
        

An Empirical Investigation
of Fluctuations in
Manufacturing Sales
and Inventory within a
Sticky-Price Framework

Pierre-Daniel G. Sarte

T he macroeconomics literature has recently witnessed a resurgence of
interest in issues related to nominal price rigidities. In particular, ad-
vances in computational methods have allowed for the analysis of fully

articulated quantitative general equilibrium models with inflexible prices.1 Be-
cause nominal price rigidities create predictable variations in sales, these models
provide a natural setting for the study of inventory behavior. Specifically, firms
that face increasing marginal costs wish to smooth production and, given pre-
dictable variations in sales, can naturally use inventories to accommodate any
difference between a smooth production volume and sales.

Hornstein and Sarte (1998) study the implications of sticky prices for in-
ventory behavior under different assumptions about the nature of the driving
process. Regardless of whether the economy is driven by nominal demand or
real supply shocks, the authors find that an equilibrium model with inflexible
prices can replicate the main stylized facts of inventory behavior. Namely, pro-
duction is more volatile than sales while inventory investment is positively cor-
related with sales at business cycle frequencies. More importantly, their study
also makes specific predictions about the dynamic adjustment of inventories
and sales to these shocks. In response to a permanent positive money growth
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innovation, both sales and inventories contemporaneously rise before gradually
returning to the steady state. In contrast, a permanent positive technology shock
leads to a rise in sales and a fall in inventories on impact. As time passes by,
sales increase monotonically and eventually reach a new higher steady-state
level.

In this article, we estimate a structural vector autoregression (SVAR), where
money is constrained to be neutral in the long run, in order to gauge the degree
to which these theoretical dynamic adjustment paths hold in the data. Using
manufacturing data, we find that the impulse response of sales and inventories
to nominal shocks is generally consistent with the predictions of a sticky-price
model. Furthermore, both sales and inventories also behave as predicted in the
long run in response to a technology shock. Contrary to theory, however, we find
that inventories contemporaneously rise in response to a positive innovation in
technology. In all cases, the data indicate significantly more sluggishness in the
dynamic adjustment of sales and inventories to shocks than implied by current
models with sticky prices. The latter finding is consistent with earlier work by
Feldstein and Auerbach (1976), as well as Blinder and Maccini (1991), using
stock-adjustment equations. More recently, Ramey and West (1997) also find
that the inventory:sales relationship is unusually sluggish. They are able to ex-
plain this result by appealing either to persistent shocks to the cost of production
or to a strong accelerator motive within a linear quadratic framework.

Although the earlier analysis in Hornstein and Sarte (1998) makes specific
predictions regarding the dynamic response of sales and inventories to various
shocks, it does not assess the relative importance of these shocks as sources
of fluctuations. Here we use our estimated VAR to acquire some insight into
the significance of both real and nominal shocks in generating fluctuations
in sales and the inventory:sales ratio. We find that nominal shocks generally
contribute little to the forecast error variance in the latter variables at both short
and long horizons. Instead, consistent with earlier work such as King, Plosser,
Stock, and Watson (1991), fluctuations in real variables tend to be dominated by
real disturbances. Moreover, these empirical findings tend to hold consistently
throughout different historical episodes at the business cycle frequency. One
exception concerns monetary disturbances that play a noticeably more important
role in generating inventory:sales ratio fluctuations in the early 1990s.

This article is organized as follows. We first set up and motivate an empir-
ical model that is consistent with generic restrictions implied by an equilibrium
model of inventory behavior. In particular, we assume that money is neutral in
the long run and that the inventory:sales ratio is a stationary process without
trend. Note that we do not impose any a priori restrictions that are directly
tied to the assumption of sticky prices. The next section examines various
integration and cointegration properties of the data under consideration. We
then analyze the impulse responses of sales and the inventory:sales ratio to
various shocks. We also try to gauge the relative importance of these shocks
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as sources of fluctuations in the latter variables. After that, we offer some cau-
tionary remarks regarding the specific empirical implementation in this article.
The final section concludes the analysis.

1. INVENTORY FLUCTUATIONS:
THEORETICAL MOTIVATION

To set the stage and notation for the econometric specification, we will pro-
vide some theoretical background on the behavior of inventories. The basic
framework we have in mind is one in which firms use inventories to smooth
production in a setting with staggered nominal prices.2 The assumption of
inflexible price adjustment provides a natural role for production smoothing as
the underlying factor driving inventory behavior. In particular, nominal price
rigidity creates predictable variations in sales. Suppose, for instance, that the
nominal price set by a given firm is fixed over some time interval. If the
general price level increases over that time interval, then the firm’s relative
price correspondingly falls and its sales rise, all else being equal. Given this
rising sales path, the firm also attempts to minimize total production costs by
keeping production relatively smooth. Inventories can then be used to make up
for the differences between production and sales. In addition to identifying this
sticky-price motive, we, like Khan (1987), assume that firms may also hold
inventories to avoid costly stock-outs.

