Innovation, Knowledge Diffusion, and Selection

Danial Lashkari

Boston College

June 7, 2019

Motivation

- Background: Neo-Schumpeterian models of creative destruction:
 - ▶ Elegantly account for spillover (+) & displacement (-) externalities
 - Allow normative analyses in settings with firm heterogeneity Lentz & Mortensen (2016); Acemoglu et al. (2018); Aghion et al. (2017); ...
- Observation: Standard models of industry dynamics & investment: Hopenhayn (1992); Ericson & Pakes (1995); ...
 - Can account for creative destruction through selection
 - Allow for productivity shocks and rich demand & market structures
- Question: does heterogeneity matter for innovation policy?
 - Benchmark Neo-Schumpeterian models of creative destruction: No! Klette & Kortum (2004); Atkeson & Burstein (2019)
 - A selection-driven theory of creative destruction: Yes!

Motivation

- Background: Neo-Schumpeterian models of creative destruction:
 - ▶ Elegantly account for spillover (+) & displacement (-) externalities
 - Allow normative analyses in settings with firm heterogeneity Lentz & Mortensen (2016); Acemoglu et al. (2018); Aghion et al. (2017); ...
- Observation: Standard models of industry dynamics & investment: Hopenhayn (1992); Ericson & Pakes (1995); ...
 - Can account for creative destruction through selection
 - Allow for productivity shocks and rich demand & market structures
- Question: does heterogeneity matter for innovation policy?
 - Benchmark Neo-Schumpeterian models of creative destruction: No! Klette & Kortum (2004); Atkeson & Burstein (2019)
 - A selection-driven theory of creative destruction: Yes!

Motivation

- Background: Neo-Schumpeterian models of creative destruction:
 - Elegantly account for spillover (+) & displacement (-) externalities
 - Allow normative analyses in settings with firm heterogeneity Lentz & Mortensen (2016); Acemoglu et al. (2018); Aghion et al. (2017); ...
- Observation: Standard models of industry dynamics & investment: Hopenhayn (1992); Ericson & Pakes (1995); ...
 - Can account for creative destruction through selection
 - Allow for productivity shocks and rich demand & market structures
- Question: does heterogeneity matter for innovation policy?
 - Benchmark Neo-Schumpeterian models of creative destruction: No! Klette & Kortum (2004); Atkeson & Burstein (2019)
 - A selection-driven theory of creative destruction: Yes!

Overview of the Paper

- Model: Industry dynamics & investment + Knowledge diffusion Atkeson & Burstein '10 + (Luttmer '07, '12; Lucas & Moll '14; Sampson, '16; ...)
 - Monop. competitive firms innovate to improve own productivity
 - Entrants (imperfectly) adopt ideas of incumbents
 - \blacktriangleright Innovation + adoption + shocks \Rightarrow reallocation, selection, growth
- Theoretical Results:
 - Conditions to generate unique Stationary Constant Growth Path
 - Socially optimal allocations and their implementation
 - Novel source of innovation misallocation across heterogeneous firms
- Calibration Results:
 - Quantitatively, heterogeneity first-order for optimal innovation policy

Overview of the Paper

- Model: Industry dynamics & investment + Knowledge diffusion Atkeson & Burstein '10 + (Luttmer '07, '12; Lucas & Moll '14; Sampson, '16; ...)
 - Monop. competitive firms innovate to improve own productivity
 - Entrants (imperfectly) adopt ideas of incumbents
 - \blacktriangleright Innovation + adoption + shocks \Rightarrow reallocation, selection, growth
- Theoretical Results:
 - Conditions to generate unique Stationary Constant Growth Path
 - Socially optimal allocations and their implementation
 - Novel source of innovation misallocation across heterogeneous firms

• Calibration Results:

Quantitatively, heterogeneity first-order for optimal innovation policy

Overview of the Paper

- Model: Industry dynamics & investment + Knowledge diffusion Atkeson & Burstein '10 + (Luttmer '07, '12; Lucas & Moll '14; Sampson, '16; ...)
 - Monop. competitive firms innovate to improve own productivity
 - Entrants (imperfectly) adopt ideas of incumbents
 - \blacktriangleright Innovation + adoption + shocks \Rightarrow reallocation, selection, growth
- Theoretical Results:
 - Conditions to generate unique Stationary Constant Growth Path
 - Socially optimal allocations and their implementation
 - Novel source of innovation misallocation across heterogeneous firms
- Calibration Results:
 - > Quantitatively, heterogeneity first-order for optimal innovation policy

Related Literature

• Neo-Schumpeterian theories of firm innovation and growth Klette & Kortum (2004); Lentz & Mortensen (2008, 2014); Akcigit & Kerr (2010); Peters (2011); Acemoglu et al. (2013); Atkeson & Burstein (2015)

New: Implications of selection + Match facts on firm growth

• Theories of knowledge diffusion and growth

Luttmer (2007, 2012); Alvarez et al. (2008); Poschke (2009); Lucas & Moll (2011); Perla & Tonetti (2014); Benhabib et al. (2014); Stokey (2014); Perla et al. (2015); Buera & Oberfield (2015); Sampson (2016)

New: Process innovation

• Firm heterogeneity, allocative distortions, and aggregate productivity Hopenhayn & Rogerson (1993); Ericson & Pakes (1995); Restuccia & Rogerson (2008); Hsieh & Klenow (2009); Atkeson & Burstein (2010); Hsieh & Klenow (2014); Hopenhayn (2014); & many others ...

New: Growth + Innovation misallocations

Outline

1 Model

2 Optimal Allocations

3 Calibration

Outline

1 Model

2 Optimal Allocations

3 Calibration

Demand and Firms

• Mass $N_t = N_0 e^{g_N t}$ of consumers inelastically supply unit of labor:

• Dynastic intertemporal utility: $\int_0^\infty N_t e^{-rt} \log q_t dt$

• CES(1+
$$\rho$$
) over firm products: $q_t^{\frac{\rho}{1+\rho}} = \int q_t(\omega)^{\frac{\rho}{1+\rho}} d\omega$

- Mass M_t of monop. competitive firms with ideas $Z \sim F(\cdot; t)$:
 - Idea Z_t of a firm ω evolves according to:

$$dZ_t = \Gamma_t dt + \sigma Z_t d\mathcal{W}_t$$

- Produce Γ_t new ideas and Q_t units of good
- Hire variable l production & i innovation workers (+ fixed ψ_f)

Demand and Firms

• Mass $N_t = N_0 e^{g_N t}$ of consumers inelastically supply unit of labor:

• Dynastic intertemporal utility: $\int_0^\infty N_t e^{-rt} \log q_t dt$

• CES(1+
$$\rho$$
) over firm products: $q_t^{\frac{\rho}{1+\rho}} = \int q_t(\omega) \frac{\rho}{1+\rho} d\omega$

- Mass M_t of monop. competitive firms with ideas $Z \sim F(\cdot;t)$:
 - Idea Z_t of a firm ω evolves according to:

$$dZ_t = \frac{\Gamma_t}{\sigma} dt + \frac{\sigma}{\sigma} Z_t d\mathcal{W}_t$$

- Produce Γ_t new ideas and Q_t units of good
- Hire variable l production & i innovation workers (+ fixed ψ_f)

Production Function

• Goods and ideas production function:

$$\left(\begin{array}{c} Q\\ \Gamma \end{array}\right) = \boldsymbol{G}(l,i;Z) = Z \times \left(\begin{array}{c} G^{q}\left(l,i\right)\\ G^{\gamma}\left(l,i\right) \end{array}\right)$$

Assumption.

