Deadly Debt Crises: COVID-19 in Emerging Markets

Cristina Arellano
Federal Reserve Bank of Minneapolis and NBER

Yan Bai
University of Rochester and NBER

Gabriel Mihalache
Stony Brook University

Sovereign debt virtual workshop
August 25, 2020

The views expressed here are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.
Motivation

- Pandemic presents huge challenges: deadly and highly contagious disease
 - Countries are imposing lockdowns to control the disease and save lives
 - Advanced economies engaging in large fiscal transfers to insure citizens

- For emerging markets pandemic brings additional problems (Hevia-Neumeyer 2020)
 - Debt crisis: Many already indebted, rising interest rates, looming defaults
 - Limited fiscal space: Difficult to support citizens during lockdowns
 - Large external shock: collapses in export demand, tourism, remittances, capital flows

Health crisis + economic crisis + debt crisis
COVID-19 in Emerging Economies: Daily Fatalities

As of August 23rd, since 3 fatalities

- Growing epidemic in emerging markets
- Large human cost, 800,000+ official deaths thus far
- Likely many more actual deaths (excess/official deaths = 2 in Turkey, 15 in Ecuador)
Sovereign Spreads

- Already in default: Argentina, Ecuador, Lebanon
- CDS spreads have risen 200-400 bp for Mexico, Brazil, Russia, Turkey
Epidemic can generate debt crises: defaults and high spreads

Debt crises increase fatalities: makes lockdowns more costly

- Economic Output
- Debt Low default
- Health
- Consumption
- Life
Debt Crisis and the Epidemic

Epidemic can generate debt crises: defaults and high spreads

COVID-19

- Economic Output
- Low default
- Consumption

Debt crises increase fatalities: makes lockdowns more costly

- Health Crisis
- Life
Debt Crisis and the Epidemic

Epidemic can generate debt crises: defaults and high spreads

COVID-19

Debt crises increase fatalities: makes lockdowns more costly

Economic Output

Debt Low default

Health Crisis

Consumption

Life

Lockdowns
Debt Crisis and the Epidemic

Epidemic can generate debt crises: defaults and high spreads

Debt crises increase fatalities: makes lockdowns more costly

Economic Crisis

Debt Crisis

Health Crisis

Consumption

Life

COVID-19

Lockdowns
Debt Crisis and the Epidemic

Epidemic can generate debt crises: defaults and high spreads

Debt crises increase fatalities: makes lockdowns more costly

Less Lockdowns

COVID-19

Economic Crisis

Debt Crisis

Health Crisis

Consumption

Life
Debt Crisis and the Epidemic

Epidemic can generate debt crises: defaults and high spreads

Debt relief positive social value: alleviates debt crisis and saves lives

Debt crises increase fatalities: makes lockdowns more costly

More Lockdowns

Lockdowns

Debt Relief

COVID-19

Economic Crisis

Debt Lower Default

Health Crisis

Consumption

Life
Quantitative Findings

- Epidemic generate long debt crisis
 - Leads to debt crisis of 43 months with large defaults and rising spreads
 - Optimal lockdown: starts 2 months in; lasts for 8 months; 2 months high 50% intensity
 - Lockdown reduces fatalities by half
 - Welfare loss of 1.8% in consumption equivalence

- Less debt at epidemic outbreak
 - Can use borrowing to support consumption and avoid debt crisis
 - Allows more severe mitigation that saves lives

- Debt relief has positive social value
 - Program of 10% (break-even) benefits the country by 9.4% in present value
 - Country gains from avoiding debt crisis and reducing fatalities
 - Even greater benefits: longer term loan, higher grant component
Literature

Epidemic risks severe sovereign debt crisis

Debt relief with positive social value: avoid debt crisis and save lives
Model

- Small open economy with government and homogeneous consumers
- Economy is hit by unexpected epidemic
 - Dynamics follow a standard epidemiological SIR model
- Government: borrows internationally, can default on its debt, decides on lockdowns
 - Both default and lockdowns are of endogenous intensity and length
- Analyze dynamics during epidemic
 - Population groups: susceptible, infected, recovered, deceased
 - Consumption, lockdowns, and output
 - Debt, default episodes (length & intensity), sovereign spreads
- Debt relief counterfactuals
Preferences and Technology

