
        

Fisher’s Equation
and the Inflation Risk
Premium in a Simple
Endowment Economy

Pierre-Daniel G. Sarte

O ne of the more important challenges facing policymakers is that of
assessing inflation expectations. Goodfriend (1997) points out that
one can interpret the meaning of a given interest rate policy action

primarily in terms of its impact on the real rate of interest. However, evaluating
this impact requires not only that one understands the various links between
the nominal rate and expected inflation but also that one can quantify these
relationships.

To find an approximate measure of expected inflation, one often turns to the
behavior of long bond rates. Two key ideas explain why this approach might be
appropriate. First, Fisher’s theory holds that the real rate of interest is just the
difference between the nominal rate of interest and the public’s expected rate
of inflation. Second, the long-term real rate is generally thought to exhibit very
little variation.1 Alternatively, and still based on Fisher’s theory, one might use
the yield spread between the ten-year Treasury note and its inflation-indexed
counterpart as an estimate of expected inflation. In January 1997, the U.S.
Treasury indeed began issuing ten-year inflation-indexed bonds.

While economic analysts typically attempt to capture inflation expectations
using Fisher’s equation, this method has its flaws. When inflation is stochastic,
Fisher’s relation may not actually hold. Barro (1976), Benninga and Protopa-
padakis (1983), as well as Cox, Ingersoll, and Ross (1985), show that the
decomposition of the nominal rate into a real rate and expected inflation should
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Wolman. Any remaining errors are, of course, my own.
1 See Simon (1990).
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include an additional component excluded from Fisher’s equation: the inflation
risk premium. This premium reflects the outcome of random movements in
inflation that effectively cause nominal bonds to be risky assets relative to
inflation-indexed bonds. As we shall see in this article, the sign of the pre-
mium may be positive or negative, depending on how unexpected movements
in inflation co-vary with surprises in consumption growth.

Another reason the Fisher equation may not hold is that when one links
the nominal rate to the real rate and expected inflation, one must consider the
nonlinearity inherent in inflation when calculating expectations. Specifically,
inflation is a ratio of prices. We shall see that this nonlinearity works through
the variance of inflation surprises.

Since it is evident that Fisher’s equation does not work in all situations,
why should one consider the equation useful? (Note that if both the inflation
risk premium and the variance of inflation surprises are negligible, then Fisher’s
equation holds precisely.) This article answers the question by building on ear-
lier work by Labadie (1989, 1994). In particular, the analysis below relies upon
three key building blocks. First, to study the effect of inflation risk on nominal
rates, we formally incorporate uncertainty as part of the environment surround-
ing households’ optimal bond purchasing decisions. Second, we assume that a
bivariate vector autoregression (VAR) in the logs of consumption growth and
inflation drives the model. This assumption makes it possible to work out exact
analytical solutions for bond yields and expected inflation. Finally, we estimate
the driving process empirically by using U.S. consumption-growth data to cal-
ibrate the model’s analytical solutions. In contrast to Labadie (1989), we are
able to derive solutions consistent with a general-order VAR process instead of
a VAR(1). This allows us to better capture the joint time-series properties of
consumption growth and inflation. Moreover, whereas Labadie’s work focuses
on the equity premium, we will concentrate mainly on the model’s quantitative
implications for the inflation risk premium.

Two important conclusions emerge from the analysis. One is that the
model’s quantitative estimates of the inflation risk premium are insignificant.
This result occurs primarily because little covariation exists between shocks to
consumption growth and unexpected movements in inflation in U.S. data. In
other words, since inflation surprises are as likely to occur whether consump-
tion growth is high or low, there is no reason why the inflation risk premium
should be substantially positive or negative. This notion is unrelated to the fact
that the equity premium tends to be very small in consumption-based asset
pricing models. We will show that adopting a pricing kernel that helps explain
the equity premium does not necessarily change the size of the inflation risk
premium in any meaningful way. The implication is that, in practice, Fisher’s
equation may be a reasonable approximation even when inflation is stochastic.

The other important conclusion (for the sample period covering 1955
to 1996) is that the model’s historical estimates of the yield on a one-year
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nominal bond match the actual yield on one-year Treasury notes relatively
well. However, the model’s estimates of the one-year nominal rate perform
very poorly during the late 1970s. The model’s inability to track the nominal
rate during that period may reflect the unusual tightening by the Federal Reserve
(the Fed) in an effort to bring down inflation at that time. Our benchmark model
suggests a consumption-based real rate whose standard deviation is around 1
percent. Surprisingly, this is more than half the standard deviation of the ex
post real rate despite the fact that consumption growth is relatively smooth.
Using a different methodology, we find additional supporting evidence in favor
of Fama (1990), who suggests that expected inflation and the real rate move in
opposite directions. Finally, our model indicates that it is difficult to determine
whether expected inflation is more or less volatile than the real rate at short
horizons. Although conventional wisdom suggests that the real rate varies more
than expected inflation in the short run, we find that the choice of preference
specification is crucial for this result.