1. $G^q : \mathbb{R}^2_+ \to \mathbb{R}_+$ contin. & homog of deg 1 (CRS) s.t. $\partial_l G^q > \partial_i G^q$ 2. $G^\gamma : \mathbb{R}^2_+ \to [0, \overline{\gamma}]$ concave, contin., & homog of deg $\beta \ge 0$ s.t. $\partial_i G^\gamma > 0, \qquad \forall (l, i) : G^\gamma(l, i) < \overline{\gamma}$

• For example:

$$G^{q}\left(l,i
ight)=l$$
 $G^{\gamma}\left(l,i
ight)=l^{eta} imes G^{\gamma}\left(1,rac{i}{l}
ight)$

Incumbent Problem

• HJB Equation for the firm value v(Z,t) for $Z > Z_o(t)$:

$$rv - \frac{\partial v}{\partial t} = \max_{\mathcal{Q}, \Gamma, l, i} \underbrace{N_t^{\frac{1}{1+\rho}} P_t^{\frac{\rho}{1+\rho}} \mathcal{Q}^{\frac{\rho}{1+\rho}} - w_t \left(l+i+\psi_f\right)}_{\text{flow profits}} + \underbrace{\Gamma \frac{\partial v}{\partial Z} + \frac{\sigma^2}{2} Z^2 \frac{\partial^2 v}{\partial Z^2}}_{\text{growth and diffusion}}$$
$$\begin{pmatrix} \mathcal{Q} \\ \Gamma \end{pmatrix} \leq Z \times \begin{pmatrix} G^q \left(l, i\right) \\ G^{\gamma} \left(l, i\right) \end{pmatrix}$$

• With boundary conditions $v(Z_o(t),t) = \frac{\partial v}{\partial Z}(Z_o(t),t) = 0$

• Assume along equilibrium, continuous solution exits:

$$\left(\begin{array}{c} \boldsymbol{\mathcal{Q}}(\boldsymbol{Z};t)\\ \boldsymbol{\Gamma}(\boldsymbol{Z};t) \end{array}\right) \Leftrightarrow \left(\begin{array}{c} l(\boldsymbol{Z};t)\\ i(\boldsymbol{Z};t) \end{array}\right) \Leftrightarrow \left(\begin{array}{c} l_{\boldsymbol{\mathcal{V}}}(\boldsymbol{Z};t) = l+i\\ \boldsymbol{\mathcal{X}}(\boldsymbol{Z};t) \equiv i/l \end{array}\right)$$

Incumbent Problem

• HJB Equation for the firm value v(Z,t) for $Z > Z_o(t)$:

$$rv - \frac{\partial v}{\partial t} = \max_{\substack{\mathcal{Q}, \Gamma, l, i}} \underbrace{N_t^{\frac{1}{1+\rho}} P_t^{\frac{\rho}{1+\rho}} \mathcal{Q}^{\frac{\rho}{1+\rho}} - w_t \left(l+i+\psi_f\right)}_{\text{flow profits}} + \underbrace{\Gamma \frac{\partial v}{\partial Z} + \frac{\sigma^2}{2} Z^2 \frac{\partial^2 v}{\partial Z^2}}_{\text{growth and diffusion}}$$
$$\begin{pmatrix} \mathcal{Q} \\ \Gamma \end{pmatrix} \leq Z \times \begin{pmatrix} G^q \left(l, i\right) \\ G^{\gamma} \left(l, i\right) \end{pmatrix}$$

• With boundary conditions $v(Z_o(t),t) = \frac{\partial v}{\partial Z}(Z_o(t),t) = 0$

• Assume along equilibrium, continuous solution exits:

$$\left(\begin{array}{c} \boldsymbol{\mathcal{Q}}(\boldsymbol{Z};t)\\ \boldsymbol{\Gamma}(\boldsymbol{Z};t) \end{array}\right) \Leftrightarrow \left(\begin{array}{c} l(\boldsymbol{Z};t)\\ i(\boldsymbol{Z};t) \end{array}\right) \Leftrightarrow \left(\begin{array}{c} l_{\boldsymbol{\mathcal{V}}}(\boldsymbol{Z};t) = l+i\\ \boldsymbol{x}(\boldsymbol{Z};t) \equiv i/l \end{array}\right)$$

Incumbent Problem

• HJB Equation for the firm value v(Z,t) for $Z > Z_o(t)$:

$$rv - \frac{\partial v}{\partial t} = \max_{\mathcal{Q}, \Gamma, l, i} \underbrace{N_t^{\frac{1}{1+\rho}} P_t^{\frac{\rho}{1+\rho}} \mathcal{Q}^{\frac{\rho}{1+\rho}} - w_t \left(l+i+\psi_f\right)}_{\text{flow profits}} + \underbrace{\Gamma \frac{\partial v}{\partial Z} + \frac{\sigma^2}{2} Z^2 \frac{\partial^2 v}{\partial Z^2}}_{\text{growth and diffusion}} \left(\frac{\mathcal{Q}}{\Gamma}\right) \leq Z \times \begin{pmatrix} G^q \left(l, i\right) \\ G^{\gamma} \left(l, i\right) \end{pmatrix}$$

• With boundary conditions $v(Z_o(t),t) = \frac{\partial v}{\partial Z}(Z_o(t),t) = 0$

• Assume along equilibrium, continuous solution exits:

$$\left(\begin{array}{c} Q(Z;t) \\ \Gamma(Z;t) \end{array}\right) \Leftrightarrow \left(\begin{array}{c} l(Z;t) \\ i(Z;t) \end{array}\right) \Leftrightarrow \left(\begin{array}{c} l_{v}(Z;t) = l+i \\ x(Z;t) \equiv i/l \end{array}\right)$$

Generalized Gibrat Equilibrium

Definition.

Equilibria that generate very large firms $(\lim_{Z\to\infty} l(Z,t) = \infty)$ s.t.:

1. Constant expected employment growth (original Gibrat's law):

$$\lim_{Z \to \infty} \mathbb{E}_t \left[g_l(Z;t) \right] \equiv \lim_{Z \to \infty} \mathbb{E}_t \left[\log \frac{l(Z_{t+1},t+1)}{l(Z_t,t)} \middle| Z_t = Z \right] = g_{l,t}^{**}$$

2. Finite innovation intensity:

$$\lim_{Z \to \infty} x(Z;t) = \lim_{Z \to \infty} \frac{i(Z,t)}{l(Z,t)} = x_t^{**} > 0$$

Proposition.

A necessary condition for the existence of GGE is $\beta = 0$.

• Intuition:

$$\lim_{Z \to \infty} \frac{\Gamma(Z, t)}{Z} = \gamma_t^{**} = \lim_{Z \to \infty} l(Z, t)^{\beta} \times G^{\gamma}(1, x_t^{**})$$

Firm Static Decisions with meta=0

Corollary.