The government values consumption and life

\[v_0 = \sum_{t=0}^{\infty} \beta^t \left(u(c_t) - \chi \phi_t^D \right) \]

- \(c_t \) is per capita consumption, \(\phi_t^D \) are fatalities, \(\chi \) value of life

Output \(Y_t \) depends on productivity, lockdowns \(L_t \), and population \(N_t \)

\[Y_t = z_t (1 - L_t) N_t \]

- Productivity of labor economy-wide is \(z_t \)
Government Debt and Default

- Use international debt operations to support consumption
 \[Y_t + q_t \ell_t = N_t c_t + (1 - d_t)B_t \]

- Borrows at price \(q_t \) and can default on its debt \(B_t \) with intensity \(d_t \)

- Default leads to loss of productivity proportional to intensity \(z_t = \tilde{z}\phi(d_t) \)

- Fraction \(\kappa \) of defaulted debt accumulates and increases future debt obligations
 \[B_{t+1} = \ell_t + \kappa d_t B_t \]

- Risk neutral lenders discount at world rate \(r \) and break even in expected value
 \[q_t = \frac{1}{1 + r} [(1 - d_{t+1}) + d_{t+1} \kappa q_{t+1}] \]

More default with high debt, low output, and low bond price (due to low repayment prospects)
Epidemic Dynamics: Standard SIR

- Population transits from susceptible, to infected, to recovered or deceased

\[\mu^S \rightarrow \mu^I \rightarrow [\mu^R \text{ or } \mu^D] \]

- Key building block newly infected \(\mu_i^x \): transition from susceptible to infected

\[\mu_i^x = \pi_x \mu_i^I \mu_i^S \]

Probability becoming infected depends on already infected \(\mu_i^I \) and \(\pi_x = R_0(1 - \pi_I) \)

- Susceptibles shrink with infections

\[\mu_{i+1}^S = \mu_i^S - \mu_i^x. \]

- Infected evolve according to newly infected and past infected with probability \(\pi_I \)

\[\mu_{i+1}^I = \pi_I \mu_i^I + \mu_i^x \]

- Infected die at rate \(\pi_D(\mu_i^I) \) (healthcare capacity constraints)

\[\mu_{i+1}^D = \mu_i^D + \pi_D(\mu_i^I)\mu_i^I \]

\[\mu_{i+1}^R = \mu_i^R + [1 - \pi_I - \pi_D(\mu_i^I)]\mu_i^I \]
Epidemic Dynamics: SIR and Lockdowns

Based on Alvarez-Argente-Lippi 2020

- Lockdown policy of size L_t reduces population for contagion by a fraction θL_t

- Fewer newly infected μ^x_t with lockdowns

$$\mu^x_t = \pi_x \left((1 - \theta L_t) \mu^I_t \right) \left((1 - \theta L_t) \mu^S_t \right)$$

Lockdowns alter the dynamics of the epidemic
Government Problem During Epidemic

- State variables during epidemic are groups $\mu_t = (\mu^S_t, \mu^I_t, \mu^D_t)$ and debt B_t
- Government chooses borrowing B_{t+1}, default d_t, and lockdowns L_t

$$V_t(\mu_t, B_t) = \max_{B_{t+1}, d_t, L_t} u(c_t) - \chi \phi^D_t + \beta V_{t+1}(\mu_{t+1}, B_{t+1})$$

- subject to the SIR dynamics which determine $\mu_{t+1}(\mu_t, L_t)$ with $\phi^D_t = \pi_D(\mu^I_t)\mu^I_t$,
- the resource constraint with population $N_t = (1 - \mu^D_t)$

$$N_t c_t + (1 - d_t) B_t = z_t N_t (1 - L_t) + q_t(B_{t+1}, \mu_{t+1})(B_{t+1} - \kappa d_t B_t),$$

- bond pricing depends on epidemic $q_t(B_{t+1}, \mu_{t+1})$
Government Problem During Epidemic

- State variables during epidemic are groups $\mu_t = (\mu_t^S, \mu_t^I, \mu_t^D)$ and debt B_t
- Government chooses borrowing B_{t+1}, default d_t, and lockdowns L_t

$$V_t(\mu_t, B_t) = \max_{B_{t+1}, d_t, L_t} u(c_t) - \chi \phi_t^D + \beta V_{t+1} (\mu_{t+1}, B_{t+1})$$

