incorporating selection as the core
of creative destruction unleashes a host of novel, economically meaningful, and sizable sources of
heterogeneity in innovation externalities that matter for policy design. I use the model to derive
policies that optimally reallocate innovation investments, and qualitatively and quantitatively ex-
amine their properties. Finally, I apply a calibration exercise to compare these policies across two
broad sectors of the US economy, manufacturing and retail trade.

The model builds on the recent theories of knowledge diffusion and selection (Luttmer, 2007,
2012; Perla and Tonetti, 2014; Sampson, 2016) and extends them to include process innovation
(Ericson and Pakes, 1995; Atkeson and Burstein, 2010). In the model, firms monopolistically com-
pete in a differentiated product market à la Melitz (2003). Entrants receive knowledge spillovers
from incumbent firms. Heterogeneous incumbents invest in innovation to raise their productiv-
ity and may endogenously exit due to fixed costs. Entry, exit, innovation, and the distribution
of productivity in the industry are all endogenous. Three sets of structural features characterize
these endogenous outcomes: costs of entry and innovation, volatility of firm productivity, and
the strength of knowledge spillovers. I specify the strength of knowledge spillovers through two
different characteristics of the process of entry and adoption: first, the imperfection of adoption,
in the form of decreasing returns to adopting high productivity ideas, and second, directedness of
adoption, in the sense of the probability of adopting the frontier idea in the industry (see Eeckhout
and Jovanovic, 2002).

The interplay between diffusion and selection create novel sources of externalities in the model.
Selection implies that the ideas of firms gradually become obsolete as better ideas emerge else-
where in the industry. This gives rise to a new margin of heterogeneity across ideas: their expected
lifetime in the market.4 More productive ideas take longer before becoming obsolete. They there-
fore generate greater knowledge spillovers as, over the course of their longer lifetimes, more
entrants have the opportunity to adopt them. Therefore, knowledge spillovers vary with the pro-
ductivity of the ideas of firms. In addition, when a firm innovates, it intensifies future market
competition, which then reduces the expected lifetimes of other firms and lowers their incentives
for innovation. With each investment, therefore, a firm reallocates innovation investments across
other firms and toward itself. Since the knowledge spillover externalities are heterogeneous, this
reallocation produces a second external effect on aggregate productivity growth.

To see the intuition behind these new forces, consider the following example. Walmart, the
largest and most productive firm in the US retail sector, has been responsible for many transfor-
mative technological and managerial innovations in this sector.5 These innovations have fueled
the expansion of Walmart, allowing it over time to replace many less productive local retailers.
But, in doing so, Walmart has not necessarily built on the knowledge that had gone into the
production processes of the displaced firms. Rather, Walmart has simply brought in alternative
strategies for the organization of retail stores, inventory and supply management, and pricing that
have made the practices of the displaced firms obsolete. In addition, Walmart ideas have diffused
across the industry as new retail chains have adopted them to enter the market and displace other
underperforming retailers. To the extent that Walmart innovations furnish such opportunities for

4Note that under the standard theories of creative destruction, the expected lifetime of all ideas are identical, since
the likelihood of being displaced by another firm does not depend on the productivity of the idea.

5For an overview of these innovations and their impact on the retail industry, see (Basker, 2007).
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new firms, Walmart innovations create positive externalities.6 To the extent that they crowd out
the innovations of the smaller firms that might have benefited other entrants, Walmart innova-
tions create negative externalities. In designing policies that subsidize business investments to
innovation, the government has to compare the magnitude of both two externalities for a large
firm like Walmart with those for smaller and less productive retailers.

In addition to these novel normative aspects, the equilibrium of the model parsimoniously
explains many stylized facts about firm heterogeneity and dispersion (Appendix 6 provides an
overview of these facts).7 One important analytical result is a decomposition of the rate of pro-
ductivity growth into the direct contribution of incumbent innovation investments and the con-
tribution of entry and exit (selection). The former is given by the market-share-weighted average
of the investments of different incumbents. The latter is given by the product of the rate of firm
turnover and the gap in the productivity of average entering and exiting firms. Due to spillovers
to entrants and displacement effects on exiting firms, incumbent innovations indirectly affect the
contribution of selection to growth. In particular, the gap in the productivity of industry entrants
and exiting incumbents becomes endogenous in this model. This constitutes a new margin for
the impact of firm innovation on aggregate growth.

I provide a partial equilibrium decomposition of innovation externalities into the positive knowl-
edge spillover effects and the negative displacement effects. Typically, both knowledge spillover
externalities and displacement effects grow in the productivity of the innovator. In general, the
gaps between social and private returns to innovation may become a nonmonotonic function of
productivity. More specifically, if the adoption of ideas is imperfect (involves decreasing returns),
for highly productive firms the knowledge spillover effects eventually become dominated by the
displacement effect. This is because the former grows more slowly than the market share of the
innovator while the latter remains proportional to it.

Since externalities are heterogeneous under the market equilibrium, some firms overinvest and
some underinvest in innovation. The social planner should therefore reallocate innovation invest-
ments across firms. I characterize the socially optimal allocation of innovation and production,
and provide a method to compute it. Moreover, I derive the policy that implements this opti-
mal allocation using taxes and subsidies to production and innovation. Under the assumption
that we can observe the productivity ranking of firms, the derived policy uses a combination of a
subsidy to startup costs for entrants, a lump-sum tax on the operation of firms, and a nonlinear
subsidy to innovation investments that depends on the ranking of their productivity in the indus-
try. The nonlinear innovation subsidy is the main instrument for the reallocation of innovation

6 Case studies suggest that these forces are more than mere conceptual possibilities. For instance, in a study of
the impact of Walmart on the US productivity growth in the late 90s, McKinsey Global Institute (2001) finds that
the firm’s innovations “directly and indirectly caused the bulk of the productivity acceleration through ongoing
managerial innovation that increased competition intensity and drove the diffusion of best practice (both managerial
and technological) [emphasis added].”

7Through the selection margin, the model readily predicts the robustly documented negative correlation between
firm productivity and likelihood of exit (e.g., Foster et al., 2001). Moreover, volatility and selection together allow
the model to endogenously generate a Pareto-tailed distribution of firm productivity and size, as is widely reported
in empirical work on firm size distribution and industry concentration (Axtell, 2001; Luttmer, 2010). This feature
is particularly important since key endogenous variables such as innovation investments and their external values
all vary with firm productivity. Therefore, in order to explain the behavior of the industry both at the micro and at
the aggregate levels, the model’s prediction should fit the tail properties of the distribution of productivity.
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investments.8

I examine the quantitative importance of these new forces by calibrating the model based on
data from two broad sectors of the US economy, manufacturing and retail trade.9 I rely on the
Business Dynamics Statistics (BDS) data that tabulates moments of the life cycle dynamics of firm
employment for each sector. I calibrate a total of 7 parameters, two of which are directly cali-
brated to the rates of productivity and employment growth in the sector. For the remaining five
parameters, I use a simulated moment matching strategy. The identification of costs of innovation
and volatility comes from the rates of employment growth and reallocation among mature firms.
To identify the parameters of the process of entry, i.e., the imperfection and the directedness of
adoption, I rely on the core logic of the model linking the quality of firm ideas to their expected
lifetimes in the industry. According to this logic, any distribution on the initial productivity of a
cohort of entrants translates into a distribution on the timing of their exit from the industry, condi-
tional on the other model parameters. Therefore, I can use the empirically observed relationship
between firm age and the hazard of exit to calibrate the parameters of the process of adoption.
The results suggest that, despite its parsimony, the model provides a reasonable fit for the key
moments in the data.

Investigating the schedule of subsidies that implement the optimal allocations, I find that for
all but the very top firms we may approximate the policy by a subsidy rate that is an affine
function of the productivity ranking of the firm. Incumbent firms receive a fixed subsidy rate for
their innovation investments and a varying subsidy rate that is linear in their position relative
to other firms in the distribution of productivity (with the rank normalized to be between 0 and
1). The dependence of the subsidy on the productivity ranking is weaker in retail compared to
manufacturing (the approximate slope is about twice as large in manufacturing). Moreover, as
productivity rises the pattern eventually reverses and the subsidy rate decreases among the most
productive firms. This pattern is more pronounced in retail trade, due to the stronger decreasing
returns to adoption implied by the calibrated parameters in this sector. For large firms in retail,
their negative displacement effect grows faster than their positive knowledge spillovers.

Together, these results suggest that the details of firm heterogeneity make a first-order contri-
bution to the optimal design of innovation policy in both sectors. I further compare the govern-

8Throughout the paper, I assume that the government can observe the productivity of the firm, and abstract away
from potential information asymmetry between the government and the firm in this regard. In theory, we can
infer firm productivity based on the observations of firm inputs and outputs. In practice, however, we need to
account for the possibility that firms might distort their input and output decisions in response to the policy. Such
considerations impose further information-related constraints on the policy, giving rise to second-best policies that
account for moral hazard and screening issues (see, e.g., Akcigit et al., 2016). I leave the study of the second-best
policies for future work.

9In comparing retail and manufacturing, I have been inspired by the salient differences in the patterns of productivity
growth that prior work has documented between the two sectors. For instance, case studies in the US retail sector
often attribute the transformative innovations that have fueled the fast growth of productivity in this sector to
mature and productive incumbents, particularly big-box stores such as Walmart and Target (e.g., Foster et al.,
2016; Basker, 2016). In this sector, firm productivity is highly correlated with measures of innovation such as IT
investments (Doms et al., 2004). This pattern stands in contrast to manufacturing, where we typically associate
transformative innovations with newcomers. In addition, firm productivity is highly correlated with measures
of innovation such as IT intensity in retail, and reallocations play a relatively larger contribution to aggregate
productivity growth in retail compared to manufacturing (Doms et al., 2004; Foster et al., 2006). In the model,
retail’s distinctive growth experience is compatible with an environment that features high innovation costs, high
business volatility, and weak knowledge spillovers. These structural differences in turn reflect in the design of
innovation policy, as we will see in the paper.
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ment’s spending on innovation subsidies under two different policies: a productivity-dependent
policy that implements the optimal allocation, and the best among all one-size-fits-all, uniform
subsidies that achieve the same rate of aggregate growth. I find that the productivity-dependent
policy results in sizable savings in the spending of the government in both retail and manufac-
turing. Therefore, under this calibration, ignoring the details of firm heterogeneity appears to be
fairly costly for the government.

Prior Literature This paper unites theories of firm heterogeneity and dynamics with the litera-
ture on firm innovation and growth. The former class of theories has highlighted the role of firm-
level dispersion and volatility as important determinants of aggregate productivity (Jovanovic,
1982; Hopenhayn, 1992; Ericson and Pakes, 1995; Restuccia and Rogerson, 2008). This framework
has found many applications in the empirical studies that link micro-level firm dynamics with
macro-level outcomes.10 However, it has primarily focused on understanding the level of aggre-
gate productivity rather than its rate of growth. Instead, I follow the literature on endogenous
growth theory in taking a stance on knowledge spillovers as drivers of long-run productivity
growth. A number of recent papers have similarly studied growth within this framework, where
competition across firms takes the form of monopolistic competition and spillovers work through
knowledge diffusion, including Luttmer (2007, 2012), Lucas and Moll (2014), Perla and Tonetti
(2014); Benhabib et al. (2014); Perla et al. (2015), and Sampson (2016). However, the current pa-
per is the first to simultaneously endogenize and explain entry, exit, and the process innovation
decisions of all incumbent firms, and to therefore provide a framework for policy analysis.11

As mentioned earlier, the core results of the paper contribute to a burgeoning literature that
studies the normative implications of firm heterogeneity for the design of innovation policy. In
particular, it complements the results of the recent paper by Atkeson and Burstein (2015), who
emphasize the key role of the “social rate of depreciation” of innovation investments in the impli-
cations of any theory of growth for innovation policy. This rate captures our assumptions about
the expected lifetime of ideas in the industry and, for instance, is zero in the workhorse model
of innovation by Klette and Kortum (2004). Atkeson and Burstein show that the assumptions
any model makes about the rate of social depreciation shapes the response of industry growth
to the changes in the aggregate level of innovation investments. The current paper shows that
the rate of social depreciation also shapes the response of growth to changes in the distribution
of innovation investments across firms, if depreciation is due to the endogenous obsolescence of
low-productivity ideas.

The displacement effect identified in the current paper is related to, but distinct from, the het-
erogeneity in externalities found in the model of Lentz and Mortensen (2014). They examine
innovation policy in an extension of the Klette and Kortum (2004) theory with heterogeneous in-

10This formulation of firm innovation behavior goes back to the seminal work of Griliches (1979) and has been widely
used in theoretical and empirical work in the fields of Industrial Organization and International Trade. Using this
formulation, Olley and Pakes (1996) built an empirical model of industry evolution that provided a rigorous frame-
work for the estimation of the dynamics of productivity across firms. A large literature has used this framework to
link micro-level firm outcomes to the aggregate growth of productivity (e.g., Xu, 2008; Aw et al., 2011; Doraszelski
and Jaumandreu, 2013; De Loecker, 2013).

11Knowledge diffusion and imitation feature in a number of other theories of industry dynamics, including, among
others, Jovanovic and Rob (1989); Jovanovic and Macdonald (1994a), Acemoglu et al. (2006), Alvarez et al. (2008)
Comin and Mestieri (2014), and König et al. (2015).
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novative types for firms. In their theory, firms are able to innovate in as many product lines as
they produce in. When low-innovative type firms innovate, they might randomly destroy the
innovation option of a high-innovative type. This generates a negative externality for the for-
mer’s innovation. However, this effect only applies to uninnovative (and typically unproductive)
firms in their paper, whereas the displacement effect in the current paper can also grow with the
productivity and size of the innovator.

Finally, the current paper focuses on process innovation and takes a firm’s productivity as the
measure of its stock of knowledge. This contrasts with the workhorse innovation model of Klette
and Kortum (2004), in which all innovations are product innovations and the firm’s number of
products is the measure of its stock of knowledge. The distinction is perhaps best manifested in
the results of the closely related paper by Acemoglu et al. (2013). They include endogenous exit
and selection as an independent channel in an extension of the Klette and Kortum (2004) theory
with heterogeneous innovative types.12 However, the main interactions between selection and
innovation that are the focus of this paper do not arise in their paper. Following the workhorse
model, they also assume that all innovations are product innovations.13 Therefore, the productiv-
ity of the innovator is independent of the expected lifetime of the ideas. In contrast, both types of
externalities identified in the current paper stem from the link between firm productivity and the
expected lifetime of the ideas it generates. As a result, the design and details of optimal innova-
tion policy in the two papers are different.14

The remainder of the paper is organized as follows. In Section 2, I present the details of the
model and characterize its long-run market equilibrium. In Section 3, I characterize the long-
run optimal allocation of innovation and production in the model and present the results on the
decomposition of externalities. In Section 4, I present the details and the results of the calibration
exercise.

2 Model

2.1 Households and Demand

A mass Nt = N0egN t of households populate the economy and live in an infinite horizon. They
choose the time paths of their consumption to maximize dynastic utility defined according to
Uo =

∫ ∞
0 e−(r−gN)t log qt dt, where r and gN stand for the discount rate of households and the rate

of population growth, respectively. Per-capita consumption qt of the household at time t is a CES

12As with the current paper, they also find that a lump-sum tax on the operation of firms combined with subsidies to
innovation and entry can substantially raise growth. Quantitatively, the two papers find roughly similar extents of
overall inefficiency in growth.

13This undirected account of innovation in the workhorse model also implies a thick-tailed distribution for the growth
rates of firm employment. In a recent empirical investigation, Garcia-Macia et al. (2015) find that models with
directed innovation, such that firms generate new know-hows that are similar to their existing ones, may better
match the observed dynamics of firm employment in the US data.

14For completeness, I note that the growth model of Peters (2011) also generates endogenous market equilibrium mis-
allocations across firms, as does the current paper. However, the misallocations in that paper stem from variations
in markups. Here, the assumption of a CES demand structure implies that markups are constant across firms.
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composite of consumption over a set Ωt of products or services

q
ρ

1+ρ

t =
∫

ω∈Ωt

qt (ω)
ρ

1+ρ dω,

where ρ + 1 is the elasticity of substitution. Normalizing household per-capita expenditure to
unity at all times, we find the standard demand system qt (ω) = Pρ

t pt (ω)−(1+ρ) , where the price
index Pt is given by

P−ρ
t =

∫
ω∈Ωt

pt (ω)−ρ dω. (1)

Households inelastically supply one unit flow of labor per person. Labor is homogeneous and
earns wage rate wt at time t. Households can also hold equity stakes in a balanced portfolio of all
entrepreneurial activity and profit-making firms. Let at denote the per-capita assets and rt be the
interest rate at time t. The household problem involves the maximization of the dynastic utility
subject to the flow budget constraint ȧt = wt − 1 + rtat − gNat and a No-Ponzi condition. The
Euler equation rt = r, household’s initial asset endowment a0, and the transversality condition
limt→∞ ate−(r−gN)t = 0 together determine the time paths of household consumption.

2.2 Firms and Innovation

A continuum mass of producers of final goods or services form the industry. Each firm produces
a single differentiated product ω and monopolistically competes against other firms active in the
industry. Labor is the only factor of production and firms have to pay a flow cost of ψ f (in units
of labor) to continue operation. Firms are heterogeneous in terms of performance. I assume that
all of this heterogeneity is captured by a single measure θ, which specifies the labor productivity
of firms. Accordingly, the output of a firm θ is given by q = θl where l is the number of its
production workers.

Innovation Production Function Firm labor productivity θt is also a measure of the quality of
its ideas at time t. I assume that the productivity stochastically evolves according to a stochastic
process

dθt = Γt dt + σ θt dWt, (2)

whereWt denotes a standard Wiener process and σ is the volatility parameter of the idiosyncratic
productivity shocks, which arrive at the firm level. The drift of the process Γt is the outcome of the
firm’s instantaneous innovation investments, which raise its expected productivity in the future
(Ericson and Pakes, 1995; Atkeson and Burstein, 2010). The innovation production function of the
firm

Γt = G (it, θt; lt) ,

takes as inputs its innovation investments it (in units of labor) and its current ideas θt. In addition,
it also depends on the firm’s number of production workers lt. Correspondingly, we can define
an innovation cost function15

15Atkeson and Burstein (2010) assume the following slightly different specification that also delivers Gibrat’s law. They

assume Γt = θ
ρ
t ϕ
(

Γt
θt

)
. In contrast to their specification, the formulation of innovation costs here does not depend
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it = Φ (Γt, θt; lt) = lt ϕ

(
Γt

θt

)
, for lt > 0, (3)

where ϕ (·) is a convex and monotonically increasing function, and satisfies ϕ (0) = 0 as well as a
few other properties to be specified below. I assume that a firm that does not employ any workers
cannot grow its productivity, i.e., G (it, θt; 0) = 0.

Equation (3) assumes that innovation costs depend on the number of production workers. The
idea is that in order to improve production processes in the firm, production workers at some
level have to be involved in the implementation, experimentation, or training stages. Therefore,
a firm that hires a larger number of employees has to pay a higher cost to modify its existing
processes or adopt new technologies or managerial practices. Equation (3) also assumes that the
current stock of firm ideas θt proportionally lowers the costs of improving productivity, which is
a common assumption in theories of firm growth (e.g., Klette and Kortum, 2004). Together these
two assumptions deliver Gibrat’s law, which states that firm growth is independent of firm size
and sales for the largest firms.