Within the context of this framework, the dynamic adjustment of invento-
ries and sales to various shocks will generally depend on how preferences and
technology are specified. In the long run, however, the model exhibits basic
neoclassical properties that can be used for the purposes of identification. One
of these properties suggests that money is neutral and, moreover, that changes
in the steady-state level of sales ultimately arise from innovations in technology.
With this in mind, we let the long-run component of the sales process evolve
according to

s∗t = δs + s∗t−1 + Φs(L)at, (1)

where s∗t denotes the log level of sales and at captures shocks to technology.
The lag polynomial Φs(L), as well as all other polynomials described below, is
assumed to have absolutely summable coefficients with roots lying outside the
unit circle. Observe that equation (1) implicitly assumes that the sales process
possesses a unit root. We formally test this assumption later in this article.

In principle, the steady-state level of inventories can be thought of as
being determined by the two forces we described previously. Note that in a

2 See Hornstein and Sarte (1998) for details of the model.



     

64 Federal Reserve Bank of Richmond Economic Quarterly

model with rigid prices, firms naturally wish to hold inventories to accom-
modate any difference between predictable variations in sales and a smooth
production volume. Moreover, by using inventories to avoid costly stock-outs,
firms generally target some appropriate inventory:sales ratio in the long run.
Although the short- and medium-run dynamics of inventories typically depend
on both these forces, Hornstein and Sarte (1998) note that in the steady state, the
level of inventories reflects almost exclusively the stock-out avoidance motive.
Accordingly, we may express long-run inventories as

n∗t = s∗t + ξ, (2)

where n∗t denotes the log level of inventories and ξ is some target inven-
tory:sales ratio. It immediately follows from (1) and (2) that inventories and
sales share a common stochastic trend whose growth rate is δs + Φs(L)at.
Furthermore, as we make clear below, the inventory:sales ratio becomes a
stationary stochastic process.

Since in this article we are partly interested in how monetary shocks affect
the dynamics of inventories and sales, we must specify our beliefs about the
behavior of money. To this end, we let the long-run component of money evolve
according to

m∗
t = δm + Φm(L)[at, ηt]′, (3)

where m∗
t is the log level of money and ηt denotes money innovations. Note

that, as in Gali (1999), we allow monetary policy to respond permanently to
long-run changes in technology, at. This assumption captures the idea that the
Federal Reserve reacts to permanent real changes in the economic environment
in its effort to keep prices stable. We further assume that at and ηt are serially
and mutually uncorrelated shocks.

While we have assumed that long-run changes in sales are ultimately deter-
mined by technological considerations, sales may actually respond to a variety
of economic shocks in the short run. More specifically, the level of sales, st,
may deviate temporarily from its long-run value because of money shocks or
transitory real demand shocks. Such real shocks may include temporary changes
in tastes, for instance. Therefore, a complete process for sales can be described
as

st = s∗t + ψs(L)[at, ηt, et]′, (4)

where et captures a mixture of temporary real demand shocks. These are as-
sumed to be serially uncorrelated as well as uncorrelated with at and ηt. In
principle, the fact that st depends on all shocks in the model allows for flexi-
ble short-run dynamics. The aim of our empirical exercise is, in part, to gauge
whether these short-run dynamics are consistent with the predictions of a model
with nominal price rigidities. Taking the first difference in equation (4) and
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substituting equation (1) into it yields

∆st = δs + Φs(L)at + (1 − L)ψs(L)[at, ηt, et]′, (5)

which represents one of the structural equations to be estimated.
As in (4), one generally expects the level of inventories to be sensitive to

all shocks in the short run. Consequently, we may write the following stochastic
process for inventories:

nt = n∗t + ψn(L)[at, ηt, et]′. (6)

Note that the theoretical framework we have been using predicts a testable
cointegrating restriction. In particular, while (1) and (2) suggest that both inven-
tories and sales are integrated of order one (often denoted I(1)), these equations
combined with (4) also suggest that the difference between inventories and sales
is stationary (or I(0)). Formally, we can use (6) along with equations (1), (2),
and (4) to show that

nt − st = ξ + {ψn(L) − ψs(L)}[at, ηt, et]′. (7)

The above equation clearly indicates that the inventory:sales ratio will deviate
from its long-run value at high and medium frequency. By construction, these
deviations are never permanent.