- subject to the SIR dynamics which determine $\mu_{t+1}(\mu_t, L_t)$ with $\phi_t^D = \pi_D(\mu_t^I) \mu_t^I$,
- the resource constraint with population $N_t = (1 - \mu_t^D)$

$$N_t c_t + (1 - d_t) B_t = z_t N_t (1 - L_t) + q_t (B_{t+1}, \mu_{t+1}) (B_{t+1} - \kappa d_t B_t),$$

- bond pricing depends on epidemic $q_t (B_{t+1}, \mu_{t+1})$

Epidemic generates debt crises: low output and low repayment prospects \rightarrow defaults

Debt crises can increase death toll: makes lockdowns more costly
Dynamic Program

Government problem with state $\mu_t = (\mu^S_t, \mu^I_t, \mu^D_t)$ and debt B_t

$$V_t(\mu_t, B_t) = \max_{B_{t+1}, d_t, L_t} u(c_t) - \chi \pi_D(\mu^I_t)\mu^I_t + \beta V_{t+1}(\mu_{t+1}, B_{t+1})$$

subject to population $N_t = (1 - \mu^D_t)$

resource constraint $N_t c_t + (1 - d_t)B_t = z_t N_t (1 - L_t) + q_t(B_{t+1}, \mu_{t+1})(B_{t+1} - \kappa d_t B_t)$

SIR dynamics

$$\mu^x_t = \pi_x (1 - \theta L_t) \mu^I_t (1 - \theta L_t) \mu^S_t$$

$$\mu^I_{t+1} = \pi_I \mu^I_t + \mu^x_t$$

$$\mu^S_{t+1} = \mu^S_t - \mu^x_t.$$

$$\mu^D_{t+1} = \mu^D_t + \pi_D(\mu^I_t)\mu^I_t$$

bond price function: $q_t(B_{t+1}, \mu_{t+1}(\mu_t, L_t)) = \frac{1}{1 + r} \{(1 - d_{t+1}) + \kappa d_{t+1} q_{t+1}(B_{t+2}, \mu_{t+2})\}.$
Parameter Values

SIR Parameters: Diamond Princess estimates, recent literature

- Fatality rate increases with infected to capture congestion in the health care system:

\[\pi_D(\mu^I_t) = \pi_D^0 + \pi_D^1 \mu^I_t \]

- \(R_0 = 2.28 \) and \(\pi_D^0 = 0.005(1 - \pi_I) \) from Diamond Princess; \(\pi_I \) to disease length 18 days; \(\pi_D^1 = 0.18\% \), \(\theta = 0.5 \) (Alvarez-Argente-Lippi)

- \(\chi \): VSL estimates for emerging markets Viscusi and Masterman (2017)
 VSL = 230\(\times \)c per capita adjusted to 20 years loss (in US 9.6 million is 207\(\times \)c)

Debt parameters: 30% debt to output, recent literature

- Default cost increasing in default intensity, parameters from Arellano-MateosPlanas-RiosRull

\[\phi(d) = [1 - \gamma_0d^{\gamma_1}](1 - \gamma_2\mathbb{1}_{d > 0}) \]

- Mean debt maturity 6 years, mean recovery 54% (Trebesch-Cruces), \(r = 1\% \) annual, \(\beta \) for 2% domestic real rate

Others: CRRA of 2, weekly model
Quantitative Experiments

Baseline economy:

- Policy rules: default, lockdown
- Time paths: epidemic groups, lockdowns, fatalities, consumption, defaults

The role of debt at the time of outbreak:

- Less initial debt: improves epidemic outcomes, shorter crisis

Debt relief counterfactuals:

- Design of loan and/or grant programs
- Large social value
Policy rules: Lockdown and default

More *infected* or *susceptible* leads to
- Lockdowns – benefits highest, disease very contagious
- Default – With low output from lockdowns higher default incentives
Policy rules: Lockdown and debt

- Less lockdown with higher debt – too costly when debt crisis looms
Time Paths: Epidemic groups

- Optimal lockdowns lower peak of infections from 20% to 8%
- Fraction of ever infected decreases from 88% to 70%
Time Paths: Lockdowns reduce fatalities

