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Sovereign Debt Crises

I Fundamentals and beliefs appear to be important drivers of
crises

I Crisis countries tend to have weak fundamentals

I But timing of a crisis can be mysterious — comes without
warning and fundamentals are often no worse
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What We Do

I Develop a framework that gives both fundamentals and beliefs
a role in debt crises and . . .

I . . . generates different types of crises in a quantitatively
realistic way

I Outright default

I No default but a spike up in spreads on new borrowing
(“borrowing into high spreads”)

I No default but heavy capital outflows (“sudden stops”)
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Small Open-Economy Environment

I Stochastic endowment Yt ∼ Γ(Y ,Yt−1),Yt ∈ Y

I Preferences of government:

E0

∞∑
t=0

βtu(Ct),

I Risk-neutral lenders discount at R−1 = (1 + r∗)−1

I One-period bonds∗: B ∈ [B,∞), B < 0

I Default leads to permanent autarky∗
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Timing and Interim Uncertainty

I Enter with (Y ,B)

I Auction B ′ and get q(Y ,B,B ′)B ′

I An additive shock to default payoff is realized

I Modeled as σε, where ε ∼ F , ε ∈ [0, 1]

I Choose to default or repay B
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Timing
In a picture . . .

s = (Y ,B)
Auction B ′ at
price q(s,B ′) Settlement

No Default

Default

V R(s,B ′)

VD(s) + σε

s ′ = (Y ′,B ′)
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Bellmans∗

For exposition, assumes Y is i.i.d.

I Value of repayment at settlement:

V R(s,B ′) =

{
u(Y + q(s,B ′)B ′ − B) + βE [V (s ′)|B ′ ∈ s ′]

−∞ if B ′ is infeasible

I Value of default at settlement (net of shock):

VD(s,B ′) ≡ u(Y + q(s,B ′)B ′) + βE
[
u(Y )

1− β

]

I Value at s

V (s) = max
B′

{
max

〈
V R(s,B ′),VD(s) + σε

〉}
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Strategic Default

max
〈
V R(s,B ′),VD(s) + σε

〉
I Sovereign repays if and only if:

σε ≤
[
V R(s,B ′)− VD(s,B ′)

]
︸ ︷︷ ︸

≡∆(s,B′)

I Prob of repayment at settlement is F ( 1
σ ·∆(s,B ′))

I If σ−1 ·∆(s,B ′) ∈ (0, 1), prob of def at settlement is positive
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Pricing of Debt

I Lenders are risk-neutral, so price must get the risk-free rate in
expectation

I Price of B ′, given Y and B

q(s,B ′) =R−1F (σ−1 ·∆(s,B ′))× E
[
F (σ−1 ·∆(s ′,B(s ′,B ′)))|B ′

]︸ ︷︷ ︸
qEG (B′)

I Lenders can be defaulted on in t + 1 (as in Eaton-Gersovitz)
and t (as in Cole-Kehoe)

I Holding fixed qEG (B ′), the possibility of current period default
supports multiple equilibrium prices at t
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(Static) Multiplicity
Keep in mind ∆(s,B ′|q) = V R(s,B ′|q)− V D(s,B ′|q)

I Given Y , B, B ′ and qEG (B ′), a candidate equilibrium price q̃
for B ′ must satisfy

q̃ = F (σ−1 ·∆(s,B ′|q̃))× qEG (B ′)

q̃ = F

(
σ−1 ·

[
u(Y − B + q̃B ′)− u(Y + q̃B ′)

+βE [V (s ′)|B ′]− βVD

])
qEG (B ′)

= F̃ (q̃|·)qEG (B ′), where

F̃ (q̃|·) : [0, qEG (B ′)]→ [0, 1]

I B > 0 and u concave ⇒ ∆(s,B ′|q̃) ↑ in q̃ ⇒ F̃ ↑ in q̃
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Static Multiplicity

qEG q̂

qEG

F̂ (q̂)qEG

I Consider some (Y ,B) for which the sovereign strictly prefers
repayment at qEG and default at 0

I Then there is a positive equilibrium price < qEG for which
default at settlement can happen with positive probability
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Other Possibilities∗

qEG q̂

qEG

F̂ (q̂)qEG

qEG q̂

qEG

F̂ (q̂)qEG

I Always-default & always-repay F̃ (q̃|·)qEG (B ′) functions are
also possible
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Static Multiplicity
Number and Types of Equilibrium Prices

Given Y ,B and B ′

I If σ sufficiently small, at most 3 equilibria

I If F uniform, F̃ (q̃)qEG is concave, so at most 3 equilibria
regardless of magnitude of σ
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From Multplicity to Belief Regimes