This article is organized as follows. Section 1 presents the basic frame-
work used to price nominal and inflation-indexed bonds. Section 2 describes
the joint driving process linking consumption growth and inflation. Sections 3
and 4 present the results which obtain under different preference specifications.
Finally, Section 5 offers some concluding remarks.

1. PRICING NOMINAL AND
INFLATION-INDEXED BONDS

The economy is populated by a continuum of infinitely lived households. These
households are identical in terms of their preferences and endowments. The
per capita endowment is nonstorable, exogenous, and stochastic. The typical
household’s wealth consists of currency, one-period inflation-indexed and one-
period nominal discount bonds. Thus, an indexed bond purchased at time t pays
one unit of the endowment good with certainty at time t + 1. As in Labadie
(1989, 1994), this instrument provides a benchmark that helps isolate real from
inflationary effects. Contrary to the indexed bond, the nominal bond is subject
to inflation risk. That is, a nominal bond purchased at date t pays one unit of
currency, say dollars, at date t + 1.

Each household maximizes its lifetime utility over an infinite horizon. The
timing of trade follows that of the cash-in-advance economy described in Lucas
(1982). Specifically, at the beginning of each period and before any trading takes
place, a stochastic monetary transfer, νtMt−1, and a real endowment shock, yt,
are realized and observed publicly. After receiving the money transfer, as well
as any payoffs on maturing bonds, the representative household decides on how
to allocate its nominal wealth between money balances, Md

t , indexed bonds,
zt, and nominal discount bonds, zN

t . Once the asset market has closed, the
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household uses its money balances acquired at the beginning of the period
Md

t to finance its consumption purchases ptct, where pt is the price level at
date t. The household then receives its nominal endowment income ptyt, which
it cannot spend until the subsequent period. To summarize, the representative
household solves

max U = Et

∞∑
s=t

βs−tu(cs), 0 < β < 1, (1)

subject to the constraints

pt−1

pt
ct−1 +qtzt +

xt

pt
zN

t +
Md

t

pt
=

pt−1

pt
yt−1 +

Mt−1 + νtMt−1

pt
+ zt−1 +

zt−1

pt
, (2)

and

ct ≤
Md

t

pt
. (3)

We denote by qt and xt the real price of a one-period indexed bond and the price
of a one-period nominal bond, respectively. Et is the conditional expectations
operator where the time t information set includes all variables dated t and
earlier.

Appendix A contains the first-order conditions associated with the above
problem. These optimality conditions yield the following Euler equation,

u′(ct) = βEt(1 + rt)u′(ct+1), (4)

where we have defined 1/qt as (1+rt). Equation (4) states that in choosing how
much to consume versus how much to save in the form of an indexed bond,
the representative household explicitly compares marginal benefit and marginal
cost. The marginal benefit, in utility terms, of consuming one additional unit of
the endowment good today is given by u′(ct). Alternatively, the household could
save that additional unit and use it to purchase an indexed bond that would
yield (1 + rt) with certainty in the following period. Therefore the right-hand
side of equation (4) captures the marginal cost of consuming one additional
unit of the endowment good today in utility terms. As equation (4) indicates,
the optimal consumption/savings allocation naturally equates marginal benefit
and marginal cost.

Now, in this setup, the representative household also has the option of
saving through a nominal pure discount bond. Optimality implies that

u′(ct)
pt

= βEt(1 + rN
t )

u′(ct+1)
pt+1

, (5)

where (1 + rN
t ) is defined as 1/xt. Analogous to the situation we have just de-

scribed, the marginal benefit of consuming one additional dollar’s worth of the
endowment good today, where one dollar is worth 1/pt units of the endowment
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good, is u′(ct)/pt. By instead saving this additional dollar in a nominal bond,
the representative household would reap (1 + rN

t )/pt+1 units of the endowment
good next period. The right-hand side of equation (5), therefore, represents
the marginal cost of consuming an additional dollar’s worth of the endowment
good in the current period. As in equation (4), the optimal consumption/savings
allocation still dictates equating marginal benefit to marginal cost.