To complete the econometric specification, we allow monetary policy to
respond to various shocks not only in the long run but also in the short run.
The latter assumption along with equation (3) yields

∆mt = δm + Φm(L)[at, ηt]′ + (1 − L)ψm(L)[at, ηt, et]′. (8)

At this point, we wish to stress that the identifying restrictions made in this
section are, in fact, quite generic and unrelated to the notion of sticky prices
per se. Therefore, if the results below turn out to be consistent with the notion
of nominal rigidities, this outcome will not be as a direct consequence of the
identifying strategy used. It remains that different identification strategies may
yield different results. Because our restrictions are relatively general, however,
they encompass a broad range of models.3

2. ECONOMETRIC METHOD AND DATA ANALYSIS

Using Long-Run Restrictions for the Purpose of Identification

We can summarize our model thus far in the form of a vector moving average,

YYt = T(L)εt, (9)

3 See Cooley and Dwyer (1998) for a thorough discussion of the pitfalls associated with the
identification of SVARs.
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where Yt = (∆st, ∆mt, nt−st)′ and εt = (at, ηt, et). The matrix polynomial T(L)
consists of the polynomials Φa(L), Φm(L), ψs(L), ψn(L), and ψm(L) in equations
(1) through (8). In addition, embedded in T(L) are long-run restrictions implied
by our model that can be used to identify each of the three structural shocks.
Specifically, the matrix of long-run multipliers, T(1), may be written as

T(1) =


 a11 0 0

a12 a21 0
a31 a32 a33


 . (10)

Thus, the first row of T(1) reflects our restriction that only technology shocks
alter the level of sales in the long run (in the steady state, sales should equal
production). Money, therefore, is neutral, and we can appropriately constrain
the estimation of the sales growth equation to identify technology shocks. To
see how to impose the restrictions contained in T(1), note first that under the
assumption that T(L) is invertible, T(1)−1 is also lower block triangular. In
estimating the sales growth equation, therefore, it suffices to set the long-run
elasticity of ∆st with respect to both ∆mt and nt − st to zero.

Real transitory demand shocks cannot, by definition, have long-run effects
on any of the variables in the model. As the second row of T(1) suggests, this
restriction, already imposed in estimating the sales growth regression, can be
used to identify money shocks. In other words, except for permanent changes
in technology, long-run changes in money are associated only with their own
innovations, as equation (3) illustrates. To uncover money innovations, there-
fore, we estimate the money growth equation subject to the restriction that the
long-run elasticity of ∆mt with respect to nt − st be set to zero. It remains that
the long-run elasticity of ∆mt with respect to ∆st will generally not be zero.
To account for the presence of this contemporaneous endogenous variable in
the money growth regression, we use the fact that the structural disturbances
are assumed to be mutually uncorrelated and use the residual from the sales
growth regression as an instrument. The econometric methodology used here,
therefore, follows that of Shapiro and Watson (1988), Blanchard and Quah
(1989), King, Plosser, Stock, and Watson (1991), as well as many others.

It follows that the last remaining innovation captures real temporary de-
mand shocks. In particular, the third row of T(1) suggests that the latter shocks
can simply be uncovered by estimating the inventory:sales ratio equation with-
out any restrictions. We use the residuals from both the sales growth and money
growth regressions to instrument for ∆st and ∆mt in this last regression.

Cointegration Properties of the Data

Before proceeding with the estimation, we first investigate the cointegrating
restriction implied by (7). As with the majority of the empirical literature on
inventory behavior, this article focuses mainly on manufacturing inventories.
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Figure 1

More specifically, the notion of production smoothing applies best to manufac-
tured goods, as pointed out in Hornstein (1998). In Section 4, we shall take
the research one step further by showing that the econometric specification
above may be ill-suited to both the retail and service sectors. We add one cau-
tionary note, however, regarding our assumption that money may respond to
long-run innovations in technology (recall equation [3]). In all likelihood, this
assumption is most relevant for aggregate shocks rather than sectoral shocks.
Our model does not allow us to disentangle these shocks. Consequently, shocks
captured by at should be interpreted as a linear combination of both aggregate
and sectoral innovations.
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Table 1 Cointegration Statistics—1947:1–1998:3

a. Results from Unrestricted Levels Vector Autoregression:
Largest Eigenvalues of Estimated Companion Matrix

