
      

On the Identification
of Structural Vector
Autoregressions

Pierre-Daniel G. Sarte

F ollowing seminal work by Sims (1980a, 1980b), the economics profes-
sion has become increasingly concerned with studying sources of eco-
nomic fluctuations. Sims’s use of vector autoregressions (VARs) made it

possible to address both the relative importance and the dynamic effect of vari-
ous shocks on macroeconomic variables. This type of empirical analysis has had
at least two important consequences. First, by deepening policymakers’ under-
standing of how economic variables respond to demand versus supply shocks, it
has enabled them to better respond to a constantly changing environment. Sec-
ond, VARs have become especially useful in guiding macroeconomists towards
building structural models that are more consistent with the data.

According to Sims (1980b), VARs simply represented an atheoretical tech-
nique for describing how a set of historical data was generated by random
innovations in the variables of interest. This reduced-form interpretation of
VARs, however, was strongly criticized by Cooley and Leroy (1985), as well
as by Bernanke (1986). At the heart of the critique lies the observation that VAR
results cannot be interpreted independently of a more structural macroeconomic
model. Recovering the structural parameters from an estimation procedure
requires that some restrictions be imposed. These are known as identifying
restrictions. Implicitly, the choice of variable ordering in a reduced-form VAR
constitutes such an identifying restriction.

As a result of the Cooley-Leroy/Bernanke critique, economists began to
focus more precisely upon the issue of identifying restrictions. The extent to
which specific innovations were allowed to affect some subset of variables,
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either in the short run or in the long run, began to be derived explicitly from
structural macroeconomic models. Consequently, what were previously consid-
ered random surprises could be interpreted in terms of specific shocks, such
as technology or fiscal policy shocks. This more refined use of VARs, known
as structural vector autoregressions (SVARs), has become a popular tool for
evaluating economic models, particularly in the macroeconomics literature.

The fact that nontrivial restrictions must be imposed for SVARs to be
identified suggests, at least in principle, that estimation results may be con-
tingent on the choice of restrictions. To take a concrete and recent example,
in estimating a system containing employment and productivity variables, Gali
(1996) achieves identification by assuming that aggregate demand shocks do
not affect productivity in the long run. Using postwar U.S. data, he is then
able to show that, surprisingly, employment responds negatively to a positive
technology shock. One may wonder, however, whether his results would change
significantly under alternative restrictions. This article consequently investigates
how the use of different identifying restrictions affects empirical evidence about
business fluctuations. Two important conclusions emerge from the analysis.

First, by thinking of SVARs within the framework of instrumental variables
estimation, it will become clear that the method is inappropriate for certain
identifying restrictions. This finding occurs because SVARs use the estimated
residual from a previous equation in the system as an instrument in the current
equation. Since estimation of this residual depends on some prior identifying
restriction, the identification scheme necessarily determines the strength of the
instrument. By drawing from the literature on estimation with weak instruments,
this article points out that in some cases, SVARs will not yield meaningful
parameter estimates.

The second finding of interest suggests that even in cases where SVAR
parameters can be properly estimated, different identification choices can lead
to contradictory results. For example, in Gali (1996) the restriction that ag-
gregate demand shocks not affect productivity in the long run also implies
that employment responds negatively to a positive technology shock. But the
opposite result emerges when aggregate demand shocks are allowed to have
a small negative effect on productivity in the long run. This latter restriction
is appropriate if demand shocks are interpreted as fiscal policy shocks in a
real business cycle model. More importantly, this observation suggests that
sensitivity analysis should form an integral part of deciding what constitutes a
stylized fact within the confines of SVAR estimation.

This article is organized as follows. We first provide a brief descrip-
tion of reduced-form VARs as well as the basic idea underlying the Cooley-
Leroy/Bernanke critique. In doing so, the important assumptions underlying
the use of VARs are laid out explicitly for the nonspecialist reader. We then
introduce the mechanics of SVARs—that is, the details of how SVARs are
usually estimated—and link the issue of identification to the estimation
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procedure.1 The next section draws from the literature on instrumental vari-
ables in order to show the conditions in which the SVAR methodology fails
to yield meaningful parameter estimates. We then describe the type of inter-
pretational ambiguities that may arise when the same SVAR is estimated using
alternative identifying restrictions. Finally, we offer a brief summary and some
conclusions.

1. REDUCED-FORM VARS AND THE
COOLEY-LEROY/BERNANKE CRITIQUE

In this section, we briefly describe the VAR approach first advocated by Sims
(1980a, 1980b). In doing so, we will show that the issue of identification al-
ready emerges in interpreting estimated dynamic responses for a given set of
variables. To make matters more concrete, the analysis in both this and the next
section is framed within the context of a generic bivariate system. However,
the basic issues under consideration are invariant with respect to the size of the
system. Thus, consider the joint time series behavior of the vector (∆yt, ∆xt),
which we summarize as

B(L)Yt = et, with B(0) = B0 = I, (1)

where Yt = (∆yt, ∆xt)′, and B(L) denotes a matrix polynomial in the lag opera-
tor L. B(L) is thus defined as B0 +B1L+ . . . +BkLk + . . . , where LkYt = Yt−k.
Since B(0) = I, equation (1) is an unrestricted VAR representation of the joint
dynamic behavior of the vector Yt. In Sims’s (1980a) original notation, the
vector et = (eyt, ext)′ would carry the meaning of “surprises” or innovations in
∆yt and ∆xt respectively.