- Fatalities reduced from 1% with no lockdowns to .5%
- Optimal lockdown: start 2 months after outbreak, lockdowns for 8 months; 3.5 months of intensity above 40%
- Depress consumption and output (15% drop first year)
- Generate debt crisis: default episode of 43 months
 - Default upon outbreak
 - Intense default during lockdown to support consumption, results in higher future debt
 - Default is prolonged because of persistently high debt
Baseline economy paths

Deceased (D, %)

Infected (I, %)

Susceptible (S, %)

Lockdown (L, %)

Consumption and Output

Partial Default (d, %)

Spread (CDS, bps)

Debt (B, %)

Economic crisis + debt crisis + health crisis
Epidemic Outcomes

<table>
<thead>
<tr>
<th>Crisis</th>
<th>Baseline</th>
<th>No lockdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health crisis</td>
<td>Deceased (% Pop)</td>
<td>0.50</td>
</tr>
<tr>
<td>Economic crisis</td>
<td>Lockdown</td>
<td></td>
</tr>
<tr>
<td>Length (months)</td>
<td>7.8</td>
<td>0</td>
</tr>
<tr>
<td>Intensity, max (%)</td>
<td>51</td>
<td>–</td>
</tr>
<tr>
<td>Output loss (%)</td>
<td>–19</td>
<td>0</td>
</tr>
<tr>
<td>Debt crisis</td>
<td>Default</td>
<td></td>
</tr>
<tr>
<td>Length (months)</td>
<td>43</td>
<td>–</td>
</tr>
<tr>
<td>Intensity, max (%)</td>
<td>55</td>
<td>–</td>
</tr>
<tr>
<td>Welfare losses</td>
<td>Country CE present value (% output)</td>
<td>–87</td>
</tr>
<tr>
<td>Lender (% output)</td>
<td>–1.2</td>
<td>0</td>
</tr>
</tbody>
</table>

- Lockdown for 8 months with max intensity of 55%; output 19% lower
- Long debt crisis: 43 months with defaults
- Costs: large for country, 87% of output in CE (flow of 1.8% of consumption) & small for lenders
Epidemic Outcomes: Debt Matters

Start the epidemic with no initial debt:

- Prevents long debt crisis
- Allows more aggressive lockdowns
- Reduces fatalities from epidemic
- Economy can borrow to support consumption
Epidemic Outcomes: Debt Matters

<table>
<thead>
<tr>
<th>Initial debt-to-output</th>
<th>0%</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health crisis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deceased (% Pop)</td>
<td>0.45</td>
<td>0.47</td>
<td>0.49</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Economic Crisis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lockdown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length (months)</td>
<td>9.3</td>
<td>7.8</td>
<td>8.0</td>
<td>7.8</td>
<td>7.8</td>
<td>7.5</td>
</tr>
<tr>
<td>Intensity, max (%)</td>
<td>57</td>
<td>61</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>Output loss (%)</td>
<td>−25</td>
<td>−21</td>
<td>−18</td>
<td>−19</td>
<td>−20</td>
<td>−22</td>
</tr>
<tr>
<td>Debt crisis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length (months)</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>43</td>
<td>112</td>
<td>161</td>
</tr>
<tr>
<td>Intensity, max (%)</td>
<td>22</td>
<td>28</td>
<td>36</td>
<td>55</td>
<td>94</td>
<td>100</td>
</tr>
<tr>
<td>Welfare loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country CE (% output)</td>
<td>−76</td>
<td>−78</td>
<td>−81</td>
<td>−87</td>
<td>−87</td>
<td>−86</td>
</tr>
<tr>
<td>Lender (% output)</td>
<td>−0</td>
<td>−0.1</td>
<td>−0.2</td>
<td>−1.2</td>
<td>−2.0</td>
<td>−3.4</td>
</tr>
</tbody>
</table>

- Lower initial debt: Longer lockdowns, more lives saved, limited debt crises
- Higher initial debt: Longer and more intense defaults
Debt Relief Programs

▶ Main program: Default-free loan from financial assistance entity
 ▶ Long-term loan of 10% of output, structured as perpetuity
 ▶ Repayment starts 2 years later
 ▶ Evaluate epidemic outcomes for economies with varying initial debt