VAR(6) with constant and trend

Real Imaginary Modulus

0.98 0.04 0.98
0.98 −0.04 0.98
0.85 0.15 0.86
0.85 −0.15 0.86
0.63 0.47 0.78
0.63 −0.47 0.78

b. Multivariate Unit-Root Statistics: Stock and Watson q f Statistic

H0: 3 unit roots vs. H1: at most 2 unit roots

Number of Lags q f
τ (3, 2) statistic P value

1 −42.51 2.75
2 −45.10 1.75
3 −42.27 2.75
4 −34.68 9.75
5 −31.89 14.75

H0: 2 unit roots vs. H1: at most 1 unit root

Number of Lags q f
τ (2, 1) statistic P value

1 −8.99 83.25
2 −11.94 67.50
3 −9.39 81.25
4 −8.69 85.00
5 −7.87 88.75

Figure 1 shows the logarithms of money, as defined by M1 (i.e., currency
and demand deposits), manufacturing inventories, and sales of finished goods.
The data are quarterly U.S. observations spanning the period 1947:1 to 1998:3.
Early figures for M1 were obtained from the Monetary Statistics of the United
States since they were unavailable from the Board of Governors dataset. The in-
ventory and sales data were downloaded from the National Income and Products
Accounts on February 19, 1999. Regressions were run over the period 1948:3
to 1998:3 to allow for six lags. The plots of the variables display familiar, clear
upward trends with inventories being the most volatile component. Note that
inventories and sales indeed seem to share the same trend over the period con-
sidered. Figure 1 also plots the logarithm of the inventory:sales ratio, (n − s),
which appears relatively stable. One possible exception concerns the period
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Table 1 Cointegration Statistics—1947:1–1998:3 (cont.)

Johansen’s Likelihood Ratio Statistics

2(LL1 − LL0) 5% critical value

H0: h = 0 vs. H1: No restrictions: −T
∑3

i=1 log(1 − λi) = 41.97 29.51

H0: h = 0 vs. H1: h = 1 : −T log(1 − λ1) = 25.99 20.77

H0: h = 1 vs. H1: No restrictions: −T
∑3

i=2 log(1 − λi) = 15.98 15.20

H0: h = 1 vs. H1: h = 2 : −T log(1 − λ2) = 12.95 14.03

Notes: T = 201, where T is the sample size, λ1 = 0.1213,λ2 = 0.0624, and λ3 = 0.0148, where
the λi’s refer to the square of the canonical correlations.

Saikkonen’s Estimator for Cointegrated Regressions

Variable Null Hypothesis Estimates

s −1 −1

m 0 0

n 1 0.95 (0.02)

Wald Test for the Cointegrating Vector (−1, 0, 1): χ2
[1] = 12.08.

beginning in the early 1990s in which this ratio seems to have started to fall.4

On the whole, however, it would be difficult to argue that the inventory:sales
ratio does not fluctuate around a constant mean. Alternatively, Figure 1 loosely
suggests that inventories and sales are cointegrated.

A univariate analysis of the three variables plotted in Figure 1 suggests
that they can each be characterized as an I(1) process with positive drift. Our
concern, however, is mostly with a multivariate analysis of the relationship
described by (9). Accordingly, Tables 1a and 1b present a number of statistics
that relate to the three-variable system, ỸYt = (st, mt, nt)′.

Panel a of Table 1 shows the largest eigenvalues of the companion matrix
associated with a VAR(6) estimated with a constant and a linear trend. Under
the assumption that only one cointegrating restriction links the variables in ỸYt,
the companion matrix should have two unit eigenvalues corresponding to two
common stochastic trends. All other eigenvalues should be less than one in
modulus. These results follow directly from Stock and Watson’s (1988) com-
mon trends representation. The point estimates displayed in Table 1a indeed

4 Regressions were also run over the period 1947:1 to 1990:1 to check for robustness with
respect to this feature of the data. Our empirical results, however, were largely unaffected.
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support the hypothesis of two common trends or, alternatively, that there exists
a single cointegrating restriction in our three-variable system.

Panel b presents more formal tests of cointegration developed by both
Stock and Watson (1988) and Johansen (1988). Stock and Watson’s q f

τ (k, m)
statistic tests the null of k unit roots against the alternative of m, (m < k), unit
roots using Stock and Watson’s (1989) dynamic Ordinary Least Squares (OLS)
procedure. Specifically, if there are n variables and h cointegrating vectors,
the procedure estimates h regression equations containing a constant, n − h
regressors in levels, as well as leads and lags of the first differences in these
regressors as right-hand-side variables. The τ subscript indicates that a lin-
ear trend is included in the regressions. In panel b of Table 1, we note that
the q f

τ (3, 2) statistic is consistent with rejecting the null of no cointegrating
restrictions against the alternative of at least one cointegrating restriction. In
particular, the P values are generally small regardless of the number of lags
used in the dynamic OLS equations. In addition, the q f

τ (2, 1) statistic suggests
rejecting the alternative of two cointegrating restrictions against the null of one
cointegrating vector. Put together, these results provide evidence of only one
cointegrating vector in our three-variable system.