In its simplest interpretation, the reduced form in (1) is a model that de-
scribes how the historical data contained in Yt was generated by some random
mechanism. As such, few would question its usefulness as a forecasting tool.
However, in the analysis of the variables’ dynamic responses to the various
innovations, the implications of the unrestricted VAR are not unambiguous.
Specifically, let us rewrite (1) as a moving average representation,

Yt = B(L)−1et = C(L)et, (2)

where C(L) is defined to be equal to B(L)−1, with C(L) = C0 + C1L + . . . +
CKLK + . . . , and C0 = C(0) = B(0)−1 = I. To obtain the comparative dynamic
responses of ∆yt and ∆xt, Sims (1980a) first suggested orthogonalizing the
vector of innovations et by defining ft = Aet, such that A is a lower triangular
matrix with 1s on its diagonal and ft has a normalized diagonal covariance

1 Note that the details of the estimation procedure described in this article apply directly to
the work of King and Watson (1997).
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matrix. This particular transformation is known as a Choleski factorization
and the newly defined innovations, ft = ( fyt, fxt)′, have unit variance and are
orthogonal. Equation (2) can therefore also be expressed as

Yt = C(L)A−1Aet = D(L)ft, (3)

with D(L) = C0A−1 + C1A−1L + . . . + CkA−1Lk + . . . . Responses to
innovations at different horizons, also known as impulse responses, are then
given by

Et
∂Yt+k

∂ft
= CkA−1, for k = 0, 1, . . . . (4)

The advantage of computing dynamic responses in this way is that the innova-
tions ft are uncorrelated. Therefore it is very simple to compute the variances
associated with any linear combinations involving them. Note that

Et+1Yt+k − EtYt+k = CkA−1ft, (5)

so that the jth row of CkA−1 gives the marginal effect of ft on the jth variable’s
k step-ahead forecast error. Since the ft’s are uncorrelated with unit variance,
squaring the elements of CkA−1 leads to contributions of the elements of ft to the
variance of the k step-ahead forecast error. This latter process is known as vari-
ance decomposition and describes the degree to which a particular innovation
contributes to observed fluctuations in Yt. Note that the variance decomposi-
tion of the contemporaneous forecast error is given by the squared elements
of C0A−1 = A−1. More importantly, since A is a lower triangular matrix, A−1

is also lower triangular. This implies that the innovation in the first equation,
fyt, explains 100 percent of the variance in the contemporaneous forecast error
of ∆yt. But this is precisely an identifying restriction on the dynamic behavior
of Yt. In a larger system, the variance of the contemporaneous forecast error
in the jth variable would be entirely accounted for by the first j innovations
in a recursive fashion. Each of these restrictions would then implicitly consti-
tute prior identifying restrictions. In this sense, the ordering of variables in a
reduced-form VAR is of crucial significance.

This last point was made, perhaps most vigorously, in Cooley and Leroy
(1985): “if the models (i.e., VARs) are interpreted as non-structural, we view
the conclusions as unsupportable, being structural in nature. If the models are
interpreted as structural, on the other hand, the restrictions on error distributions
adopted in atheoretical macroeconometrics are not arbitrary renormalizations,
but prior identifying restrictions.” On a related note, Bernanke (1986) also
writes that the standard Choleski decomposition, while “sometimes treated as
neutral . . . in fact embodies strong assumptions about the underlying economic
structure.” Following these criticisms, several authors, including Blanchard and
Watson (1984), Sims (1986), Bernanke (1986), and Blanchard and Quah (1989),
addressed the issue of identification explicitly. The error terms in these latter
models were given structural interpretations and the results no longer had to
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depend on an arbitrary orthogonalization. However, this latter methodology
possesses its own problems, both in terms of the validity of the estimation
procedure and the interpretation of the results. This is the subject to which we
now turn our attention.

2. INTRODUCTION TO THE MECHANICS OF
STRUCTURAL VARS

The reduced form in equation (1) could simply be thought of as a way to
summarize the full data set Yt. In contrast, suppose that a theoretical model
tells us that yt actually evolves according to a specific stochastic process,

∆yt = Θya(L)εat + Θyb(L)εbt + (1− L)Φya(L)εat + (1− L)Φyb(L)εbt, (6)

where εat and εbt now possess well-defined structural interpretations. Thus, yt

might represent national output, while εat and εbt might denote shocks to tech-
nology and labor supply respectively. This specification for yt is quite general
in that it allows shocks to have both permanent and temporary effects. The
polynomial in the lag operator Φ(L) captures temporary deviations in yt, while
the polynomial Θ(L) keeps track of permanent changes in its steady-state level.
Similarly, suppose that xt follows a process that can be described by

∆xt = Θxa(L)εat + Θxb(L)εbt + (1− L)Φxa(L)εat + (1− L)Φxb(L)εbt. (7)

With this specification in hand, it is possible to summarize the system as

Yt = S(L)εt, (8)

where Yt is defined as in the previous section, εt = (εat, εbt)′, and

S(L) =

[
Θya(L) + (1− L)Φya(L) Θyb(L) + (1− L)Φyb(L)
Θxa(L) + (1− L)Φxa(L) Θxb(L) + (1− L)Φxb(L)

]
. (9)

Equation (8) therefore denotes the structural moving average representation of
the variables yt and xt, as a function of the exogenous innovations εat and εbt.
Let us assume that S(L) is invertible so that equation (8) can also be expressed
in autoregressive form:

T(L)Yt = S(L)−1Yt = εt, (10)

that is,

T(L)
[

∆yt

∆xt

]
=

[
εat

εbt

]
, with T(0) = S(0)−1 6= I. (11)

Since the two exogenous processes that govern the behavior of yt and xt in
(6) and (7) are assumed stationary, we also assume that the roots of the poly-
nomial matrix |T(z)| lie outside the unit circle. At this stage it is not possible
to disentangle the structural effects of εat and εbt in equation (11). Put another
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way, we cannot currently identify the structural error terms εat and εbt with the
residuals in the two equations implicit in (11). This is a well-known problem
that naturally leads us to the issue of identification.