Since equations (4) and (5) simply show different methods of how to best
allocate income towards consumption and savings, one might naturally expect
a precise link to emerge between the real rate and the nominal rate. Using
equation (5) yields

1
1 + rN

t
= βEt

u′(ct+1)
u′(ct)

pt

pt+1
,

which may be rewritten2 as

1
1 + rN

t
=

(
1

1 + rt

)
Et

(
pt

pt+1

)
+ βcovt

(
u′(ct+1)
u′(ct)

,
pt

pt+1

)
. (6)

Note that if inflation is deterministic, then the covariance term on the right-
hand side of equation (6) disappears and the above equation reduces to Fisher’s
relation,

(1 + rN
t ) = (1 + rt)

(
pt+1

pt

)
. (7)

To understand the nature of the differences between the modified Fisher equa-
tion and equation (7), let us first examine the covariance term in (6). This term
is known as the inflation risk premium and already emerges in Benninga and
Protopapadakis (1983) or Cox, Ingersoll, and Ross (1985). Recall that saving
one additional dollar in period t yields (1 + rN

t )/pt+1 units of the endowment
good in period t + 1. However, the price level next period, pt+1, is unknown at
date t. Inflation, therefore, makes the nominal discount bond a risky asset; the
premium in effect alters the nominal rate to account for this additional risk.

To make matters more concrete, let us temporarily suppose that momen-
tary utility is given by the Constant Relative Risk Aversion (CRRA) function
u(c) = c1−γ − 1/1 − γ, γ > 0. Consequently, the ratio of marginal utilities
in equation (6) is decreasing in consumption growth and given by (ct+1/ct)−γ .
Therefore, when the conditional covariance term is negative, inflation is likely
to be high when consumption growth is low. In other words, the return on the
nominal bond is adversely affected by inflation precisely when the household
suffers from low consumption growth. Now observe that relative to a world
without inflation uncertainty, a negative conditional covariance raises the nomi-
nal rate. We may, therefore, interpret this higher nominal yield as compensating

2 Here we use the fact that for any two random variables x and y, cov(x, y) = E(xy) −
E(x)E(y).
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the household for the additional inflation risk associated with the nominal bond.
The reverse is true when the conditional covariance term is positive.

Another reason equation (6) does not correspond to Fisher’s relation when
inflation is stochastic, even if the conditional covariance term were zero, has
to do with Jensen’s Inequality. In particular, Et(pt+1/pt) is generally not equal
to 1/Et(pt/pt+1). As one might expect, we shall see below that the difference
between Et(pt+1/pt) and 1/Et(pt/pt+1) rises with the volatility of inflation sur-
prises. In a world without such surprises, the conditional expectations operator
is irrelevant, so this difference would vanish.

To close the model, we simply note that in equilibrium, ct = yt, while
Md

t = Mt. In addition, since households are identical, indexed and nominal
bonds are in zero net supply so that zt = zN

t = 0. In what follows, we assume
for simplicity’s sake that νt ≥ β so that the cash-in-advance constraint always
binds.

2. THE ENDOWMENT AND INFLATION PROCESSES

We now define a driving process for this economy. Let endowment growth and
the inflation rate be denoted by yt+1/yt = ζt+1 and pt+1/pt = φt+1, respectively.
We assume that the joint time-series behavior of ln ζt+1 and lnφt+1 can be
described by a covariance stationary bivariate VAR (p).3 The law of motion
for the endowment process is

ln ζt+1 = δζ0 +

p∑
j=0

δζζ, j ln ζt−j +

p∑
j=0

δζφ, j lnφt−j + εζ,t+1. (8)

Similarly, the inflation rate follows a process that can be described by

lnφt+1 = δφ0 +

p∑
j=0

δφζ, j ln ζt−j +

p∑
j=0

δφφ, j lnφt−j + εφ,t+1. (9)

Shocks to endowment growth and inflation, (εζ,t, εφ,t), are assumed to be
jointly distributed normal random variables such that E(εζ,t) = E(εφ,t) = 0,
var(εζ,t) = σ2

ζ , var(εφ,t) = σ2
φ, and cov(εζ,t, εφ,t) = σζφ. Moreover, as in

Labadie (1989), the shocks satisfy E(εζ,t, εφ,s) = E(εζ,s, εφ,t) = 0, for s 6= t.