Panel b also presents results obtained from Johansen’s Likelihood Ratio
Trace and Maximum Eigenvalue statistics. For these statistics, we can think of
the number of unit roots as the number of variables less the number of coin-
tegrating relations. Consider first the likelihood ratio test for the null of zero
cointegrating relation against the alternative of three cointegrating relations. For
this test, the likelihood ratio statistic, 2(L1−L0), is 41.97, which is greater than
29.51. Therefore, the null hypothesis is rejected at the 5 percent significance
level. Similarly, the test statistic for the null of zero cointegrating restriction
against the alternative of one restriction is 25.99 > 20.77. It follows that the
null hypothesis of no cointegration is rejected by this second test as well.

To see whether a second cointegrating relation potentially exists, consider
the likelihood ratio test for the null of h = 1 against the alternative of h = 3.
In this case, the test statistic is 15.98 > 15.20 so that the null hypothesis is, in
fact, rejected at the 5 percent significance level. However, the likelihood ratio
test statistic for the null of one cointegrating relation against the alternative of
two relations is 12.95 < 14.03. Therefore, although the Johansen tests generally
suggest one cointegrating relation, they also offer conflicting evidence as to the
presence of a second cointegrating restriction.

Finally, panel b gives an estimate of the cointegrating relation associated
with the vector of variables (st, mt, nt) using Saikkonen’s (1991) procedure.5

5 This procedure is essentially that of dynamic OLS. In this case, the regression involves
the level of sales as the dependent variable; as right-hand-side variables it involves the level of
inventories, a constant but no deterministic trend, as well as leads and lags of the differences in
inventories.
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Although the Wald Statistic suggests rejecting the null hypothesis that the
cointegrating vector is proportional to (−1, 0, 1), the point estimates are broadly
consistent with the notion that the inventory:sales ratio is stationary.

3. ESTIMATION OF A THREE-VARIABLE SYSTEM

The results presented in this section are based on the estimation of the Vector
Error Correction Model (VECM) implied by equation (9). Each regression
equation is estimated using six lags of ∆st, ∆mt, the error-correction term
nt − st, as well as a constant. As we indicated earlier, the triangular nature of
the long-run multiplier matrix and the assumption that the structural error terms
are mutually uncorrelated allows us to recursively estimate each equation in the
system. In estimating the money growth equation, the residual from the sales
growth regression was used to instrument for contemporaneous endogenous
variables. Similarly, in estimating the inventory:sales ratio equation, the resid-
ual from the money growth regression was added to the list of instruments.6

Estimated Structural Impulse Responses

Figure 2 displays the estimated impulse response function obtained from the
system summarized by (9). The 95 percent confidence bands also displayed
in Figure 2 were computed using Monte Carlo simulations. These simulations
were carried out by using draws from the normal distribution for the technology,
money growth, and temporary real demand innovations. One thousand Monte
Carlo draws were completed.

We now interpret these impulse response functions in terms of a production-
smoothing model with nominal rigidities. Let us first focus our attention on the
effect of a money growth innovation. In a framework with staggered prices,
Hornstein and Sarte (1998) suggest that in response to a money growth shock,
sales should contemporaneously rise before gradually reverting back to the
steady state. To see why this is true, note that a firm that does not adjust its
price following an increase in nominal demand naturally sees its sales rise on
impact. Moreover, its relative price continues to decline as long as its nominal
price remains fixed. These results occur because other firms eventually increase
their price so that the price level rises. Firms that do adjust their price imme-
diately following the money growth innovation set their price high enough so
that their sales initially fall. In the aggregate, however, the latter firms typically
represent a small fraction of the total number of firms and aggregate sales
initially rise. Looking at the point estimates of the sales response to a money

6 See Shapiro and Watson (1988) for details of how to estimate just-identified SVARs using
an instrumental variables approach.
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Figure 2

innovation in Figure 2a, we see that sales actually fall when the shock occurs.
However, immediately following this initial response, sales increase before re-
verting back to the steady state. This dynamic adjustment in sales, therefore, is
almost compatible with the predicted response in Hornstein and Sarte (1998).
The main difference lies in the contemporaneous response that appears negative
in the data. On the one hand, this difference may be evidence that a relatively
nontrivial fraction of firms actually do adjust their price at the time of the
shock. On the other hand, the upper bound of the confidence interval suggests
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a positive initial response of sales as expected. Furthermore, the subsequent
dynamic adjustment in sales is consistent with that of a sticky-price model.