I ρ indexes lender beliefs and, now, s = (Y , ρ,B)

I We assume ρ ∈ {O,P,C}
I “O” denotes optimistic and q(Y ,O,B,B ′) is the highest eq

price possible

I “P” denotes pessimistic and q(Y ,P,B,B ′) is lowest eq price
possible

I “C” denotes “concerned” and q(Y ,C ,B,B ′) is an interior
price if one exists, otherwise it is the optimistic price

I The value of ρ is selected at random each period from a
known 3-point distribution
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Example Price Schedules
Grey is “ρ=O”, Dash is “ρ=P” and Black is “ρ=C”

B′0

0

R−1

qI

qEG

qCK

BEG

Payoff Figures
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Example Price Schedules
Grey is “ρ=O”, Dash is “ρ=P” and Black is “ρ=C”

B′0

0

R−1

qI

qEG

qCK

BCK BEG

Payoff Figures
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Choice of B ′ When ρ = C
B ′ with an interior price maybe a dominated choice!

B′0

0

R−1

qI

qEG

qCK

BEG
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What Is The Interim Uncertainty Doing?

B′0

V R
CK

V R
EG

V D
EG

V D
EG + σ

BEG BEGB∗EG

V D
CK

V D
CK + σ

.

I If ρ = O, the sovereign chooses B∗EG

I If ρ = C , the interim risk generates “borrowing into high
spreads” by inducing the sovereign to choose BEG > B∗EG
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What Is The Interim Uncertainty Doing?

B′0

0

R−1

qI

qEG

qCK

BCK BEG

I If ρ = C , the interim risk could generate a “sudden stop” by
inducing the sovereign to choose BCK < B

∗
EG

19 / 27



Quantification
Mexico, Argentina

I Drop i.i.d. Y assumption and instead assume that growth
rate of Y follows an AR1 process

I Drop the assumption that default leads to permanent autarky
and instead allow reentry with some constant probability

I Drop the assumption that default is costless – output is lower
by a proportion d0 during default and exclusion

20 / 27



Mexico∗

I gt = (1− µ)ḡ + µgt−1 + εt + [νt − νt−1]

I ρ ∈ {O,C}

I β = 0.80, CRRA = 2

I Re-entry prob = 0.125, r = 0.01, ε ∼ U and σ = 0.0001

I d0 = 0.176 and πC = 0.0225 set to match avg debt-to-GDP
and s.d. of spreads
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Moments∗

BM Alt I Alt II

Avg Debt-to-Qtrly-GDP 65.6∗% 66.1 % 30.2 %
Default Frequency 0.50 % 0.10 % 0.0 %

Spread Volatility 2.5∗ % 0.10 % 0.0 %
σc/σy 1.20 1.15 1.05

Simulated Moments

Alt I : ρ ∈ {O}
Alt II : ρ ∈ {O,P}; O with prob 0.975 (as in BM)

I The C regime is key for the volatility of spreads

I Replacing C with P makes the sovereign lower debt levels to
the point where all defaults and all spread volatility is
eliminated !
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What Sorts of Crises Do We Get in Simulations ?

I Defaults happen once every 200 years (calibration target)

I Faced with ρ = C , borrowing into high spreads without
default is relatively common

I But sudden stops while possible (almost) never happen
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Policy Function in the Base Model∗
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Summary

I Allowed sovereign to default following auction of new bonds
to permit multiple equilibrium price schedules

I Explored a new type of equilibria in which a crisis is a shift
to a low but positive price schedule

I Faced with this (new type of) crisis price schedule, the
sovereign does not default but might either borrow more
or de-leverage severely

I This framework might shed light on how and why “whatever
it takes” type of announcements can be effective in reducing
spreads or restoring the flow of credit
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B ′ and Equilibrium Possibilities
Canonical Crisis Zone

B′0

V R
CK

V R
EG

V D
EG

V D
EG + σ

BEG BEGB∗EG

V D
CK

V D
CK + σ

.

I 0 is an equilibrium price for all B ′ ≥ 0

I The EG price is an equilibrium price for B ′ ∈ [BEG ,BEG ]

I Faced with a zero price schedule, the sovereign will default
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B ′ and Equilibrium Possibilities
Extended Crisis Zone and Sudden Stops

B′0

V R
CK

V R
EG

V D
EG

V D
EG + σ

BCK BEGB∗EG

V D
CK

V D
CK + σ

I 0 is an equilibrium price for all B ′ ≥ BCK

I The EG price is an equilibrium price for B ′ ∈ [0,BEG ]

I Faced with prices that are qEG for B ′ ≤ BCK but zero for
B ′ > BCK , the sovereign may choose to reduce B ′ rather
than default

Price Schedules
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