Decreasing function $J(\cdot)$ exists s.t. profit flow of firm choosing $\gamma \equiv \Gamma/Z$:

$$\Pi(Z, \gamma, t) = \max_{l_{\nu}} N_t^{\frac{1}{1+\rho}} P_t^{\frac{\rho}{1+\rho}} \left[Z \times J(\gamma) \times l_{\nu} \right]^{\frac{\rho}{1+\rho}} - w_t \left(l_{\nu} + \psi_f \right)$$

Profit maximization: constant markup pricing

$$P(Z, \gamma; t) = \left(1 + \frac{1}{\rho}\right) \frac{w_t}{Z \times J(\gamma)}$$

• Innovation costs \Rightarrow (effective) productivity $Z \times J(\gamma)$

• Model nests prior specificartions compatible with long-run growth Luttmer (2010); Atkeson & Burstein (2010, 2019); Stokey (2014); Benhabib et al. (2018)

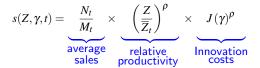
Prior Specifications

Static Allocations

• Aggregate productivity with distribution F(Z;t) at time t:

$$\overline{Z}_{t} \equiv \left[\int \left(ZJ(\gamma(Z,t)) \right)^{\rho} dF(Z;t) \right]^{\frac{1}{\rho}}$$

• Sales of firm with productivity Z and ideas growth γ :



• Profits and employment:

$$\pi(Z, \gamma, t) = \frac{1}{1+\rho} s(Z, \gamma, t) - \psi_f w_t$$
$$l_v(Z, \gamma, t) + \psi_f w_t = \frac{\rho}{1+\rho} s(Z, \gamma, t) + \psi_f w_t$$

Adoption and Entry Process

- Potential entrants hire ψ_e workers per unit flow of entry
- Get to adopt ideas from current distribution F(Z;t)

Nests: Eekhout & Jovanovic '02; Luttmer '07, '12; Atkeson & Burstein '10; Sampson '16

- 1. Whose strategies are they likely to adopt?
 - Draw rank (between 0-1) from distribution F_a
 - Adopt idea Z_a s.t. rank = $F(Z_a;t)$
- 2. How much of the productivity is transferred through adoption?
 - Entry productivity

$$Z_e = e^{\gamma_e} \widetilde{Z}_t^{\eta} Z_a^{1-\eta}$$

• Average productivity $\widetilde{Z}_t \equiv \int Z dF(Z;t)$

Stationary Constant Growth Paths

Definition.

Equilibrium paths such that asymptotically:

 $1. \ {\rm Mass}$ and average productivity grow at constant rates

$$M_t = M^* e^{\mathbf{g}_M t} \qquad \overline{Z}_t = Z^* e^{\mathbf{g}_Z t}$$

2. Distribution of firm size stationary with finite mean

3. There is nonzero flow of entrants

Formal Definition of Equilibrium

 \Rightarrow Mass of firms grows at the same rate as the market size

average sales
$$= \frac{N_t}{M_t} \rightarrow \text{const.} \Rightarrow g_M = g_N$$

Profitability States

• Transformation of productivity states $z(\cdot, t) : Z \mapsto z$

$$\exp\left(\mathbf{z}\left(\cdot,t\right)\right) \equiv \frac{1}{\rho+1} \times \frac{1}{\psi_{f}w_{t}} \times \frac{N_{t}}{M_{t}} \left(\frac{Z}{\overline{Z}_{t}}\right)^{\rho}$$

Profits-to-fixed costs ratio of firm with productivity Z at time t:

$$\frac{\pi(Z,\gamma,t)}{\psi_{f}w_{t}} = e^{\mathsf{z}(Z,t)} \times J(\gamma)^{\rho} - 1$$

• Evolution of profitability $z_t \equiv z(Z_t, t)$ along a SCGP:

$$dz_t = \left(\rho\gamma - \underbrace{\rho(g_Z + \frac{1}{2}\sigma^2)}_{\text{Profit erosion}}\right) dt + \rho\sigma d\mathcal{W}_t$$

Proposition 1.

Assume $J(\cdot)^{\rho}$ is concave & g_Z satisfies:

$$g_{Z} > \overline{\gamma} + (\rho - 1) \frac{1}{2} \sigma^{2} - \frac{1}{\rho} \left[r + \lim_{\gamma \to \overline{\gamma}} \frac{J(\gamma)}{J'(\gamma)} \right]$$

1. Unique, continuous, increasing function $V(\cdot)$.

$$\frac{v(Z,t)}{w_t \psi_f} = V(z(Z,t))$$

2. Unique, continuous, increasing function $\gamma^*(\cdot)$ and threshold z_o :

$$\gamma(Z,t) \equiv \gamma^* (z(Z,t)) \qquad z_o = z(Z_o(t),t)$$

3. Asymptotically: $\lim_{z\to\infty} V(z) = u^* e^z \& \lim_{z\to\infty} \gamma^*(z) = \gamma^{**} \text{ s.t.}$

$$u^* = \max_{\gamma} \frac{J(\gamma)^{-\rho}}{r + \rho \left(g_Z - \frac{1}{2} \left(\rho - 1\right) \sigma^2 - \gamma\right)}$$

Proposition 1.

Assume $J(\cdot)^{\rho}$ is concave & g_Z satisfies:

$$g_{Z} > \overline{\gamma} + (\rho - 1) \frac{1}{2} \sigma^{2} - \frac{1}{\rho} \left[r + \lim_{\gamma \to \overline{\gamma}} \frac{J(\gamma)}{J'(\gamma)} \right]$$

1. Unique, continuous, increasing function $V(\cdot)$:

$$\frac{v(Z,t)}{w_t\psi_f} = V(z(Z,t))$$

2. Unique, continuous, increasing function $\gamma^*(\cdot)$ and threshold z_o :

$$\gamma(Z,t) \equiv \gamma^* (z(Z,t)) \qquad z_o = z(Z_o(t),t)$$

3. Asymptotically: $\lim_{z\to\infty} V(z) = u^* e^z \& \lim_{z\to\infty} \gamma^*(z) = \gamma^{**} \text{ s.t.}$

$$u^{*} = \max_{\gamma} \frac{J(\gamma)^{-\rho}}{r + \rho \left(g_{Z} - \frac{1}{2} \left(\rho - 1\right) \sigma^{2} - \gamma\right)}$$

Proposition 1.

Assume $J(\cdot)^{\rho}$ is concave & g_Z satisfies:

$$g_{Z} > \overline{\gamma} + (\rho - 1) \frac{1}{2} \sigma^{2} - \frac{1}{\rho} \left[r + \lim_{\gamma \to \overline{\gamma}} \frac{J(\gamma)}{J'(\gamma)} \right]$$

1. Unique, continuous, increasing function $V(\cdot)$:

$$\frac{v(Z,t)}{w_t\psi_f} = V(z(Z,t))$$

2. Unique, continuous, increasing function $\gamma^*(\cdot)$ and threshold z_o :

$$\gamma(Z,t) \equiv \gamma^* (z(Z,t)) \qquad z_o = z(Z_o(t),t)$$

3. Asymptotically: $\lim_{z\to\infty} V(z) = u^* e^z \& \lim_{z\to\infty} \gamma^*(z) = \gamma^{**} s.t.$

$$u^* = \max_{\gamma} \frac{J(\gamma)^{-\rho}}{r + \rho \left(g_Z - \frac{1}{2} \left(\rho - 1\right) \sigma^2 - \gamma\right)}$$

Proposition 1.