We now turn to the dynamic response of the inventory:sales ratio to a
money growth innovation. In theory, the combination of production smooth-
ing and sticky-price forces predicts that inventories should rise on impact in
response to a positive nominal shock. Because the inventory:sales ratio is con-
stant in the steady state, and nominal shocks have no long-run effect on sales,
inventories then gradually fall back so as to meet some target inventory:sales
ratio. Alternatively, changes in the inventory:sales ratio fall back to zero. To
understand the nature of this dynamic adjustment, recall that a firm that does
not adjust its price in response to a nominal shock initially experiences a rise
in sales. Afterwards, sales continue to rise as long as its price remains un-
changed. Given that this firm also smooths production over its pricing cycle,
it must initially increase production by more than sales. This large initial in-
crease in production effectively allows output to grow relatively slowly over
the remainder of the firm’s pricing cycle. Therefore, firms that keep their price
fixed following a money growth shock increase their inventory holdings at
the outset. Now, what about firms that do change their price at the time the
shock occurs? Since these firms also smooth production over their pricing cy-
cle, they initially reduce output by less than the fall in sales they experience.
Consequently, inventory holdings increase for the latter firms as well. In the
aggregate, therefore, inventory holdings should unambiguously rise on impact
in response to a positive nominal demand shock. Looking at the response of
the inventory:sales ratio to a money shock in Figure 2b, we see that it rises on
impact by approximately 1 percent. Since sales contemporaneously fall by 0.4
percent in response to the same shock, the level of inventories does indeed rise
at the outset by about 0.6 percent as suggested by our sticky-price framework.7

When examining the dynamic adjustment of sales and inventories to a
technology shock, Hornstein and Sarte (1998) suggest that total sales should
contemporaneously rise in response to a technology shock. This result is mainly
driven by the firms that respond to the innovation. In particular, a productivity
increase implies a fall in the marginal cost of production. Firms that imme-
diately respond to the shock, therefore, lower their price and see their sales
increase. Furthermore, during the transition, aggregate sales continue to rise
monotonically to a higher steady state as more firms also reduce their price.
The sales response in Figure 2c indeed broadly suggests that sales first increase
in response to a technology shock and eventually reach a new higher steady-
state level. The dynamic adjustment, however, is not monotonic. Specifically,
sales appear to overshoot the new steady state twice during the early portion

7 Letting n:s denote the inventory:sales ratio, observe that the change in inventories is then
given by ∆n = ∆n:s + ∆s = 0.01 − 0.004 = 0.06.
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Figure 2

of the transition phase. This oscillatory impulse response in sales is somewhat
difficult to reconcile with a standard sticky-price model. It may suggest that
some firms find it difficult to know exactly where to set a new price following
the shock. In particular, the overshooting suggests that these firms may initially
set their price too low. The subsequent corrective rise in price that would then
occur causes a temporary decline in sales. It remains that, as expected, sales
ultimately rise in the long run relative to their initial level.
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As with the dynamic adjustment to a monetary innovation, the response of
inventories to a technology shock hinges on the production-smoothing behavior
of firms. Consider first the behavior of firms that adjust their price immediately
following the shock. As we have just seen, these firms initially lower their price
so that their sales at first increase. However, these firms then face declining
sales over the remainder of their pricing cycle. This result stems from the fact
that, following the initial adjustment, their price remains fixed while the price
level continues to fall. Therefore, firms that adjust their price on impact also
raise production but by a lesser amount than the initial sales increase. These
firms consequently experience a fall in inventory holdings.

For the firms that do not adjust their price at the time the shock occurs,
sales initially decrease as adjusting firms cause the aggregate price level to fall.
Since these firms anticipate further declines in sales while their price remains
fixed, they reduce production on impact by more than the initial decline in
sales. Therefore, inventory holdings contemporaneously fall for the latter firms
as well. It follows that aggregate inventory holdings should unambiguously
decline immediately following the technology shock. As sales eventually rise
to a higher steady state, inventories should then rise by the same amount in the
long run to keep the inventory:sales ratio constant.

When we examine the inventory:sales ratio response to a technology shock
in Figure 2d, we see that it falls by approximately 0.8 percent on impact in
response to the innovation. Given the 1.2 percent rise in sales that contempo-
raneously follows the same technology shock, inventories then rise by about
0.4 percent at the time the shock hits. Since, on the contrary, a framework with
sticky prices predicts an unambiguous initial decline in inventory holdings, the
implied initial reaction of inventories in the data represents evidence against
such a framework. However, we note that the lower bound of the 95 percent
confidence interval for the impact response of sales is relatively small at about
0.35 percent. Because of the contemporaneous fall in the inventory:sales ratio
by 0.8 percent, the level of inventories would also fall if we were to use the
lower bound on the contemporaneous sales response. The latter observation
mitigates the evidence against a sticky-price framework implied by the point
estimates.