Identification in Structural VARs

To get a handle on the problem of identification, observe the relationship be-
tween the reduced form in (1) and equation (11). Since T(L)Yt = T0Yt +
T1Yt−1 + . . . , it follows that T−1

0 T(L)Yt = Yt + T−1
0 T1Yt−1 + . . . = T−1

0 εt.
We then see that T−1

0 T(L)Yt is the reduced form, that is, T−1
0 T(L) = B(L) so

that

T(0)−1T(L)Yt = B(L)Yt = et = T(0)−1εt. (12)

Hence, if Σ = cov (εt) and Ω = cov (et), the following relation also holds:

T(0)−1ΣT(0)−1′ = Ω. (13)

Since Ω can be estimated from the reduced form, the problem of identi-
fication relates to the conditions under which the structural parameters in
T(0)−1ΣT(0)−1′ can be recovered from Ω. Equation (13) potentially estab-
lishes a set of three equations in seven unknowns. Specifically, the unknowns
consist of four parameters in T(0) and two variances and one covariance term
in Σ. The SVAR literature typically reduces the size of this problem by mak-
ing the following two assumptions. First, T(0) is normalized to contain 1s
on its diagonal. Second, Σ is diagonalized, which reflects the assumption that
the structural disturbance terms are taken to be uncorrelated. This leaves us
with four unknowns; therefore, one further restriction must be imposed for the
structural form to be identified. This additional restriction will generally reflect
the econometrician’s beliefs and, as will be apparent below, will allow one to
separate the effects of the two structural error terms.

As we have just pointed out, only one restriction needs to be imposed
upon the dynamics of the system in (11) for the parameters to be identified.
One possibility is to specify a priori one of the parameters in the contempo-
raneous matrix T(0). Another popular approach, the one we focus on here,
is to pre-specify a particular long-run relationship between the variables and
therefore constrain the matrix of long-run multipliers T(1). This approach is
the one followed by Shapiro and Watson (1988), Blanchard and Quah (1989),
King, Plosser, Stock, and Watson (1991), and Gali (1992, 1996) among others.
To be concrete, define

T(1) =

[
1− θyy −θyx

−θxy 1− θxx

]
=

[
Θya(1) Θyb(1)
Θxa(1) Θxb(1)

]−1

= S(1)−1. (14)

One way to achieve identification would be to impose the restriction that the
exogenous process with innovation εat not affect the level of xt in the long run.
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That is, impose the restriction that

Θxa(1) = 0. (15)

Since inverses of block diagonal matrices are themselves block diagonal, set-
ting Θxa(1) = 0 is tantamount to setting θxy = 0. It would then be possible
to estimate all the remaining parameters in equation (6) and (7). This type
of restriction, known as an exclusion restriction, is used for identification in
the papers cited above. Note, however, that in theory there is no reason why
identified parameters should be set to zero as opposed to any other value. All
that is required is that the set of identified parameters be fixed in advance,
whether zero or not. For example, if εat denotes a shock to technology and
xt represents labor supply, imposing Θxa(1) = 0 would mean the structural
model we have in mind implies that changes in technology do not affect labor
supply in the long run. However, in a standard real business cycle model, the
permanent effect of technology on labor supply depends on whether the income
or the substitution effect dominates. This effect in turn depends on whether the
elasticity of intertemporal substitution is greater or less than one. Therefore,
there is no reason why exclusion restrictions should necessarily be used as an
identification strategy.

The fact that Θxa(1), or alternatively θxy, does not have to be set to zero
as a way to identify the model means that estimated parameters, and therefore
estimated dynamic responses, can vary depending on the identification scheme
adopted. This observation carries with it two potential problems. First, different
identification schemes might lead to different comparative dynamic responses
of the variables. Therefore, in using SVARs to establish stylized facts, some
sensitivity analysis appears to be essential. Second, the estimation procedure
may fail in a statistical sense for some values of θxy in the relevant parameter
space. Before looking at each of these problems, however, we first need to
explain SVAR estimation.

Structural VAR Estimation Procedure

The most popular way of imposing identifying restrictions as part of the esti-
mation procedure in a SVAR is to take an instrumental variables (IV) approach,
specifically two-stage least squares. In applying this approach to our bivariate
system, we examine a simple case involving one lag. This will help in keeping
matters tractable. Thus, the second equation in (11) can be written as

∆xt = βxy0∆yt + βxy1∆yt−1 + βxx1∆xt−1 + εbt. (16)

To see how the long-run multipliers θxx and θxy in T(1) implicitly enter in
equation (16), observe that this equation can also be expressed as

∆xt − θxy∆yt = γxy0∆
2yt + θxx∆xt−1 + εbt, (17)
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where ∆2yt denotes the second difference in yt, θxx = βxx1, γxy0 = −βxy1, and
θxy = βxy0+βxy1.2 By setting a predetermined value for θxy, not necessarily zero,
the parameters of equation (17) can then be estimated. Since ∆2yt is correlated
with εbt, ordinary least squares estimation is inappropriate, but two-stage least
squares can be performed using the set ZZ = {∆xt−1, ∆yt−1} as instruments. In
a similar fashion, the equation for ∆yt can be written as

∆yt = βyy1∆yt−1 + βyx0∆xt + βyx1∆xt−1 + εat. (18)

Equation (18) can be estimated using the same set of instruments as for (17)
plus the estimated residual for εbt.3 Recall that in order to achieve identification,
the structural disturbances were assumed uncorrelated, thereby allowing the use
of the estimated residual as an instrument. Furthermore, this residual is the only
candidate instrument that remains. Additional lags of the endogenous variables,
if relevant, should have been included in the original equations.