Production Decisions The simplest way to characterize the production decisions of firms is to
consider a firm that has decided on a rate of productivity growth specified by γt ≡ Γt/θt. Hence-
forth, I will refer to γ as the firm’s innovation investment to simplify the exposition. Conditional
on the innovation decision, we can specify the firm’s employment, output, and pricing decisions.
The firm maximizes its flow profits

πt (θ, γ) ≡ max
q

pt (q) · q− wt
q
θ
(1 + ϕ (γ))− wtψ f , (4)

where I have substituted for firm production input l ≡ q/θ. As we already saw, pt (q) ≡
P

ρ
1+ρ

t q−
1

1+ρ . In choosing its scale of production, the firm takes the costs of innovation into ac-
count as part of its labor costs. Accordingly, the firm prices its products according to pt =
1+ρ

ρ wt (1 + ϕ (γ)) /θt.
Next, we can derive the relation between firm productivity and its market share. With the

assumptions laid out above, it follows that the sales of a firm with productivity θt at time t are
proportional to st (θ, γ) = Nt ((1 + ρ) Pt/ρwt)

ρ θρ J (γ) where I have defined the function16

J (γ) ≡ (1 + ϕ (γ))−ρ . (6)

Function J (·) characterizes the effective costs of innovation for firms: investment in innovation
raises effective production costs and therefore lowers instantaneous sales.17

on the elasticity of substitution parameter ρ, which is a demand-side parameter. Another important difference is
that Equation (3) does not feature market size effects, since innovation costs scale with both firm employment and
sales. By removing market size considerations, here I focus on isolating the heterogeneity in innovation externalities
across firms of different productivities only due to the expected lifetime of ideas.

16I assume that there exists some γ such that limγ→γ ϕ (γ) = ∞, and that the function j defined here is strictly concave,
which requires that, for all γ ∈ (0, γ)

ϕ′′ (γ) > (1 + ρ)
(ϕ′ (γ))2

1 + ϕ (γ)
. (5)

17Equation (6) implies that stronger (static) product market competition, as proxied by the substitutability of firm
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Let us now define the aggregate-level measures of the industry. Let Mt denote the industry
measure defined in the space of productivity θ, and assume that along an equilibrium path a firm
with productivity θ chooses innovation investments γt (θ) at time t. We can use the expression for
the industry price index (1) to find the sales, profits, and employment of firms. Define the total
mass of firms Mt ≡

∫
Ωt

dω =
∫

dMt (θ), and the aggregate (average) productivity θt through

θ
ρ
t ≡

1
Mt

∫
θρ J (γ (θ)) dMt (θ) . (7)

Then, we can write firm sales as

st (θ, γ) =
Nt

Mt

(
θ

θt

)ρ

J (γ) ,

and firm profits and wage bills are given by

πt (θ, γ) =
1

ρ + 1
st (θ, γ)− ψ f wt, (8)

wtlt (θ, γ) (1 + ϕ (γ)) =
ρ

ρ + 1
st (θ, γ) . (9)

The total firm employment is the sum of firm production, innovation, and overhead workers
given by l (1 + ϕ) + ψ f . Firm innovation intensity, defined commonly as the innovation spending
to sales ratio, is given by ϕρ/ (1 + ρ).

The formulation provided here considers firm innovation as productivity-enhancing ideas embod-
ied in the firm (similar to the approach taken by Ericson and Pakes, 1995; Atkeson and Burstein,
2010). Conceptually, it shares core features with the organizational capital approach, which views
firms as “storehouses of information” (Prescott and Visscher, 1980). Novel ideas improve a firm’s
knowledge of demand and technological environment, information on employee characteristics,
managerial practices, organizational structure and culture, or any other competency that enables
it to operate at a higher level of productivity.18 This formulation contrasts with an alternative ap-
proach that considers innovation as embodied in the blueprints of new products developed by the
firm (e.g., Klette and Kortum, 2004). When new ideas are embodied in the firm, as in the current
model, the expected lifetime of the firm will matter for its incentives to invest in innovation. As
I introduce the process of entry of firms in the next section, I will discuss another conceptual dif-
ference between the two approaches regarding the imperfection of transfer of knowledge across
firms.

products ρ, raises innovation costs. But note that it also dynamically raises the future value of competition, as
reflected in the marginal value of firm productivity.

18Syverson (2011) provides a broad classification of the factors that may influence firm productivity, including, firm-
specific know-hows, management practices, and organizational structure. See Prescott and Visscher (1980) for
examples of the first group, and Bloom and Reenen (2010) for a survey of the literature that establishes managerial
practices as a key to the productivity and documents its heterogeneity across firms. A large body of work in the
field of organizational economics has studied the impact of de jure processes and hierarchies, de facto norms, and
firm leadership on the efficiency of a firm’s operations (for recent reviews of the area, see the relevant chapters in
the most recent handbook, e.g., Hermalin, 2012).
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2.3 Entry

Entrepreneurs pay a flow ψe of costs (in units of labor) per unit flow of new firms. The initial
productivity of a new firm is determined by the process of knowledge diffusion: an entrant builds
on the knowledge available in the current pool of ideas in the industry (Luttmer, 2007, 2012;
Sampson, 2016). I assume a general specification for this process that allows variations along two
dimensions: (1) which incumbents an entrant is likely to adopt from, and (2) how much of the
incumbent productivity can be transferred through adoption. Accordingly, once a new firm is
born it receives the opportunity to adopt an idea from the pool of ideas currently available in
the industry. The adoption distribution specifies the likelihood that this adopted idea may come
from each of the firms in different tiers of the distribution of productivity. Once a firm adopts the
idea of a given incumbent firm, the transfer of knowledge is characterized by the imperfection
of adoption, as described below (for a similar account of diffusion, see Eeckhout and Jovanovic,
2002).

Adoption Distribution I assume that the likelihood of adopting the idea from any given incum-
bent firm depends on its current tier of productivity. We can think of Mt/Mt as a rank function
mapping each tier of productivity to its rank in the current distribution of productivity. In partic-
ular, the exiting firm always has the zeroth rank Mt (θo,t) = 0 and the rank converges to 1 as the
productivity goes to infinity. I assume that, for entrants born at time t, the probability distribution
of the adopted productivity θa is given by

P (θa ≤ θ) = Fa

(
Mt (θ)

Mt

)
, (10)

where Fa is a cumulative distribution function defined over the unit [0, 1] interval. Distribution Fa

accounts for the structural features of the industry that relate to the accessibility of different tiers
of productivity for a potential entrant. In some industries, most entrants may be able to draw
upon the ideas of firms close to the frontier, while in others they may be equally likely to draw
upon lower-tier ideas.

As an example for the distribution of adoption, consider one in which the distribution is di-
rected toward the more productive ideas. Let Fa be defined over x ∈ [0, 1] as

Fa (x) = xµ, µ ≥ 1. (11)

When µ > 1, this distribution has a bias toward x = 1, since the mean of the distribution for the
ranks is given by µ/ (1 + µ). The corresponding probability density function fa on the productiv-
ity ranks is monotonically increasing; we have fa (0) = 0 and fa (1) = µ.19

If we assume µ = 1, we find a uniform distribution Fa and we recover the common assumption

19We can think of distribution (11) as a special case of a beta distribution, which can produce a range of different
means and dispersions over the unit interval. Here, I consider a subset of the parameter space by requiring that the
likelihood of adoption from the frontier be nonzero, that is, fa (1) > 0, which yields Equation (11) for the CDF of
the distribution.
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that entrants uniformly adopt ideas from the current distribution of productivities:

P (θa ≤ θ) =
Mt (θ)

Mt
. (12)

For its simplicity, this particular form has been a popular choice in prior work (see, e.g., Perla et
al., 2015; Atkeson and Burstein, 2015).20

Knowledge Transfer Once an entrant adopts the idea θa, the productivity θe with which it begins
its production is given by

θe = eγe θ̃
η
t θ

1−η
a , (13)

where η ∈ [0, 1] is the degree of decreasing returns to adoption, γe is the innovation leap of
entrants, and θ̃t is an industry-wide index of the quality of firm ideas. In what follows, I assume
that θ̃t is the average productivity of the industry.21

When ideas are embodied in the structure and organization of firms, their transfer from one
firm to another is likely to be imperfect. In this way, the specification above broadens the scope
of innovation from those fully codifiable and transferrable, e.g., through patents, to ones that
involve tacit and organizational knowledge.22

The formulation of entry in Equations (13) and (10) nests several previous models. If we as-
sume η = 0, we find the case common in standard models of growth, in which knowledge per-
fectly transfers from incumbents to entrants (e.g., Luttmer, 2007; Perla et al., 2015). For instance,
assuming an atomic adoption distribution with all the weight concentrated on the zeroth rank,
we find the specification of Luttmer (2012). If we consider the case of η = 1 and further assume a
stochastic distribution on γe, we find the formulation of entry of Sampson (2016) (when θ̃t is the
average industry productivity), or the no-spillover formulation of Atkeson and Burstein (2010)
(when θ̃t is a constant). The intermediate cases with η ∈ (0, 1) characterize situations where the
entrants only imperfectly adopt the ideas of incumbents.23

2.4 Stationary Constant Growth Paths

In this section, I will characterize the asymptotic behavior of the industry when aggregate pro-
ductivity grows at a constant rate and the distribution of firm size is stationary. Since the focus of

20The assumption of uniform entry does not match empirical facts on the small size of new entrants and their high like-
lihood of exit relative to the average firm in the industry (Dunne et al., 1988; Arkolakis, 2016), unless if we include
decreasing returns to adoption as in Equation (13). Nevertheless, it provides a reasonable theoretical benchmark
against which we can compare other possibilities.

21In the Appendix, I generalize this to an aggregator function that combines the current distribution of ideas with
varying degrees of substitutability between the ideas of firms.

22This account of innovation closely matches with the concept of investments in intangible capital. Intangible invest-
ments are those costs that firms incur in product design, marketing, and organizational development (Corrado et
al., 2009; Aizcorbe, 2009; Corrado and Hulten, 2010).

23Note that, as with the framework of Atkeson and Burstein (2015), the framework suggested here can also nest models
where the long-run rate of growth of the economy is exogenous, and firm innovation only affects the long-run level
of aggregate productivity. This is the case where we assume θ̃t is an exogenously growing function, which will
then pin down the long-run rate of growth of aggregate productivity. The mechanisms discussed here qualitatively
generalize to this case as well, but their quantitative size may be different.

12



the paper is on the asymptotics, I will defer many of the details to the appendix and only present
the structure required for the definition of the stationary constant growth paths. Appendix 7.1
sets up the dynamic problem of an incumbent firm choosing its innovation γ and exit threshold,
as well as a cohort of entrants choosing their rate of entry. Combining the two, it defines the
industry equilibrium path and the general equilibrium of the economy.

The next definition formally introduces the concept of a stationary constant growth path. We
can think of this as the heterogenous-firm counterpart to the steady state of standard growth
models. Among the potential equilibrium paths, it limits attention to the set that is of empirical
interest.24

Definition 1. (Stationary Constant Growth Path Equilibrium) An equilibrium path along which a
nonzero flow of entrants continuously arrive in the industry, and,

1. The mass and average productivity of firms asymptotically grow at constant rates, that is,
limt→∞ Ṁt/Mt = gM and limt→∞ θ̇t/θt = gθ ,

2. The distribution of firm size converges to a stationary distribution limt→∞ P {lt (θ) ≤ l} =
Pl (l) with finite mean.

To characterize the stationary constant growth path, I need to transform the productivity states
into a space where their distribution remains stationary. Since by definition the distribution of
firm employment is stationary along such an equilibrium path, this transformed space has to be
a one-one function of firm employment. Define the firm efficiency state zt such that is satisfies25

ezt(θ) ≡ 1
(ρ + 1)ψ f wt

Nt

Mt

(
θ

θt

)ρ

(14)

This state is the ratio of the gross profits to fixed costs for a θ-productivity firm that chooses
not to invest in productivity growth (hence, J = 1). It captures the position of the firm relative
to the other firms in the industry. A firm with efficiency z = 0 earns gross profits that exactly
compensate for its fixed costs.

Along a constant growth path, the wage rate converges to a constant, since per-capita expen-
diture is normalized to unity. We can show that a necessary condition for the existence of a
stationary constant growth path is that the rate of growth of the total mass of firms is the same
as the rate of growth of population gM = gN (see Appendix 7.1). Since the average firm employ-
ment remains constant and since firm employment and profits are proportional in a stationary
distribution, the growth in aggregate sales has to be absorbed by the rising mass of firms.

24Other potential paths are those that feature, e.g., no entry (Luttmer, 2012, characterizes such equilibria in a setting
similar to the one here), or nonstationary distributions of firm size with explosive dispersion. Empirical work
has typically found stable distributions of firm size across a wide range of industries (Luttmer, 2010), and broad
industries such as those that are the focus of this paper almost always exhibit continuous entry of new firms.

25It is straightforward to show that under the condition limt→∞ Ṁt/Mt = gN , the distribution of any monotonic
function of θ/θt will be stationary along a stationary constant growth path, and therefore all such functions provide
alternative transformations. The particular choice in definition (14) is similar to the one used by Luttmer (2012) and
helps simplify the form of the differential equation characterizing the value of function of firms along a stationary
constant growth path.
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Since gM = gN and the wage rate wt is asymptotically constant, the evolution of firm efficiency
states along a stationary constant growth path is given by the brownian motion process

dzt = ρ

(
γ− gθ −

1
2

σ2
)

dt + ρ σ dWt. (15)

This expression shows that we can define the rate of profit erosion g ≡ ρ
(

gθ +
1
2 σ2) as the rate at

which growth in the aggregate productivity erodes the profits of any firm active in the industry.
Alternatively, we can think of this as the rate of depreciation of ideas in the industry. As we might
expect, this rate depends on the rate of aggregate productivity growth gθ , volatility σ, and the
index of market competition ρ.

Along a stationary constant growth path, we can write the evolution of the industry measure
as

Mt (θ) = M egMt × H (zt (θ)) , (16)

where H is a cumulative distribution function. The measure asymptotically exhibits the so-called
traveling-wave behavior, since it is a stationary function of log θ − gθt (Lucas and Moll, 2014). The
total mass of firms grows at a constant rate, and their productivity distribution travels at a con-
stant rate gθ in the log-productivity space. The last condition in the definition of the stationary
constant growth path requires that the moment EH [ez J] should be finite, ensuring that a well-
defined average size of firm employment exists (this is the only empirically relevant case, see
Luttmer, 2010).

The remainder of this section studies the behavior of firms and the aggregate industry along
a stationary constant growth path. I will first characterize the firm value function and optimal
policies, and then characterize the distribution of firm productivity H. Finally, I combine the two
and examine how the rate of profit erosion g is determined through the zero entry condition.

2.5 Incumbent Problem

Along a stationary constant growth path, we can write the value of a firm with efficiency state z
as ψ f wtV (z). So long as the firm continues to operate, standard arguments imply that the value
function V (z) satisfies the stationary Hamilton-Jacobi-Bellman (HJB) equation

rV (z) = max
γ

ez J (γ)− 1 + ρ

(
γ− gθ −

1
2

σ2
)

V ′ (z) +
ρ2

2
σ2 V ′′ (z) , (17)

for z ≥ zo where zo is the exit threshold and the function J is defined by Equation (6). The
following proposition characterizes the solution to this problem. The derivation of the stationary
HJB equation and the proof of the proposition in a more general setting are included in Appendix
7.1.

Proposition 1. Assume that the innovation cost function ϕ (·) satisfies the conditions stated in Equation
(16), and that the rate of productivity growth gθ is large enough so that

r + ρ gθ −
ρ

2
(ρ− 1) σ2 > ργ− J (γ)

J′ (γ)
. (18)
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Then the HJB equation (17) has a unique, continuous, convex, and monotonically increasing value function
V (·) that converges to a stable, asymptotic function limz→∞ V (z) = u∗ez. Moreover, the corresponding
policy function γ∗ (z) is unique, continuous, and monotonically increasing. It satisfies γ∗ (zo) = 0 for
exiting firms, and an asymptotic Gibrat’s law, in the sense of limz→∞ γ∗ (z) = γ∗∗, for the largest firms.
The asymptotic rate of productivity growth of the largest firms γ∗∗ satisfies the maximum in the following
problem

u∗ = maxγ
(1 + ϕ (γ))−ρ

r + ρ
(

gθ − γ− 1
2 (ρ− 1) σ2

) . (19)

Proof. See Appendix 7.1.

Proposition 1 establishes the conditions that ensure the existence of a uniquely stable equilib-
rium for the growth strategies of incumbent firms. The key requirement involves a lower bound
on the effective discount rate of firms. This result is intuitive: since productivity gains are per-
manent, the discount rate has to be large enough to contain firms from infinite investments in
growth.

The convexity of the value function follows from the fact that firms face different expected life-
times of activity in the industry. Productive firms lie farther from the exit cutoff and expect to live
longer in the industry. A marginal increase in the productivity of a firm raises its value along two
margins: it increases the flow of profits as well as the expected lifetime of the firm. This implies
that the marginal net present value of productivity growth is larger for larger firms. Due to their
shorter expected lifetimes, unproductive firms have less to gain from investing to permanently
raise their efficiency. Facing higher returns to investment, large, high-efficiency firms invest more
than small, low-efficiency firms, giving rise to an increasing investment policy function γ∗ (·).
The proposition further shows that the value function becomes linear in ez in the limit of very
large firms. As a result, the positive relationship between productivity (size) and innovation in-
vestments declines for very large firms and we find that Gibrat’s law holds in the limit.

As expected, factors that contribute to higher discounting of the net present value of incumbent
profits have a negative impact on the firms’ value and innovation investments. In particular, the
rate of aggregate productivity growth gθ negatively affects the firms’ incentives to grow.26 To see
this, consider a firm that is forced to remain active at all productivity levels. The value function
of this firm is simply given by J (γ∗∗) ez/r∗ − 1/r where γ∗∗ is the firm’s productivity growth
and r∗ = r + ρ

(
gθ − γ∗∗ − 1

2 (ρ− 1) σ2) is its effective discount rate. Increasing r∗, say, through
an increase in the rate of productivity growth gθ , erodes the future value and therefore the rate
of return to innovation investments. For high-productivity firms that have large efficiency z, the
option to exit the industry is not relatively valuable. Therefore, this analysis provides a good
approximation for the effect of faster growth on their incentives to innovate.

For less productive firms that lie close to the exit cutoff, faster growth creates additional con-
siderations since it affects their valuation of the option to exit. Of course, the option to exit the

26The same negative relationship between the rate of creative destruction and the incentives to grow exists in canonical
models of innovation and growth that feature both entry and incumbent innovation (see, e.g., Klette and Kortum,
2004; Acemoglu and Cao, 2015). The mechanism in both cases is the erosion of future profits along the growth path,
which lowers the expected private lifetime of benefiting from innovation. The main difference is that here the effect
is stronger on low-productivity firms, whereas it is uniform under the canonical model.

15



industry is relatively more valuable for these firms. A rise in the rate of productivity growth gθ

changes the option value of exit since it affects first, how fast the relative position of a firm in the
industry erodes, and second, at which efficiency level it ceases operation (the exit cutoff). The
latter effect only emerges when the extent of volatility is high and low-productivity firms account
for the option value of continuation in their exit decisions. Together, these forces imply that the
dynamic displacement effect of faster growth creates heterogeneous responses in the innovation
investments of firms.

2.6 Industry Problem

As we saw in Section 2.7, the mass of active firms at time t along a stationary constant growth
path takes the form Mt (z) = MegMt H (z), where H (·) is the cumulative distribution of firm
efficiencies. This stationary distribution emerges as the result of the innovation and exit decisions
of all firms, and characterizes the long-run state of the industry. In this section, I characterize this
distribution and provide conditions required for its existence.

Defining the industry-wide index of firm efficiency through

ez̃ ≡
(∫

ez/ρ h (z) dz
)ρ

,

we can transform the knowledge transfer Equation (13) to the space of firm efficiencies as

ze = η z̃ + (1− η) za + ργe.

The distribution of the efficiency with which entrants attempt entry is then given by Fe (z) ≡
H
(

z−η z̃−ργe
1−η

)
.