Assume $J(\cdot)^{\rho}$ is concave & g_Z satisfies:

$$g_Z > \overline{\gamma} + (\rho - 1) \frac{1}{2} \sigma^2 - \frac{1}{\rho} \left[r + \lim_{\gamma \to \overline{\gamma}} \frac{J(\gamma)}{J'(\gamma)} \right]$$

1. Unique, continuous, increasing function $V(\cdot)$:

$$\frac{v(Z,t)}{w_t\psi_f} = V(z(Z,t))$$

2. Unique, continuous, increasing function $\gamma^*(\cdot)$ and threshold z_o :

$$\gamma(Z,t) \equiv \gamma^* (z(Z,t)) \qquad z_o = z(Z_o(t),t)$$

3. Asymptotically: $\lim_{z\to\infty} V(z) = u^* e^z \& \lim_{z\to\infty} \gamma^*(z) = \gamma^{**} \text{ s.t.}$

$$u^* = \max_{\gamma} \frac{J(\gamma)^{-\rho}}{r + \rho \left(g_Z - \frac{1}{2} \left(\rho - 1\right) \sigma^2 - \gamma\right)}$$

Stationary Distribution

Proposition.

Assume mass of firms grows with positive rate s.t.:

$$g_M = g_N > \rho (\gamma^{**} - g_Z) + \frac{1}{2} \rho (\rho - 1) \sigma^2$$

and that one of the two conditions hold:

- 1. Likelihood of frontier adoption approaches zero $f_a(1) = 0$
- 2. Adoption is imperfect $\eta > 0$

Then, there exists a stationary distribution $H(\cdot)$ with Pareto tail.

$$\zeta = \frac{1}{\rho} \left[\sqrt{\left(\frac{g_Z - \gamma^{**}}{\sigma^2} + 1\right)^2 + \frac{2g_M}{\sigma^2}} + \frac{g_Z - \gamma^{**}}{\sigma^2} + 1 \right]$$

such that:

$$F(Z;t) = \boldsymbol{H}(z(Z,t))$$

This is the unique stationary distribution with nonzero rate of entry and a Pareto tail.

Stationary Distribution

Proposition.

Assume mass of firms grows with positive rate s.t.:

$$g_M = g_N > \rho (\gamma^{**} - g_Z) + \frac{1}{2} \rho (\rho - 1) \sigma^2$$

and that one of the two conditions hold:

- 1. Likelihood of frontier adoption approaches zero $f_a(1) = 0$
- 2. Adoption is imperfect $\eta > 0$

Then, there exists a stationary distribution $H(\cdot)$ with Pareto tail:

$$\zeta = \frac{1}{\rho} \left[\sqrt{\left(\frac{g_Z - \gamma^{**}}{\sigma^2} + 1\right)^2 + \frac{2g_M}{\sigma^2}} + \frac{g_Z - \gamma^{**}}{\sigma^2} + 1 \right]$$

such that:

$$F(Z;t) = \boldsymbol{H}(\boldsymbol{z}(Z,t))$$

This is the unique stationary distribution with nonzero rate of entry and a Pareto tail.

Stationary Distribution

Proposition.

Assume mass of firms grows with positive rate s.t.:

$$g_M = g_N > \rho (\gamma^{**} - g_Z) + \frac{1}{2} \rho (\rho - 1) \sigma^2$$

and that one of the two conditions hold:

- 1. Likelihood of frontier adoption approaches zero $f_a(1) = 0$
- 2. Adoption is imperfect $\eta > 0$

Then, there exists a stationary distribution $H(\cdot)$ with Pareto tail:

$$\zeta = \frac{1}{\rho} \left[\sqrt{\left(\frac{g_Z - \gamma^{**}}{\sigma^2} + 1\right)^2 + \frac{2g_M}{\sigma^2}} + \frac{g_Z - \gamma^{**}}{\sigma^2} + 1 \right]$$

such that:

$$F(Z;t) = \boldsymbol{H}(\boldsymbol{z}(Z,t))$$

This is the unique stationary distribution with nonzero rate of entry and a Pareto tail.

- Perfect adoption $(\eta = 0)$ from frontier $(f_a(1) > 0)$:
 - Potential for multiplicity of equilibria and hysteresis
 Luttmer (2012); Benhabib, Perla & Tonetti (2018)
 - Continuum of equilibria with Pareto tails indexed by entry rate λ_e
 - Long-run growth rate depends on initial distribution
 - Intuition: Entry $\uparrow \Rightarrow$ Tail thickness $\uparrow \Rightarrow$ Adoption incentives \uparrow
- Imperfect adoption $(\eta > 0)$ or without frontier adoption $(f_a(1) \rightarrow 0)$:
 - Unique stationary Pareto-tailed dist. with unique entry rate $\lambda_e > 0$
 - Long-run growth rate does not depend on initial distribution
 - Intuition: Entry $\uparrow \Rightarrow$ Competition $\uparrow \Rightarrow$ Entry incentives \downarrow
- Empirically: entrants small and do not contribute to the tail

- Perfect adoption $(\eta = 0)$ from frontier $(f_a(1) > 0)$:
 - Potential for multiplicity of equilibria and hysteresis
 Luttmer (2012); Benhabib, Perla & Tonetti (2018)
 - Continuum of equilibria with Pareto tails indexed by entry rate λ_e
 - · Long-run growth rate depends on initial distribution
 - ▶ Intuition: Entry \uparrow ⇒ Tail thickness \uparrow ⇒ Adoption incentives \uparrow
- Imperfect adoption $(\eta > 0)$ or without frontier adoption $(f_a(1) \rightarrow 0)$:
 - Unique stationary Pareto-tailed dist. with unique entry rate $\lambda_e > 0$
 - Long-run growth rate does not depend on initial distribution
 - Intuition: Entry $\uparrow \Rightarrow$ Competition $\uparrow \Rightarrow$ Entry incentives \downarrow
- Empirically: entrants small and do not contribute to the tail

- Perfect adoption $(\eta = 0)$ from frontier $(f_a(1) > 0)$:
 - Potential for multiplicity of equilibria and hysteresis
 Luttmer (2012); Benhabib, Perla & Tonetti (2018)
 - Continuum of equilibria with Pareto tails indexed by entry rate λ_e
 - Long-run growth rate depends on initial distribution
 - Intuition: Entry $\uparrow \Rightarrow$ Tail thickness $\uparrow \Rightarrow$ Adoption incentives \uparrow
- Imperfect adoption $(\eta > 0)$ or without frontier adoption $(f_a(1) \rightarrow 0)$:
 - Unique stationary Pareto-tailed dist. with unique entry rate $\lambda_e > 0$
 - Long-run growth rate does not depend on initial distribution
 - Intuition: Entry $\uparrow \Rightarrow$ Competition $\uparrow \Rightarrow$ Entry incentives \downarrow
- Empirically: entrants small and do not contribute to the tail