The key point to note at this stage is that since the left-hand side of equation
(17) varies with θxy, the parameters as well as the error term in that equation
are contingent upon the identification scheme. This raises a question as to the
validity of the estimated residual from equation (17) as an instrument. Not
only is zero correlation between the structural disturbances necessary, but a
high correlation between the instrument and the variable it is instrumenting for
is also essential. This point is emphasized by Nelson and Startz (1990). As we
shall now see, because the time series behavior of the estimated residual in
(17) varies with θxy, the validity of the estimation procedure in the subsequent
equation will be implicitly tied to the choice of identifying restriction.

3. IDENTIFICATION FAILURE IN STRUCTURAL VARS

To gain insight into the problems that may arise in this framework, given the
identification strategy adopted, let us rewrite equation (17) as follows:

∆xt − θxy∆yt = XXφ+ εbt, (19)

where XX = {∆2yt, ∆xt−1} and φ = (γxy0, θxx)′. Then, the two-stage least
squares estimator φ̂ is given by

φ̂ = (ZZ′XX)−1ZZ′(∆xt − θxy∆yt). (20)

From equation (20), the parameter estimates in φ̂ will change as θxy takes on
different values. This is also true of the estimated residual, which we therefore

2 As an intermediate step, equation (16) can also be expressed as ∆xt = (βxy0 + βxy1 −
βxy1)∆yt + βxy1∆yt−1 + βxx1∆xt−1 + εbt.

3 Observe that, analogously to (17), this equation can also be written as ∆yt = θyy∆yt−1 +
θyx∆xt + γyx0∆

2xt + εat, where θyy = βyy1, γyx0 = −βyx1, and θyx = βyx0 + βyx1.
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denote by ebt(θxy) to underscore its dependence on the adopted identification
strategy. Since this estimated residual can be computed as

ebt(θxy) = (∆xt − θxy∆yt)− XXφ̂

= (∆xt − θxy∆yt)− XX(ZZ′XX)−1ZZ′(∆xt − θxy∆yt),
(21)

observe that ZZ′ebt(θxy) = ebt(θxy)′ZZ = 0 ∀θxy. This last condition summarizes
what are sometimes called the normal equations. Now, the second equation to
be estimated in (18) can also be expressed as

∆yt = ZZβ + ∆xtβyx0 + εat, (22)

where β = (βyx1,βyy1)′, and ∆xt is the endogenous variable of interest. Since
the relevant set of instruments for the estimation of equation (22) is given by
{ZZ, ebt(θxy)}, it follows that the two-stage least squares estimator for β is given
by [

β̂
β̂yx0

]
=

[
ZZ′ZZ ZZ′∆xt

ebt(θxy)′ZZ ebt(θxy)′∆xt

]−1 [
ZZ′∆yt

ebt(θxy)′∆yt

]
. (23)

This last expression can be thought of as a set of two equations in two un-
knowns, specifically,

ZZ′ZZβ̂ + ZZ′∆xtβ̂yx0 = ZZ′∆yt (24)

and

ebt(θxy)′ZZβ̂ + ebt(θxy)′∆xtβ̂yx0 = ebt(θxy)′∆yt. (25)

Therefore it follows that

β̂yx0 = [ebt(θxy)′MMz∆xt]−1[ebt(θxy)′MMz∆yt], (26)

where MMz is the projection matrix II− ZZ(ZZ′ZZ)−1ZZ′. But we have just seen that
ebt(θxy)′ZZ = 0 ∀θxy, hence equation (26) simplifies to

β̂yx0 = [ebt(θxy)′∆xt]−1[ebt(θxy)′∆yt]. (27)

In other words, the two-stage least squares estimator for βyx0, and hence the
long-run multiplier θyx, depends on two key elements: the correlations of the
estimated residual from the previous equation, equation (19), with both ∆xt

and ∆yt. This is because each equation in a SVAR possesses many regressors
in common. Since the “extra” instrument ebt(θxy) in the second equation is the
residual from the first equation, it is by construction orthogonal to the other
instruments in the second equation. It then follows that the two-stage least
squares estimator for βyx0 depends only on the correlations of this residual
with ∆xt and ∆yt as shown by (27). To see that certain identification schemes
may be problematic, define θ∗xy such that ebt(θ∗xy)′∆xt = 0. Then, as long as

ebt(θxy)′∆yt remains finite, β̂yx0 diverges when θxy → θ∗xy. In more standard IV
settings, this result would not emerge. Residuals from other equations would not
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generally be used as regressors, and hence parameter estimates would depend
on more than one correlation.

To determine the exact value of the problematic identifying restriction, θ∗xy,
given the data under consideration, it suffices to take the transpose of equation
(21), post-multiply the result by ∆xt, and set it to zero to yield

θ∗xy =
∆x′tWW∆xt

∆y′tWW∆yt
, where WW = ZZ(XX′ZZ)−1XX′ − I. (28)

To continue with our discussion, observe from equations (22) and (27) that

β̂yx0 − βyx0 = [ebt(θxy)′∆xt]−1[ebt(θxy)′εat]. (29)

Therefore a lower bound for the variance of the two-stage least squares esti-
mator β̂yx0 is given by

var (β̂yx0) = σ2
εa

[ebt(θxy)′∆xt]−1[ebt(θxy)′ebt(θxy)][ebt(θxy)′∆xt]−1′, (30)

where σ2
εa

= E(ε2
at).

4 As θxy → θ∗xy, this variance diverges at the squared rate of

that at which β̂yx0 itself diverges. Taken together, equations (27) and (30) tell
us that for identification strategies in a neighborhood of θ∗xy, it is not possible
to obtain a meaningful estimate of βxy0. Both its estimator as well as associated
confidence interval become arbitrarily large.