3. RESULTS WITH CRRA UTILITY

Analytical Solutions

In this section, we assume that momentary utility is of the CRRA form.
Our main focus will be to derive and interpret solutions for bond prices or,

3 Since the cash-in-advance constraint is assumed to bind, this bivariate system implicitly
dictates the behavior of money growth.
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alternatively, rates of return on the indexed and nominal discount bonds. The
goal is to assess to what degree Fisher’s equation approximates its generalized
version in (6) in a calibrated consumption-based asset pricing model. With
CRRA utility, equation (4) becomes

qt = βEt

(
ct+1

ct

)−γ
, (10)

which may also be written as

ln qt = lnβ + ln Etζt+1
−γ .

Using the properties of log-normal random variables described in Appendix B,
as well as those of the driving process in Section 2, it immediately follows that

ln qt = lnβ − γδζ0 +
γ2σ2

ζ

2
− γ

p∑
j=0

δζζ, j ln ζt−j − γ
p∑

j=0

δζφ, j lnφt−j.

The real price of the one-period inflation-indexed bond can therefore be ex-
pressed as

qt = β

[
exp(−γδζ0 +

γ2σ2
ζ

2
)

]
Qt, (11)

where Qt = Πp
j=0ζ

−γδζζ, j
t−j Πp

j=0φ
−γδζφ, j
t−j . Equation (11) suggests that the real

rate, 1/qt, is not only a function of past endowment growth but also of past
inflation rates. This result arises since, by equation (8), past inflation rates help
forecast endowment growth next period, ζt+1. In addition, observe that greater
volatility in unexpected endowment growth movements, as captured by σ2

ζ ,
raises qt and, therefore, lowers the real rate. Put another way, a more risky
endowment growth process serves to lower the real rate of return. This latter
effect, however, is only present to the degree that households care about risk
so that γ > 0. When households are risk-neutral and γ = 0, qt is independent
of σ2

ζ .
Turning our attention to the behavior of the nominal rate, equation (5) can

be rewritten as

xt = βEt

(
ct+1

ct

)−γ pt

pt+1
(12)

so that ln xt = lnβ + ln Et(ct+1/ct)−γ(pt/pt+1). Again, using the properties of
log-normal random variables yields

ln Et

(
ct+1

ct

)−γ pt

pt+1
= Et ln ζ−γt+1 + Et lnφ−1

t+1 + (13)

γ2

2
vart ln ζt+1 +

1
2

vart lnφt+1 + γcovt
(
ln ζt+1, lnφt+1

)
.
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As before, we can use the properties of the driving process to obtain

xt = β

[
exp(−γδζ0 − δφ0 +

γ2σ2
ζ

2
+
σ2
φ

2
+ γσζφ)

]
Xt, (14)

where Xt = Πp
j=0ζ

−(γδζζ, j+δφζ, j)
t−j Πp

j=0φ
−(γδζφ, j+δφφ, j)
t−j . As expected, the be-

havior of the nominal rate depends on the time-series characteristics of both
endowment growth and the inflation rate. In particular, observe that the greater
the unconditional variance of inflation surprises, the lower the nominal rate,
since 1 + rN

t = 1/xt. Furthermore, a larger negative covariance between un-
expected movements in endowment growth and inflation surprises raises the
nominal rate (so long as γ > 0). As mentioned earlier, this result reflects that
when σζφ < 0, high inflation shocks tend to occur when endowment growth is
unexpectedly low. In this case, the household, therefore, requires a higher yield
on nominal bonds to account for the inflation risk. Alternatively, we can see
this notion by tracing the effect of the covariance between endowment growth
shocks and inflation shocks on the inflation risk premium directly. By using
equation (6) and solving for ln 1/(1+rt)Et(pt/pt+1) as we have done above, one
sees that

covt

((
ct+1

ct

)−γ
,

pt

pt+1

)
=[

exp

(
−γδζ0 − δφ0 +

γ2σ2
ζ

2
+
σ2
φ

2

)] [
exp(γσζφ)− 1

]
Xt. (15)

Hence, it is now clear that covt
(
(ct+1/ct)−γ , pt/pt+1

)
≤ 0 whenever σζφ ≤ 0,

regardless of the other terms in equation (15). As suggested by equation (6),
this effect raises the nominal rate over and above that implied by movements
in the real rate and expected inflation alone. Finally, it should be intuitive that
when households are risk-neutral and γ = 0, the inflation risk premium is
identically zero irrespective of σζφ.