- Perfect adoption $(\eta = 0)$ from frontier $(f_a(1) > 0)$:
 - Potential for multiplicity of equilibria and hysteresis
 Luttmer (2012); Benhabib, Perla & Tonetti (2018)
 - Continuum of equilibria with Pareto tails indexed by entry rate λ_e
 - Long-run growth rate depends on initial distribution
 - Intuition: Entry $\uparrow \Rightarrow$ Tail thickness $\uparrow \Rightarrow$ Adoption incentives \uparrow
- Imperfect adoption $(\eta > 0)$ or without frontier adoption $(f_a(1) \rightarrow 0)$:
 - Unique stationary Pareto-tailed dist. with unique entry rate $\lambda_e > 0$
 - Long-run growth rate does not depend on initial distribution
 - Intuition: Entry $\uparrow \Rightarrow$ Competition $\uparrow \Rightarrow$ Entry incentives \downarrow
- Empirically: entrants small and do not contribute to the tail

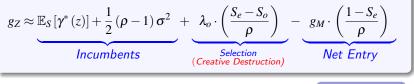
- Perfect adoption $(\eta = 0)$ from frontier $(f_a(1) > 0)$:
 - Potential for multiplicity of equilibria and hysteresis
 Luttmer (2012); Benhabib, Perla & Tonetti (2018)
 - Continuum of equilibria with Pareto tails indexed by entry rate λ_e
 - Long-run growth rate depends on initial distribution
 - Intuition: Entry $\uparrow \Rightarrow$ Tail thickness $\uparrow \Rightarrow$ Adoption incentives \uparrow
- Imperfect adoption $(\eta > 0)$ or without frontier adoption $(f_a(1) \rightarrow 0)$:
 - Unique stationary Pareto-tailed dist. with unique entry rate $\lambda_e > 0$
 - Long-run growth rate does not depend on initial distribution
 - Intuition: Entry $\uparrow \Rightarrow$ Competition $\uparrow \Rightarrow$ Entry incentives \downarrow
- Empirically: entrants small and do not contribute to the tail

Decomposition of Productivity Growth

• Free entry pins down g_Z

Lemma.

We can decompose the rate of productivity growth as



Definition of market shares

- S(z): Distribution of market shares
- S_e : Market share of entrants
- λ_o : Rate of exit
- σ : Productivity volatility

- $\gamma^*(z)$: Innovation of incumbents
- So : Market share of exiting firms
- g_M : Rate of growth of mass of firms
- ho : Substitutability parameter

Outline

1 Model

2 Optimal Allocations

3 Calibration

Outline

1 Model

2 Optimal Allocations

3 Calibration

Overview of the Insights

• Selection implies differences in firm expected lifetimes:

firm productivity $\rightarrow \frac{\text{expected}}{\text{lifetime}} \rightarrow \text{externalities (+ & -)}$

- 1. Stronger **knowledge spillovers** from innovations of productive firms productive ideas \rightarrow live longer \rightarrow diffuse further (+)
- Stronger dynamic competition from innovations of productive firms productive ideas → shorten other lives → crowd out innovation (-)
- · Markets generically misallocate innovation across heterog. firms

Social Firm Value Function $V_s(z)$

Flow prod. value Expected growth Volatility

$$rV_{s}(z) = \max_{\gamma} e^{z}J(\gamma)^{-\rho} - 1 + \rho\left(\gamma - \left(g_{Z,s} + \frac{\sigma^{2}}{2\rho}\right)\right)V'_{s}(z) + \frac{\rho^{2}\sigma^{2}}{2}V''_{s}(z)$$

• Boundary conditions $V(z_{o,s}) = V'(z_{o,s}) = 0$ & for very large z

 $\gamma_s(z)$: Optimal firm innovation $z_{o,s}$: Optimal efficiency cutoff for exit $g_{Z,s}$: Optimal productivity growth J: Effective innovation cost

Social Firm Value Function $V_s(z)$

Flow prod. value Expected growth Volatility

$$rV_{s}(z) = \max_{\gamma} e^{z}J(\gamma)^{-\rho} - 1 + \rho \left(\gamma - \left(g_{Z,s} + \frac{\sigma^{2}}{2\rho}\right)\right)V'_{s}(z) + \frac{\rho^{2}\sigma^{2}}{2}V''_{s}(z)$$
Flow social spillover value

$$+ \underbrace{\lambda_{e,s}}_{\text{Rate of entry}} \times \underbrace{(U_{s}(z) - \Psi_{s})}_{\text{Expected spillover value to entrants}}$$

• Spillover function U_s : monotonically increasing & $U_s(z_{o,s}) = 0$

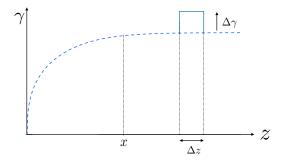
$$\lim_{z\to\infty} U_s(z) \propto f_a(1) \times e^{(1-\eta)z}$$

- Social costs $\Psi_s > 0$
- Boundary conditions $V(z_{o,s}) = V'(z_{o,s}) = 0$ & for very large z

 $\gamma_s(z)$: Optimal firm innovation $z_{o,s}$: Optimal efficiency cutoff for exit $g_{Z,s}$: Optimal productivity growth J: Effective innovation cost

Dynamic Competition

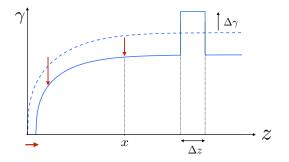
- Firms in neighborhood Δz around z raise innovation by $\Delta \gamma$
- Response of firm at efficiency x, if no one else responds?



Dynamic Competition

- Firms in neighborhood Δz around z raise innovation by $\Delta \gamma$
- Response of firm at efficiency x, if no one else responds?

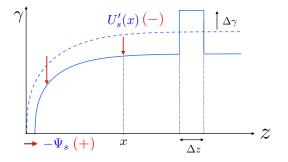
$$\Delta g_Z \propto S(z) \Delta z \Delta \gamma$$



Dynamic Competition

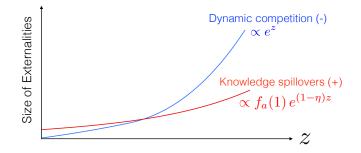
- Firms in neighborhood Δz around z raise innovation by $\Delta \gamma$
- Response of firm at efficiency x, if no one else responds?

$$\Delta g_Z \propto S(z) \Delta z \Delta \gamma$$



Two Externalities

• How do knowledge spillovers and dynamic competition vary with z?