The above analysis has been numerical in nature in order to make clear the
source of identification failure in SVAR estimation. One may wonder further,
however, about the relationship between the distributional properties of β̂yx0

and the identification restriction θxy. The questions of statistical inference and
asymptotic distribution can be answered to some degree, it turns out, as a spe-
cial case of the analysis carried out by Staiger and Stock (1993). Their analysis
indicates that conventional asymptotic inference procedures are no longer valid
when ebt(θxy) is weakly related to ∆xt in a regression of ∆xt on its instruments.5

Since residuals are recursively used as instruments in the estimation of
SVARs, the “validity” of the estimation procedure implicitly depends on the
nature of the identifying restrictions adopted. That is, the strength of the instru-
ments is contingent upon the identification scheme. Some structural economic
models may then be impossible to investigate empirically within the confines
of a just-identified SVAR. In particular, as long as an identification strategy
generates a small correlation between a recursively estimated residual and the
variable it is meant to instrument for in the subsequent equation, coefficient
estimates will lose their standard distributional properties.

4 This is only a lower bound since ebt(θxy) is a generated regressor and therefore possesses
some variation not accounted for in equation (30).

5 See Appendix.
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An Illustrative Example

Although the analysis in this section has been carried out with a long-run
identifying restriction in mind, the arguments above are also relevant in set-
tings incorporating short-run identifying restrictions. As an example, consider
a recent paper on long-run neutrality by King and Watson (1997). The authors
estimate a bivariate system in output and money in order to test long-run money
neutrality. In doing so, they recognize the importance of considering alternative
identifying restrictions for robustness. A subset of their results are reproduced in
Figure 1. In panel A of Figure 1, King and Watson (1997) report point estimates
and confidence intervals for the hypothesis of long-run superneutrality when
the short-run elasticity of money demand with respect to output is allowed to
vary. Observe that as this value approaches −0.2, both the coefficient estimate
for long-run superneutrality and its confidence intervals begin to blow up. In a
similar fashion, panel C shows long-run superneutrality results under various
assumptions with respect to the long-run response of money to exogenous
permanent shifts in the level of output. Here, γ∆m,y corresponds to θxy so that
in our notation, ∆xt is the money variable, while yt is the output variable. As in
the case where a short-run identifying restriction was considered, the estimate
for long-run superneutrality and its associated confidence intervals start to di-
verge as γ∆m,y approaches −0.35. Thus, it should be clear that in looking for
robustness across different identification schemes, one may be confronted with
cases where the SVAR methodology cannot be meaningfully implemented.

At this stage, there remains at least one other obvious issue of interest.
In our context, there may exist a plausible range of identifying restrictions in
θxy for which the residual ebt(θxy) is, in fact, a proper instrument. If this were
the case, one would naturally wonder whether comparative dynamic response
estimates are sensitive to the particular identifying restriction imposed upon
the system. The next section provides an example of interpretation ambiguities
associated with precisely this issue.

4. INTERPRETING STRUCTURAL VARS:
TECHNOLOGY SHOCKS AND AGGREGATE
EMPLOYMENT FLUCTUATIONS

One topic of considerable interest in macroeconomics is the relationship be-
tween technology shocks and aggregate fluctuations in employment. Real busi-
ness cycle models typically predict that technological innovations raise the level
of employment. This result reflects the increase in the marginal productivity
of labor associated with the positive technology shock when labor supply is
relatively less variable. In a recent paper, however, Gali (1996) suggests that
this feature of real business cycle models does not hold empirically. By using
a bivariate SVAR in labor productivity and employment, he is able to show
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Figure 1 Money Growth and Output
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that technology shocks appear to induce a persistent decline in employment.
Furthermore, labor productivity increases temporarily in response to demand
shocks.

To motivate the identification of the particular SVAR he uses, Gali (1996)
suggests a stylized model whose key features are monopolistic competition,
predetermined prices, and variable effort.6 In such a framework, a positive
technology shock enhances labor productivity while leaving aggregate demand
unchanged due to sticky prices. Employment must therefore fall. In addition,
a positive demand shock would be met by a higher level of “unobserved”
effort as well as higher “measured” employment. Given a strong enough effort
response, labor productivity would temporarily rise. Formally, the structure of
Gali’s (1996) model implies that employment evolves according to

∆ht = Θhη(L)ηt + Θhξ(L)ξt + (1− L)Φhη(L)ηt + (1− L)Φhξ(L)ξt, (31)

where ηt and ξt denote money growth and technology shocks respectively.
Here, money growth shocks are associated with the management of aggregate
demand by the monetary authority and hence serve as a proxy for demand
shocks. Since technology shocks induce a persistent decline in employment,
we have Θhξ(1) < 0. Similarly, labor productivity is given by

∆qt = Θqη(L)ηt + Θqξ(L)ξt + (1− L)Φqη(L)ηt + (1− L)Φqξ(L)ξt, (32)

with Θqη(0) + Φqη(0) > 0 to capture the contemporaneous positive effect of a
demand shock on labor productivity. As in Section 2, this system of equations
can be summarized as

T(L)Yt = εt, (33)

where Yt = (∆ht, ∆qt)′, εt = (ηt, ξt)′, and

T(L) =

[
Θhη(L) + (1− L)Φhη(L) Θhξ(L) + (1− L)Φhξ(L)
Θqη(L) + (1− L)Φqη(L) Θqξ(L) + (1− L)Φqξ(L)

]−1

. (34)

The key identifying restriction that Gali (1996) imposes upon the dynamics
of his system is that demand shocks do not have a permanent effect on labor
productivity. In terms of our earlier notation, we have