Earlier in the analysis, we hinted that even if the inflation risk premium
were zero at all dates, equation (6) would not necessarily reduce to the Fisher
equation when inflation is stochastic. We argued that, generally, Et( pt+1/pt) 6=
1/Et( pt/pt+1) and that this difference would rise with the volatility of inflation
surprises. This result is shown formally in Appendix C and, in particular,

Et
pt+1

pt
− 1

Et( pt/pt+1)
= exp(δφ0)

[
exp

(
−σ2

φ

2

)
− exp

(
σ2
φ

2

)]
P−1

t , (16)

where Pt = Πp
j=0ζ

δφζ, j
t−j Πp

j=0φ
δφφ, j
t−j . Figure 1 illustrates how the right-hand side

of this last equation varies as a function of φ2
φ. Since the result in equation (16)

is essentially driven by Jensen’s Inequality, the greater the variance of inflation
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Figure 1 Effect of Jensen’s Inequality on the Simple Fisher Equation
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shocks, the more the convexity inherent in the price ratio matters. In a world
without inflation surprises, σ2

φ = 0, and the right-hand side of (16) vanishes.
Note that in the latter case, inflation is not necessarily constant but is deter-
ministic and described by equation (9), without the εφ,t+1 shock. Therefore the
conditional expectations operator in (16) becomes, in some sense, irrelevant.

Thus far, we have been able to show that the discrepancy between the
modified Fisher equation in (6) and the Fisher equation in (7) ultimately boils
down to two crucial aspects of the environment; namely, the covariance be-
tween unexpected movements in endowment growth and inflation surprises, as
well as the unconditional volatility of inflation surprises. However, whether this
difference is quantitatively significant remains to be seen.

Quantitative Implications

To address the quantitative features of the model just presented, we must first
tackle the issue of calibration. As a benchmark case we first fix the discount
rate, β, to 0.996 and set the risk-aversion parameter, γ, to 0.75. The value of
the discount rate is chosen so that, in the benchmark scenario, the mean of
the model-implied ex post real rate matches its counterpart in the data at 2.32
percent. Note that since U.S. real consumption has generally been growing at
about 2 percent over the sample, our discount factor is scaled up by a factor of
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(1.02)γ relative to one that would be appropriate for stationary data. We then
examine how the results vary with changes in the risk-aversion parameter. The
only other necessary parameters of the model relate to the exogenous driving
process. To this end, we estimate the bivariate VAR described by equations (8)
and (9) using the following data:

• Consumption refers to per capita annual U.S. consumption of non-
durable goods, durable goods, and services, spanning 1955 to 1996
and expressed in 1992 dollars.

• Price level refers to the ratio of nominal consumption to real
consumption.

Note that we are using annual data in order to avoid estimating equations
(8) and (9) with variables averaged over extended periods. Using data aver-
aged over a ten-year period, for instance, would result in a substantial loss of
information. A VAR of order 4 is estimated with resulting R2s of 0.75 and
0.90 for equations (8) and (9), respectively. The point estimates for σζφ and
σ2
φ are 3.20 × 10−5 and 2.43 × 10−4. It directly follows that the inflation

risk premium generated by this model is all but negligible. Observe that this
result has little to do with the notion that the equity premium is typically
small in this type of framework. Instead, it is driven almost exclusively by the
fact that inflation surprises move in a way unrelated to unexpected changes
in consumption growth. (We return to this point more fully in the next sec-
tion.) Moreover, consistent with the high R2 associated with the estimation of
equation (9), the volatility of shocks to inflation also appears to be very small.
Therefore, by equation (16), we may think of Et(pt+1/pt) as essentially equal to
1/Et(pt/pt+1).

Figure 2 presents the historical estimates generated from the model for the
period 1955 to 1996 using the benchmark parameters. We chose this time span
so that we could directly compare the model-implied nominal rate with the
actual yield on one-year Treasury notes.

As we can see from Figure 2, panel c, except for the late 1970s and early
1980s, the model performs relatively well in matching the actual nominal rate.
The model’s inability to capture the sharp rise in nominal rates in the late 1970s
can perhaps best be explained by the unusually aggressive disinflationary policy
adopted by the Fed at that time. In response to strong inflationary pressures in
the fall of 1980, Goodfriend (1993, pp. 11–12) notes that “the Fed began an
unprecedented aggressive tightening. . . . Thus, the run-up of the funds rate
to its 19 percent peak in January 1981 marked a deliberate return to the high
interest rate policy.” It may be, therefore, that the assumptions concerning the
driving process described by equations (8) and (9) are not entirely justified. In
particular, a specification for the driving process that included the possibility
of a regime switch around 1980 might have been more appropriate.
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Figure 2 Simulated Results with CRRA Utility
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As shown in panel d, the inflation risk premium is insignificant over the
entire period and since the variance of inflation surprises is small, the modified
Fisher equation collapses almost exactly to the Fisher equation. To be specific,
the gap that separates equation (6) from equation (7) is never more than 3 basis
points over the entire period. Thus, while the Fisher equation does not hold
in theory when inflation is stochastic, it may very well serve as a reasonable
approximation in practice.

