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Introduction

Emerging economies pay high, volatile risk premia on their sovereign
debt, despite having much lower debt-to-GDP ratios than developed
countries.

I Reinhart, Rogoff and Savastano (2003) call this phenomenon “debt
intolerance”

Debt intolerance of emerging markets is inconsistent with classic
Eaton and Gersovitz (1981) sovereign debt model.

I Key cost of defaulting in model is loss of access to capital markets.
I Since real GDP growth is generally more volatile in emerging markets

than in developed countries, the loss of market access is more costly for
emerging markets.

I Other things equal, emerging markets should be less likely to default,
pay lower credit spreads on their sovereign debt, and have higher debt
capacity.
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Financial development

We propose a model of sovereign debt where countries have different
levels of financial development.

By financial development, we mean the extent to which countries can
hedge shocks to their economy in international capital markets.

I In practice, developed countries have greater ability to issue stocks as
well as debt that has long maturities and is denominated in local
currency.

I To simplify, we model financial development as greater ability to hedge
jump shocks.
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Financial development

“The economies and financial markets of emerging market economies
(EMEs) tend (with some exceptions) to be more volatile than those of
advanced economies. This is true whether one looks at output growth,
exchange rates, interest rates or capital flows. Given this volatility, one
would expect hedging markets in EMEs to be well developed. But this
does not seem to be the case. EMEs make up about one third of the
global economy when measured at market exchange rates and just under
one half when measured at purchasing power parity. Their share in global
trade is 36 percent. Still, derivatives referencing their currencies or interest
rates account for only 10 percent of the global turnover of such contracts,
despite notable growth in some cases in recent years.”

BIS Quarterly Review, 2016.
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Financial development and optimal debt management

How does the ability to hedge affect debt capacity and optimal debt
management?

We find that low levels of financial development generate debt
intolerance.

I Low debt capacity, high credit spreads, and limited ability to smooth
consumption.

We find that hedging and financial wealth are complements.
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Model

Continuous time
I Solved analytically up to an ordinary differential equation with

economically intuitive boundary conditions.

Preferences
I Recursive utility proposed by Duffie and Epstein (continuous time

version of Epstein-Zin).
I Separation of risk aversion and intertemporal substitution important in

quantitative analysis.
I Allows model to generate plausible debt-output ratios without the large

discount rates used in literature.
I We use a conventional discount rate and risk aversion combined with

low EIS, which we interpret as reflecting expenditure commitments that
are difficult to change.
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Model

Output
I We adopt the jump-diffusion process used in the rare-disaster literature

(Barro and Jin (2011)).
I Diffusion shocks are useful in generating empirically plausible paths for

output
I Jumps shocks are essential to generate default in equilibrium.
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Model

Default costs
I Decline in output (quantitatively important)
I Temporary loss of access to international capital markets. Access

regained with constant probability (quantitatively unimportant).
I Model generates plausible debt-output ratios without non-linear default

costs used in literature.
I Linear default costs consistent with recent evidence by Hebert and

Schreger (2016).

Financial markets (outside default state)
I Country can invest in risk-free international bond.
I Issue non-contingent debt that can be defaulted upon.
I Hedge diffusion shocks.
I Potentially hedge jump shocks
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Model

Diffusion shocks do not generate default in our model because these
shocks are hedgeable and our debt is short term.

Only uninsurable jump shocks that are large enough generate default.
I For insurable jump shocks, it is more efficient to hedge than to default.
I For uninsurable jump shocks of moderate sizes, it is more efficient to

preserve the option to default in the future against larger losses than to
default.

Default in other continuous-time models
I Nuno and Thomas (2015), Tourre (2017), and DeMarzo, He, and

Tourre (2018) generate default in models with diffusion shocks by
assuming that countries issue term debt with exogenous maturity and
that debt issuance is locally deterministic.

I Bornstein (2017) generates default by assuming that output follows a
Poisson process in a continuous-time version of Arellano (2008).
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Three versions of the model

1 First best: perfect commitment and full spanning.

I Country hedges fully.
I Debt capacity is present value of output.