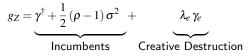
• Social/private gap in innovation returns not equalized across firms

Benchmark Model of Creative Destruction

• No selection, no market size growth, head-to-head competition Hybrid model à al Garcia-Macia et al. (2016)

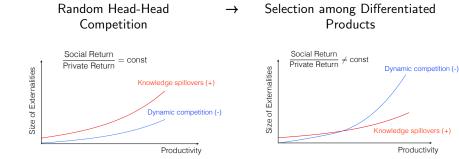
$$\eta = 0$$
 $f_a \equiv 1$ $\gamma_e > 0$

- Equilibrium:
 - Likelihood of exit independent of productivity $\Rightarrow \gamma^{*}(z) = \gamma^{\dagger}$
 - Productivity growth decomposition



- Normative Implications:
 - All incumbents underinvest in innovation under the market
 - Social/private gap in returns equalized across firms

Two Views of Creative Destruction



• Inefficiency in aggregate innovation

Atkeson & Burstein (2015)

• Inefficiency in the distribution of innovation

Implementation

- 1. Output reward:
 - Profitability-dependent cash $U_{s}\left(\cdot
 ight)$
 - Lump-sum operation tax Ψ_s
- 2. Input subsidy:
 - Innovation input subsidies at profitability-dependent rate $\tau_i(z)$
 - Entry cost subsidies at rate τ_e
 - Lump-sum operation tax τ_o
 - Production-labor input taxes at rate $\tau_l(z) = -\tau_i(z)\varphi(\gamma_s(z))$

Details of the Optimal Input Subsidy Scheme

Outline

1 Model

2 Optimal Allocations

3 Calibration

Outline

1 Model

2 Optimal Allocations

3 Calibration

Preview of Quantitative Results

- Calibrate to moments of firm life-cycle dynamics in the US:
 - Business Dynamics Statistics (1987-2007) for manufacturing & retail
- Market vs. optimal allocations in both sectors:
 - > Too much incumbent innovation, too little entry, too concentrated
 - Optimal subsidy rate inverted U-shape in firm productivity
- In retail trade:
 - Higher volatility, adoption less perfect
 - Weaker initial rise in subsidies, swift decline among top firms
- Optimal policy spends considerably less than uniform subsidies

Calibration (1/3): Specification

• Costs of process innovation:

$$\boldsymbol{\varphi}\left(\boldsymbol{\gamma}\right) \equiv \frac{\boldsymbol{\chi}\boldsymbol{\gamma}^{1+\boldsymbol{\kappa}}}{1+\boldsymbol{\kappa}}, \qquad 0 \leq \boldsymbol{\gamma} \leq \bar{\boldsymbol{\gamma}} \equiv \left(\frac{\boldsymbol{\kappa}}{\boldsymbol{\chi}}\frac{1+\boldsymbol{\kappa}}{\boldsymbol{\rho}\left(1+\boldsymbol{\kappa}\right)+1}\right)^{1/(1+\boldsymbol{\kappa})}$$

• Adoption distribution:

$$F_a(x) = x^{\mu}, x \in [0, 1]$$
 $f_a(1) = \mu$

- $\mu = 1$: uniform adoption
- $\mu > 1$: bias toward productive ideas
- $\mu < 1$: bias toward unproductive ideas

- 1. Innovation:
 - Volatility σ
 - Cost (scale) χ
 - Cost (curvature) κ
- 2. Entry & Adoption:
 - Directedness of adoption μ
 - Decreasing returns in transfer η
 - Entry efficiency shifter γ_e
 - Costs of entry ψ
- 3. Demand:
 - Growth of demand g_N
 - Substitution elasticity $1 + \rho$
 - Discount rate r

- 1. Innovation:
 - Volatility σ
 - Cost (scale) χ
 - Cost (curvature) κ
- 2. Entry & Adoption:
 - Directedness of adoption μ
 - Decreasing returns in transfer η
 - Entry efficiency shifter γ_e
 - Costs of entry ψ
- 3. Demand:
 - Growth of demand g_N
 - ▶ Substitution elasticity $1 + \rho$ ← 3 (common value)
 - Discount rate $r \leftarrow 0.05$ (common vlaue)

- 1. Innovation:
 - Volatility σ
 - Cost (scale) χ
 - Cost (curvature) $\kappa \leftarrow \text{cost elasticity of R&D (prior work)}$
- 2. Entry & Adoption:
 - Directedness of adoption μ
 - Decreasing returns in transfer η
 - Entry efficiency shifter γ_e
 - ► Costs of entry ψ ← rate of productivity growth g_Z (data)
- 3. Demand:
 - Growth of demand $g_N \leftarrow$ rate of employment growth (data)
 - Substitution elasticity $1 + \rho$
 - Discount rate r

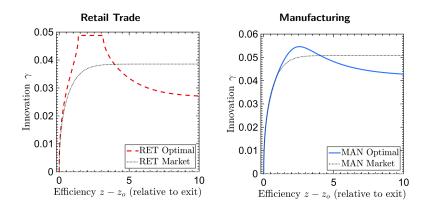
1. Innovation:

- Volatility $\sigma \leftarrow$ rate of emp reallocation of old firms (data)
- Cost (scale) $\chi \leftarrow$ rate of emp growth of old firms (data)
- Cost (curvature) κ
- 2. Entry & Adoption:
 - Directedness of adoption $\mu \leftarrow$ rate of exit & age (data)
 - Decreasing returns in transfer $\eta \leftarrow$ rate of exit & age (data)
 - Entry efficiency shifter γ_e
 - Costs of entry ψ
- 3. Demand:
 - ▶ Growth of demand g_N
 - Substitution elasticity $1 + \rho$
 - Discount rate r

Calibration (3/3): Moments & Calibrated Parameters

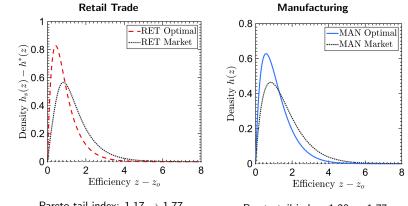
Targeted Moment		Retail Trade		Manufacturing	
		Model	Data	Model	Data
Rate of productivity growth	8z	0.032	0.032	0.038	0.038
Rate of emp growth	g_N	0.017	0.017	0.000	-0.012
Cost elasticity of investment		1.0	1.0	1.0	1.0
Rate of entry		0.117	0.119	0.079	0.079
Rate of emp growth of old (15-20 yr)		-0.015	-0.007	-0.024	-0.017
Rate of reallocation of old (15-20 yr)		0.26	0.23	0.20	0.20
Rate of exit of mature (10-15 yr)		0.075	0.083	0.060	0.060
Rate of exit of old (15-20 yr)		0.065	0.071	0.054	0.052
Parameter					
Volatility	σ	0.19		0.15	
Innovation costs	χ	13360		8103	
Curvature of costs	κ	2.2		2.3	
Entry costs	Ψ	6.2		11.3	
Directedness of adoption	μ	3		1	
Decreasing returns of adoption	η	0.6		0.3	
Entry Productivity Shifter	γ_e	-0.5		-0.5	

Normative Analysis (1/4): Optimal vs Market Innovation



Market underinvestment among medium-efficiency firms

Normative Analysis (2/4): Optimal vs Market Distribution

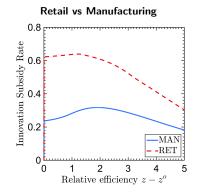


Pareto tail index: $1.17 \rightarrow 1.77$

Pareto tail index: $1.20 \rightarrow 1.77$

Market equilibrium too concentrated

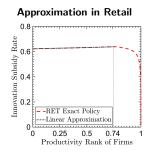
Normative Analysis (3/4): Innovation Subsidies