Panel a of Figure 2 also shows that the ex ante real rate can be quite
volatile. Observe in particular the severe real rate drops that occur in 1975
and 1980. In the context of this model, recall that the real rate in equation
(11) is in part a function of recent consumption growth. According to the
driving process described in Section 2, past consumption growth helps predict
future consumption growth in equation (10). Consequently, the sharp fall in real
rates in 1975 and 1980 correspond respectively to the two recessions typically
associated with the severe rise in oil prices and the credit controls imposed
by the Carter Administration. Over the period under consideration, the one-
year real rate fluctuates between 0.25 percent and 3.7 percent. This range is
substantially greater than the 75-basis-point range found by Ireland (1996) for
the ten-year real rate. Our findings therefore lend support to the stylized view
that as maturity increases, variations in the nominal rate are more likely due to
variations in expected inflation than variations in the real rate. Table 1 presents
some key sample statistics concerning the time-series properties of the historical
estimates generated by the model as we vary the risk-aversion parameter.

As suggested by the estimates in Table 1, the standard deviation of the real
rate is about 1 percent in the benchmark case. This rate is more than half the
standard deviation of the ex post real rate of 1.80 percent over the same period.
Therefore, in spite of relatively smooth consumption growth, this framework
generates a real rate with considerable volatility.

In Table 1, we also note that both the mean and the standard deviation of the
real rate increase sharply with the risk-aversion parameter. This result emerges
because a rise in the degree of risk aversion implies a fall in the elasticity of
intertemporal substitution in consumption. Since the representative household
is less willing to smooth consumption across periods, it generally requires a
higher return on bonds in order to save. More importantly, this feature of the
model is precisely that which makes it difficult to match the equity premium.
As observed in Abel (1990), although the return on stocks typically rises with
γ, the fact that the return on Treasury notes also rises with γ essentially leaves
the difference between the stock return and the bond return unchanged, even
for large increases in risk aversion. Ideally, to have a better chance of matching
the equity premium without requiring extreme values of γ, one would like a
framework in which increases in the degree of risk aversion do not necessarily
yield increases in the real rate.
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Table 1

Ex Ante Real Rate:
rt

Expected Inflation:
Et(pt+1/pt)

Nominal Rate:
rN
t

γ = 0.75 mean: 2.14 mean: 4.03 mean: 6.23

std: 1.00 std: 2.43 std: 2.39

corr(rt, Et(pt+1/pt)): −0.29 var(
Et(pt+1/pt)

rt
): 5.99

γ = 1.75 mean: 4.51 mean: 4.03 mean: 9.90

std: 2.37 std: 2.43 std: 3.01

corr(rt, Et(pt+1/pt)): −0.29 var(
Et(pt+1/pt)

rt
): 1.03

γ = 6 mean: 15.10 mean: 4.03 mean: 19.64

std: 9.02 std: 2.43 std: 8.98

corr(rt, Et(pt+1/pt)): −0.28 var(
Et(pt+1/pt)

rt
): 0.07

Finally, because the volatility of the real rate depends so crucially on γ in
the above experiment, it is difficult to say whether the volatility of the real rate
relative to that of expected inflation is greater or less than one. In addition, the
model consistently generates a negative correlation between the real rate and
expected inflation across all values of the risk-aversion parameter. The latter
result supports earlier evidence to that effect by Fama (1990).

4. RESULTS WITH “KEEPING-UP-WITH-THE-
JONESES” UTILITY

Analytical Solutions

Thus far, estimates of the inflation risk premium based on the above frame-
work as well as U.S. consumption data appear to be quantitatively small. We
have also suggested that this result is unrelated to the fact that the equity
premium tends to be small in consumption-based asset pricing models. To see
why this is true, we now adopt an alternative preference specification that we
refer to as the “keeping-up-with-the-Joneses” (KUPJ) specification. Under this
alternative way of modeling preferences, which defines utility as a function
of relative consumption, Abel (1990) shows that while the return on stocks
typically increases with the risk-aversion parameter, the real return on bonds
generally remains constant. Therefore, when the degree of relative risk aversion
is sufficiently high (γ = 6 in Abel [1990]), the author is able to generate an
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equity premium that is within the range of that observed in the data. We now
formally show that even when utility is of the KUPJ form, the inflation risk
premium remains small irrespective of the degree of risk aversion.