Along a stationary equilibrium path, the exit cutoff for firms corresponds to a cutoff in the space
of efficiency. Let zo denote this cutoff, and za denote the lowest level of incumbent efficiency that
an entrant can adopt to successfully enter the industry, satisfying ηz̃ + (1− η) za + ργe = zo. If
ργe < −η (z̃− zo), this level of efficiency corresponds to the one of an active incumbent firm;
therefore, a flow of firms do not succeed in their attempt to enter the industry and immediately
exit. In this case, the gross rate of entry is larger than the rate of successful entry by a factor of
[1− H (za)]

−1. Otherwise, all entry attempts are successful. We can accordingly define a distribu-
tion of entry efficiency F with a cumulative distribution function

F (z) =


Fe(z)−Fe(zo)

1−Fe(zo)
, ργe < −η (z̃− zo) ,

Fe (z) , otherwise.

Let h (z) ≡ H′ (z) denote the probability density function for the stationary distribution, and
λe and λo be the rates of (successful) entry and exit. The distribution H then has to satisfy the
following stationary Kolmogorov Forward Equation (KFE) for z > zo

gM H (z) = λe F (z)− λo − ρ

(
γ∗ (z)− gθ −

1
2

σ2
)

h (z) +
ρ2

2
σ2 h′ (z) , (20)

along with boundary conditions h (zo) = 0 and limz→∞ H (z) = 1, where γ∗ (·) is the incumbent
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investment policy solving problem (17). As z goes to infinity (zero), the cumulative and probabil-
ity distribution functions H and h converge to 0 and 1 (0 and 0), respectively. Equation (20) then
implies a rate of exit given by

λo =
1
2

ρ2σ2h′+ (zo) , (21)

and a rate of (successful) entry λe given by the conservation of mass condition λe = λo + gM .
The empirically relevant equilibria are those in which the industry features both a stable and

stationary distribution of firm size and a constant stream of entrants and exiting firms. Therefore,
it is natural to search for industry equilibria that feature this property. The following proposition
gives us the necessary and sufficient conditions required to establish the existence of a stationary
distribution of firm efficiency and size along with a positive rate of entry. It also establishes that
the distribution will always have a right tail that exhibits Pareto behavior.

Proposition 2. (Stationary Distribution) Assume that at least one of the two following conditions holds:
either adoption is imperfect η > 0, or the likelihood of adoption from the frontier is zero fa (1) = 0.27 Then,
for a stationary distribution of firm size with a positive rate of entry λe and finite mean to exist, the rate of
growth in the mass of firms should be large enough, in the sense that gM > 0 and gM > ρ (γ∗∗ − gθ) +
1
2 ρ (ρ− 1) σ2. The rate of entry for any other potential stationary distribution will necessarily be zero (if
such a distribution exists). The right tail of the distribution exhibits a Pareto behavior with a tail index
given by28

ζ ≡ lim
z→∞

h (z)
1− H (z)

=
1
ρ

√( gθ − γ∗∗

σ2 + 1
)2

+
2gM

σ2 +
gθ − γ∗∗

σ2 + 1

 . (22)

Proof. See Appendix 7.1.

Proposition 2 imposes a lower bound on gM in order to establish the existence of the stationary
distribution. The intuition is also similar to the condition we found in Proposition 1: we require
a flow of entrants that is large enough to prevent the most productive firms from indefinitely
growing their share of employment (Luttmer, 2012). Furthermore, it requires that no entrants
receive spillovers directly from the frontier technology, or if they do, then the .

2.7 Equilibrium Industry Growth

Combining Propositions 1 and 2, we can now close the model through a free entry condition that
pins down the rate of productivity growth in the long-run equilibrium.

I assume that the rate of growth of population (aggregate sales) is positive gN > 0. As discussed
earlier, the mass of firms grows at the rate gM = gN and therefore the first condition for the
existence of the stationary distribution in Proposition 2 is satisfied. Defining the relative entry to

27In the case where adoption is perfect η = 0 and fa (1) > 0, a necessary condition for the existence of a stationary
equilibrium is that γe < 0. In addition, the rate of growth in the mass of firms gM has to satisfy a more stringent
condition to ensure the existence of an equilibrium. The characterization of this case is available upon request.

28Note that −ζ is the negative root of the quadratic characteristic equation Q (x) = 1
2 ρ2σ2x2 + ρ (γ∗∗ − g) x − gM,

corresponding to the KFE characterizing the stationary distribution.
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fixed costs ψ ≡ ψe/ψ f , we can write the free entry condition as

ψ =
∫

V (ηz̃ + (1− η) z + ργe) f (H (z)) h (z) dz = (1− Fe (zo)) EF [V (z)] , (23)

where the pre- and post-entry distribution of efficiencies Fe and F are defined as in the previous
section. Equation (23) pins down the rate of productivity growth gθ , which is ceteris paribus
decreasing in the ratio of entry to fixed costs ψ.

All the conditions required for the existence of the value function and the stationary distribution
together translate into a constraint on the relative costs of entry, in the form of ψ ∈

(
ψ, ψ

)
. Such a

condition ensures, for any relative cost ψ within the interval, the existence of a unique stationary
distribution H of efficiencies with nonzero rate entry λe, such that

λe = gN +
1
2

ρ2σ2 h′+ (zo) .

The relative market share of a firm in state z in the aggregate sales of the industry is given by

ν (z) =
ez J (γ∗ (z))

Z
, (24)

where I have defined an index of average firm size Z ≡ EH [ez J (γ∗ (z))]. Variable ν compares the
sales of a firm at efficiency level z with the average sales of the industry; therefore, it averages to
one across the industry , EH [ν (z)] = 1. Therefore, market shares ν (·) define a distribution, which
I also denote by νs. The expectation of this distribution over any firm-level outcome X (·) in the
efficiency space defines a market-share-weighted average of that outcome given by Eν [X (z)] ≡
EH [ez J (γ∗ (z)) X (z)] /Z.

The following proposition provides a decomposition of the rate of average productivity (and
hence the rate of profit erosion) to the components stemming from incumbent investment as well
as the margin of entry and exit.

Proposition 3. (Growth Decomposition) The overall rate of profit erosion of the industry can be decom-
posed into

Eν [1 + ε J,1] · g = ρ Eν [γ
∗ (z) (1 + ε J,1)] +

ρ2

2
σ2
(

Eν

[
(1 + ε J,1)

2
]
+ Eν [ε J,2]

)
+ (νe − νo) · λo − (1− νe) · gM (25)

where νe and νo denote the market shares of entrants and exiting firms, given by EF [ez J] /Z and ezo /Z,
respectively, and εJ

1 and εJ
2 denote first and second order semi-elasticities of the innovation costs with respect

to efficiency, given by ε J,1 ≡ ∂
∂z log J (γ∗ (z)) and ε J,2 ≡ ∂2

∂z2 log J (γ∗ (z)).

Proof. See Appendix 7.1.

The decomposition in Equation (25) has a straightforward interpretation. The first term on the
right hand side gives the share-weighted growth rates of firms at different efficiency states. This
term is driven by the endogenous investments of incumbent firms. The second term captures
the contribution of volatility to growth. Idiosyncratic shocks may also contribute to aggregate
growth as market shares reallocate toward firms that receive better shocks. We can interpret this
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term as the contribution of involuntary experimentation of firms in the industry. Together, the
two expressions on the first line summarizes the contribution of incumbent firms to productivity
growth.

The third and fourth terms, on the second line of the equation, summarize the contribution of
entry and exit. The third term captures the contribution of selection (entry and exit). New firms
replace firms at the exit threshold at a rate given by the exit (turnover) rate λo. Each new entrant
improves the efficiency of an exiting firm by a factor (EF [ez J] − ezo)/Z, that is, the difference
between the average size of entrants and exiting firms, relative to the average firm size. This
expression in turn depends on the gap in the productivity of the entrants and exiting firms.

Finally, the fourth term accounts for another distinct contribution of entry, stemming from a po-
tential gap between the productivity of entrants and the average incumbent. The net rate of entry
of firms is given by the rate of growth in the mass of firms gM. Each new firm faces a deficiency
of size 1− EF [ez] /Z relative to an average incumbent. Therefore, a faster rate of growth in the
number of firms can reduce the overall rate of growth of productivity in the industry.

To more clearly see the intuition behind the decomposition, let us simplify it by assuming that
γ∗ (z) is approximately constant across two high- and low-innovation regions of the efficiency
space. Therefore, the terms involving the elasticities of the firm investment policies drop out and
we find

gθ ≈ Eν [γ
∗ (z)] +

1
2
(ρ− 1) σ2︸ ︷︷ ︸

Incumbents

+

(
νe − νo

ρ

)
· λo︸ ︷︷ ︸

Turnover

−
(

1− νe

ρ

)
· gM︸ ︷︷ ︸

Net Entry

, (26)

where Eν [γ∗ (z)] is the market-share-weighted average of incumbent innovations. Innovation
investments of incumbent firms influence the rate of productivity growth through two distinct
channels: 1) directly, through the first term in Equation (26), and 2) indirectly, through their effects
on the contribution of turnover. The second effect happens both because incumbent innovation
raises the rate of turnover, and because it influences the gap between entering and exiting firms.
Despite the fact that firms invest in improving their own processes, they still destroy the business
of unproductive firms and push them out of the industry. Here, creative destruction operates
through the selection margin.

Typically, any shock to the environment or any policy intervention shifts the composition of
growth in the industry between the different components above. Consider again a small rise in
the ratio of entry to fixed costs ψ. From the free entry condition, we expect the aggregate rate of
profit erosion g to respond negatively to this shock. Equation (25) allows us to further quantify
the resulting shift in the composition of growth. Based on what we saw from the behavior of
incumbent investments, they will rise in response to this fall in the rate of profit erosion g. We
also expect the rate of entry λo + gM to fall as a result of the rise in relative entry costs. Therefore,
the role of incumbent investment in overall industry growth rises in response to this shock.
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2.8 Solving for the Model

As with most models of investment under uncertainty, we cannot analytically characterize
the solution to either the incumbent or the industry problem.29 Instead, I employ the following
scheme to compute numerical solutions to both problems.

In order to solve the Bellman equation in Proposition (1), I first transform the problem into a
first-order system of differential equations u′ (z) = Q (u (z)) defined in a two-dimensional state
space u ∈ R2

+ where

u1 (z) =

(
V (z) +

1
r

)
e−z, (27)

u2 (z) = V ′ (z) e−z. (28)

We have a Boundary Value Problem (BVP) with the following two boundary conditions: 1) the
smooth pasting condition implies u2 (zo) = 0, and 2) Proposition 1 implies limz→∞ u1 (z) = u∗

where u∗ is given by equation (19). Figure 1 gives an example of how the solution typically be-
haves in the u-space. The standard smooth-pasting condition implies that the path has to begin
somewhere on the u1-axis u (zo) = (u1 (zo) , 0)t, which is located to the southwest of the equilib-
rium point such that u′1 ≤ 0 and u

′
2 ≥ 0. From the standard value-matching condition V (zo) = 0

and Equation (27), this point pins down the exit threshold

ezo =
1

r u1 (zo)
.

For the infinite boundary, the solution has to converge to the point u∗ = (u∗, u∗), which is an
equilibrium point for the system of differential equations in the sense that Q (u∗) = 0. Condition
(18) both ensures that such an equilibrium point exists, and that it is locally saddle path stable.
In other words, the BVP has a unique solution, characterized by a path of u (z) that converges to
(u∗, u∗)t. Figure 1 shows both the stable and unstable paths around the equilibrium point.

I derive a similar scheme to solve for the stationary distribution of efficiencies H(·) for any
given specification of the model. I transform the problem into a first-order BVP h′ (z) = P (h (z))
defined in a two-dimensional state space of h (z) ≡ (H (z) , h (z)) ∈ R2

+. The problem has the
following boundary conditions: h (zo) = H (zo) = 0 and limz→∞ H (z) = 1. Figure 2 gives an
example of how the solution typically behaves in the h-space. In the limit of large z, the path of the
solution has to converge to the point h∗ = (1, 0)t that forms an equilibrium point for the system
of differential equations in the sense that P (h∗) = 0 (another equilibrium point (0, 0)t is also on
the path). The conditions in Proposition 2 ensure that this equilibrium point is locally saddle path
stable. Figure 2 further shows both the stable and unstable paths around the equilibrium point
h∗ = (1, 0)t.

29Nevertheless, we can use approximations to transform the two problems from differential equations into algebraic
equations. In the online appendix I showcase different properties of the incumbent and the industry problems un-
der a specific innovation cost function and an atomic adoption distribution through both numerical solutions and
analytical approximations. However, even in this case, or eve cases where the value function can be analytically
computed, the resulting expressions involve nonlinearities that do not give rise to transparent comparative statics.
More generally, the difficulty in analytical study of comparative statics is a well-known feature of models of invest-
ment under uncertainty (Dixit and Pindyck, 1994). Dixit (1991) suggests analytical approximations based on Taylor
expansions as an alternative approach.
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I use different generalizations of the method above to solve for the variations of the Bellman
equation encountered in the cases involving distortions and the social planner’s problems.

3 Optimal Allocations

Let us now examine the allocative efficiency of the market equilibrium by comparing it against
the allocations advised by a social planner. As mentioned in the Introduction, we find that the
potential gaps between the social and private returns to innovation are substantially different in
this model from those in standard models that do not include selection and knowledge diffusion.
In particular, the externalities created by firm-level innovations on the growth of industry-level
productivity vary with firm productivity.

Section 3.1 begins by characterizing the socially optimal allocation of innovation and produc-
tion. Section 3.2 discusses the different channels through which innovation investments gen-
erate externalities on industry-level productivity growth in this model. Section 3.3 then briefly
discusses the numerical scheme used for solving for the optimal allocation. Finally, Section 3.4
presents two different schemes that the social planner may employ to implement the optimal
allocation, under the assumption that she can observe the productivity ranking of firms. The im-
plementation allows us to study the sizes of gaps between social and private returns to innovation
investments.

3.1 Socially Optimal Allocations

In the environment of this model, for incumbent firms at any given level of efficiency the social
planner has to decide on 1) the extensive margin of production (selection), i.e., whether the firms
should be selected to continue operation, 2) the intensive margin of production, i.e., how much
output and labor input to allocate to them, and 3) innovation investments. In addition, the social
planner decides on the rate of entry into the industry.

Conditional on the extensive margin of production and the choices of firm innovation invest-
ments, the first-order conditions corresponding to the static allocations of output and employ-
ment coincide between the market equilibrium and the socially optimal allocations. This result
directly follows from the assumption of CES demand and constant markup pricing. Therefore,
the intensive margin of production decisions (output and labor input) is efficient, conditional on
the extensive margin (exit) and innovation investments. However, the extensive margin, whether
the firm continues to operate or exits, may vary between the market equilibrium and the socially
optimal allocation.30 In addition, differences between the social and market allocations may arise
in the innovation investment decisions of firms. I will denote the socially optimal efficiency cut-
off for production as zo,s, and the socially optimal innovation investments of firms as γs (·) for
z ≥ zo,s.

30In the static or symmetric setting, it is well known that with CES preferences business stealing and appropriability
effects exactly cancel out and the market entry (and exit) of firms and products becomes optimal (Grossman and
Helpman, 1991, p. 82). The framework offered here is flexible enough to allow for distortions due to potential
variations in markups that exist in more general demand specifications (e.g., Dhingra and Morrow, 2012).
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The following proposition presents the key result that characterizes the socially optimal alloca-
tions.31

Proposition 4. (Socially Optimal Allocations) Assume that the socially optimal allocation has a stationary
constant growth path characterized by a rate of productivity growth gθ,s, the social value function Vs (·),
the CDF and pdf of the stationary distribution of efficiencies Hs (·) and hs (·), respectively, and the rate of
entry λe,s. Social value function Vs satisfies a social HJB equation

rVs (z) = max
γ

ez J (γ)− 1 + ρ

(
γ− gθ,s −

1
2

σ2
)

V ′s (z) +
ρ2

2
σ2V ′′s (z)

+λe,s · (Us (z)−Ψs) , (29)

for z ∈ (zo,s, ∞) and the boundary conditions Vs (zo,s) = V ′s (zo,s) = 0, where the social crowding cost
Ψs and the spillover function Us (·) are defined as follows. The social crowding and spillover are each
composed of two separate contributions due to knowledge diffusion and to the industry-wide average stock
of knowledge given by

Us (z) = η
(

e
z−zo

ρ − 1
)

ũs + (1− η) us (z) ,

Ψs = η
(

e
z̃−zo

ρ − 1
)

ũs + (1− η) ψs,

where the knowledge diffusion terms are given by

ψs ≡
∫ ∞

zo,s

V ′s (ηz̃ + (1− η) x + ργe) fa (Hs (x)) (1− Hs (x)) dx, (30)

us (z) ≡
∫ z

zo,s

V ′s (ηz̃ + (1− η) x + ργe) fa (Hs (x)) dx, (31)

and the term corresponding to the contribution to the industry-wide knowledge stock is given by

ũs ≡ ρe−
z̃−zo

ρ

∫ ∞

zo,s

V ′s (ηz̃ + (1− η) x + ργe) fa (Hs (x)) hs (x) dx. (32)

In addition, Hs satisfies a corresponding KFE and, if λe,s > 0, the socially optimal value function and
efficiency distribution satisfy a social free entry condition

ψ =
∫ ∞

zo,s

Vs (ηz̃ + (1− η) z + ργe) fa (Hs (z)) hs (z) dz, (33)

where, as before, we have ψ ≡ ψe/ψ f .

Proof. See Appendix 7.2.

When the long-run equilibrium involves entry, the proposition shows that the distinction be-
tween the social and private value of firms appears in a constant Ψs , and an efficiency-dependent
knowledge spillover term Us (·) in the social planner’s HJB equation. The terms corresponding
to the stock of knowledge are standard spillover terms: the external contribution of firms to the

31The proposition provides only the necessary conditions for a constant growth path to characterize a socially optimal
allocation in the long-run.
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industry-wide knowledge stock is proportional to their productivity (that is, ez/ρ). Raising this
stock then generates social value by increasing the efficiency of all entrants, creating social value
given by Equation (32).

For the remainder of this section, I focus on understanding expressions (30) and (31), corre-
sponding to the contribution of knowledge diffusion. The two expressions capture simple intu-
itions about the workings of knowledge diffusion in this model. To better see these intuitions, let
us consider a perturbation to the socially optimal (or the market equilibrium) allocation whereby
we add a small mass ∆m of firms with efficiency z to the long-run stationary distribution, remov-
ing a mass of the same size at random from the distribution. This small perturbation keeps the
total mass of firms intact, but influences the ranking of firms and, accordingly, modifies the dis-
tribution of entrants. We can derive the social value of the knowledge spillovers created by this
perturbation, that is, expressions (30) and (31), in three steps.

Step (I): Improving or Crowding of the Pool of Ideas First, consider an entrepreneur E who
has received the draw of µE ∈ (0, 1) as the ranking of the idea she adopts. The corresponding
efficiency za then satisfies µE = H (za). The effect of the perturbation on her efficiency za depends
on whether the efficiency z of the added firms is better or worse than her pre-perturbation adopted
idea za. If the new idea is better z > za, this will improve the pool of ideas for entrepreneur E.
This will change the rankings of ideas from the pre-perturbation H (za) by a small amount

∆H ≈ H (za)×
1

1 + ∆m
− H (za) ≈ −H (za) ∆m.

Since her draw µE should remain constant, the perturbation pushes up her adopted efficiency
by ∆za = H (za) /h (za)∆m. On the other hand, if the new firms z are worse than her pre-
perturbation idea z < za, this will deteriorate the pre-perturbation ranking by

∆H ≈ H (za)×
1

1 + ∆m
+

∆m
1 + ∆m

− H (za) ≈ (1− H (za)) ∆m.