Thus far, the dynamic adjustment of sales and the inventory:sales ratio
to both nominal demand and technology shocks are roughly consistent with
what might have been predicted from a rigid price framework. The two main
exceptions are (1) the implied initial response of inventories to technology
shocks, and (2) the extremely sluggish dynamic adjustment of both sales and
the inventory:sales ratio to shocks, as shown in Figure 2. In the case of the
inventory:sales ratio’s response to a money innovation, for instance, the half-
life of the impulse is approximately 25 quarters or more than six years. While
typical sticky-price models deliver nowhere near this kind of sluggishness
in real variables, Ramey and West (1997) also note that the inventory:sales
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relationship exhibits a very high degree of persistence. In fact, these findings
turn out to be a reflection of a well-known problem in the empirical literature on
inventory behavior. Specifically, Feldstein and Auerbach (1976) point out early
on the incongruity inherent to the notion that firms may take years to adjust to
a sales shock, while the widest swings in inventory levels seldom amount to
more than a few days’ production. More recently, Blinder and Maccini (1991,
p. 81) write that “one major difficulty with stock-adjustment models is that
adjustment speeds turn out to be extremely low,” a comment referring to the
estimation of stock-adjustment equations generally.8 They further note that “a
natural reaction is that the slow estimated adjustment speeds must be an artifact
of econometric biases. One potential source of such bias is omitted variables.”
As with the estimation of stock-adjustment equations, we should be conscious
that the structural equations we estimate may also be subject to the latter source
of bias.

Forecast Error Variance Decompositions

Having investigated the way in which the variables in (9) empirically respond
to various structural shocks, we now wish to gauge the importance of each
of these shocks in determining short-run variations in the data. We have seen
that the dynamic adjustment of sales and the inventory:sales ratio, and hence
inventories, to a money shock is generally consistent with the predictions of a
sticky-price framework in which firms also smooth production. In some sense,
however, this concept may be of secondary importance to a monetary policy-
maker if money shocks only play a small role in determining real variables.
King, Plosser, Stock, and Watson (1991), for example, present compelling
evidence to that effect in the case of aggregate variables. Of primary importance
is the role played by each structural shock in determining short- and medium-
run fluctuations in the data, as reflected when decomposing the variance of the
k-step-ahead forecast errors.

Consider the moving-average process given by (9) and let T(L) = T0 +
T1L + T2L2 + . . . + TkLk + . . . , Ljxt = xt−j, while E(εtε

′
t) = Σε. Then, we

may write the k-step-ahead forecast error in YY as

YYt+k − Et−1YYt+k =
k∑

j=0

Tkεt+k−j. (11)

For our purposes, what we wish to assess is the fraction of variance in
the left-hand side of equation (11) that is attributable to each of the structural
shocks. In other words, we ask the question: To the degree that the actual
data differ from the optimal forecast, which of the structural shocks is most

8 See Lovell (1961) for instance.
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Table 2 Decompositions of Forecast Error Variance

a. Fraction of Sales Forecast Error Variance Attributed to Shocks

Horizon Technology Shock Money Shock
Real Demand

Shock

1 0.70 (0.21) 0.22 (0.16) 0.08 (0.13)
4 0.92 (0.17) 0.06 (0.12) 0.02 (0.12)
8 0.97 (0.13) 0.02 (0.09) 0.01 (0.07)

12 0.99 (0.11) 0.01 (0.08) 0.00 (0.05)
16 0.99 (0.09) 0.01 (0.07) 0.00 (0.05)
20 0.99 (0.07) 0.01 (0.05) 0.00 (0.02)
∞ 1.00 (0.00) 0.00 (0.00) 0.00 (0.00)

b. Fraction of Inventory:Sales Ratio Forecast Error Variance
Attributed to Shocks

Horizon Technology Shock Money Shock
Real Demand

Shock

1 0.90 (0.27) 0.08 (0.26) 0.02 (0.21)
4 0.85 (0.26) 0.01 (0.25) 0.14 (0.24)
8 0.79 (0.22) 0.01 (0.25) 0.20 (0.24)

12 0.75 (0.22) 0.05 (0.24) 0.20 (0.24)
16 0.73 (0.21) 0.06 (0.25) 0.21 (0.24)
20 0.72 (0.21) 0.09 (0.24) 0.18 (0.24)
∞ 0.69 (0.20) 0.14 (0.24) 0.17 (0.25)

responsible for this difference? Note that our identifying restrictions imply that
100 percent of the sales forecast error variance is explained by the technology
shock at the infinite horizon. At shorter horizons, however, both nominal and
real demand disturbances are allowed to contribute to fluctuations in sales. Table
2, panel a, shows that in fact, this contribution is relatively minor.9 At the one-
quarter horizon, technology shocks already explain 70 percent of the forecast
error variance in sales. The bulk of the remaining variance is attributable to
money growth shocks while real demand disturbances play a very small role.
At the four-quarter horizon, technology shocks account for 92 percent of the
variation in sales. At the three-year horizon, virtually all of the forecast error
fluctuations in sales can be explained by technology shocks.