T(1) =

[
1− θhh −θhq

−θqh 1− θqq

]
=

[
Θhη(1) Θhξ(1)
Θqη(1) Θqξ(1)

]−1

, (35)

with

Θqη(1) = θqh = 0. (36)

6 For the details of the model, refer to Gali (1996).
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Figure 2 plots impulse response functions for the bivariate SVAR we have
just described. The data comprise the log of hours worked in the nonfarm
business sector as well as gross domestic product (in 1987 dollars), less gross
domestic product in the farm sector. The log of productivity was hence com-
puted as the log of gross domestic product, less the log of hours worked.
Four lags were used in estimation and the sample period covers 1949:1 to
1992:4. As in Gali (1996), observe that the structural response of employment
to a positive technology shock is negative, both in the short and long run.
Furthermore, this is true even within a 90 percent confidence interval.7 Note
also that the contemporaneous response of productivity to a demand shock is
positive and, by construction, eventually vanishes. Of course, since we have
used data that is very similar to that used in the original study, these results are
hardly surprising. However, Gali (1996) argues that since these estimates seem
to hold for the majority of G7 countries, the impact “of technology shocks
yields a picture which is hard to reconcile with the prediction of (real business
cycle) models.” This statement makes it clear that, among other results, the
persistent employment decline in response to a technology shock is implicitly
interpreted as a stylized fact. As we know, however, Gali’s (1996) estimates
derive from his choice of identification scheme; deviations from that scheme
must be considered in order to decide what constitutes a stylized fact.

Alternative Identification Strategies

There are several different ways to think about Gali’s (1996) initial SVAR
set-up. First, supposing that aggregate demand shocks account for more than
just money growth shocks, demand shocks may have a permanent impact on
productivity. For instance, a permanent increase in taxes in a real business
cycle model would yield an increase in the steady-state ratio of employment
to capital. Given a standard production function with constant returns to scale,
this increase in the ratio of labor to capital would necessarily be accompa-
nied by a fall in labor productivity. This would invalidate the restriction that
Θqη(1) = θqh = 0. Moreover, since θqh represents the long-run elasticity of
productivity with respect to employment, it might not be unreasonable to ex-
pect that θqh < 0. Figure 3 shows the impulse response functions that result
in Gali’s (1996) framework when θqh is set to −0.5. Under this alternative
identification strategy, the response of employment to a technology shock is no
longer negative. In fact, both the short- and long-run responses of employment
are now positive. By comparing Figures 2b and 3b, observe that this latter
result seems to hold even when standard errors are taken into account. That is,

7 To construct the standard error bands, Monte Carlo simulations were done using draws
from the normal distribution for each of the two structural innovations. One thousand Monte
Carlo draws were carried out in each case.
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Figure 2 Identification Assumption: Demand Shocks Have
No Long-Run Impact on Productivity
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Figure 3 Identification Assumption: Demand Shocks Have a
Negative Long-Run Impact on Productivity
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there is little overlap of the corresponding confidence intervals. Moreover, the
contemporaneous effect of a demand shock on productivity is no longer positive
but negative as shown in panel C. Viewed in this light, the dynamic response
estimates initially reported in Gali (1996) may appear somewhat fragile. In
particular, his contention that the data does not coincide with the predictions
of real business cycle models does not necessarily hold.

In Figure 4, we show the results obtained when Gali’s (1996) SVAR is
identified using yet a third alternative. In this case, we require that technology
shocks not have a long-run impact on employment. In terms of equation (35),
this implies that Θhξ(1) = θhq = 0. This identifying restriction is used by
Shapiro and Watson (1988). It also emerges as a steady-state result in a real
business cycle model when utility is logarithmic in consumption and leisure.
Under this parameterization for utility, the income and substitution effects
resulting from a positive technology shock cancel out, leaving labor supply
unchanged in the steady state. (See King, Plosser, and Rebelo [1988].) Note in
panel C of Figure 4 that under this third alternative, the long-run response of
productivity to a demand shock is negative, which provides further evidence
against Gali’s (1996) initial identifying restriction. As already noted, this result
is also consistent with a permanent increase in taxes in a real business cycle
framework. Put another way, when one identifies Gali’s (1996) bivariate sys-
tem in a way that is consistent with the steady state generated by a standard
real business cycle model, the empirical findings generated by the SVAR are
consistent with the predictions of that model.

Of course, that is not to say that real business cycle models represent
a more compelling framework when gauged against the data. The empirical
results reported by Gali (1996) are themselves consistent with the theoretical
model he uses to identify his SVAR. It is simply that in this case, what can
be read from the data can vary sharply with one’s prior beliefs concerning the
theoretical nature of the data-generating mechanism.

While we have just shown that some of the key results in Gali (1996) are
sensitive to the way one thinks about the long-run impact of various demand or
supply shocks, this is not always the case. Observe that the structural impulse
response of employment to a demand shock is similar in both direction and
magnitude across Figures 2, 3, and 4. This is also true for the structural impulse
response of productivity to a technology shock. Since these latter results emerge
across estimated systems, that is, across systems with varying identifying re-
strictions, they may be reasonably considered stylized facts.
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Figure 4 Identification Assumption: Technology Shocks Have
No Long-Run Impact on Employment
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5. SUMMARY AND CONCLUSIONS

We have investigated the extent to which identification issues can matter when
using SVARs to characterize data. Although the main focus was on the esti-
mation of bivariate systems, it should be clear that most of the above analysis
applies to larger systems as well.