Therefore, the resulting change in her position will be ∆za = − (1− H (za)) /h (za)∆m. We can
summarize the change in the two cases using the following two expressions: a constant negative
term and a positive term that only operates for entrepreneurs E with ideas originally worse than
z, as

∆za =

[
1

h (za)
I (z > za)−

1− H (za)

h (za)

]
∆m,

where I stands for an indicator function. We can think of the first term inside the bracket as
whether or not z improves the pool of ideas for any given entrepreneur. The second term then is a
constant crowding term that is identical for all firms z. Intuitively, adding any new firm makes it
less likely for entrepreneurs to find their original ideas, and in this way the likelihood of adopting
this new idea produces an opportunity (crowding) cost.32

Step (II): Accounting for the Expected Lifetime of Ideas The calculation above accounted for
the quality of knowledge spillovers generated by different firms. Next, we have to account for

32 Note that this force is also present in standard models of creative destruction (e.g., see Acemoglu et al., 2013).

23



the social values associated with these spillovers. The social values of ideas depend not only on
their quality, but also on the time horizon over which they benefit the industry. From the social
planner’s perspective, each change ∆za in the position of an entrant generates an external value
V ′ (ze) ∆za, where the marginal value is calculated at the entry efficiency ze which is related to the
adopted efficiency za through ze ≡ ηz̃ + (1− η) za + ργe.

Step (III): Summing Up the Effect Across All Entrants The two terms in Equations (30) and
(31) sum up all of these external values across firms at different tiers of adopted efficiency za,
accounting for the fact that the rate of adoption in each tier is given by λe × h (za) fa (H (za)).

The next corollary immediately follows from the proposition.

Corollary 1. The market equilibrium is socially efficient if there are no spillovers, i.e. η = 1 and θ̃t

exogenous, or if no entry happens, i.e., λe = 0.

When the distribution of productivity of new entrants is determined exogenously, market equi-
librium innovation and production decisions become optimal. In the absence of spillovers, the
efficiency results that Dhingra and Morrow (2012) have derived for the static benchmark model
of firm heterogeneity and selection (Melitz, 2003) generalize to the dynamic case with firm in-
novation, which corresponds to the innovation model of Atkeson and Burstein (2010). Similarly,
when the equilibrium path does not feature entry, knowledge spillovers do not play a role and
the innovation and exit decisions of firms become socially optimal.

In addition to the characterization of the social value function, the proposition also provides
the social free entry condition. Equation (33) shows that the optimal entry condition for the social
planner takes the same form as the free entry conditions under the market equilibrium. While
both the optimal distribution Hs and the value function Vs diverge to those under the market
equilibrium, the relative value of entry (in terms of fixed operation costs) has to be the same
between the two allocations.

3.2 Unpacking Innovation Externalities

Proposition 4 characterizes the socially optimal allocation. However, it does not directly show us
how the market equilibrium and the socially optimal and innovation decisions deviate from each
other for a firm in efficiency state z. These two investments satisfy

ez J′ (γ (z)) = V ′ (z) , ez J′ (γs (z)) = V ′s (z) , (34)

respectively. Investigating the market equilibrium and social HJB equations, we find that the
differences between the marginal private and social values of a firm with efficiency z derive from
two distinct sources:

1. Knowledge spillovers: characterized by the endogenous distributions (H, Hs) and the ex-
ogenous adoption process Fa,

2. Expected lifetime (selection): characterized by the endogenous rates of productivity growth
(gθ , gθ,s) and the exogenous volatility parameter σ.
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To unpack these different sources, let us again use a perturbation argument. This time, consider
raising the innovation investments of all firms within a ∆z neighborhood of the efficiency level
z by a small amount ∆γ. I will examine the external impacts of this change that firms within ∆z
do not account for when they make their innovation decisions. The key is to note that, due to the
dynamic effect of business stealing, other firms in the long-run equilibrium will respond to this
change by lowering their own innovation investments. However, these long-run effects are fairly
complex, since the initial change sets in motion a chain reaction of responses across different types
of firms that propagates across the industry and creates a new equilibrium.

To isolate the main channels, I consider a partial-equilibrium setup whereby I consider only
the direct effect of the change above on a group of firms at another efficiency level, say, x. Here, I
assume that no other groups of firms respond except firms within a small neighborhood of x. Of
course, one can then propagate these first-level responses to a second-level response, and so on.
But the direct effect of this perturbation allows us to examine the main logic of the externalities.

If no other firms respond to the change ∆γ among firms z, the long-run rate of profit erosion
rises to reflect the change. From the decomposition (26), we find this effect to be given by33

g −→ g + ν (z)× ∆z∆γ,

where ν (z) = h (z) ez J (z) /Z denotes the market share of firms with efficiency state z. We can
identify the following types of externalities in the innovation response of all other firm.

Externality (I): Knowledge Improving When firms with efficiency z raise their investments, they
raise their likelihood of moving up in the efficiency ladder. This raises the density of firms im-
mediately above them, and accordingly changes the knowledge spillovers that entrants receive.
Using the same argument as the previous section, we can see that the size of this change de-
pends on the marginal social value of the resulting improvement in knowledge spillovers, and is
proportional to λe ×U′s (z)× h (z)∆z∆γ.

Externality (II): Innovation Shifting However, the rise in the innovation investments of firms
z raises the strength of competition across all the other firms. Other firms, say at efficiency state
x, then respond to this competition by cutting down on their own innovation investments. This is
the innovation shifting effect that we briefly discussed in the Introduction and earlier in this section.
This effect is always negative since the innovation investments are decreasing in the rate of profit
erosion, ∂γ/∂g < 0, and the spillover function is monotonically increasing U′s (x) > 0. Figure 3
provides a graphical illustration of this dynamic displacement effect. It shows that, starting from
the dashed, market-equilibrium schedule of innovation investments as a function of efficiency
states, we push the investments of firms in the band ∆z around z upward by ∆γ to find the solid
schedule. For firms at efficiency state x, the negative impact is proportional to U′s (x). The total
innovation shifting effect of the rise in innovation of firms around z corresponds to the integral of

33I emphasize that this expression only captures the direct effect of the innovation, under the assumption that other
incumbents and entrants do not change their strategies immediately. It is certainly possible that the general equilib-
rium response of other firms results in the fall of the rate of profit erosion in response to the perturbation considered
here.
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this effect across all firms x. Crucially, due to the higher market shares of productive firms, this
negative effect rises with efficiency of the original band of firms around z.

Externality (III): Stifling Effect on Startups Competition also affects the incentives for new
firms to enter the market. The faster rate of growth changes the expected value of entry and
therefore potential entrants respond by reducing the rate of entry. This results in a reduction in
spillovers proportional to EFs [Us (z)]−Ψs, where Fs denotes the distribution of entrant efficiency.

Externality (IV): Cleansing Effect on Unproductive Firms Finally, competition raises the rate
of exit among the least productive firms. This stronger selection lowers the negative crowding
costs on the industry, proportional to Ψs. This is a positive effect. Figure 3 shows a graphical
illustration of this effect for firms near the exit threshold.

The net external effect of the rise in the innovation investment of firms z depends on all these
components. However, the industry response is not limited to these; they are only the immediate
impacts of the perturbation that clarify the channels. These effects in turn trigger further innova-
tion and exit and entry responses among other firms. In the long-run the stationary distribution
H also responds to the perturbation. The combination of the responses of other firms and the sta-
tionary distribution may in fact give rise to a situation where the aggregate rate of productivity
growth falls as the result of this perturbation.

Where does the expected lifetime of the ideas come into the picture? It manifests itself in the relation-
ship between social knowledge spillover Us (z) and efficiency states z. Under standard theories
of creative destruction, all ideas have the same horizon of usefulness in the market. From the so-
cial planner’s perspective, this horizon is infinity. Therefore, the only margin for variations in the
externalities is the impact of ideas in generating a flow of profits. We find that both spillover ex-
ternalities and the displacement effects discussed above scale proportionally to the market share
of firms. As a result, the gap between the two remains constant across firms. In contrast, in
this model the displacement externalities grow as the market share of firms (which grows at ez)
whereas the knowledge spillovers grow at Us (z) (which grows faster than ez for firms near the
exit threshold). As a result, the gap between the two may vary across firms as a function of effi-
ciency states.

3.3 Computing the Socially Optimal Allocation

Despite the complex and interconnected nature of the displacement effects, we can still numeri-
cally compute the optimal allocation and compare it with the market equilibrium one. This section
discusses a scheme that allows us to solve for the optimal allocation.

To solve for the optimal allocation, I use a computational scheme that parallels the one used
for solving the market equilibrium. However, the key difference here is that the industry and
incumbent problems are fully entangled through the term involving the spillover function in
Equation (29). Therefore, in order to solve for the value function, investment, and exit policy
functions of firms, we need to know the stationary distribution of firm efficiencies.
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I use an iterative scheme to solve the two problems jointly. Starting with an initial guess for the
rate of profit erosion, I solve for the value function of the firm and the stationary distribution of
firm efficiencies, under the market equilibrium. Next, I use these results to form a guess about the
spillover function and solve for the social value function from Equation (29). Then, I continue to
iteratively solve the social HJB and KFE until convergence. I use the difference between the result-
ing cost of entry and the actual cost of entry to update my guess about the optimal rate of profit
erosion and repeat the same procedure. The final solution satisfies all the different conditions in
Proposition 4.

3.4 Tax/Subsidy Implementation of Optimal Policies

In this section, I discuss potential implementations of the optimal allocation under the assump-
tion of information symmetry between the government and private firms. Since the government
can observe the productivity ranking of firms (efficiency z), we can reach the first-best through
two different potential schemes. First, the government can simply offer an efficiency-dependent
reward schedule us (·) and a lump-sum tax of ψs to firms. This scheme directly implements the
socially optimal allocation and does not require any further incentives for entry. We can think of
this scheme as an ex post reward that corrects for the gap between social and private returns to
innovation investments. Needless to say, this scheme is fairly costly, and involves large transfers
between the government and private businesses.

Alternatively, the government can use a combination of targeted taxes/subsidies to implement
the optimal allocations characterized in Section 3.1. In particular, the following set of instru-
ments together achieve the optimal allocation: a flat tax on the operation of firms, a subsidy for
firm startup costs, and two additional efficiency-dependent instruments, a subsidy on innova-
tion investments and a tax on the labor inputs of incumbents. The lump-sum tax internalizes the
negative crowding externality of firms and the entry subsidy internalizes the entrants’ positive
spillovers. The efficiency-dependent input taxes and subsidies together internalize innovation
externalities while maintaining the static efficiency of allocations across firms.

To see how this works, consider a firm with efficiency z that invests the amount γs (z) under
the optimal allocation. The government offers tax τl (z) on production labor inputs and subsidy
τi (z) to the innovation labor inputs of the firm. The purpose of the production input tax is simply
to ensure the static efficiency of firm outputs: therefore the government chooses

τl (z) = −τi (z) ϕ (γs (z)) , (35)

to ensure that the total labor costs of the firm under the implementation scheme match those
under the optimal allocation. In addition, because of this tax the government does not need to
transfer a net amount to the firm.

Now, if we let τo denote the tax on the operation of firms, the value function of the firm under
the implementation satisfies the following HJB equation

r V̂s (z) = max
γ

ez Jτ (γ; τi (z) , z)− (1 + τo) + ρ (γ− gs) V̂ ′s (z) +
1
2

σ2 V̂ ′′s (z)
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where I have defined the function

Jτ (γ; τi, z) ≡ (1 + (1 + τi) ϕ (γ)− τi ϕ (γs (z)))
−ρ .

It is easy to show that the derivative of this function with respect to γ, when evaluated at γs (z),
is given by (1 + τi) J′ (γs (z)). Together with condition (34), this implies that if we set

τi (z) =
V̂ ′s (z)
V ′s (z)

− 1,

where the social value function Vs satisfies the social HJB (29), the choice of innovation of firm z
under the implementation coincides with its choice under the optimal policy.

The following lemma then characterizes the set of instruments that implements the optimal
allocation.

Lemma 1. (Tax/Subsidy Implementation) The social planner can achieve the optimal allocation by impos-
ing a flat tax τo on the operation of firms, a tax/subsidy τe,s on the costs of entry, and a size-dependent
tax/subsidy τi,s (·) on incumbent innovation investments. Let V̂s (·) denote the value function of the firm
under the market equilibrium featuring the additional taxes and subsidies. This value function and the
operation tax τo satisfy the following differential equation

r V̂s (z) = ez J (γs (z))− (1 + τo) + ρ (γs (z)− gs) V̂ ′s (z) +
ρ2

2
σ2 V̂ ′′s (z) , (36)

subject to the boundary conditions V̂ ′s (zo,s) = V̂s (zo,s) = 0, where (γs (·) , zo,s) stand for the firm policies
under the optimal allocation from Proposition 4. Given the value function V̂s (·) and the social value func-
tion Vs , satisfying social HJB (29), the incumbent and entrant innovation taxes/subsidies that implement
the optimal allocation are given by

τi,s (z) =
V̂ ′s (z)
V ′s (z)

− 1, (37)

τe,s =
EFs

[
V̂ ′s (z)

]
EFs [Vs (z)]

− 1. (38)

Note that Equation (36) has a different form from the social planner’s HJB equation (29). As
a result, the social value function of the firms Vs and their private value under the subsidy/tax
implementation V̂s do not necessarily coincide. Therefore, the subsidies in Equation (37) and (38)
will in general be nonzero.

4 Quantitative Results

In this section, I use data on the life cycle dynamics of firms to calibrate the parameters of the
model and to quantitatively investigate its positive and normative predictions. The model is
parsimonious and characterizes each sector of the economy by three key sets of structural char-
acteristics relating to 1) process of innovation (volatility, and costs of innovation and entry), 2)
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demand (elasticity of substitution and the rate of growth of demand), and 2) the process of entry
and adoption (directedness and the degree of decreasing returns).

I face a challenge in calibrating the parameters of the process of entry, since reliable measures
of the productivity of entrants are rarely available. Employments, sales, or even estimates of
multifactor productivity do not provide precise measures for the performance or efficiency of new
firms. In the early stages of their life cycles, firms invest more heavily in tangible and intangible
capital relative to mature firms and therefore the comparison between the two groups may not be
justifiable. As I will explain below, I rely on the relationship between the rate of exit and the age
of the firm to identify the quality of entering cohorts relative to other firms active in the industry.

4.1 Data

I use the Business Dynamics Statistics (BDS) tables, a dataset that has been specifically developed
to account and track sources of job creation and destruction through entry and exit, disaggregated
by firm size, age, and industry.34 The data starts in 1977, but the truncation of the firm age variable
is heavy for the first few years. I focus on the period 1987-2007 to allow for a broader coverage of
the age variable and avoid the arguably different firm dynamics during the Great Recession.

As I will explain below, the empirical exercise further requires the rates of growth in the ag-
gregate employment and labor productivity of firms in each sector. BDS data already provides
information on the total employment of firms. For measures of sectoral productivity growth, I
rely on the Bureau of Labor Statistics (BLS) National Accounts to obtain estimates of the average
rate of labor productivity growth in each sector for the period under study.35

4.2 Model Specification

The model in Section 2 characterizes a single-sector general equilibrium economy, but I perform
the calibration at the level of two broad sectors of the US economy: manufacturing (SIC code 20)
and retail trade (SIC code 52). I sketch a two-sector generalization of the model in Section 7.3 of
the Appendix, and show that the model is compatible with an equilibrium path along which each
sector grows in terms of average productivity and mass of firms with a sector-specific rate. This
provides a theoretical ground for separately calibrating the model to these two sectors of the US
economy.36

I assume the following form for the costs of innovation

ϕ (γ) = χ
γ1+κ

1 + κ
, (39)

34The underlying data for LBD and BDS is at the establishment level, but the Census Bureau matches establishments
based on the commonality of ownership or control to create firm-level data (see Haltiwanger et al., 2009). The
dataset can be accessed online at http://www.census.gov/ces/dataproducts/bds/.

35BLS estimates sectoral labor productivity based on measures of value added and hours worked provided in the
NIPA accounts (for the details of the methods used, see Bureau of Labor Statistics, 2008). The dataset can be
accessed online at https://www.bls.gov/lpc/.

36There is evidence in the data that the sectors in fact have been undergoing some restructuring and therefore may
not be precisely evolving along their long-run stationary equilibrium paths. However, the focus of this work is
in documenting the essential inter-sector differences in the mechanics of growth. Hence, I abstract away from
characterizing the transitional dynamics, and assume that the two sectors observed in the data evolve along their
respective stationary balanced growth paths and match the data moments with those implied by the model.
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defined in the interval γ ∈ [0, γ], where

γ ≡
(

κ

χ

1 + κ

ρ (1 + κ) + 1

) 1
1+κ

. (40)

For the process of diffusion, I consider the adoption distribution (11) that allows for a potential
bias of the distribution toward more productive firms. In addition, I assume the relation (13)
between entry and adopted productivities, and let θ̃t denote the average productivity of the in-
dustry at time t. Then, the tuple (µ, η, γe) characterizes the parameters of the adoption process.
See Section 7.3 of the Appendix for more details.

4.3 Calibration Strategy

To calibrate the main parameters of the model, I find the values that match the predictions of the
model with the data on the sectoral rates of growth and the life-cycle dynamics of firm employ-
ment.

For the parameters of demand, I assume a discount rate r = 0.05 and an elasticity of substitution
of ρ = 2 for both sectors, both values common in the literature.37 As I show in Section 7.3 of the
Appendix, the model allows me to separately choose the growth rates gN , corresponding to both
rates of growth in the number of firms and in total employment in the two sectors. I choose to
match this value to the rate of growth of total sector employment based on the BDS data.

The remaining parameters of the model are (1) the primitives of the innovation process, i.e.,
relative costs of entry ψ, size and curvature of the innovation cost function (χ, κ), and volatility
σ, and (2) the primitives of the diffusion process, i.e., the directedness µ, the decreasing returns
parameter η and the shifter γe. I choose to search in the space of 5 parameters (χ, σ, µ, η, γe),
and to directly use two moments from the data and prior work to pin down the two parameters
(ψ, κ).38

To find the two parameters (ψ, κ), I employ the following scheme. Given other model parame-
ters, I find the curvature of the innovation cost function κ to match the values reported in the em-
pirical literature for the user cost elasticity of firm-level R&D spending.39 The literature typically
relies on variations in the corporate tax code over time (Hall, 1993; Hall and Van Reenen, 2000),
across countries (Bloom et al., 2002), and across US states (Wilson, 2009) as sources of changes in
user costs of R&D to estimate the response in the R&D expenditure of firms. I follow Akcigit and
Kerr (2012) and Acemoglu et al. (2013) who conclude that an elasticity of around -1 well sum-
marizes the findings of this literature. Therefore, I set κ such that the corresponding value in the
model is -1. Finally, the zero entry condition in Equation (23) suggests that given other model
parameters, the rate of productivity growth gθ pins down the relative costs of entry ψ in each

37The choice of ρ = 2 implies an elasticity of substitution of 3, close to the average of the estimates that Broda and
Weinstein (2006) find for the elasticity of substitution based on US import demand data. I choose this number,
following previous calibration exercises that rely on CES industry-level aggregators to study within-industry firm
heterogeneity (e.g., Hsieh and Klenow, 2009; Perla et al., 2015).

38The fixed cost of operation ψ f does not play a role in determining the dynamics of the model in the long run.
39In Section 7.3 of the Appendix, I derive the relation between the parameter κ and the observed user cost elasticity

of innovation investments based on the model. Using this relation, the latter directly pins down the value of
the former, given other parameters of demand and innovation environment, and the rate of sectoral productivity
growth.
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sector.
I search for the set of parameters (χ, σ, µ, η, γe) that minimize the distance between the moments

observed in the data and the ones predicted from the model (for previous examples of a similar
approach, see Lentz and Mortensen, 2008; Acemoglu et al., 2013). I target the following three sets
of moments:

1. Rate of entry,

2. Rate of employment growth and reallocation for old (15-20 year) firms,

3. Rates of exit for mature (10-15 year) and old (15-20 year) firms.

The first three moments (1 and 2) help identify the costs of innovation χ , the extent of volatility σ,
and the directedness of the adoption process µ. The third group of moments together provide us
with information about the relationship between age and the rate of exit in the industry, which in-
forms the identification of the decreasing returns parameter η. If entrants begin with low-quality
ideas relative to incumbents, they exit heavily in their early stages of life since they are very likely
to cross the exit threshold early on due to negative shocks. If entrants begin with high-quality
ideas relative to incumbents, their rates of exit has a more gradual relationship with age, since
enough negative shocks have to accumulate in order for them to cross the exit threshold. This
allows us to infer the initial characteristics of firms based on their likelihood of exit as a function
of age.