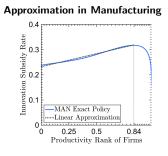


		Retail trade	Manufacturing
Optimal Rate of Growth	$g_{Z,s}$	0.052	0.047
Entrant Subsidy	$- au_{e,s}$	0.45	0.18
Operation Tax	$ au_{o,s}$	4.90	2.95
Average Incumbent Subsidy	$-\mathbb{E}_{H}[au_{i,s}]$	0.62	0.28

Implementation of Optimal Policy

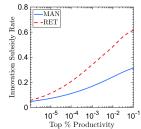
Normative Analysis (4/4): Innovation Subsidies



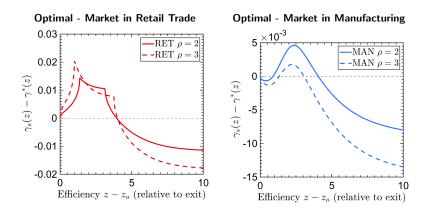


Retail vs Manufacturing for Top Firms

	RET	MAN
Optimal Rate of Growth	0.052	0.047
Baseline Approx. Subsidy Rate	0.62	0.23
Slope of Approx. Subsidy Rate	0.02	0.10
Optimal Schedule Spending	0.32	0.20
Best Uniform Spending	2.57	1.96
Slope of Approx. Subsidy Rate Optimal Schedule Spending	0.32	0.20



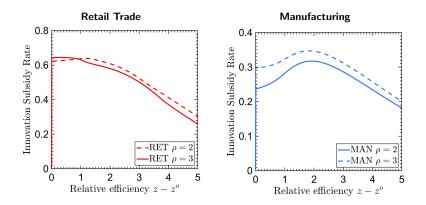
Competition & Efficiency (1/2): Innovation Investments



• Experiment:

- Raise substitutability parameter ρ
- Adjust cost scale $\chi
 ightarrow$ maintain rate of emp growth of large firms

Competition & Efficiency (2/2): Optimal Subsidies



• Peak of subsidy rate shifts to the left \leftarrow dynamic competition \uparrow

Summary of Contributions

• Model unifies theories of firm selection and creative destruction:

- Derived conditions that ensure uniqueness of stationary equilibria
- Showed market equilibria misallocate innovation across firms
- Key Implications:
 - Innovation policy has to account for heterogeneity
 - Effective policies likely to vary depending on:
 - 1. Volatility of firm outcomes
 - 2. Strength of product market rivalry
 - 3. Relative spillovers of large to small firms

Assumptions on the Production Function

Assumption.

Production function $oldsymbol{G}(\cdot,\cdot)$ has the following properties:

•
$$G^{q}\left(\cdot,\cdot\right):\mathbb{R}^{2}_{\geq0}\rightarrow\mathbb{R}_{\geq0}$$

- $G^{q}\left(l,i\right) > 0$ for all l > 0 and $i \ge 0$ (WLOG $G^{q}\left(1,0\right) = 1$)
- ▶ Continuous & homog. deg. 1 (CRS)
- ▶ MP of "production" labor $\partial G^q(l,i) / \partial l > 0$ & greater than MP of "innovation" labor $\partial G^q(l,i) / \partial i$ everywhere.
- $G^{\gamma}(\cdot, \cdot): \mathbb{R}^2_{\geq 0} o [0, \overline{\gamma}]$, with $\overline{\gamma} \in \mathbb{R}_{\geq 0} \cup \{\infty\}$
 - $G^{\gamma}(l,0) = G^{\gamma}(0,i) = 0$ for all l and i
 - Continuous & homogeneous of degree $\beta \geq 0$
 - MP of "innovation" labor $\partial G^{\gamma}(l,i) / \partial i \geq 0$ everywhere
 - ► $\forall l: \text{ there exists some } \overline{i}(l) \in \mathbb{R}_{\geq 0} \cup \{\infty\} \text{ s.t. } \partial G^{\gamma}(l,i) / \partial i > 0, G^{\gamma} \text{ strictly concave for } \forall i \in [0, \overline{i}(l)) \& G^{\gamma}(l,i) = \overline{\gamma} \text{ for all } i \geq \overline{i}(l).$

Alternative Specifications

• Luttmer (2010):

$$\left(\begin{array}{c} Q\\ \Gamma \end{array}\right) = \boldsymbol{G}\left(l,i;Z\right) = Z \times \left(\begin{array}{c} l \times \mathsf{C}\left(1-\tau\right)\\ \mathsf{G}\left(\tau\right) \end{array}\right)$$

- ► Isomorphic to the model here for the choice with $J(\gamma) = C(1 G^{-1}(\gamma))$
- No notion of innovation investments
- Atkeson & Burstein (2010):

$$\left(\begin{array}{c} Q\\ \Gamma \end{array}\right) = \boldsymbol{G}\left(l,i;Z\right) = Z \times \left(\begin{array}{c} l\\ \mathsf{G}\left(\frac{i}{Z^p}\right) \end{array}\right)$$

- Does not allow sustained innovtion and productivity growth
- Stokey (2014); Atkeson & Burstein (2019); Benhabib et al. (2015):

$$\left(\begin{array}{c} Q\\ \Gamma \end{array}\right) = \boldsymbol{G}(l,i;Z) = Z \times \left(\begin{array}{c} l\\ \mathsf{G}\left(\frac{i}{s(Z,l)}\right) \end{array}\right)$$

▶ Isomorphic to the model here with $G^{\gamma}(l,i) = G\left(\frac{\rho}{1+\rho}\frac{i}{l+i}\right)$

No notion of primitive production function for ideas

Dynamic Industry Equilibrium

Definition.

Given an initial industry measure M_0 , a time path of wages $[w_t]_{t=0}^{\infty}$, interest rate r, and a time path of industry aggregate sales $[N_t]_{t=0}^{\infty}$, an industry tuple $\mathscr{I} \equiv [F(\cdot;t), \gamma(\cdot,t), Z_o(t), \lambda_e(t)]_{t=0}^{\infty}$ characterizes a dynamic industry equilibrium if

- 1. The policy function $\boldsymbol{\varsigma} \equiv [\gamma_t^*(\cdot), Z_o(t)]_{t=0}^{\infty}$ constitutes a solution to the firm's HJB equation,
- 2. The measure $F(\cdot;t)$ satisfies the KFE with the corresponding boundary conditions.
- 3. Rate of entry $\lambda_{e}(t)$ satisfies the free entry condition,

General Equilibrium

Definition.

Consider an industry tuple \mathscr{I} and a path of population $[N_t]_{t=0}^{\infty}$ such that $N_t/M_t > \psi_f + \psi_e \lambda_e(t)$, for all t. A path of wages, consumption, and per-capita assets $[w_t, q_t, a_t]_{t=0}^{\infty}$ and the industry \mathscr{I} together form a dynamic general equilibrium if we have

- 1. Given the path of wages $[w_t]_{t=0}^{\infty}$, interest rate $r_t = r$, and aggregate sales (and population) N_t , the industry constitutes a dynamic industry equilibrium,
- 2. The paths of wages, per-capita consumption, and per-capita assets satisfy

$$Q_t = \frac{\rho}{\rho+1} \frac{M_t^{1/\rho} \overline{Z}_t}{w_t}, \qquad w_t = \frac{\rho}{\rho+1} \frac{N_t}{N_t - M_t \left(\psi_f + \psi_e \lambda_e(t)\right)},$$
$$a_t = \frac{M_t}{N_t} \int \left[v\left(Z, t\right) + \Psi_e w_t \lambda_e(t)\right] dF\left(Z; t\right),$$

for all t, where \overline{Z}_t is aggregate productivity, and a_t satisfies a transversality condition.