▶ Other programs
 ▶ Alternative loan structures: smaller, shorter-term, different timing
 ▶ Grants used for buybacks

▶ Compare value of programs with and without pandemic
Debt Relief: Main Program

Outcomes from 10% financial assistance long-term default-free loan (0 NPV)

<table>
<thead>
<tr>
<th>Initial debt-to-output</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Baseline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welfare gains (% output)</td>
<td>4.3</td>
<td>6.6</td>
<td>9.4</td>
<td>8.8</td>
<td>8.6</td>
</tr>
<tr>
<td>Debt crisis: length reduction (months)</td>
<td>2</td>
<td>1</td>
<td>35</td>
<td>77</td>
<td>57</td>
</tr>
<tr>
<td>Health crisis: deaths prevented (% deaths)</td>
<td>4.6</td>
<td>5.5</td>
<td>1.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Welfare gains without pandemic (% output)</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>8.8</td>
<td>8.5</td>
</tr>
</tbody>
</table>

- Gains from program: better mitigation, preventing debt crises, relax fin. frictions
- Program generates 9.4% gain to country in baseline
- At low debt larger gains: use loan for better mitigation
- At high debt larger gains: use loan to prevent debt crises

Best to assist economies at the risk debt crisis: prevent debt crisis + saves lives
Debt Relief: Other Programs

Consider the baseline 30% of debt

<table>
<thead>
<tr>
<th>Programs</th>
<th>Main</th>
<th>Later-start</th>
<th>Short-term</th>
<th>Smaller</th>
<th>Grant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welfare gains (% output)</td>
<td>9.4</td>
<td>9.3</td>
<td>3.5</td>
<td>4.7</td>
<td>13.7</td>
</tr>
<tr>
<td>Debt: length reduction (months)</td>
<td>35</td>
<td>33</td>
<td>33</td>
<td>32</td>
<td>35</td>
</tr>
<tr>
<td>Health: deaths prevented (% deaths)</td>
<td>1.3</td>
<td>1.2</td>
<td>1.3</td>
<td>0.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

- Later-start: loan of 10% of output given at week 10, when lockdowns start
- Shorter-term: loan of 10% of output, pay over 1 year, 2 years after outbreak
- Smaller: loan of 5% output, pay as perpetuity
- Grant: Used for buybacks program
 financial assistance lose 10%, lenders gain 1%, positive social value

Longer-term loans do most of the work in helping with debt and health with higher welfare gains
Update SIR parameters to bring model deaths in line with data (Jan = first data point)

Preliminary: results on debt relief and role of debt are robust
Pandemic creates a huge challenge for emerging markets with default risk ⇒ health crisis + economic crisis + debt crisis

Lower debt burden prevents debt crisis and saves lives

Debt relief programs large social value
Appendix
Partial Default in the Data
Arellano et al. (2019)

Partial Default = \frac{Arrears}{Arrears + Debt Service}

> Arrears: sum of interest and principal in arrears for the total government debt public and publicly guaranteed
Partial Default: Frequency and Length

(a) Partial Default

(b) Default Episode Length
Partial Default and Debt

Table 1: Partial Default and Default Episodes in Percentages

<table>
<thead>
<tr>
<th>Partial Default Frequency</th>
<th>> 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>35</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default Episodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Episode length (years)</td>
</tr>
<tr>
<td>Fraction of short episodes (≤ 2 years)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Debt During Episode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before episode</td>
</tr>
<tr>
<td>Beginning of episode</td>
</tr>
<tr>
<td>Middle of episode</td>
</tr>
<tr>
<td>After episode</td>
</tr>
</tbody>
</table>
Baseline economy paths: Long paths

(a) Lockdown Intensity

(b) Consumption and Output

(c) Spread

(d) Partial Default

(e) Debt
Policy rules: Bond price

- More infected and susceptible population lower bond prices
- Epidemic lowers debt repayment prospects and prevents use of foreign borrowing
Exogenous lockdowns

Experiment:
- start with steady state debt level
- lockdown starts 1 month after outbreak
- lockdown at 50% for 4 months

▶ Reduces fatalities from 1% to 0.7% (half of optimal)
▶ Debt crisis worse