Let p denote the vector of model parameters and m̂ a vector of targeted empirical moments
observed in the data. Let m (p) denote the vector of the expected values for the same moments
based on the model, when calibrated with the set of parameters p. To find the set of parameters
that best explain the data, I use the following criterion

p∗ ≡ min
p: p f ix=p∗f ix

‖m (p)− m̂‖Σ̂ , (41)

where p f ix is the subset of parameters fixed to p∗f ix (see above), and Σ̂ is a positive definite ma-
trix computed based on the variance of the moments in the data over time. We cannot derive
analytical expressions for moment functions m (p) under the model. Hence, I use simulation to
compute the predictions of the model for each moment.40 Finally, I employ a simple brute force
grid search to minimize the objective function of the problem (41). I search in a subset of the pa-
rameter space that yields a feasible solution and find the parameters with the lowest value for the
objective function (41).

4.4 Calibration Results

Table 1 presents the calibrated moments for the two sectors. The top three moments are each di-
rectly used in the calibration of one specific parameter. Therefore, the model and the data exactly
40The logic of the approach is the same as that of the Method of Simulated Moments (MSM) for estimation (McFadden,

1989; Pakes and Pollard, 1989; Duffie and Singleton, 1993; Gourieroux and Monfort, 1993). The key challenge in
computing the moments implied by the model stems from the continuous-time nature of the underlying stochastic
process. A wide literature in empirical finance has studied the problem of estimating the parameters of continuous-
time stochastic differential equations such as those used in this paper using simulation-based/analytical and
ML/GMM-based methods (Pedersen, 1995; Aït-Sahalia, 2002; Durham and Gallant, 2002; Brandt and Santa-Clara,
2002). Here, I use a simple and fast simulation-based approach that relies on time discretization and importance
sampling (Pedersen, 1995).
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match with regard to these moments. The case of the rate of employment growth in manufactur-
ing poses an exception, since the data suggests a negative rate, but the model requires a positive
rate of growth of employment to ensure the existence of a stationary long-run equilibrium.41

Therefore, I instead assign a very small positive value for gN in manufacturing (equal to1× 10−4)
to deliver the existence of a long-run equilibrium. The remaining five moments are used for the
grid search according to the objective function in Equation (41).

The calibrated parameters show some differences between the two sectors. As one would ex-
pect, the relative costs of innovation are higher in retail compared to manufacturing. The volatility
parameter is higher in retail due, among other things, to the higher rate of reallocation of employ-
ment for old firms. This is in line with the facts documented by previous empirical work (Foster et
al., 2006). The parameters of the process of entry and adoption (µ, η) also present clear contrasts
between the two sectors. The decreasing returns parameter appears higher in retail trade. The
calibrated parameters suggest that firms enter the market with an efficiency (log productivity)
that is only 40 percent that of the firms they are trying to imitate (70 percent in manufacturing),
and have to build up the remainder of their competency by investing in innovation through their
life cycle.42 Whereas the adoption seems fairly directed toward high-productivity firms in retail,
uniform adoption provides the best fit in manufacturing. In other words, entrants are more likely
to adopt the ideas of the most productive incumbents in retail. Together these calibrated parame-
ters suggest that the adoption process may be more directed but less perfect in retail compared to
manufacturing.43

Targeted Moments The model provides a good fit for the targeted moments, and in particular
those that capture the relationship between age and the likelihood of exit. In the cases of the rates
of growth and reallocation of old firms, the fit is not as close. The reason is that the data in fact
suggests a strong trend in the relationship between age and volatility, which the current simple
model is abstracting from.44 This means that the calibration has to find a compromise in fitting
the patterns for old versus young firms. Nevertheless, the calibration preserves the ordering of
the moments between retail and manufacturing for all the moments.

41The leading explanation for a negative trend in the data is that the sector is moving along an adjustment path
toward a new stationary equilibrium with a smaller manufacturing sector. This could be due to the changes in the
technological environment (e.g., skill-biased technical change) or the effects of globalization (rise of the Japanese
manufacturers in the 70s and 80s and Chinese manufacturers in the 2000s).

42The model infers this mainly based on the fact that the rate of exit of mature and old firms relative to overall the
rate of turnover, as proxied by the rate of entry, is higher in manufacturing than in retail. One way to interpret
this is that the retail sector is better characterized by a so-called revolving-door feature, in which most entrants soon
exit and rarely grow to penetrate into the small band of industry leaders. Audretsch (1995) introduces this concept
and contrasts it with what he calls a forest industry where leading incumbents are frequently taken over by new
entrants that slowly grow from beneath. Seen from the prism of the current model, the differences between the two
evolutionary modes reflect the differences in the relative position of entrant ideas, relative to the incumbents they
are trying to imitate.

43This finding is compatible with the view that an important component of the competency of a firm in retail trade
corresponds to the types of intangible capital such as building supplier networks, branding, organizational capacity
that the firm has to acquire throughout its life-cycle, and cannot simply imitate from others. For instance, a more
detailed structural account of the differences between retail and manufacturing should take into account the process
of market penetration and spatial expansion, which inevitably requires an extended catch-up process for entrants
(for the example of the growth of Walmart, see Holmes, 2011).

44Interestingly, the data suggests that the gap in the volatility of young and old firms is higher in manufacturing
relative to retail, even though on average the volatility is lower in the former.
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Growth Decomposition and Untargeted Moments Table 2 presents a number of different mo-
ments predicted by the model under the calibrated parameters for the two sectors (in the columns
under the heading “Before”).

The first three rows show the decomposition of Equation (26), separately showing the contri-
butions of turnover (replacement of exiting firms with entrants) and net entry. First, note that,
relative to the overall sectoral rate of productivity growth, the contribution of turnover is consid-
erably larger in retail compared to manufacturing. This is the case despite the fact that, as the
fourth line in the table shows, the gap in the productivity of entering and exiting firms is smaller
in retail compared to manufacturing. The faster rate of turnover in retail compensates for this
smaller gap and results in a stronger contribution of selection to growth in this sector. However,
the third row indicates another difference between the two sectors in the contribution of entry:
faster growth in the number of retail firms means that the sector is constantly flooded by small
and relatively unproductive entrants. The negative contribution of this component more than
cancels out the contribution of selection.45

The sixth row shows that the Pareto tail indices in both sectors are very close to one, and there-
fore suggest the approximate emergence of the Zipf law (Gabaix, 2016). This contrasts with the
workhorse models of innovation and growth (Klette and Kortum, 2004; Lentz and Mortensen,
2008) that predict counterfactually thin tails for the distribution of firm size (see Appendix 6 for
further discussion). Relatedly, the stationary distribution of efficiencies in manufacturing exhibits
a larger dispersion of productivity compared to retail. The interdecile range (IDR) of log produc-
tivity is 2.6 in manufacturing and 2.0 in retail. This is compatible with the findings of Foster et al.
(2006), who highlight the larger dispersion of productivity in manufacturing despite the higher
volatility of businesses in retail.

Table 2 also compares the relative dispersion of innovation investments between the two sec-
tors. As the measure of this dispersion, I compute the interdecile range (IDR) of the investments,
normalized by the maximum level of investments in each sector. The interdecile range of the in-
vestments in retail is predicted to be slightly larger than that in manufacturing. The model makes
this prediction based on the higher volatility of firm outcomes in retail compared to manufac-
turing. In a volatile environment, highly productive firms have a stronger advantage in process
innovation because they expect to reap the benefits of their investments over a longer horizon.
High productivity shields these firms from the threat of imminent exit, which undermines the
innovation incentives of unproductive firms in a volatile industry.

Counterfactual Experiment: Reduction in the Costs of Innovation Next, I use the model to
explore the consequences of a large reduction in the costs of innovation in the two sectors. I
study what happens when due to forces external to the sector, for instance, the emergence of
novel General Purpose Technologies (GPTs), new opportunities for innovation become available
45The closest empirical counterparts to these results are the productivity decompositions reported by Foster et al.

(2001) and Foster et al. (2006) in the two sectors. They find a far more pronounced difference in the contribution
of entry and exit to growth in between the two sectors, with entry and exit explaining almost all of the growth in
retail in the 90s while accounting for about 25% of growth in manufacturing within the same period. They also find
a larger gap between the productivity of entering and exiting establishments in retail compared to manufacturing.
However, note that Foster et al. (2006) focus mainly on entry and exit of establishment rather than firms. It is likely
that their results are driven by the entry of establishments that belong to high-productivity incumbent firms, fast
growing retail chains such as Walmart and Target, rather than new firms.
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to all firms. I study this question by examining the changes in the long-run equilibrium when the
parameter of innovation costs χ falls to 75 percent of its original level in both sectors. I assume all
other parameters, including the costs of entry, remain the same before and after this change.

Table 2 shows a number of different outcomes before and after the reduction in costs. The
long-run rate of productivity growth in both sectors rises by about 0.3 percent in response to this
change. The lion’s share of this response is provided by the rising investments of incumbent firms
as we find a very small response in the contribution of turnover. Interestingly, the impact on the
contribution of turnover to growth is in reverse direction between the two sectors. The rate of
entry mildly rises in response to lower costs in both sectors. This response is mainly driven by
the responsiveness of the exit decisions of unproductive firms to the higher innovation invest-
ments of productive firms. Finally, the overall impact of these changes raises the concentration
in both industries, as reflected in the reduction in the tail index of the long-run distribution. The
sectors become more concentrated, since more productive firms disproportionately benefit from
the lower innovation costs, while the costs of entry have remained intact. This is compatible with
the evidence on the rise in the concentration of the retail sector (Foster et al., 2006).

4.5 Optimal Allocations

Let us now examine the optimal allocation of innovation investments and production in the two
sectors. These allocations solve the social planner’s HJB equation (29), the corresponding KFE,
and the social free entry condition (33).

Figure 4 compares the market equilibrium and socially optimal innovation investments in the
two sectors. Figure 5 performs the same comparison, but for the long-run distribution of produc-
tivity in the two sectors. Finally, Figure 6 shows the difference between the market equilibrium
and the socially optimal allocation for the two variables.

First, observe that in both sectors, large and productive firms overinvest in innovation. Relative
to the innovation intensity of each sector, the extent of misallocation in the innovation investments
appears somewhat larger in retail compared to manufacturing. Examining the differences in in-
novation investments Figure 6, we find that underinvestment of firms in the medium range of
productivity is particularly severe in retail trade. For a range of medium efficiency firms in retail,
the socially optimal innovation investments reaches the maximum value given by Equation (40)
and is constant. This suggests a strong negative displacement effect stemming from the innova-
tion investments of high-efficiency firms in this sector.

Under the socially optimal allocation, the long-run distributions of efficiency in both sectors
shift to the left. This means that the concentration of both sectors under the market equilibrium
is suboptimally high. The socially optimal allocation raises the rate of productivity growth and
therefore the rate of dynamism of the industry and the obsolescence of ideas. As a result, it is
harder for firms to grow very large under the optimal allocation.

Finally, note that Figure 6 presents the results as a function of efficiency relative to the cutoff
under the corresponding allocation. The socially optimal exit cutoffs are larger than those of the
market equilibrium because the social planner internalizes the negative crowding externalities of
firms on entrants.
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Implementation of the Optimal Allocation I use the scheme introduced in Lemma 1 to compute
the set of subsidies and taxes that the social planner can employ to implement the optimal policy
under the market equilibrium. These Pigouvian taxes serve the purpose of showing us the wedges
that exist under the market equilibrium between the social and private returns to innovation
investments. Table 3 compares this policy between the two sectors. The average subsidy rate that
the scheme offers to incumbents and entrants is higher in retail trade compared to manufacturing.
Figure 7 shows that the profiles of the schedule of subsidies as a function of firm efficiency also
appear fairly different between the two sectors.

First, note that the relationship between efficiency and the subsidy rate is nonmonotonic. The
subsidy is increasing with efficiency among the lower tiers of productivity, but then declines
among high-efficiency firms. However, the initial rise is much less pronounced in retail compared
to manufacturing. Figure 8 shows that this increasing relationship can be well approximated with
a linearly growing subsidy rate for a vast majority of firms (for firms up to the 74 percentile of
productivity and size in retail, and 84 in manufacturing). In Table 3 (row 7), we can compare
the slopes of the approximate schedule of subsidy rates between the two sectors. Among lower-
productivity firms, the relationship between the subsidy rate and productivity is far weaker in
retail compared to manufacturing. In contrast, among high-efficiency firms, the relation between
productivity and the optimal subsidy rate is stronger in retail: the subsidy declines faster among
high-efficiency firms in this sector. This point relates to the observation we made earlier: the
negative displacement effect of high-productivity firms is relatively larger in retail compared to
manufacturing.

Comparison with Uniform Incumbent Subsidies How much do we gain by implementing the
nonlinear subsidy scheme above, relative to a uniform one-size-fits-all subsidy rate to the inno-
vation investments of all incumbents? To investigate this question, I take the following strategy.
I compare the amount of spending by the government on subsidies to entrants, under the sub-
sidy schedule that implements the optimal allocation and under a uniform subsidy scheme that
minimizes spending. As with the optimal subsidy, I assume that the government in the case of
uniform subsidies also imposes a tax on the wages of production workers, given by Equation
(35), to cancel out the effect of subsidies on the production decisions of firms. As a result, the net
spending of the government on subsidies is given by the amount paid to entrants.

For each constant rate of uniform subsidies, I find the corresponding subsidy rate to entrants
that achieves the same rate of productivity growth as that of the optimal allocation. To control for
the effect of lump-sum operation taxes, I perform the comparison with and without the additional
lump-sum tax for the case of the uniform subsidies.46

The last two rows of Table 3 show considerable gaps between the spending on subsidies be-
tween the scheme that optimally accounts for heterogeneity and one that ignores it. I conclude
that the model implies misallocations in the innovation investments of firms that are first-order
to the design of policies that aim to internalize the externalities of innovation.

46This scheme effectively solves the constrained optimum subsidy problem, where the imposed constraint is the con-
stancy of the subsidy rates for incumbent firms.
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4.6 Effect of Static Competition

As we saw, the model implies sizable misallocations in innovation investments across hetero-
geneous firms. How does the strength of product market rivalry, as proxied by the degree of
substitutability between firm products, affect these misallocations? To investigate this point, I
perform the following exercise. I consider the effect of changing the elasticity of substitution pa-
rameter from ρ = 2 to ρnew = 3. In each sector, I adjust the parameters of the costs of innovation
(χ, κ) and entry ψ such that the cost elasticity of innovation, the rate of growth of large firms,
given by ρ

(
γ∗∗ − gθ +

1
2 (ρ− 1) σ2), and the rate of productivity growth remain the same. How-

ever, I keep the volatility parameter σ and the parameters of the process of knowledge diffusion
(η, γ, γe) intact, so that the analysis only focuses on the effect of static product market rivalry.

Figure 10 shows the difference between the market and socially optimal investments in inno-
vation for the two sets of parameters with the low and high substitutability. Figure 9 compares
the optimal subsidy schemes between the two product market competition settings. Based on the
discussions above, we should expect that stronger competition amplifies the negative externali-
ties of large firms on smaller ones. As a result, with stronger competition, the peak of the gap in
the market and optimal investments, and the subsidy schemes in both sectors shifts to the left.

5 Discussion and Future Work

Knowledge spillovers are the cornerstone of our modern theories of growth. In this paper, I study
them in a standard model of firm heterogeneity and selection (Hopenhayn, 1992; Melitz, 2003)
where firms actively invest in innovation (Ericson and Pakes, 1995; Atkeson and Burstein, 2010).
I find that, under a fairly broad set of assumptions, markets misallocate innovation investment
across firms. In a calibration based on data from two broad sectors of the US economy, I find that
these misallocations are quantitatively large and removing them could result in a substantial rise
in the aggregate rate of productivity growth.

The model offered here only focuses on the dynamic effects of competition that work through
the expected lifetimes of firms. Specifically, the assumption of CES demand implies constant
markups that do not respond to the innovation investments or changes in firm productivity. More
importantly, under this assumption, the extent to which firms cannot fully appropriate the social
value of innovation exactly equates their business stealing effect on other firms. However, exten-
sions of this model can accommodate more general demand systems such as those with Variable
Elasticities of Substitution (VES) in which both markups and the gap between appropriability and
business stealing effects vary across firms (Zhelobodko et al., 2012; Dhingra and Morrow, 2012) .

In this paper, I mainly characterize the behavior of industry equilibria along the stationary
constant growth paths. Therefore, I do not examine the regularities observed along the industry
life cycle, which has been the focus of a separate line of theoretical and empirical work. Klepper
and Graddy (1990) and Klepper and Simons (2000) document the fact that as a new industry
emerges, the number of firms rises, only to fall again after a so-called shake-out phase. Among
others, Jovanovic and MacDonald (1994c) and Klepper (1996) offer theoretical frameworks that
explain these patterns. I note that some of these patterns may also be rationalized through the
model offered in this paper along the transitional dynamics of the path of the industry. I leave the
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investigation of this point for future research.
To my knowledge, this paper is the first to study potential inter-industry variations in the me-

chanics of productivity growth through the lens of the theories of firm dynamics. The empirical
evidence suggests that the more prominent role of entry and exit in retail, compared to manufac-
turing, may be representative of a broader pattern across service-based industries (Foster et al.,
2001). The growing role of service-based industries in employment both in the US and across the
world requires us to understand the potential policy implications of these differences. By enrich-
ing the account of volatility and spillovers, this paper takes the first steps toward understanding
the structural features that determine both the design of innovation policy and the response of
growth to other interventions.
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Tables

Targeted Moment Retail Trade Manufacturing
Model Data Model Data

Rate of productivity growth gθ 0.032 0.032 0.038 0.038
Rate of emp growth gN 0.017 0.017 0.000 -0.012
Cost elasticity of investment 1.0 1.0 1.0 1.0
Rate of entry 0.117 0.119 0.079 0.079
Rate of emp growth of old (15-20 yr) -0.015 -0.007 -0.024 -0.017
Rate of reallocation of old (15-20 yr) 0.26 0.23 0.20 0.20
Rate of exit of mature (10-15 yr) 0.075 0.083 0.060 0.060
Rate of exit of old (15-20 yr) 0.065 0.071 0.054 0.052

Parameter
Volatility σ 0.19 0.15
Innovation costs χ 13360 8103
Curvature of costs κ 2.2 2.3
Entry costs ψ 6.2 11.3
Directedness of adoption µ 3 1
Decreasing returns of adoption η 0.6 0.3
Entry Productivity Shifter γe -0.5 -0.5

Table 1: Targeted moments and the calibrated parameters for retail trade and manufacturing. The
first three targeted moments each directly pin down a corresponding parameter in the
model: the rate of productivity growth pins down the relative cost of entry ψ, the rate of
employment growth pins down the rate of growth in the number of firms gM, and the
cost elasticity pins down the curvature parameter of innovation costs κ. The 5 moments
of the firm life-cycle dynamics together calibrate the five remaining parameters of the
model, characterizing the volatility of firm outcomes σ, the costs of innovation χ, and the
process of entry and adoption (µ, η, γe).
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Variable Retail Trade Manufacturing
Before After Change Before After Change

Rate of Productivity Growth (%) 3.22 3.51 0.28 3.76 4.13 0.37
... contribution of Turnover 0.774 0.772 -0.002 0.538 0.547 0.009
... contribution of Net Entry -0.776 -0.775 0.001 -0.005 -0.005 0.000
Rate of Entry 0.118 0.119 0.001 0.079 0.081 0.002
Entry/Exit Productivity Gap 0.519 0.524 0.005 0.795 0.798 0.004
Concentration (Pareto Index) 1.167 1.161 -0.006 1.199 1.196 -0.003
Dispersion of Investments (IDR) 0.377 0.395 0.018 0.361 0.380 0.019

Table 2: The impact of a drastic fall in the costs of innovation (parameter χ) to 75% of its initial
value on industry outcomes. For each sector, the leftmost column, under the heading
“Before,” shows the value of the variable under the calibrated parameters, the middle
column, under the heading “After,” shows the value after the change. The third column
then presents the difference between the two values. IDR stands for Inter-Decile Range.