2 Model with limited commitment and full spanning.
I No default in equilibrium, so credit spreads are zero.
I As in Kehoe and Levine (1993), debt capacity is reduced so that

country does not succumb to the temptation to default.
I It is optimal to hedge all risks in international financial markets.
I Volatility of output is eliminated.
I Relatively high debt capacity.
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Three versions of the model

3 Benchmark model: limited commitment and limited spanning.
I Defaultable debt is a partial hedge against risks that cannot be insured.
I It is not optimal to fully hedge risks that can be hedged!
I Hedging instruments are used to increase debt capacity by ensuring

that small shocks do not trigger default.
I Output is volatile.
I Credit spreads are high and volatile.
I Debt capacity is low.
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Endowment process

Output, Yt , follows jump-diffusion process.

dYt

Yt−
= µdt + σdBt − (1− Z )dJt , Y0 > 0 ,

Bt is a standard Brownian motion.

J is a pure jump process:
I dJt = 1 if a jump occurs at t and dJt = 0 otherwise
I Poisson process with a constant arrival rate, λ
I If a jump occurs at time t, Yt goes from Yt− to Yt = ZYt−
I Z has pdf G (Z ) with Z > 0.

Expected growth rate of output

g = µ− λ[1− E(Z )]
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Endowment process in discrete time

lnYt+∆ − lnYt =

(
µ− σ2

2

)
∆ + σ

√
∆ εt+∆ − (1− Z )νt+∆

time-t conditional distribution of εt+∆ is a standard normal;

νt+∆ = 1 with probability λ∆ and zero with probability (1− λ∆);

σ2/2 is the Jensen-inequality correction associated with the diffusion
shock.
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Preferences

Recursive utility with normalized aggregator f (C ,V ):

Vt = Et

[∫ ∞
t

f (Cu,Vu)du

]
,

Duffie-Epstein’s continuous-time version of Epstein-Zin.

f (C ,V ) =
ρ

1− ψ−1

C 1−ψ−1 − [(1− γ)V ]χ

[(1− γ)V ]χ−1

where χ = 1−ψ−1

1−γ

Time-separable CRRA is special case

14/47



Epstein-Zin preferences in discrete time

Vt =
[
(1− β)c

1−1/ψ
t + β(EV 1−γ

t+1 )(1−1/ψ)/(1−γ)
]1/(1−1/ψ)

β is the discount factor,

γ is the relative-risk-aversion coefficient for static gambles,

ψ is the elasticity of substitution with respect to deterministic income
changes.

What is the role of risk aversion and intertemporal substitution in
determining debt capacity and optimal debt management?
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Financial assets and market structure

The country has four investment and financing opportunities

I it can insure its diffusion risk through hedging contracts

I it can buy insurance against certain jumps

I it can borrow in the sovereign debt market at an interest rate that is
the sum of the risk-free rate, r , and an endogenous credit spread, πt

I it can save at the risk-free rate, r

Upon default on its sovereign debt, the country enters autarky and
loses access to all four investment and financing opportunities
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Diffusion risk hedging contracts

Diffusive shocks are idiosyncratic and markets for contracts that
hedge these shocks are perfectly competitive

No upfront payment for holding this security and no risk premium for
bearing idiosyncratic risk

Investor’s instantaneous gain or loss at time t + dt:
σdBt = σ (Bt+dt − Bt)

Normalize the volatility as: σ

The holdings of diffusion risk contracts at time t−: Θt−
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Jump insurance contracts and premia

Jump shocks are idiosyncratic.

Insurance contracts for all intervals (Z ,Z + dZ ) for Z ≥ Z ∗ are
available for trading and are competitively priced.

Buyer of Xt−(Z ) units of jump insurance at time t− makes
continuous insurance premium payments equal to Xt−(Z )λ dG (Z ).