Concavity of $J\left(\cdot ight)$

Lemma.

Consider the case of:

$$egin{aligned} G^{q}\left(l,i
ight) &= l \ G^{\gamma}\left(l,i
ight) &= arphi^{-1}\left(rac{i}{ar{l}}
ight) \end{aligned}$$

with $\overline{\gamma}$ and \overline{x} s.t. $\lim_{\gamma \uparrow \overline{\gamma}} \varphi(\gamma) = \overline{x}$ and $\varphi^{-1}(x) = \overline{\gamma}$ for $x > \overline{x}$. Then

$$J(\boldsymbol{\gamma}) \equiv (1 + \boldsymbol{\varphi}(\boldsymbol{\gamma}))^{-1}$$

and a sufficient condition for strict concavity of $J(\cdot)$ for $\gamma < \overline{\gamma}$:

$$\frac{\varepsilon_{\varphi'}\left(\gamma\right)}{\varepsilon_{\varphi}\left(\gamma\right)} > \left(1 + \rho\right) \frac{\overline{x}}{1 + \overline{x}}$$

where $\varepsilon_{\phi}(\gamma) \equiv \gamma \phi'(\gamma) / \phi(\gamma)$ is elasticity of ϕ .

Bacl

Market Shares

• Market shares of incumbents:

$$S(z) \equiv \frac{h(z) e^z J(\gamma^*(z))^{\rho}}{\mathbb{E}_H [h(z) e^z J(\gamma^*(z))^{\rho}]}$$

• Market share of entrants

$$S_e \equiv \frac{\mathbb{E}_{H_e}[h(z) e^z J(\gamma^*(z))^{\rho}]}{\mathbb{E}_H[h(z) e^z J(\gamma^*(z))^{\rho}]}$$

Market share of exiting firms

$$S_o \equiv \frac{e^{z_o}}{\mathbb{E}_H[h(z) \ e^z J(\gamma^*(z))^{\rho}]}$$

 H_e : Distribution of entrant efficiency $\gamma^*(z)$: Innovation of incumbents

H : Distribution of incumbent efficiency z_o : Exit cutoff

Knowledge Spillovers & Diffusion

Example.

Uniform adoption distribution $f_a(x) = 1$.

• Remember: efficiency of entrants adopting z:

$$z_e(z) \equiv \eta \, \tilde{z} + (1 - \eta) \, z + \rho \, \gamma_e$$

- Social spillover function: $U_s^{Diff}(z) = V(z_e(z)) V(z_e(z_o))$
- Social costs:

$$\Psi_{s}^{Diff} = \mathbb{E}_{H}\left[V\left(z_{e}\left(z\right)\right)\right] - V\left(z_{e}\left(z_{o}\right)\right)$$

Full Characterization in the General Case 🕺 Back

- *H* : Distribution of efficiencies γ_e : Entry productivity shifter
- \tilde{z} : Efficiency of stock of ideas
- η : Decreasing returns to adoption
- $\rho\,$: Substitutability parameter
- zo: Efficiency cutoff

Socially Optimal Allocations: Main Result

• Spillover function and social cost:

$$U_{s}(z) = \eta \left(e^{\frac{z-z_{0}}{\rho}}-1\right) \tilde{u}_{s}+(1-\eta) u_{s}(z),$$

$$\Psi_{s} = \eta \left(e^{\frac{z-z_{0}}{\rho}}-1\right) \tilde{u}_{s}+(1-\eta) \psi_{s},$$

where the knowledge diffusion terms are given by

$$\psi_{s} \equiv \int_{z_{o,s}}^{\infty} V_{s}'(\eta \tilde{z} + (1 - \eta) x + \rho \gamma_{e}) f_{a}(H_{s}(x)) (1 - H_{s}(x)) dx(1)$$
$$u_{s}(z) \equiv \int_{z_{o,s}}^{z} V_{s}'(\eta \tilde{z} + (1 - \eta) x + \rho \gamma_{e}) f_{a}(H_{s}(x)) dx, \qquad (2)$$

and the term corresponding to the contribution to the industry-wide knowledge stock is given by

$$\tilde{u}_{s} \equiv \rho e^{-\frac{\tilde{z}-z_{o}}{\rho}} \int_{z_{o,s}}^{\infty} V_{s}'(\eta \tilde{z} + (1-\eta)x + \rho \gamma_{e}) f_{a}(H_{s}(x)) h_{s}(x) dx.$$
(3)

Back

Pigouvian Implementation of the Optimal Policy

Corollary.

Let $\hat{V}_s(\cdot)$ be the value function under the market equilibrium featuring the additional taxes and subsidies. This value function and the operation tax τ_o satisfy

$$r \,\widehat{V}_{s}(z) = e^{z} J(\gamma_{s}(z))^{\rho} - (1+\tau_{o}) + \rho \left(\gamma_{s}(z) - g_{Z,s} - \frac{1}{2}\sigma^{2}\right) \widehat{V}_{s}'(z) + \frac{\rho^{2}\sigma^{2}}{2} \,\widehat{V}_{s}''(z) \,,$$

subject to the boundary conditions $\widehat{V}'_s(z_{o,s}) = \widehat{V}_s(z_{o,s}) = 0$. Given the value function $\widehat{V}_s(\cdot)$ and the social value function V_s satisfying social HJB, the taxes are given by

$$\tau_{i,s}(z) = \frac{\widehat{V}'_s(z)}{V'_s(z)} - 1, \qquad \tau_{e,s} = \frac{\mathbb{E}_{F_s}\left[\widehat{V}'_s(z)\right]}{\mathbb{E}_{F_s}\left[V_s(z)\right]} - 1,$$

and τ_o is such that the cutoff matches $z_{o,s}$.

Calibration: Adoption Process & Firm Lifetime

• Conditional on the primitives innovation & demand:

Adoption

Incumbents profitability $H(z) \longrightarrow H_e(z)$ Entrant profitability

• Indirect approach:

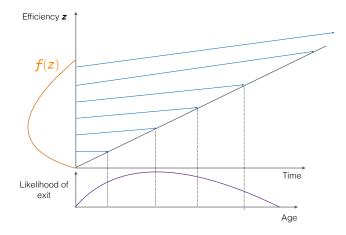
Selection

Entrant profitability $H_e(z) \longrightarrow$ Distribution of firm lifetimes

• Distribution of firm lifetimes \equiv Relation of age vs. hazard of exit

Identification of Adoption Process (1/2): Varying Calibrated Values

• Constraint based on the model: $H_e(z) = H\left(\frac{z-\gamma_e - \eta \tilde{z}}{1-\eta}\right)^{\mu}$



Identification of Adoption Process (2/2): Varying Calibrated Values

- Changing values of (μ, η) around calibrated values (1, 0.3) in manufacturing.