Variable Retail Trade Manufacturing
Optimal Rate of Growth gθ,s 0.052 0.047
Average Incumbent Subsidy −EH [τi,s(z)] 0.62 0.28
Entrant Subsidy −τe,s 0.45 0.18
Operation Tax τo,s 4.90 2.95
Baseline Subsidy Rate 0.62 0.23
Slope of the Subsidy Rate 0.02 0.10
Optimal Schedule Spending 0.32 0.20
Best Uniform Spending 2.57 1.96

Table 3: The characteristics of the optimal allocations of innovation and production, as well as a
subsidy scheme that implements them, in retail trade and manufacturing. See Section 4.5
for details.
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Figures

Figure 1: The solution to the Bellman equation in the two-dimensional space of (u1 (z) , u2 (z)) for
a given choice of model parameters (details in the online appendix). The relative sizes of
arrows on the path of u(z) indicate the relative values of the derivative of u with respect
to z along the path. The equilibrium point u∗, which lies on the 45o line, is shown with
a red dot. The stable arm around the saddle-path stable equilibrium point is also shown
in light gray. For very large firms, as z → ∞, the path of u(z) asymptotically converges
to this arm.
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Figure 2: The solution to the differential equation characterizing the stationary distribution in the
space of (h (z) , H (z)) for a given choice of model parameters and an atomic distribution
of adoption Fa (details in the online appendix). The two equilibrium points and the point
of entry are shown in red. The stable arm around the saddle-path stable equilibrium
point (H, h) = (1, 0) is shown in light gray. For very large firms, as z → ∞, the path of
(H, h) asymptotically converges to the stable arm.
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Figure 3: The illustration of the dynamic displacement externalities of firm innovation using a
partial equilibrium perturbation exercise. Starting from the dashed, market-equilibrium
schedule of innovation investments as a function of efficiency states, we push the invest-
ments of firms in the band ∆z aroudn z upward by ∆γ to find the solid schedule. For
firms at efficiency state x, the negative impact is proportional to U′s (x). The effect for
firms near the exit threshold is positive.
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Figure 4: Comparison between the optimal and market equilibrium allocations of innovation in
(Right) manufacturing and (Left) retail, as a function of the relative efficiency of firms.
RET and MAN stand for retail and manufacturing, respectively.

Figure 5: Comparison between the optimal and market equilibrium long-run distributions of ef-
ficiency in (Right) manufacturing and (Left) retail. RET and MAN stand for retail and
manufacturing, respectively.
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Figure 6: The difference between the optimal and market equilibrium allocations in (Right) inno-
vation investments and (Left) long-run probability distribution function, as a function
of the relative efficiency of firms. RET and MAN stand for retail and manufacturing,
respectively.

Figure 7: (Left) Comparison between the subsidy scheme that achieves the optimal innovation in-
vestments in manufacturing and retail, as a function of the relative efficiency of firms.
(Right) The same comparison but zooming in on the right tail of the productivity distri-
bution. Here, the x-axis shows the percentile ranking of the productivity of firms at the
top of the distribution of productivities. RET and MAN stand for retail and manufactur-
ing, respectively.
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Figure 8: Comparison between the exact and the linearly approximated optimal subsidy for (Left)
retail and (Right) manufacturing. The gray vertical line indicates the rank corresponding
to the maximum of the subsidy rate.

Figure 9: Comparison of the difference between the optimal and market equilibrium allocations
with two different degrees of substitutability in firm outputs in (Right) retail and (Left)
manufacturing, as a function of the relative efficiency of firms. RET and MAN stand for
retail and manufacturing, respectively.
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Figure 10: Comparison between the subsidy scheme that achieves the optimal innovation invest-
ments with two different degrees of substitutability in firm outputs in (Left) retail and
(Right) manufacturing, as a function of the relative efficiency of firms. RET and MAN
stand for retail and manufacturing, respectively.
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6 Facts
In this section, I provide an overview of the set of facts on the distribution and dynamics of firm size and
productivity that the model aims to explain. I also discuss how the existing theories of firm dynamics
generate these facts.

1. Firm size and productivity distributions exhibit Pareto tail behavior In the US data, the
logarithm of the complementary cumulative distribution function (tail distribution) of firm size is linear
in the logarithm of firm size in its right tail (Axtell, 2001; Luttmer, 2010).47 There is also evidence that
the distribution of total factor productivity of firms across different countries has a Pareto tail (Aoyama et
al., 2010; Mizuno et al., 2012).48 Among the theories of firm heterogeneity and dynamics that endogenize
the firm size distribution, the models of Luttmer (2007), Luttmer (2011), Arkolakis (2016), and the current
paper match with this fact. In contrast, the benchmark model of Klette and Kortum (2004) and its empirical
extension by Lentz and Mortensen (2008) both yield considerably thinner right tails. Luttmer (2010) gives
an overview of different approaches and necessary assumptions for generating a Pareto tail of firm size.

2. Size and productivity are correlated Following Olley and Pakes (1996), a large body of empirical
work has utilized the covariance of size and productivity as a measure of aggregate industry productivity
(see Bartelsman et al., 2013, for cross-country evidence). Under the baseline of the workhorse innova-
tion model of Klette and Kortum (2004), firm size and productivity are independent of each other due
to the undirectedness of the innovation process. Therefore, we need to introduce further heterogeneity
among firms in terms of the quality of their innovations (e.g., Lentz and Mortensen, 2008). In contrast, the
productivity-based class of models readily explains the correlation between size/productivity, since the
variations in size derive from productivity heterogeneity in the presence of decreasing returns to scale or
imperfect competition.

3. Growth is negatively correlated with size for small firms and uncorrelated with size for large
firms Based on early firm-level data, Gibrat and subsequent researchers found that firm growth does not
depend on size (e.g., Hart and Prais, 1956; Simon and Bonini, 1958). Using US manufacturing data, Hall
(1987) and Evans (1987) revisited Gibrat’s law accounting for the role of selection and measurement error,
and concluded that the relationship is negative for small firms, but approximately holds for larger firms.49

Models of firm dynamics match relying on different mechanisms to explain this fact. In the current paper,
the faster growth of smaller firms is driven by stronger selection.50 Other recent papers such as Akcigit
and Kerr (2012) and Acemoglu et al. (2014) deliver this prediction by introducing further heterogeneity in
the types and quality of innovations across firms.

4. The extensive margin of innovation intensity is correlated with productivity and size The
evidence on this point mainly comes from the early studies of R&D, size, and productivity (see Griliches,
2000; Hall, 1996, for surveys of this literature). The earlier evidence based on manufacturing firms generally
emphasized the correlation between the extensive margin of innovation investments (e.g., whether or not
firms report any R&D expenditures) and productivity or size (e.g., Cohen and Klepper, 1996). In the US
retail sector, Doms et al. (2004) find a pronounced correlation between firm size and productivity and
intensive measures of investment in IT. In the presence of very small fixed costs of innovation, the model
in this paper delivers this fact through the linkage between selection and innovation incentives. This is
because larger and more productive firms have higher incentives for innovation as they have a longer

47Geerolf (2014) provides evidence for the Pareto tail in the distribution of firm size in France and constructs an alter-
native, static, matching-based model that can rationalize this phenomenon.

48This is indeed a standard assumption in many models of firm heterogeneity and trade (see, e.g., Helpman et al.,
2004; Chaney, 2008).

49Davis et al. (1996) used US census data to make the case that controlling for age, this relationship does not hold
even among smaller firms (see also Haltiwanger et al., 2013; Decker et al., 2014; Haltiwanger, 2014). However,
debate around this point still continues, as some recent studies challenge the conclusions of Davis et al. (1996)
based on other datasets and different empirical specifications (Neumark et al., 2011; Huber et al., 2013). See also
the discussions about the details of these specifications in (Akcigit and Kerr, 2012).

50An example of an alternative approach is the model by Jovanovic and MacDonald (1994b), in which all firms look
within the same pool of available ideas. Firms that are ahead have further exhausted the space of potential new
ideas and have less to gain from their investments.
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expected lifetime in the industry. However, focusing on R&D expenditure and patents as measures of
innovation investments and outputs, respectively, Akcigit and Kerr (2012) find a negative relationship
between innovation intensity and size among a subsample of manufacturing firms that they refer to as
“innovative firms,” i.e., those that do report R&D expenditures over an extended period of time and also
file for patents. In explaining the extensive margin of innovation and considering a broader concept of
innovation activity, the current paper could be complementary to more refined theories of firm-level R&D
and patenting behavior (Akcigit and Kerr, 2012).

5. Likelihood of exit is negatively correlated with productivity and size The negative relationship
between size and likelihood of exit is nearly universal. Foster et al. (2001) summarize the evidence that
shows that low productivity predicts exit even controlling for a variety of different firm characteristics.
The current model explains this fact through the assumption on the fixed costs, which gives rise to the
endogenous exit of low-productivity firms. In the workhorse model of Klette and Kortum (2004), since size
and productivity are independent we do not necessarily find a correlation between productivity and size.
Once again, introducing additional heterogeneity in terms of innovation quality within this framework
can produce the correlation between size and productivity in the cross section (e.g., Lentz and Mortensen,
2008). More recent work has combined competition through the input markets (as in the current paper)
with the heterogeneity in innovative types within the workhorse framework (Acemoglu et al., 2013).

6. Entrants are smaller, less productive, and less dispersed than incumbents The evidence is
widespread in studies of comprehensive firm-level data from industries across the world. Seminal studies
reporting the evidence include, among others, Dunne et al. (1988) and Disney et al. (2003).

7 Derivations and Proofs
7.1 Section 2
Dynamic Industry Equilibrium Let vt (θ) denote the value of a firm with productivity θ at time t. Due
to the presence of fixed costs, firms endogenously exit the industry once their productivity falls below an
exit threshold. Let θo,t denote the exit threshold of incumbent firms at time t. The value function then
satisfies a Hamilton-Jacobi-Bellman (HJB) partial differential equation for all productivity states θ > θo,t
above this threshold (see Equation (44) below). The solution to the HJB equation yields the value function
[vt (·)]t as well as an incumbent firm’s path of optimal innovation and exit policies ς∗ ≡ [γ∗t (·) , θo,t]

∞
t=0.

Define the cumulative distribution of entrant productivity (before entry) at time t as

FPre
e,t (θ) ≡ Fa

[
Mt

((
e−γe θo,t θ̃t

η
)1/(1−η)

)
/Mt

]
.

Let λe,t ≥ 0 denote the rate of entry at time t, defined as the flow of entrants divided by the total mass
of currently active firms in the industry. Standard arguments show that along any equilibrium path, the
following zero profit condition holds

ce,t ≥ ve,t, and λe,t (ce,t − ve,t) = 0, ∀t ≥ 0, (42)

where the costs of entry are given by ce,t ≡ ψewt and the expected net presented value ve,t by

ve,t ≡
∫

vt (θ) dFe,t (θ) .

Now consider such an optimal policy ς∗ and define the mass density of firms as mt (θ) =
∂
∂θ Mt (θ). We

can show that the industry measure has to satisfy a Kolmogorov Forward Equation (KFE) (see Equation
(46) in Appendix 7.1). Along with boundary conditions Mt (θo,t) = 0 and Mt < ∞ (for all t), this partial
differential equation characterizes the path of industry measure [Mt (·)]t and the rate of turnover (exit) λo,t
satisfying

Mtλo,t ≡
1
2

σ2 ∂

∂θ

(
θ2mt (θ)

) ∣∣∣∣
θ=θo,t

, (43)
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for a given initial industry measure Mo. Note that the rate of growth of the total mass of firms in the
industry is given by the difference between rate of (successful) entry λe,t and exit λo,t, such that Ṁt/Mt =
λe,t − λo,t. If γe > −η log

(
θ̃t/θo,t

)
, then entrants do not exit immediately, the gross rate of entry equals

the successful rate of entry λo,t, and the post-entry distribution of entrants is the same as the pre-entry one:
Fe,t (θ) ≡ FPre

e,t (θ). Otherwise, the gross rate of entry is greater than the rate of successful entry by a factor

of
[
1− FPre

e,t (θo,t)
]−1. In this case, the post-entry distribution of entrants is given by

Fe,t (θ) ≡
FPre

e,t (θ)− FPre
e,t (θo,t)

1− FPre
e,t (θo,t)

.

In the dynamic industry equilibrium, firms take the future paths of wages, interest rate, and aggregate
sales as given, rationally expect the behavior of other firms, and decide on their optimal strategies.51 The
aggregation of all these decisions generates the path of the industry measure [Mt (·)]∞t=0 that contains all
the information regarding the state of the industry.

Definition 2. (Industry Equilibrium) Given an initial industry measure M0, a time path of wages [wt]
∞
t=0 ,

interest rate r , and a time path of industry aggregate sales [Nt]
∞
t=0, an industry tuple I ≡ [Mt (·) , γ∗t (·) , θo,t, λe,t]

∞
t=0

characterizes a dynamic industry equilibrium if

1. The policy function ς ≡ [γ∗t (·) , θo,t]
∞
t=0 constitutes a solution to the HJB equation (44) (see the deriva-

tion below),

2. Rate of entry λe,t satisfies (42) for the corresponding value function,

3. The measure Mt (·) satisfies the KFE (46) (see the derivation below) with the corresponding bound-
ary conditions.

General Equilibrium I introduce the market clearing conditions and use Definition 2 for the industry
equilibrium to define the general equilibrium of this economy.

Definition 3. (General Equilibrium) Consider an industry tuple I and a path of population [Nt]
∞
t=0 such

that
Nt

Mt
> ψ f (1 + ψλe,t) ,

for all t. A path of wages, consumption, and per-capita assets [wt, qt, at]
∞
t=0 and the industry I together

form a dynamic general equilibrium if we have

1. Given the path of wages [wt]
∞
t=0 , interest rate rt = r, and aggregate sales (and population) Nt, the

industry constitutes a dynamic industry equilibrium,

2. The paths of wages, per-capita consumption, and per-capita assets satisfy

wt =
ρ

ρ + 1
Nt

Nt −Mtψ f (1 + ψλe,t)
,

qt =
ρ

ρ + 1
θt

wt
,

at =
1

Nt

∫
dMt (θ) [vt (θ) + ψewtλe,t] ,

for all t, where θt satisfies (7), and at defined above satisfies the transversality condition.

Derivation of the HJB and the KFE Equations The value function for a firm with productivity θ at
time t has to satisfy the Bellman equation

r vt (θ) dt = max
ς

[
πt (θ, γ; Mt)− ψ f wt

]
dt + Et [dvt (θ)] ,

51Due to the assumption of a continuum of firms, there is no aggregate uncertainty in this model. If we allow for a
finite number of firms, then aggregate uncertainty emerges, following the arguments presented by Gabaix (2011)
and Carvalho and Grassi (2015).
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where πt denotes the instantaneous profit function as in Equation (4) and ς ≡ (γt (·) , θo,t) is a tuple of firm
policy choice. Using Itô’s lemma, we find

r vt (θ)−
∂vt (θ)

∂t
= max

γ,θo
πt (θ, γ)− ψ f wt + γθθ

∂vt (θ)

∂θ
+

σ2

2
θ2 ∂2vt (θ)

∂θ2 . (44)

In addition, we have the standard value matching and smooth pasting boundary conditions vt (θo,t) =
∂
∂θ vt (θo,t) at the exit threshold θo,t.

Next, I derive the evolution of the industry measure. Let Mb
t (θ) denote the mass of firms with prof-

itability states below θ at time t that belong to cohort b, and mb
t (·) denote the corresponding density mass

function. For a given choice of optimal firm policies ς = (γt (·) , θo,t), the KFE characterizes the evolution
of the measure over time as

∂mb
t (θ)

∂t
= − ∂

∂θ

[
γ∗t (θ) θ mb

t (θ)
]
+

σ2

2
∂2

∂2θ

[
θ2mb

t (θ)
]

,

subject to the boundary conditions limt↓b Mb
t (θ) = Mt

t (θ) = Mtλe,t Fe,t (θ) and mb
t (θo,t) = 0, ∀t, ∀b, t > b.

We can now integrate the mass over all cohorts to find the industry-wide distribution of firm efficiencies

Mt (θ) =
∫ t

−∞
Mb

t (θ) db, mt (θ) =
∫ t

−∞
mb

t (θ) db.

Applying the same integration to the KFE above

∂mt (θ)

∂t
= mt

t (θ) +
∫ t

−∞

{
− ∂

∂θ

[
γ∗t (θ) θ mb

t (θ)
]
+

σ2

2
∂2

∂2θ

[
θ2mb

t (θ)
] }

db,

= Mtλe,t fe,t (θ)−
∂

∂θ
[γt (θ) θmt (θ)] +

σ2

2
∂2

∂2θ

[
θ2mt (θ)

]
, (45)

where I passed the integral through the derivative in the second line. This leads us to the following partial
differential equation for the industry measure

∂Mt (θ)

∂t
= Mt [λe,t Fe,t (θ)− xt]− γ∗t (θ) θmt (θ) +

σ2

2
∂

∂θ

[
θ2mt (θ)

]
, (46)

with boundary conditions Mt (θo,t) = mt (θo,t) = 0.
To derive the evolution of the total mass of firms, we integrate the equation above to find

Ṁt (θ) = Mtλe,t Fe,t (θ)− [γt (θ) θmt (θ)]
θ
θt +

σ2

2
∂

∂θ

[
θ2mt (θ)

]θ

θo,t
,

which implies

Ṁt = Mtλe,t −
σ2

2
∂2

∂2θ

[
θ2mt (θ)

] ∣∣∣∣
θ=θo,t

.

Derivations of the SCGP HJB and KFE Equations I will first show that firm policy functions are
stationary functions of zt along a stationary constant growth path. This will establish that the mapping be-
tween firm employment and efficiency zt remains constant over time. Therefore, the search for a stationary
distribution of firm employment corresponds to a search for a stationary distribution of efficiency zt. I then
characterize the necessary conditions that this stationary distribution needs to satisfy.

Let us begin by deriving the value function as a function of the efficiency state. Define function Vt (z)
such that

vt (θ) = ψ f wtVt

(
log

(
1

(1 + ρ)ψ f wt

Nt

Mt

(
θ

θt

)ρ
))

.

Taking the derivative of this equation with respect to time, we find

1
ψ f wt

∂vt (θ)

∂t
=

ẇt

wt
Vt +

∂Vt

∂t
+

[
Ṅt

Nt
− Ṁt

Mt
− ẇt

wt
− ρ

θ̇t

θt

]
∂Vt

∂z
.
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Similarly, the first and second partial derivative with respect to θ yield:

1
ψ f wt

∂vt (θ)

∂θ
=

ρ

θ

∂V
∂z

,

1
ψ f wt

∂2vt (θ)

∂2θ
=

(ρ

θ

)2 ∂2V
∂z2 −

ρ

θ2
∂V
∂z

.

Substituting for these expressions in the HJB equation (44) yields:(
r− ẇt

wt

)
Vt (z)−

∂Vt

∂t
= max

γ
ez J (γ)− 1 +

[
ρ

(
γ− 1

2
σ2

θ −
θ̇t

θt

)
− ẇt

wt
+ gN −

Ṁt

Mt

]
∂Vt

∂z
+

ρ2

2
σ2 ∂2Vt

∂z2 .