Receives a lump-sum payment Xt−(Z ) if the recovery fraction falls in
interval (Z ,Z + dZ )

Total jump insurance premium per period:

Φt− = λ

∫ 1

Z∗
Xt−(Z )dG (Z ) ≡ λE [Xt−(Z ) IZ≥Z∗ ]
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Sovereign debt

Denote the country’s financial wealth by Wt

Sovereign debt is continuously repaid and reissued

Sovereign debt is held and priced in competitive markets by
well-diversified foreign investors

The maximal amount of sovereign debt is stochastic and
endogenously determined in equilibrium
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Sovereign default

Country has option to default at any time on its sovereign debt

Two costs of defaulting
I Output drops permanently from Yt to αYt , α ∈ (0, 1).
I Country goes into autarky where it has no access to international

financial markets.

Country re-gains full access to financial markets with probability ξ per
unit of time.

Upon exiting autarky, country starts afresh with no debt (Wt = 0).
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Credit spread

Debt is risky because it is not collateralized and the borrower has
option to default.

Use Dt to denote the level of sovereign debt: Dt = −Wt > 0 when
Wt < 0.

When country does not default, it pays principal and interest to
creditors, Dt(1 + (r + πt)dt), and borrows Dt+dt at time t + dt.

When the country defaults it pays nothing to creditors at time t + dt.
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Optimality

The country maximizes utility of the representative agent by choosing
I consumption,

I diffusion and jump risk hedging demands,

I sovereign debt issue,

I default timing,

for given
I output process,

I equilibrium pricing of sovereign debt,

I insurance contracts for diffusion and jump shocks.
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Model solution

V (Wt ,Yt) is the representative agent’s value function for the normal
regime.

V̂ (Yt) the value function for the autarky regime.

Closed form ordinary differential equation + economically intuitive
boundary conditions.

Three steps
I Analyze the decision problem in the normal regime,

I Characterize the boundary conditions for endogenous default,

I Convert the two-dimensional optimization problem into a
one-dimensional problem.
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Value function

The value function takes the form:

V (W ,Y ) =
[bP(W ,Y )]1−γ

1− γ
,

b = ρ

[
r + ψ(ρ− r)

ρ

] 1
1−ψ

P(W ,Y ) is certainty equivalent wealth

P(W ,Y ) is the total wealth that makes the agent indifferent between
the status quo and having a wealth level P(W ,Y ) and no output:

V (W ,Y ) = V (P(W ,Y ), 0) .
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Autarky regime

The financial wealth is always zero in autarky: Wt ≡ 0

Value function V̂ (Y ) satisfies HJB equation:

0 = f (Y , V̂ ) + µY V̂ ′(Y ) +
σ2Y 2

2
V̂ ′′(Y ) + λE

[
V̂ (ZY )− V̂ (Y )

]
+ ξ

[
V (0,Y )− V̂ (Y )

]

The value function takes the form:

V̂ (Y ) =
(b p̂ Y )1−γ

1− γ
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Connecting the normal regime with autarky

Denote −Wt by debt capacity, i.e the maximum debt that the
country can issue

It’s indifferent between repaying its debt and defaulting:

V (Wt ,Yt) = V̂ (αYt)

This value-matching condition implies: Wt = W (Yt)

The implied borrowing constraint:

Wt ≥W (Yt)
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Homogeneity property

Homogeneity property: reduce number of state variables from 2 to 1

Scaled financial wealth is the model’s effective state variable:

wt =
Wt

Yt

The scaled debt capacity: w = Wt/Yt

The scaled decisions:

ct = Ct/Yt , θt = Θt/Yt , xt = Xt/Yt

The scaled certainty equivalent wealth: p(wt) = P(Wt ,Yt)/Yt
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Endogenous default threshold

Only uninsurable large jump shocks trigger default.

For insurable output shocks, it is more efficient to hedge than to
default.