At a purely mechanical level, the source of the problem lies with the
recursive use of an estimated residual as an instrument. The assumption made
in SVAR estimation that the structural disturbances be uncorrelated is not suf-
ficient to guarantee a proper estimation procedure. One must also pay attention
to the degree of correlation between the estimated residual and the endogenous
variable it is meant to be instrumenting for. This observation has long been
made for simultaneous equations systems; and in this sense, it is important
not to lose sight of the fact that SVARs are in effect a set of simultaneous
equations.

At another level, we have also seen that even when the residual from a
previously estimated equation is a valid instrument, SVARs can yield ambigu-
ous results. This is the case even when confidence intervals are taken into
account as in the bivariate example in hours and productivity. In that case, it
was unclear whether employment responded positively or negatively, both in
the short and long run, in response to a technology shock. Therefore, there may
be a sense in which SVARs can fail in a way that is reminiscent of the Cooley
and Leroy (1985) critique. In reduced-form VARs, different results emerge
when alternative methods of orthogonalization of the error terms are adopted.
In structural VARs, the results can now be directly contingent upon specific
identifying restrictions. In effect, these are two facets of the same problem.

We have also seen in our example that certain results may be relatively
robust with respect to the particular identification strategy of interest. For ex-
ample, the response of productivity to a technology shock was estimated to
be positive in both the short and long run across varying systems. Thus, two
conclusions ultimately emerge from this investigation. First, special emphasis
should be given to the derivation of identifying restrictions. The proper use
of SVARs is contingent upon such restrictions and the case of identification
failure cannot be ruled out a priori. Second, sensitivity analysis can be quite
helpful in gaining a sense of the range of dynamics consistent with a given set
of data. Assessing such a range seems an essential step in establishing stylized
facts.
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APPENDIX

This appendix derives the asymptotic distribution of β̂yx0 in the text. This
derivation is based on Staiger and Stock (1993). In the estimation of equa-
tion (22), suppose that the relationship that ties ∆xt to its instruments can be
described as

∆xt = ZZα+ ebt(θxy)αxe + νt, (A1)

where νt is uncorrelated with εat. Furthermore, let us consider the set of iden-
tifying restrictions Πθxy for which αxe = N−1/2g(θxy), where N is the sample
size of our dataset and g(θxy): Πθxy → <. In other words, Πθxy denotes a set of
identifying restrictions for which the instrument ebt(θxy) is only weakly related
to the endogenous variable ∆xt in the local to zero sense; the coefficient αxe

goes to zero as the sample size itself becomes arbitrarily large. To proceed with
the argument, rewrite equation (29) as

β̂yx0 − βyx0 =

[(N−1/2∆x′tebt(θxy))(N−1ebt(θxy)′ebt(θxy))(N−1/2ebt(θxy)′∆xt)]−1

[(N−1/2∆x′tebt(θxy))(N−1ebt(θxy)′ebt(θxy))(N−1/2ebt(θxy)′εat)]. (A2)

Given the assumptions embodied in (A1), it follows that

N−1/2∆x′tebt(θxy) = N−1/2[α′Z′ + αxeebt(θxy) + ν′t ]ebt(θxy)

= N−1ebt(θxy)′ebt(θxy)g(θxy) + N−1/2ν′t ebt(θxy).
(A3)

Under suitable conditions, the first term in the above equation will converge
to some constant almost surely as the sample size becomes large. The second
term, on the other hand, will converge asymptotically to a normal distribu-
tion by the Central Limit Theorem. Therefore, although the coefficient on the
relevant instrument, ebt(θxy), in the first-stage equation converges to zero, if
the rate of convergence is slow enough, the right-hand side of equation (A2)
will not diverge asymptotically. Nevertheless, in this case, the two-stage least
squares estimator β̂yx0 is asymptotically distributed as a ratio of quadratic forms
in two jointly distributed normal variables. Hence, for identification strategies
that belong to the set Πθxy , conventional asymptotic inference procedures will
fail. In fact, in the so-called leading case where g(θxy) = 0, Phillips (1989),
Hillier (1985), and Staiger and Stock (1993) point out that β̂yx0 asymptotically
possesses a t distribution.

We now provide a sketch of the basic arguments. To this end, we as-
sume that the following moment conditions are satisfied. The notation “→p”
and “⇒” denote convergence in probability and convergence in distribution
respectively.
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(a) (N−1X′X, N−1Z′X, N−1X′∆xt, N−1Z′∆xt, N−1X′∆yt, N−1Z′∆yt)→p

(ΣXX, ΣZX, ΣX∆xt , ΣZ∆xt , ΣX∆yt , ΣZ∆yt )

(b) (N−1∆x′t∆xt, N−1∆y′t∆yt, N−1∆x′t∆yt)→p (Σ∆xt∆xt , Σ∆yt∆yt , Σ∆xt∆yt )

(c) (N−1/2ν′t ∆xt, N−1/2ν′t ∆yt, N−1/2ν′t X, N−1/2ε′at∆xt, N−1/2ε′at∆yt,

N−1/2ε′atX)⇒ (Ψνt∆xt , Ψνt∆yt , ΨνtX, Ψεa∆xt , Ψεa∆yt , ΨεaX).

Note two particular points embodied in assumptions (a) through (c). First,
assumptions (a) and (b) would naturally hold under standard conditions gov-
erning stationarity and ergodicity of the variables in the reduced form. Second,
since these are primary assumptions, they do not depend on the identify-
ing restriction θxy. It now remains to specify the asymptotic properties of
three terms in (A2) and (A3), namely N−1ebt(θxy)′ebt(θxy), N−1/2ν′t ebt(θxy), and
N−1/2ebt(θxy)′εat, to determine the asymptotic behavior of ̂βyx0(θxy) − βyx0(θxy)
when θxy ∈ Πθxy . Let us then examine each of these terms in turn.