Along as a stationary constant growth path, in addition to the conditions in Definition 1, we need the
nominal wage rate to converge to a constant w , and hence, ẇt/wt → 0. In addition, let us assume for now
that Ṁt/Mt → gN . We then find

r V (z) = max
γ

ez J (γ)− 1 + ρ

(
γ− 1

2
σ2 − gθ

)
∂V
∂z

+
ρ2

2
σ2 ∂2V

∂z2 ,

which implies that the optimal investment strategy is also a stationary function of the efficiency state

γt (θ) = γ∗ (zt (θ)) ,
zt (θo,t) = zo.

The derivations above suggest that along a stationary constant growth path, we can consider the follow-
ing form for the industry measure

Mt (θ) = MegMt H (zt (θ)) ,

mt (θ) = MegMt ρ

θ
h (zt (θ)) .

Once again, we calculate the derivatives:

∂Mt

∂t
= gM MegMt H + (gN − gM − ρgθ) MegMth.

and

∂

∂θ

[
θ2mt (θ)

]
= ρMegMt ∂

∂θ
[θh (zt (θ))] ,

= ρMegMt [h (z) + ρ h′ (z)
]

.

Substituting these expressions in the Kolmogorov forward equation (46) and dividing both sides by Mt =
MegMt , we find

gM H = λe Fe (z)− x−
(

ρ

(
γ∗ (z)− 1

2
σ2 − gθ

)
+ gN − gM

)
h(z) +

ρ2

2
σ2 h′ (z) ,

where λo ≡ ρ2

2 σ2h′+ (zo). If an equilibrium with stationary employment exists, then the industry measure
has to be of the form above where H is the solution to this boundary value problem.

Now, we can see why condition gM = gN is necessary for the existence of a stationary constant growth
path. We have

θ
ρ
t =

1
Mt

∫
θρ J (γt (θ)) dMt (θ) , (47)

=
∫

h (zt(θ)) θρ J (γ∗ (zt (θ)))
ρdθ

θ
,

=

(
(1 + ρ)w ψ f

Mt

Nt
θ

ρ
t

) ∫
h(z) ez J (γ∗ (z)) dz,
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where I have used the fact that dz = ρdθ/θ and θρ = (1 + ρ)wψ f
Mt
Nt

θ
ρ
t ez. This implies

Nt

Mt
= (1 + ρ)wψ f

∫
h(z) ez J (γ∗ (z)) dz.

Finally, consider the industry-wide stock of knowledge defined by

θ̃ϑ
t =

1
Mt

∫
θϑ dMt (θ) .

Along the stationary constant growth path, we can write this as

θ̃ϑ
t =

∫
h (zt(θ)) θϑ ρdθ

θ
,

=

(
(1 + ρ)w ψ f

Mt

Nt

) ϑ
ρ

θ
ϑ
t

∫
h (z) eϑz/ρdz.

We then have

ezt(θe) =
1

(1 + ρ)wψ f

Nt

Mt

[
θ̃

η
t θ

1−η
a eγe

θt

]ρ

,

=

[
1

(1 + ρ)wψ f

Nt

Mt

(
θ̃t

θt

)ρ
]η

×
[

1
(1 + ρ)wψ f

Nt

Mt

(
θa

θt

)ρ
]1−η

× eγe ,

= eη z̃+(1−η)zt(θa)+ργe ,

where, in the last line, I have defined

ez̃ ≡
(∫

h (z) eϑz/ρdz
) ρ

ϑ

.

Proofs of Propositions First, I will provide a generalization of Proposition 1 for the case in which the
evolution of efficiencies is given by Equation (15) along with an additional exogenous death that arrives
according to a Poisson process with rate δ.

Proposition. See Proposition 1.

Proof. I map the problem into a two-dimensional first order differential equation. Use the definitions (27)
and (28) and note that

V′′ (z) e−z = u′2 (z) + u2 (z) ,
u′1 (z) = u2 (z)− u1 (z) .

Now, we can rewrite Equation (17) as

(r + δ) u1 (z) = max
γ

J (γ) +
(

ργ +
ρ2

2
σ2 − g

)
u2 (z) +

ρ2

2
σ2u′2 (z) ,

which gives the FOC for the choice of firm growth

− J′ (γ∗ (z)) = u2 (z) . (48)

Therefore, we can write the differential equation as d
dzu (z) = Q (u (z) , z) such that u ≡ (u1, u2)

t and Q is
given by

u′1 = Q1 (u) = u2 − u1, (49)

u′2 = Q2 (u) =
2
σ2

[
(r + δ) u1 − J (γ∗ (z))−

(
ργ∗ (z)− g +

ρ2

2
σ2
)

u2

]
, (50)
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where γ∗ is a function of u2 (z) as above. This is a boundary value problem with boundary condition
u2 (zo) = 0, which ensures V′ (zo) = 0. To find the other boundary conditions, we need to first study
the asymptotic behavior of the problem and the existence of a stable equilibrium point for this system of
differential equations.

What are the necessary conditions for the existence of an economically meaningful solution to the prob-
lem? Let us examine the behavior of the largest firms in the industry. Since the likelihood of exit and the
option value of exit shrink to zero for the largest firms, we expect the value function to be linear in ez for
these firms. For a solution satisfying these limiting conditions, we need to ensuare that

lim
z→∞

u1 (z) = lim
z→∞

u2 (z) = u∗. (51)

This implies limz→∞ γ∗ (z) = γ∗∗ where J′ (γ∗∗) = −u∗. Since J (·) is concave, this uniquely pins down
the investment of the largest firms as a function of the asymptotical marginal value u∗. Equation (50) and
limz→∞ u′2 (z) = 0 and then imply:[

r + δ + g−
(

ργ∗∗ +
ρ2

2
σ2
)]

u∗ − J (γ∗∗) = 0.

Together, these conditions give

u∗ = =
J (γ∗∗)

r + δ + g−
(

ργ∗∗ + ρ2

2 σ2
) = −J′ (γ∗∗) ,

where the second equality follows from the first order condition corresponding to the firm’s choice of
process innovation rate. We can simplify this relation to

− J′ (γ∗∗)
J (γ∗∗)

=
1

v− ργ∗∗
, (52)

where I have defined v ≡ r + δ + g− 1
2 ρ2σ2.

To establish conditions that ensure this equation has a solution, note that the function A (γ) = J (γ) +
(v− ργ) J′ (γ) is monotonically decreasing. Since we have A (0) = J (0) = 1, the condition for there to be
a unique equilibrium is that A (γ) < 0, which yields condition

v− ργ̂ > − J (γ)
J′ (γ)

,

which gives us condition (18). Therefore, a unique γ∗∗ exists.
Now, in additition to condition u2 (zo) = 0, we have the boundary conditions for large firms in Equation

(51). Together, these three boundary conditions would allow us to fully characterize the solution to the 2nd
order differential equation with a free boundary value zo. Note that since we established the existence of
γ∗∗, we have shown that the differential equation has a fixed point.

Next, we should check the stability of the fixed point. Assume that a solution exists and that around the
equilibrium point (u1, u2)

t = (u∗, u∗)t , it behaves as follows

u1 (z) = u∗ + Be−βz, u2 (z) = u∗ − (β− 1) Be−βz, for large z, (53)

which automatically satisfies (49). Letting γ∗ (z) = γ∗∗ + ∆γ (z) where the second term is small for large z,
from Equation (48) we find ∆γ (z) = β−1

J′′(γ∗∗)Be−βz. The behavior of Equation (50) around the equilibrium
point can be expressed as

u′2 (z) ≈
2

ρ2σ2

[
r + δ−

(
ργ∗∗ − g +

1
2

ρ2σ2
)
(β− 1)

]
Be−βz. (54)

We find the following quadratic equation that characterizes β

1
2

ρ2σ2β (β− 1) +
(

ργ∗∗ − g +
1
2

σ2
)
(β− 1)− (r + δ) = 0.
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The condition for uniqueness is that this equation should have one positive and one strictly negative root,
which is ensured by r + g + δ > ργ∗∗ + 1

2 ρ2σ2.52 Since γ∗∗ < γ, this condition is subsumed by Equation
(18). This establishes the existence of a stable, fixed point for the system of differential equations.

To derive the approximation in Section ??, simply extend the form of the solution given by Equations
53. The smooth pasting condition requires u2 (zo) = 0 and we find u∗ = (β− 1) Be−βzo , while the value
matching condition gives us u1 (zo) =

1
r = u∗

(
1 + 1

β−1

)
ezo .

Proposition. See Proposition 2.

Proof. I will peform the derivations under the assumption that γe is large enough so that all entry attempts
are successful. The derivation in the other case is also very similar.

As with the strategy used in the case of the HJB equation, I begin by mapping the 2nd order differ-
ential equation into a first-order one defined in the two-dimensional space of h (z) = (h1 (z) , h2 (z))

′ ≡
(H (z) , h (z))′. We can rewrite the stationary KFE (20) as

h′1 (z) = P1 (h) = h2, (55)

h′2 (z) = P2 (h, z) =
2

ρ2σ2

[
λo − λe Fa

(
h1 (z)− ηz̃− ργe

1− η

)
+ (gM + δ) h1 (z) + (ργ∗ (z)− g) h2 (z)

]
.(56)

If a stationary distribution exists, the system of differential equations above along with boundary con-
ditions h1 (zo) = h2 (zo) = 0 and limz→∞ h1 (z) = 1 together pin down the solution and the unknown
parameter λo.

Once again, to ensure that such a solution exists and is unique, we first examine the behavior of the
system of differential equations around its equilibrium point h = (1, 0)t where d

dzh (z) = 0. I linearize the
system around this point to find

∆P ≡
[

0 1
P21 P22

]
,

where, assuming η > 0 or fa (1) = 0, we have

P21 =
2 (gM + δ)

ρ2σ2 , P22 =
2 (ργ∗ − g)

ρ2σ2 .

For the stationary distribution to exist, this matrix needs to have a positive and a negative eigenvalue
which is smaller than −1. The eigvenvalues are

ργ∗ − g
ρ2σ2 ±

√(
ργ∗ − g

ρ2σ2

)2
+

2 (gM + δ)

ρ2σ2 .

The product of the two is negative so long as gM + δ > 0. For the eigenvalue to be less than −1, we have
the condition

gM + δ > ργ∗ − g +
1
2

ρ2σ2.

To see this, note that the Pareto tail index is given by

ζ ≡
√(

ργ∗ − g
ρ2σ2

)2
+

2 (gM + δ)

ρ2σ2 − ργ∗ − g
ρ2σ2 > 1, (57)

suggesting (
ργ∗ − g

ρ2σ2

)2
+

2 (gM + δ)

ρ2σ2 >

(
γ∗ − g

σ2 + 1
)2

,

52Another way to see this is to note that we can simply linearize the system around the infinite limit of z. The lin-

earized equation near (u1, u2)
t = (u∗, u∗)t is given by u′ (z) = ∆Qu (z) with ∆Q ≡

[ −1 1
Q21 Q22

]
, where

Q21 =
2(r+δ)

σ2 , Q22 = − 2(ργ∗−g)
ρ2σ2 − 1. If the determinant − (Q22 + Q11) < 0 is negative, there will be two eigenval-

ues one positive and one negative. The condition for the determinant to be negative is r + g + δ > ργ∗∗ + 1
2 ρ2σ2.
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and

2 (gM + δ)

ρ2σ2 >

(
ργ∗ − g

ρ2σ2 + 1
)2
−
(

ργ∗ − g
ρ2σ2

)2

= 2
(

ργ∗ − g
ρ2σ2 +

1
2

)
.

Proposition. See Proposition 3.

Proof. I use Lemma 2 below that decomposes average productivity growth everywhere along the path.
Consider a stationary balanced growth path, along which Ft (θ) = H (zt (θ)). We also haveJt (θ) =
J (γ∗ (zt (θ))) , which implies

εJ,1
θ,t =

θ J′t
Jt

= ρ
J′

J
= ρεJ

1,

εJ,2
θ,t =

θ2 J′′t
Jt

=
θ2

Jt

(ρ

θ
J′
)′

= ρ2 J′′

J
− ρ

J′

J
= ρ2

[(
εJ

1

)2
+ εJ

2

]
− ρεJ

1,

J̇t

Jt
= −ρgθ

J′

J
= −ρgθεJ

1,

where, with some abuse of notation, I have defined J (z) ≡ J (γ∗ (z)). We then find

ρgθ = λo

(
EF [ez J]
EH [ez J]

− ezo

EH [ez J]

)
− gM

(
1− EF [ez J]

EH [ez J]

)
+ Eν

[
γ∗
(

1 + εJ
1

)]
+

σ2

2

(
ρ (ρ− 1) + ρ2Eν

[
2εJ

1 +
(

εJ
1

)2
+ εJ

2

]
− ρE

[
εJ

1

])
.

Lemma 2. (Evolution of Sectoral State Variables) Assume that (1) Gibrat’s law holds for the largest firms, limθ→∞ γt (θ) =
γ∗∗ < ∞, and (2) the distribution of firm size has a finite expectation at all times, i.e., mt (θ) = O(θ−1−ρ) for all
t. Consider optimal firm incumbent and entrant policies, that is, the paths of investment policies and exit threshold
(γ∗t (·) , θo,t) and the rates of entry λe,t. Assume that the distribution of entrants is given by fe,t (·). Let ft (·) denote
the distribution of firm productivity θ at time t, and let Eν,t denote expectation with respect to the share of each type
in sales at time t.53 The evolution of the sector state variables satisfies the following equations

Ṁt

Mt
= λe,t − λo,t, (58)

θ̇t

θt
=

λo,t

ρ

[(
θe,t

θt

)ρ

−
(

θo,t

θt

)ρ
]
− λe,t − λo,t

ρ

[
1−

(
θe,t

θt

)ρ]
+ Eν,t

[
γθ,t

(
1 +

1
ρ

εJ,1
θ,t

)]

+ (ρ− 1)
σ2

2

(
1 +

1
ρ− 1

Eν,t

[
2ε

j,1
θ,t +

εJ,2
θ,t

ρ

])
+

1
ρ

Eν,t

[
J̇t

Jt

]
, (59)

where λo,t as in Equation (43), I have defined and Jt (θ) ≡ J (γθ,t (θ)) and the corresponding elasticities εJ,1
θ,t ≡

θ∂Jt
Jt∂θ

and εJ,2
θ,t ≡

θ2∂2 Jt
Jt∂θ2 .

Proof. Let us calculate the integral in the definition of the aggregate productivity in Equation (47) using the
KFE (45):

d
dt

(
Mt θ

ρ
t

)
(1)
= Mtλe,t

∫
dθ fe,t θρ Jt −

∫
dθ

∂

∂θ
[γt θmt] θρ Jt +

σ2

2

∫
dθ

∂2

∂2θ

[
θ2mt

]
θρ Jt +

∫
dθ mtθ

ρ J̇t,

53Note that that the notation in this proof is slightly different from the one in the main text, to allow for recylcing
variable names.

60



(2)
= Mtλe,t E fe,t [θ

ρ Jt]−
[
γt mtθ

1+ρ Jt

]∞

θo,t
+ ρ

∫
dθ γt mtθ

ρ Jt

(
1 +

θ J′t
ρJt

)
+

σ2

2

[
∂

∂θ

(
θ2mt

)
θρ Jt

]∞

θo
t

− ρσ2

2

∫
dθ

∂

∂θ

(
θ2mt

) (
θρ−1 Jt +

1
ρ

θρ J′t

)
+ Mt E ft

[
θρ J̇t

]
,

(3)
= Mtλe,t E fe,t [θ

ρ Jt] + Mt E ft

[
γθ,tθ

ρ Jt

(
ρ + εJ,1

θ,t

)]
− σ2

2
θ

ρ
o,t

∂

∂θ

(
θ2mt

) ∣∣∣∣
θo,t

+ Mt E ft

[
θρ J̇t

]
−ρσ2

2

[
θ2mt

(
θρ−1 Jt +

1
ρ

θρ J′t

)]∞

θo,t

+ρ (ρ− 1)
σ2

2

∫
dθ mtθ

ρ Jt

(
1 +

2
ρ− 1

θ J′t
Jt

+
1

ρ (ρ− 1)
θ2 J′′t

Jt

)
(4)
= Mtλe,t E fe,t [θ

ρ Jt] + Mt E ft

[
γθ,tθ

ρ Jt

(
ρ + εJ,1

θ,t

)]
− σ2

2
θ

ρ
o,t

∂

∂θ

(
θ2mt

) ∣∣∣∣
θo,t

+ Mt E ft

[
θρ J̇t

]
+

σ2

2
E ft

[
θρ Jt

(
ρ (ρ− 1) + 2ρεJ,1

θ,t + εJ,2
θ,t

)]
where in equality (1), I have substituted for ∂mt

∂t from Equation (46), in equality (2), used the chain rule to

expand the integrals, and in equality (3), used the fact that mt (θ) = O
(

θ−(1+ρ)
)

to drop the boundary

terms involving θ → ∞. Finally, in equality (4) I have again used mt (θ) = O
(

θ−(1+ρ)
)

and mt (θo,t) = 0 to
drop the term involving boundary values.

Dividing the two sides of the last equation by Mtθ
ρ
t , we find

Ṁt

Mt
+ ρ

θ̇t

θt
= λe,t

(
θe,t

θt

)ρ

− λo,t

(
θo,t

θt

)ρ

+ ρEs,t

[
γθ,t

(
1 + εJ,1

θ,t

)]
+

σ2

2

(
ρ (ρ− 1) + Est

[
2ρεJ,1

θ,t + εJ,2
θ,t

])
+ Est

[
J̇t

Jt

]
.

Using ˙Mt/Mt = λe,t − λo,t gives us (59).

7.2 Section 3
Proposition. The result generalizes Proposition 4 of the main text, by assuming a generalized industry-wide stock
of knowledge

θ̃ϑ
t =

1
Mt

∫
θϑmt (θ) dθ, ϑ 6= 0,

and additional shocks to the productivity of entrants, with a log-Normal distribution.

Proof. The proof proceeds in the following steps. I will first discretize the probelm. I then set up the social
planner’s problem in the discretized space, and derive the first order conditions. Finally, I combine the first
order conditions and take the continuous time limit to characterize the solution.

Discretization I discretize the space of time and states following the random walk construction of Brow-
nian motion processes (Dixit and Pindyck, 1994). Using Itô’s lemma, we find

d log θt =

(
γt −

1
2

σ2
)

dt + σdWt.

Abusing some notation to recycle variable names, for the sake of this proof I will define t ≡ j∆t, ρ ln θt ≡
z∆h, where ∆h = ρσ

√
∆t, to map the stochastic process for the evolution of profitability states θt into a

random walk over a space z ∈ Z and j ∈ N∪ {0}. The probability of moving from z by ±1 between j and
j + 1 is given by

µ+
j (z) =

1
2

[
1 +

(
γj (z)−

1
2

σ2
) √

∆t
σ

]
,
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µ−j (z) =
1
2

[
1−

(
γj (z)−

1
2

σ2
) √

∆t
σ

]
,

where I have let γj (z) ≡ γt (θt).