For uninsurable downward jump shocks of moderate sizes, it is more
efficient to preserve the option to default in the future against larger
losses than to default.
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Equilibrium credit spread

The competitive-market zero-profit condition implies

−Wt−(1 + rdt) = −Wt−(1 + (r + πt−)dt) [1− λG(Z(wt−))dt] + λG(Z(wt−))dt × 0

It implies
π(wt−) = λG (Z (wt−))
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Determining scaled debt capacity

It is not optimal to default in response to diffusive shock

Country sets controlled volatility process to zero at w :

σw (w) = 0

It implies

θ(w) = w

To ensure wt ≥ w for all t ≥ 0, µw (w) ≥ 0 is required
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First best: full spanning and full commitment (FB)

Country fully hedges diffusion and jump risk

Full spanning means that Z ∗ = 0

As in Friedman (1957) and Hall (1978), the present value of output is

Ht = Et

(∫ ∞
t

e−r(u−t)Yudu

)
The scaled non-financial wealth is

h =
1

r − g

To ensure that non-financial wealth is finite, we require that r > g

To ensure that utility is finite, we require

ρ > (1− ψ−1)r
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Model solution for FB

Scaled total wealth:

pFB(w) = PFB(W ,Y )/Y = (W + H)/Y = w + h

The scaled endogenous debt capacity: −wFB = h

The optimal consumption-output ratio:
cFB(w) = mpFB(w) = m(w + h ) where m = r + ψ (ρ− r)

The optimal hedging demand for diffusive shocks: θFB(w) = −h

The optimal hedging demand for jump risk: xFB(w ,Z ) = (1− Z )h

The scaled jump insurance premium: φFB(w) = λ(1− E(Z ))h

The default trigger for Z : Z (w) = Z ∗ = 0
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Calibration
The size distribution of jumps is governed by a power law

G (Z ) = Zβ

Parameters taken from the literature
I Following Aguiar and Gopinath (2006), we set γ = 2 and r = 4%
I Following Gelos, Sahay, and Sandleris (2011), we set ξ = 0.25
I Following Barro (2009), we set ρ = 5.2
I Following Barro and Jin (2011), we set β = 6.3, λ = 0.073 and

Z∗ = 0.9 to match the 3.8 percent disaster probability

Parameters calibrated to Argentina data
I Four parameters: elasticity, ψ = 0.047, drift parameter in the absence

of jumps, µ = 2.7%, diffusion volatility σ = 4.5%, and the default
distress cost α = 0.975

I Four moments:
F Average growth rate of output of 1.7 percent per annum
F standard deviation of the growth rate of output of 6.66 percent
F an average debt-to-GDP ratio of 15 percent
F unconditional default probability of 3 percent
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Table: Parameter values

Parameters Symbol Value
risk aversion γ 2
elasticity of intertemporal substitution ψ 0.047
subjective discount rate ρ 5.2%
risk-free rate r 4%
financial development parameter Z∗ 0.9
output drift (in the absence of jumps) µ 2.7%
output diffusion volatility σ 4.5%
jump arrival rate λ 0.073
power law parameter β 6.3
default distress cost α 97.5%
autarky exit rate ξ 0.25

Targeted observables
average output growth rate g 1.7%
output growth volatility 6.66%
average debt-output ratio 15%
unconditional default probability 3%
All parameter values are continuously compounded and annualized
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Certainty equivalent wealth, consumption, and MPC

−0.25 −0.2 −0.15 −0.1 −0.05 0
26.5

27

27.5

28
A. scaled certainty equivalent wealth: p(w)

w

 

 

Z
*
=0.9

Z
*
=0.5

−0.25 −0.2 −0.15 −0.1 −0.05 0
2

4

6

8

10

12

B. marginal value of wealth: p′(w)

w

−0.25 −0.2 −0.15 −0.1 −0.05 0
0.95

1

1.05

1.1
C. consumption−output ratio: c(w)

w
−0.25 −0.2 −0.15 −0.1 −0.05 0

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

D. c′(w)

w

35/47



Jump risk hedging demand, jump insurance premium, and
equilibrium credit spread
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Diffusion risk hedging demand, drift, volatility, and
stationary distribution
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Financial development and debt intolerance

Z∗ Average debt-output ratio Default probability Debt capacity |w |

1 14.7% 4.0% 20.5%
0.9 15% 3.1% 20.7%
0.5 20.7% 0.1% 24%
0 18.9% 0 25%

FB 4,348% 0 h = 4, 348%

Table: Z∗ = 1 corresponds to no jump hedging, and Z∗ = 0 to full spanning.
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Financial development and debt intolerance

The more limited is the spanning of assets at a country’s disposal, the
more severe is its debt intolerance.