Following Abel (1990) and Gali (1994), momentary KUPJ utility is given
by

u(ct) =
(ct/Ct−1)1−γ − 1

1− γ , (17)

where Ct−1 denotes average consumption in the previous period. Thus, the
specification in (17) captures the idea that it is not consumption per se but
relative consumption that matters to households. Using q̃t as the price of a one-
period inflation-indexed bond under this alternative functional form for utility,
equation (4) now reads as

q̃t = β

(
Ct

Ct−1

)γ−1

Et

(
ct+1

ct

)−γ
(18)

=

(
Ct

Ct−1

)γ−1

qt,

where qt, given by equation (10), is the price of an inflation-indexed bond when
utility is CRRA. Similarly, the inverse of the nominal rate in equation (12) is
now given by

x̃t = β

(
Ct

Ct−1

)γ−1

Et

(
ct+1

ct

)−γ pt

pt+1
(19)

=

(
Ct

Ct−1

)γ−1

xt.

In equilibrium, Ct = ct when households are identical. Therefore, the solutions
for q̃t and x̃t can simply be obtained by scaling up equations (11) and (14),
respectively, by a power function of current consumption growth, ζγ−1

t . More
importantly, these results also indicate that the new inflation risk premium is
now given by equation (15) multiplied by ζγ−1

t . Since the inflation risk pre-
mium under KUPJ utility is simply the premium that emerges under CRRA
utility scaled up by current consumption growth (to the power γ − 1), a value
of σζφ = 0 still implies that the inflation risk premium is identically zero irre-
spective of γ. In other words, it is still true in this case that when unexpected
movements in consumption growth and shocks to inflation are uncorrelated, the
inflation risk premium is zero regardless of the degree of risk aversion. Given
our estimate in the previous section of σζφ = 3.20× 10−5, it follows that even
when preferences follow the KUPJ specification, the simple Fisher equation in
(7) remains a good approximation to the generalized Fisher equation in (6).
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Quantitative Implications

Figure 3 presents the historical estimates from the benchmark case where utility
is of the KUPJ form. The parameter values for the bivariate driving process are
the same as those used in the previous section. A direct comparison with Figure
2 reveals little difference between the two sets of figures. In particular, observe
that, as expected, the inflation risk premium continues to be negligible over the
entire period under consideration. As in the earlier experiment, the model still
fails to capture the behavior of the nominal rate at the end of the 1970s and
beginning of the 1980s. However, it is interesting that both the ex ante real rate
and the model-implied nominal rate seem to exhibit more variation relative to
Figure 2. This result is consistent with the earlier work of Abel (1990) who
finds that, while the mean return on bonds remains relatively constant as the
degree of risk aversion rises with KUPJ preferences, the volatility of bond
returns tends to exceed that which emerges with CRRA utility. The following
table makes the last point more concretely.

When one compares Table 2 with Table 1, it is clear that under the alterna-
tive preference specification, the real rate is largely invariant with respect to the
degree of risk aversion. This invariance property is precisely the mechanism
that, for a high enough value of γ, allows Abel (1990) to generate an equity risk
premium close to the one found in the data. Table 2 also clearly suggests that
in all cases, the volatility of both the real rate and nominal rate is greater than
its corresponding value in Table 1. As in the previous section, it remains that
the volatility of the real rate increases sharply with the degree of risk aversion.
Accordingly, whether the real rate varies more or less than expected inflation
at short horizons still depends heavily on the particular preference specification
adopted. In addition, as in Fama (1990), the model continues to suggest a con-
sistent negative correlation between the real rate and expected inflation across
different values of γ. Therefore, although we find that Fisher’s equation holds
relatively well in this framework, the nominal yield moves generally less than
one-for-one with expected inflation at the one-year horizon.

5. CONCLUDING REMARKS

This article investigates the extent to which the simple Fisher equation can be
interpreted as a reasonable approximation to its more complete counterpart in
a dynamic endowment economy. The expanded Fisher equation, in addition to
capturing movements in real rates and expected inflation, differs from its sim-
pler version along two dimensions. First, it accounts for random movements
in inflation through an inflation risk premium. Second, it acknowledges the
inherent nonlinearity of inflation in drawing a link between the nominal rate
and expected inflation.