Problem Define Mj (z) ≡ ∆h ∑z
z′=zo,j

mj (z′) and let z̃j be defined through

ez̃j ≡
(

∆h
∞

∑
z=zo,j

mj (z)

Mj
e

ϑ
ρ z∆h

) ρ
ϑ

, (60)

corresponding to the industry-wide index of knowledge. The social planner’s problem can be written as
that of maximizing

∆t Nj

∞

∑
j=0

e−j r∆t log qj,

subject to the constraints

Njqj =

(
∆h

∞

∑
z=zo,j

mj (z) e
z ∆h
1+ρ lj (z)

ρ
1+ρ

) 1+ρ
ρ

, (61)

Nj = Le,j + ∆h
∞

∑
z=zo,j

mj (z)
[
ψ f + lj (z) + ij

]
,

Mjij = ∆h
∞

∑
z=zo,j

mj (z) lj (z) ϕ
(
γj (z)

)
, (62)

mj+1 (z) =
Le,j

ψe
∆t f j (z) + mj (z + 1) µ−j (z + 1) + mj (z− 1) µ+

j (z− 1) ,

f j (z) =
∆h
ρ

∞

∑
za=zo,j

fe

( z− ηz̃j − (1− η) za

ρ
∆h
) mj (za)

Mj
fa

(
Mj (za)

Mj

)
, (63)

where ij denotes the average innovation workers of the incumbent firms. Let the Lagrange multipliers cor-
responding to the three constraints above be denoted by ∆t χje−j r∆t, ∆t ωje−j r∆t, ∆t ωi

je
−j r∆t, ∆h νj+1 (z) e−j r∆t,

respectively. The social planner decides on the per-capita consumption qj, on the exit threshold at time j∆t
, which I denote by zo,j, on the total number of innovation workers in the entrepreneurial work Le,j and the
average number of innovation workers in incumbent firms ij at each point in time, the number of produc-
tion workers assigned to each firm lj (z), the innovation investments of firms γj (z), and the mass of firms
in each state mj (z).

First Order Conditions (I): consumption, incumbent innovation and production The FOC with

respect to qj gives
Nj
qj

= χjNj, which yields qjχj = 1. The FOC with respect to the average number of

incumbent innovation workers ij is given by ωi
j = ωj. First, the FOC with respect to lj (z) gives

(
Njqjez∆h

lj (z)

) 1
1+ρ

χj = ωj
(
1 + ϕ

(
γj (z)

))
. (64)

Substituting χj = 1/qj, using the definition of function J (γ) ≡ (1 + ϕ (γ))−ρ, and letting Θj be defined
through

MjΘ
ρ
j = ∆h

∞

∑
z=zo

j

mj (z) ez ∆h J
(
γj (z)

)
,

we can substitute for lj (z) in Equation (61) to find χjΘj M
1
ρ

j = ωj.
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First Order Condition (II): The FOC with respect to γj (z) we find

1
2

√
∆t
σ

[
νj+1 (z + 1)− νj+1 (z− 1)

]
= ∆t lj (z) ωj ϕ′

(
γj (z)

)
, (65)

= ∆t χj

(
χj

ωj

)ρ

Njqj ez∆h (1 + ϕ
(
γj (z)

))−(1+ρ)
ϕ′
(
γj (z)

)
,

= −∆t
Nj

Mj

ez∆h

Θj
J′
(
γj (z)

)
, (66)

where, in the second line, I have again substitute for lj (z) from Equation (61).

First Order Conditions (III): social free entry The FOC with respect to Le,j gives

ωjψe = ∆h
∞

∑
z=zo,j

f j (z) νj+1 (z) . (67)

First Order Conditions (IV): incumbent value The FOC with respect to mj+1 (z) is the most involved
calculation. The first term in Equation (61) gives the flow social value of production for a firm z at time
interval j + 1:

∆t∆h χj
1 + ρ

ρ

(
Njqj

) 1
1+ρ e

z∆h
1+ρ lj (z)

ρ
1+ρ = ∆t∆h χj

1 + ρ

ρ
Njqj

(
χj

ωj

)ρ

ez∆h (1 + ϕ
(
γj (z)

))−ρ ,

= ∆t∆h
1 + ρ

ρ

Nj

Mj

ez∆h

Θj
J
(
γj (z)

)
.

The second and third terms give the employment costs by

∆t∆h
[
ωj ψ f + ωj lj (z)

(
1 + ϕ

(
γj (z)

))]
= ∆t∆h

ωj ψ f + lj (z)

(
Njqjez∆h

lj (z)

) 1
1+ρ

χj

 ,

= ∆t∆h

[
ωj ψ f +

Nj

Mj

ez∆h

Θj
J
(
γj (z)

)]
,

where on the second line, I have substituted from Equation (64). The fourth term gives

∆h

[
er∆tνj (z)−

Le,j

ψe

(
∆h

∞

∑
x=zo,j

∂ f j (x)
∂mj (z)

νj+1 (x)

)
∆t + µ+

j+1 (z) νj+1 (z + 1) + µ−j+1 (z) νj+1 (z− 1)

]
.

The key term is the second term in the expression above, that captures the knowledge spillovers from in-
cumbents to entrants. This spillover term is in turn composed of two components: first, the contribution of
incumbent firms to the average stock of knowledge z̃, and second, the direct diffusion of ideas of incum-
bents to entrants through adoption fa (·). Defining Hj (z) ≡ ∆h ∑z′≤z mj (z) /Mj and hj (z) ≡ mj (z) /Mj
to simplify notation, we can computing the first term as

−η

ρ

∂z̃j

∂mj (z)
∆h2

ρ

∞

∑
x=zo,j

∞

∑
za=zo,j

νj+1 (x) f ′e

( x− ηz̃j − (1− η) za

ρ
∆h
)

hj (za) fa
(

Hj (za)
)

.

Taking the derivative of expression (60), we find

∂ez̃j

∂mj (z)
=

∆h
Mj

ρ

ϑ

[
e

ϑ
ρ (z∆h−z̃j) − 1

]
× ez̃j .
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Similarly, the second term may be computed as

∆h2

ρ

∞

∑
x=zo,j

∞

∑
za=zo,j

νj+1 (x) fe

( x− ηz̃j − (1− η) za

ρ
∆h
)[

∂hj (za)

∂mj (z)
fa
(

Hj (za)
)
+ hj (za)

∂Hj (za)

∂mj (z)
f ′a
(

Hj (za)
)]

.

Calculating the derivatives within the square brackets yields

1
Mj

[(
I
(
za = zj

)
− mj (za)

Mj
∆h

)
fa
(

Hj (za)
)
+ hj (za)

(
I
(
za ≥ zj

)
− Mj (za)

Mj

)
∆h f ′a

(
Hj (za)

)]

=
1

Mj

[(
I (za = z)− hj (za) ∆h

)
fa
(

Hj (za)
)
+ hj (za)

(
I (za ≥ z)− Hj (za)

)
∆h f ′a

(
Hj (za)

)]
.

Combining all these expressions, we can write the FOC with respect to mj+1 (z) as

er∆tνj (z) =

[
1
ρ

Nj+1

Mj+1

ez∆h

Θρ
j+1

J
(
γj (z)

)
− ψ f ωj+1 + λe,j

(
ũs,j (z) + us,j (z)

)]
∆t

+µ+
j+1 (z) νj+1 (z + 1) + µ−j+1 (z) νj+1 (z− 1) , (68)

where λe,j = Le,j/Mjψe is the rate of entry, and the two spillover functions are given by

ũs,j (z) ≡ −η

ϑ

[
e

ϑ
ρ (z∆h−z̃j) − 1

]
∆h2

ρ

∞

∑
x=zo,j

∞

∑
za=zo,j

νj+1 (x) f ′e

( x− ηz̃j − (1− η) za

ρ
∆h
)

hj (za) fa
(

Hj (za)
)

,

(69)

us,j (z) ≡
∆h
ρ

∞

∑
x=zo,j

fe

( x− ηz̃j − (1− η) z
ρ

∆h
)

fa
(

Hj (z)
)

νj+1 (x) (70)

−∆h2

ρ

∞

∑
x=zo,j

∞

∑
za=zo,j

fe

( x− ηz̃j − (1− η) za

ρ
∆h
)

hj (za) fa
(

Hj (za)
)

νj+1 (x)

+
∆h2

ρ

∞

∑
za=z

∞

∑
x=zo,j

fe

( x− ηz̃j − (1− η) za

ρ
∆h
)

hj (za) f ′a
(

Hj (za)
)

νj+1 (x)

−∆h2

ρ

∞

∑
x=zo,j

∞

∑
za=zo,j

fe

( x− ηz̃j − (1− η) za

ρ
∆h
)

Hj (za) f ′a
(

Hj (za)
)

νj+1 (x) .

Limit of Continuous Time Now, let us take the limit of ∆t → ∞, define θ̂ ≡ ρ log θ and ̂̃θt ≡ ρ log θ̃t,
and with some further abuse of notation, let vs,t

(
θ̂
)

denote the social value of the a firm with productivity
eθ̂/ρ. I will first compute the limiting expressions for the summations in Equations (69) and (70). For l
define the auxiliary function

Vt
(
θ̂
)
≡
∫ ∞

θ̂o,t
νs,t (x) f e

(
x− η̂̃θt − (1− η) θ̂

ρ

)
dx
ρ

.

Assuming vs,t
(
θ̂o,t
)
= 0 and the right tail of fe (x) falls faster than e−x, using integration by parts, we find

V ′t
(
θ̂
)

= −1− η

ρ

∫ ∞

θ̂o,t
νs,t (x) f ′e

(
x− η̂̃θt − (1− η) θ̂

ρ

)
dx
ρ

,

= −1− η

ρ

[
vs,t (x) f e

(
x− η̂̃θt − (1− η) θ̂

ρ

)]∞

x=θ̂o,t

+ (1− η)
∫ ∞

θ̂o,t
ν′s,t (x) f e

(
x− η̂̃θt − (1− η) θ̂a

ρ

)
dx
ρ

,
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= (1− η)
∫ ∞

θ̂o,t
ν′s,t (x) f e

(
x− η̂̃θt − (1− η) θ̂a

ρ

)
dx
ρ

.

Using a similar argument, we can write the limit of the first spillover term may be found

ũs,t
(
θ̂
)

= −η

ϑ
e

ϑ
ρ

(
θ̂−̂̃θt

) ∫ ∞

θ̂o,t

∫ ∞

θ̂o,t
νs,t (x) f ′e

(
x− η̂̃θt − (1− η) θ̂a

ρ

)
ht
(
θ̂a
)

fa
(

Ht
(
θ̂a
)) dx

ρ
dθ̂a,

= η
ρ

ϑ
e

ϑ
ρ

(
θ̂−̂̃θt

) ∫ ∞

θ̂o,t

∫ ∞

θ̂o,t
ν′s,t (x) f e

(
x− η̂̃θt − (1− η) θ̂a

ρ

)
ht
(
θ̂a
)

fa
(

Ht
(
θ̂a
)) dx

ρ
dθ̂a.

For the second term, the limit is given by

us,t
(
θ̂
)

= fa
(

Ht
(
θ̂
))
Vt
(
θ̂
)
−
∫ ∞

θ̂o,t
Vt
(
θ̂a
)

ht
(
θ̂a
)

fa
(

Ht
(
θ̂a
))

dθ̂a

+
∫ ∞

θ̂
Vt
(
θ̂a
)

ht
(
θ̂a
)

f ′a
(

Ht
(
θ̂a
))

dθ̂a

−
∫ ∞

θ̂o,t
Vt
(
θ̂a
)

Ht
(
θ̂a
)

f ′a
(

Ht
(
θ̂a
))

dθ̂a.

Once again, using integration by part, we can simplify this expression to find

us,t
(
θ̂
)

= Vt
(
θ̂
)

fa
(

Ht
(
θ̂
))
−
∫ ∞

θ̂o,t
Vt
(
θ̂a
)

ht
(
θ̂a
)

fa
(

Ht
(
θ̂a
))

dθ̂a

+
[
Vt
(
θ̂a
)

fa
(

Ht
(
θ̂a
))]∞

θ̂a=θ̂
−
∫ ∞

θ̂
V ′t
(
θ̂a
)

f a
(

Ht
(
θ̂a
))

dθ̂a

−
[
Vt
(
θ̂a
)

Ht
(
θ̂a
)

f a
(

Ht
(
θ̂a
))]∞

x=θ̂o,t
+
∫ ∞

θ̂o,t

d
dθ̂a

[
Vt
(
θ̂a
)

Ht
(
θ̂a
)]

f ′a
(

Ht
(
θ̂a
))

dθ̂a,

= −
∫ ∞

θ̂
V ′t
(
θ̂a
)

ht
(
θ̂a
)

f a
(

Ht
(
θ̂a
))

dθ̂a +
∫ ∞

θ̂o,t
V ′t
(
θ̂a
)

Ht
(
θ̂a
)

f a
(

Ht
(
θ̂a
))

dθ̂a,

=
∫ θ̂

θ̂o,t
V ′t
(
θ̂a
)

f a
(

Ht
(
θ̂a
))

dθ̂a −
∫ ∞

θ̂o,t
V ′t
(
θ̂a
) [

1− Ht
(
θ̂a
)]

f a
(

Ht
(
θ̂a
))

dθ̂a,

where in the second equality, I have cancelled out the same terms that appear on the first three lines, and
in the last equality, I have added and subtracted a term

∫ ∞
θ̂o,t
V ′t fadθ̂a. We can now

us,t
(
θ̂
)

= (1− η)
∫ ∞

θ̂o,t

∫ ∞

θ̂o,t
ν′s,t (x) f e

(
x− η̂̃θt − (1− η) θ̂a

ρ

)
fa
(

Ht
(
θ̂a
)) dx

ρ
dθ̂a

− (1− η)
∫ ∞

θ̂o,t

∫ ∞

θ̂o,t
ν′s,t (x) f e

(
x− η̂̃θt − (1− η) θ̂a

ρ

) [
1− Ht

(
θ̂a
)]

fa
(

Ht
(
θ̂a
)) dx

ρ
dθ̂a.

Putting everything together, we can combine the FOCs with respect to γj (z) and mj (z) to find in the
limit:

r vs,t
(
θ̂
)
− ∂vs,t

(
θ̂
)

∂t
= max

γ

1
ρ

Nt

Mt

eθ̂

θ
ρ
t

J (γ)− ψ f ωt + λe,t
(
ũs,t
(
θ̂
)
+ us,t

(
θ̂
))

+
(

γ− ρ

2
σ2

θ

) ∂vs,t
(
θ̂
)

∂θ̂
+

ρ2σ2
θ

2
∂2vs,t

(
θ̂
)

∂θ̂2
.

Let us now assume that a social optimal equilibrium converges to a stationary constant growth path with
growth rate gθ,s, where ωt → ω, Mt → MegN t, and θt → θegθ t. We can define zt

(
θ̂
)
≡ θ̂ − ρgθ,st +

log
(

1
ρψ f ω

N0
M

θ
−ρ
)

and transform vs,t
(
θ̂
)
= ωψ f V

(
zt
(
θ̂
))

. Similar to the construction of the market equi-

librium path, this implies that zt
(
θ̂o,t
)

and zt
(
θ̃t
)

also converge to constants zo,s and z̃s that are potentially
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different from the corresponding market equilibrium values.

r Vs (z) = max
γ

ez J (γ)− 1 + λe,s (Us (z)−Ψs) +

(
γ− ρ

(
gθ,s +

1
2

σ2
θ

))
V′s (z) +

ρ2

2
σ2

θ V′′s (z) ,

where

Us (z) ≡ η ũs
ρ

ϑ

[
e

ϑ
ρ (z−z̃) − 1

]
+ (1− η) (us (z)− ψs)

ũs ≡
∫ ∞

zo
V ′e (x) hs (x) fa (Hs (x)) dx,

us (z) ≡
∫ z

zo
V ′e (x) fa (Hs (x)) dx,

ψs ≡
∫ ∞

zo
V ′e (x) [1− Hs (x)] fa (Hs (x)) dx,

Ve (z) ≡
∫ ∞

zo
V (x) fe

(
x− ηz̃− (1− η) z

ρ

)
dx
ρ

.

In the particular case where γe has an atomic distribution, we have Ve (z) ≡ V (ηz̃ + (1− η) z + ργe).

7.3 Section 4
Specification of the Innovation Cost Function With the functional form assumed in Equation (39),
the condition for the concavity of J (·) from Equation (5) gives

κ > (1 + ρ) (1 + κ)
ϕ (γ)

1 + ϕ (γ)
.

It then follows that an upper bound for the rate of productivity growth given in Equation (40) ensures
the convavity of function J (·). Throughout, I assume the value given by Equation (40) as the maximum
attainable rate of productivity growth for firms.

In order to calibrate parameter κ, I rely on the estimates of the user cost elasticity of R&D that are
available in the empirical literature. We can compute a counterpart for this elasticity based on the model
by noting that i = l ϕ (γ) and finding the elasticity of the innovation costs with respect to a proportional
change (1 + τ) in innovation costs. We have

1 + τ

i
∂i

∂ (1 + τ)
=

1 + τ

l
∂l

∂ (1 + τ)
+

1 + τ

ϕ (γ)

∂ϕ (γ)

∂ (1 + τ)
,

=

[
1− (1 + ρ)

ϕ

1 + ϕ

]
1 + τ

ϕ (γ)

∂ϕ (γ)

∂ (1 + τ)
,

where I have used the fact that l−
1

1+ρ ∝ 1 + ϕ . Focusing on the limit of large firms, we can compute the
elasticity of ϕ (γ∗∗) with respect to 1 + τ using the condition

ρ

γ∗∗
ϕ

1 + ϕ
(1 + τ) (1 + κ) =

1
r∗∗

,

where r∗∗ is the effective discount rate, which is not influenced by this partial equilibrium analysis. We
then find [

1− ϕ

1 + ϕ
− 1

1 + κ

]
1 + τ

ϕ (γ)

∂ϕ (γ)

∂ (1 + τ)
= −1.

Combining the two expressions above, we have

1 + τ

i
∂i

∂ (1 + τ)
= − (1 + κ)

1− (1 + ρ)
ϕ

1+ϕ

κ − ϕ
1+ϕ

.
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Two-Sector Extension of the Model For the exercise performed in Section 4, I include data from
two sectors manufacturing and retail trade, where the employment in each sector grows at a different
rate. Below, I generalize to account for two sectors and show that the calibration strategy of Section 4 is
compatible with the model.

Define the per-capita real consumption at time t as a function of per-capita consumption of manufactur-
ing goods qM,t and retail goods qR,t as follows

qt =

(
q

ς−1
ς

M,t + q
ς−1

ς

R,t

) ς
ς−1

,

where ς ∈ (0, 1) is the consumer’s elasticity of substitution between the products of the two sector.54

Pt =
(

P1−ς
M,t + P1−ς

R,t

) 1
1−ς ,

where Once again, normalizing the per-capita expenditure of households to unity, we find sectoral expen-
ditures to be

XM,t = PM,tqM,t =

(
PM,t

Pt

)1−ς

, XR,t = PR,tqR,t =

(
PR,t

Pt

)1−ς

.

The relative price indices of the two sectors are given by

PM,t

PR,t
=

θR,t M
1
ρ

R,t

θM,t M
1
ρ

M,t

,

which gives us the following relationship between the per-capita expenditure between the two sectors

XM,t

XR,t
=

(
θR,t

θM,t

)1−ς (
MR,t

MM,t

) 1−ς
ρ

.

In the data, the number of firms grow faster in retail and the sectoral productivity grows faster in manufac-
turing. So long as the differences in the rates of growth in the number of firms and aggregate productivity
between the two sectors satisfies

gθ,M − gθ,R >
1
ρ
(gM,R − gM,M) ,

we will find that the expenditure share of manufacturing asymptotically converges to zero at the rate

(1− ς)

[
gθ,M − gθ,R −

1
ρ
(gM,R − gM,M)

]
.

It then follows that we can construct a general equilibrium path where wages converge to a constant,
the total expenditure in retail sector grows at the rate gM,R = gN , the total expenditure in manufacturing
grows at the rate given by

gN − (1− ς)

[
gθ,M − gθ,R −

1
ρ
(gM,R − gM,M)

]
.

The mass of firms in each sector grows at the same rate as the rate of growth of the total expenditure of
consumers in the sector.

This shows that the model is compatible with the exercise used in Section 4, where each sector is identi-
fied with a distinct rate of growth in the mass of firms (or alternatively, sectoral employment) and produc-
tivity. We can pin down the free parameter ς based on the observed rates of growth in the mass of firms
and productivity.

54Based on the available empirical evidence, the empirically relevant case is one in which the expenditure shares of
sectors with falling prices also fall, suggesting that sectoral goods are gross complements (Comin et al., 2015).
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