

Uptake is slower partly because many rural areas do not have access to providers of high-speed internet.

LOW-DENSITY DEPLOYMENT (2 HOMES/SQUARE MILE)		
Component	# of Units	Total cost
Network Terminator	6 ct.	\$1,200
Drop Fiber	900 ft.	\$1,350
Static Costs ³		\$101,940
Total		\$104,490
Cost per Residence		\$17,415

— Fiber (Cable and Drop)

Splitter (FDH)

• Fiber Service Terminal (FST)

MEDIUM-DENSI (8 HOMES/SQUARE N	fy deployn IILE)	1ENT
Component	# of Units	Total cost
Network Terminator	24 ct.	\$4,800
Drop Fiber	2,400 ft.	\$3,600
Static Costs ³		\$101,940
Total		\$110,340
Cost per Residence		\$4,597. <u>⁵⁰</u>

POSSIBLE SOLUTIONS FOR BROADBAND ACCESS EXPANSION IN RURAL COMMUNITIES

Options for broadband expansion in rural communities differ by cost and effectiveness.⁴

Technology	Definition	Cost to Connect (Rural)	Max Download Speed	Potential Limitations
Wireless — 6MHz TV White spaces	Internet using parts of broadcast TV spectrum	\$10B-\$15B	33 Mbps	Shares TV airwaves, possibly limiting speed and requiring FCC rule compliance
Wireless — 700 MHz Fixed	Internet using a stationary radio link	\$15B-\$25B	1,000 Mbps	Shares airwaves with other technologies, possibly limiting speed
Wireless — 2,500 MHz 4G LTE	Internet using a high- frequency radio link	\$25B-\$40B	100 Mbps	Only cost-effective in areas with over 200 people/sq. mile
Satellite	Internet using satellite signals	\$30B-\$45B	100 Mbps	Data usage limitations, higher latency and higher consumer costs
Fiber-to-home	Internet using fiber optic technology	\$45B-\$65B	1,000 Mbps	Higher upfront construction costs and delays

POTENTIAL PARTNERS

There are numerous different potential players in broadband development projects:

Institutional Investors Venture Capitalists Angel Investors Governments Opportunity Zone Funds Financial Institutions⁵ Philanthropy

Local Governments Internet Service Providers Nonprofit Consortia Cooperatives

Residents Educational Institutions Health Care Providers Businesses Nonprofits Government Agencies

BROADBAND FUNDING

The federal government is the largest single funder of broadband infrastructure projects in the 5th District, supporting **\$6.09 billion** in investments between 2009 and 2016.

FEDERAL SUPPORT⁶ FOR BROADBAND INFRASTRUCTURE EXPANSION, FY09-16

5TH DISTRICT

SPOTLIGHT

MODELS FOR PUBLIC BROADBAND EXPANSION		5th District Example		
Local governments in particular can assume different roles in broadband projects:		Location	Technology	
	PUBLIC POLICY: Changing regulations and plans to encourage private broadband development	Jackson County, NC	N/A	
Ø	INFRASTRUCTURE ONLY: Providing conduit and dark fiber services to local organizations and ISPs	Holly Springs, NC	Fiber	
	PUBLIC-PRIVATE PARTNERSHIP (P3): Partnering with one or more private organizations to plan, fund, build and maintain a network	Westminster, MD	Fiber	
	PUBLIC SERVICES PROVIDER: Connecting public organizations with fiber or wireless technology	Virginia Beach, VA	Fiber	
	OPEN ACCESS: Opening publicly owned fiber optic networks to private service providers	Danville, VA	Fiber	
	RETAIL PROVIDER (BUSINESS ONLY): Offering internet services to business and industrial districts	Allegany County, MD	Fixed Wireless	
Ł	RETAIL PROVIDER (RESIDENT & BUSINESS): Offering internet services to all residents	Wilson, NC	Fiber	

For more information, visit: https://www.richmondfed.org/community_development

ENDNOTES

¹ For this infographic, urban areas are defined as counties in metro areas with 1 million or more residents (USDA Rural Urban Continuum Code (RUCC) 1) or any county in a metro area with 250,000 to 1 million residents (RUCC 2). Rural/smaller towns are those in RUCC categories 3–9. For more information about the USDA RUCC, please see https://www.ers.usda.gov/data-products/rural-urban-continuum-codes.aspx.

² 25 Mbps download/3 Mbps upload is the FCC-defined benchmark broadband speed.

³ Static Costs include fiber service terminal, trenching, splitter cabinet and splitter cord.

⁴ DSL technology not included because its average download speeds are below the FCC benchmark threshold of 25 Mbps/3 Mbps.

⁵ Bank investment in broadband infrastructure for low- and moderate-income communities may qualify for Community Reinvestment Act (CRA) credit.

⁶ The High Cost, Schools and Libraries and Rural Health Care Programs are part of the FCC's Universal Service Fund.

GENERAL SOURCES

The Problem:

Tom Barkin, "Moving the Needle in Rural Communities," Speech to the Virginia Governor's Conference on Agricultural Trade, March 5, 2019; U.S. Census Bureau, American Community Survey 5-Year Estimates, 2013–2017; Steve G. Parsons and James Stegeman, "Rural Broadband Economics: A Review of Rural Subsidies," Costquest Associates (2018); FCC Open Data, "Area Table June 2017," Accessed March 1, 2019; Microsoft, "A Rural Broadband Strategy: Connecting Rural America to New Opportunities," (2017).

Barriers to Broadband:

Steve G. Parsons and James Stegeman, "Rural Broadband Economics: A Review of Rural Subsidies," Costquest Associates (2018); Doug Brake, "A Policymaker's Guide to Rural Broadband Infrastructure," Information Technology & Innovation Foundation (2017); Iowa State Association of Counties, "Broadband Challenges," (2016).

Solutions for Broadband Access Expansion in Rural Communities:

Wolfgang Bock et al., "The Economic Case for Bringing Broadband to the Rural US," The Boston Consulting Group (2018); "USDA Rural Development 2016 Progress Report," U.S. Department of Agriculture (2017); BroadbandUSA, "Grants Awarded," (2019); Rural Health Care Program Funding Commitments, FY2009–FY2016, Universal Service Administrative Co.

Models for Public Broadband Expansion:

John Honker, "Seven Models for Community Broadband," Broadband Communities Magazine (2016); "Municipal Broadband Case Studies & Benchmarking Analysis," Magellan Advisors; Wolfgang Bock et al., "The Economic Case for Bringing Broadband to the Rural US," The Boston Consulting Group (2018).