Recall from equation (21) that

ebt(θxy) = (∆xt − θxy∆yt)− X(Z′X)−1Z′(∆xt − θxy∆yt).

It follows that N−1ebt(θxy)′ebt(θxy) is quadratic in θxy. Therefore, under assump-
tions (a) and (b), N−1ebt(θxy)′ebt(θxy) →p Σ(θxy) uniformly, where Σ(θxy) also
depends on ΣXX, ΣZX, etc. Next, consider N−1/2ν′t ebt(θxy). We have

N−1/2ν′t ebt(θxy) = N−1/2[ν′t ∆xt − θxyν
′
t ∆yt − ν′t X(Z′X)−1Z′(∆xt − θxy∆yt)],

which is linear in θxy. Therefore N−1/2ν′t ebt(θxy) ⇒ Ψνt (θxy) uniformly, where
Ψνt (θxy) = Ψνt∆xt − θxyΨνt∆yt − ΨνtX[Σ−1

ZX ΣX∆xt − θxyΣ
−1
ZX ΣZ∆yt ]. Finally,

N−1/2ebt(θxy)′εat is given by

N−1/2[∆x′tεat − θxy∆y′tεat − (∆x′t − θxy∆y′t)Z(X′Z)−1X′εat],

which is also linear in θxy. Hence, N−1/2ebt(θxy)′εat ⇒ Ψεat
(θxy) uniformly,

where Ψεat
(θxy) = Ψεat∆xt − θxyΨεat∆yt − [Σ′X∆xt

Σ−1′
ZX − θxyΣ

′
X∆yt

Σ−1′
ZX ]Ψεat X.

With these results in mind, it follows that ̂βyx0(θxy) converges in distribution to

βyx0(θxy) +

[(g(θxy)Σ(θxy)1/2 +Ψνt (θxy)Σ(θxy)−1/2)′(g(θxy)Σ(θxy)1/2 +Ψνt (θxy)Σ(θxy)−1/2)]−1

[(g(θxy)Σ(θxy)1/2 + Ψνt (θxy)Σ(θxy)−1/2)′(Σ(θxy)−1/2Ψεat
(θxy)].

This implies that for identification schemes in Πθxy , the two-stage least squares
estimator is not only biased, it is asymptotically distributed as a ratio of
quadratic forms in the jointly distributed normal random variables Ψνt (θxy)
and Ψεat

(θxy).



    

66 Federal Reserve Bank of Richmond Economic Quarterly

REFERENCES

Bernanke, Ben S. “Alternative Explanations of the Money-Income Correlation,”
Carnegie-Rochester Conference Series on Public Policy, vol. 25 (Autumn
1986), pp. 49–99.

Blanchard, Olivier J., and Danny Quah. “The Dynamic Effects of Aggregate
Demand and Supply Disturbances,” American Economic Review, vol. 79
(September 1989), pp. 655–73.

Blanchard, Olivier J., and Mark W. Watson. “Are Business Cycles All Alike?”
in Robert J. Gordon, ed., The American Business Cycle: Continuity and
Change, Chicago: University of Chicago Press, 1984.

Cooley, Thomas F., and Stephen F. Leroy. “Atheoretical Macroeconometrics:
A Critique,” Journal of Monetary Economics, vol. 16 (June 1985), pp.
283–308.

Gali, Jordi. “Technology, Employment, and the Business Cycle: Do Technology
Shocks Explain Aggregate Fluctuations?” Mimeo, New York University,
1996.

. “How Well Does the IS-LM Model Fit Postwar U.S. Data?”
Quarterly Journal of Economics, vol. 107 (May 1992), pp. 709–38.

Hillier, Grant H. “On the Joint and Marginal Densities of Instrumental Variables
Estimators in a General Structural Equation,” Econometric Theory, vol. 1
(April 1985), pp. 53–72.

King, Robert J., Charles I. Plosser, and Sergio T. Rebelo. “Production, Growth,
and Business Cycles: II. New Directions,” Journal of Monetary Economics,
vol. 21 (March 1988), pp. 309–42.

King, Robert J., Charles I. Plosser, James H. Stock, and Mark W. Watson.
“Stochastic Trends and Economic Fluctuations,” American Economic
Review, vol. 81 (September 1991), pp. 819–40.

King, Robert J., and Mark W. Watson. “Testing Long-Run Neutrality,” Federal
Reserve Bank of Richmond Economic Quarterly, vol. 83 (Summer 1997),
pp. 69–101.

Nelson, Charles R., and Richard Startz. “The Distribution of the Instrumental
Variables Estimator and its t-Ratio when the Instrument Is a Poor One,”
Journal of Business, vol. 63 (January 1990), pp. 125–40.

Phillips, Peter. C. “Partially Identified Models,” Econometric Theory, vol. 5
(August 1989), pp. 181–240.

Shapiro, Mathew D., and Mark W. Watson. “Sources of Business Cycle
Fluctuations,” NBER Working Paper 1246, 1988.



   

P.-D. G. Sarte: Structural Vector Autoregressions 67

Sims, Christopher. A. “Are Forecasting Models Usable for Policy Analysis?”
Federal Reserve Bank of Minneapolis Quarterly Review, vol. 10 (Winter
1986), pp. 2–16.

. “Comparison of Interwar and Postwar Business Cycles: Mone-
tarism Reconsidered,” American Economic Review, vol. 70 (May 1980a),
pp. 250–59.

. “Macroeconomics and Reality,” Econometrica, vol. 48 (January
1980b), pp. 1– 47.

Staiger, Douglas, and James H. Stock. “Instrumental Variables Regressions
with Weak Instruments.” Mimeo, Kennedy School of Government, Harvard
University, 1993.