Given U.S. consumption data, we find that the quantitative historical
estimates of the inflation risk premium for the period 1955 to 1996 are small.
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Figure 3 Simulated Results with KUPJ Utility
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Table 2

Ex Ante Real Rate:
rt

Expected Inflation:
Et(pt+1/pt)

Nominal Rate:
rN
t

γ = 0.75 mean: 2.75 mean: 4.03 mean: 6.86

std: 1.24 std: 2.43 std: 2.62

corr(rt, Et(pt+1/pt)): −0.16 var(
Et(pt+1/pt)

rt
): 3.80

γ = 1.75 mean: 2.69 mean: 4.03 mean: 6.78

std: 2.43 std: 2.43 std: 3.75

corr(rt, Et(pt+1/pt)): −0.39 var(
Et(pt+1/pt)

rt
): 1.00

γ = 6 mean: 2.65 mean: 4.03 mean: 6.65

std: 11.06 std: 2.43 std: 10.75

corr(rt, Et(pt+1/pt)): −0.37 var(
Et(pt+1/pt)

rt
): 0.04

This result emerges primarily because unexpected movements in consumption
and inflation surprises appear to have little covariation in U.S. data. In other
words, since inflation surprises are largely unrelated to consumption growth,
there is no reason why the inflation risk premium should be either positive
or negative. Moreover, the latter notion was shown to have little to do with
the equity premium being typically small in consumption-based asset pricing
models. Therefore, although the Fisher equation does not theoretically apply in
an environment with stochastic inflation, it may serve as an adequate approxi-
mation in practice.

Using two different preference structures, we also find that the model-
implied nominal yield on one-year bonds matches the actual one-year yield
on Treasury notes relatively well for most of the sample period. However,
the model fails to track the nominal rate adequately in the late 1970s. We
suspect that this latter result is partly driven by the singularly aggressive stance
adopted by the Federal Reserve at that time in order to bring down very high
inflation rates. In interpreting our results concerning the inflation risk pre-
mium, one needs to be cognizant of the model’s failure along this dimension.
Our benchmark cases also suggest a real rate whose volatility is more than
half that of its U.S. ex post counterpart. Further, our framework in all cases
provides additional evidence to support Fama’s (1990) view that expected in-
flation and the real rate tend to move in opposite directions. Finally, we find
that under both preference specifications, whether the real rate is more or less
volatile than expected inflation depends heavily on households’ degree of risk
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aversion. Taken together, these last two points suggest one should proceed with
caution when interpreting movements in short-term nominal yields in terms of
movements in expected inflation.

APPENDIX A: HOUSEHOLD OPTIMALITY
CONDITIONS

Let λt and µt represent the Lagrange multipliers associated with constraints
(2) and (3), respectively. Then, the first-order conditions associated with the
household’s problem are given by

u′(ct) = µt + βEtλt+1
pt

pt+1
, (20)

qtλt = βEtλt+1, (21)

xt
λt

pt
= βEt

λt+1

pt+1
, (22)

and

λt = µt + βEtλt+1
pt

pt+1
. (23)

APPENDIX B: USEFUL PROPERTIES OF LOG-NORMAL
RANDOM VARIABLES

This appendix describes properties of log-normal random variables that are
useful in deriving the solution for bond prices described in Section 3. Let x be
a log-normal random variable, then

• ln E(x) = E(ln x) + (1/2)var(ln x) and

• ln E(xa) = aE(ln x) + (a2/2)var(ln x) for a ∈ R.

Furthermore, if y is a log-normal random variable, then so is z = xy. To
see this, note that ln z = ln x + ln y, which is the sum of two normal random
variables and thus itself normally distributed. It directly follows from the first
of the above properties that

• ln E(xy) = E(ln x) + E(ln y) + (1/2)var(ln x) + (1/2)var(ln y)
+ cov(ln x, ln y).
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APPENDIX C: JENSEN’S INEQUALITY AND THE
VARIANCE OF INFLATION SHOCKS

Since

ln Et
pt+1

pt
= Et ln

pt+1

pt
+

1
2

vart ln
pt+1

pt

= Et lnφt+1 +
1
2

vart lnφt+1,

equation (9) directly implies that

Et
pt+1

pt
= exp(δφ0 +

σ2
φ

2
)Pt, (24)

where Pt = Πp
j=0ζ

δφζ, j
t−j Πp

j=0φ
δφφ, j
t−j . Furthermore, since ln Etpt/pt+1 can simply

be expressed as ln Et(pt+1/pt)−1, we also have that

Et
pt

pt+1
= exp(−δφ0 +

σ2
φ

2
)P−1

t . (25)

It then follows that

Et
pt+1

pt
− 1

Et(pt/pt+1)
= exp(δφ0)

[
exp(
−σ2

φ

2
)− exp(

σ2
φ

2
)

]
P−1

t . (26)

Hence, the difference on the left-hand side of equation (26) rises with σ2
φ as

conjectured. This is shown in Figure 1.
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