When spanning is limited, it is not optimal to fully hedge risks that
can be hedged. The country uses the available hedging instruments
to increase its debt capacity by ensuring that default is not triggered
by shocks that can be hedged.

Countries with more limited spanning hedge less and endure more
volatility in consumption.

These countries are also more likely to default, so lenders charge them
a higher credit spread to cover the expected default losses.
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The effects of EIS (ψ)

ψ debt-output ratio default probability debt capacity |w |

0 15.3% 3.26% 19.8%
0.047 15% 3.09% 20.7%
0.25 17.9% 1.10% 34.2%
0.5 5.5% 0.65% 42.2%
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The effects of EIS (ψ)

Capital markets are more willing to lend to countries with higher
intertemporal substitution, since it is less costly (in terms of utility)
for these countries to cut consumption in response to adverse shocks
to service their debt.

The average debt-output ratio is non-monotonic in ψ.
I When ψ is low when the country is close debt capacity it is costly to

move away. So for low values of ψ the average debt-output ratio
inherits the positive relation between debt capacity and ψ.

I For sufficiently high values of ψ, as ψ rises the average debt-output
ratio falls even though debt capacity is expanding. In this case, the
country has strong incentives to save away from the debt region where
credit spreads are relatively high. This behavior results in a low average
debt-output ratio.
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The effects of risk aversion (γ)

γ debt-output ratio default probability debt capacity |w |

1 15.6% 3.25% 19.6%
2 15% 3.09% 20.7%
3 15.4% 2.51% 23%
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The effects of risk aversion (γ)

Increasing γ raises the cost of default since it is more costly to bear
consumption volatility in the autarky regime.

With default more costly, the country defaults less often and debt
capacity is higher.

The effect of γ on the average debt-output ratio is quite small.
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Recursive utility versus expected utility

Our calibration uses a low value of the EIS.

Why doesn’t this calibration work with expected utility?

With expected utility low EIS implies high risk aversion (γ = ψ−1).

A high γ generates a large debt capacity because the utility cost of
defaulting and bearing the consumption volatility associated with
autarky is high.

But, this high default cost induces the country to avoid borrowing, so
the average debt-output ratio is low or even negative.
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The effects of distress costs (1− α)

(1− α) debt-output ratio default probability debt capacity |w |

5% 36.9% 2.96% 49%
2.5% 15% 3.09% 20.7%
1% 5.5% 3.18% 7.2%
0% 0.1% 3.63% 0.2%

Since the cost of autarky is modest, when the distress cost is low,
debt capacity is very low, close to the zero limit emphasized by Bulow
and Roggoff (1989).
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The effects of ξ

ξ debt-output ratio default probability debt capacity |w |

0 15.8% 3.06% 21.0%
0.25 15% 3.09% 20.7%
0.5 14.7% 3.13% 18.2%
1 13.2% 3.15% 16.0%

Bulow and Rogoff (1989) critique: autarky might be difficult to
sustain because creditors cannot commit ex-ante to exclude the
defaulting borrower from ex-post risk-sharing arrangements.

Distress costs are sufficient to sustain the existence of sovereign debt.

In this sense, our model is immune to the Bulow-Rogoff critique.

46/47



Conclusion

Tractable model of sovereign debt that features a jump-diffusion
process for output used in the rare-disasters literature, recursive
preferences that separate the role of intertemporal substitution and
risk aversion, and partial insurance against jump risk.

I Low levels of financial development generate debt intolerance, i.e., low
debt levels that are associated with high credit spreads, i.e., low debt
levels that are associated with high credit spreads.

I Generates plausible debt-output ratios with conventional discount rates
and linear default costs.

Possible extensions
I Risk premium demanded by foreign investors to compensate their

exposures to the systematic components of sovereign default risk.
I Moral hazard problem associated with insurance.
I Sudden stops and debt rollover risk.
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