Focusing on fluctuations in the inventory:sales ratio, we again find that they
tend to be dominated by real disturbances. In this case, however, it is interesting
that as the forecast horizon lengthens, the important role played by technology

9 Standard errors are in parentheses.
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innovations diminishes somewhat at the expense of real demand disturbances.
Also, by contrast to sales above, forecast errors in the inventory:sales ratio
are not restricted to be uniquely driven by real disturbances in the long run.
As a result, we find that at the infinite horizon, monetary disturbances explain
approximately 14 percent of the forecast error in the inventory:sales ratio. While
this number may not be too consequential, it is slightly larger than most other
findings concerning the role of nominal shocks in determining the behavior of
real variables. Gali (1992), for example, finds that after 20 quarters, money
supply shocks only explain 9 percent of the variation in aggregate output.

Historical Decompositions

The variance decompositions in Table 2 show the relative importance of each
structural shock in explaining variations in both sales and the inventory:sales
ratio on average. It is also interesting to note that these shocks may matter
more or less during various historical episodes. Figures 3 and 4 plot the his-
torical forecast error decompositions in sales and the inventory:sales ratio at
the 12-quarter horizon. This 12-quarter horizon concept of the business cycle
is adopted from King, Plosser, Stock, and Watson (1991).

Figure 3 confirms that while money shocks have historically played a small
role in explaining fluctuations in sales, technology shocks have played a more
substantial role. Interestingly, this finding appears to remain consistent through-
out the entire sample period considered. Temporary real demand disturbances
take on relatively more importance in explaining sales fluctuations in the 1990s.
On the whole, the largest forecast errors occur in the mid-1970s and, as might
have been expected, coincide with the oil price shock of 1973.

The latter observation also applies to the forecast errors in the inven-
tory:sales ratio as suggested by Figure 4. Again we note that money generally
plays a small role in driving inventory:sales ratio fluctuations, as implied by the
variance decompositions in Table 2. In contrast, we also find that the importance
of the monetary component, even if small on average, noticeably increases in
the early 1990s. Put another way, Figure 4 suggests that even if monetary
fluctuations have traditionally represented a small portion of fluctuations in the
inventory:sales ratio, this does not imply that monetary disturbances are always
unimportant.

4. CAUTIONARY REMARKS

An important part of the empirical analysis above has been the assumption
that the inventory:sales ratio is stationary around a constant mean. As we have
seen, various cointegration tests have generally confirmed this hypothesis for
manufacturing inventories. Moreover, the notion of a stationary ratio is typi-
cally explained on the grounds that stock-outs are costly and, therefore, that
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Figure 3 Historical Forecast-Error Decomposition: Sales
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Figure 4 Historical Forecast-Error Decomposition: N:S Ratio
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Figure 5 Logarithm of the Inventory:Sales Ratio (n−s)

firms generally try to meet some target inventory:sales ratio in the long run.
The fall in the inventory:sales ratio that begins in the early 1990s (Figure 1)
is sometimes taken as evidence of the just-in-time inventory method taking
hold in the United States. The inventory:sales ratio in both the wholesale and
retail sectors, however, reveals a much different story. Figure 5 suggests that
for much of the period under consideration, the inventory:sales ratio in both
these sectors has actually trended upwards. Both the ratios seem to stabilize
in the early 1990s, perhaps again because of the widespread emergence of the
just-in-time method. Nevertheless, it remains that much of the increase in the
inventory:sales ratio up to the early 1990s, in both the wholesale and retail
sectors, represents somewhat of a puzzle.
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To explain this puzzle, one can speculate that, over time, consumers have
gained easier access to a wide variety of goods through improved means of
communication and transportation. As a result, back orders for any one busi-
ness are less likely to arise since consumers can simply acquire the same
goods elsewhere. So not having goods on hand more readily results in lost
sales, which effectively drives up the cost of stock-outs and, consequently, in-
ventory:sales ratios. Alternatively, consistent improvements in technology may
simply have reduced storing costs over time. This would have made it eas-
ier for wholesalers and retailers to avoid stock-outs and is directly consistent
with increasing inventory:sales ratios. Food products, for instance, have be-
come increasingly storable because of consistent innovations in preservatives
technology. Whatever the case may be, Figure 5 makes it clear that traditional
theories of inventory behavior need to be amended to account for the data in the
wholesale and retail sectors. Perhaps a focus away from production smoothing
is even necessary.

5. CONCLUSIONS

We have used an SVAR to acquire some insight into the dynamic responses of
manufacturing sales and inventories to both nominal demand and real supply
shocks. We assumed that money is neutral in the long run and, moreover, that
the inventory:sales ratio can be properly characterized as a stationary process
without trend. We then found that the estimated dynamic adjustments to nom-
inal demand and real supply shocks are generally consistent with those of an
equilibrium model of inventory behavior with inflexible prices. However, the
degree of sluggishness exhibited by both sales and the inventory:sales ratio,
and hence inventories, in response to these shocks is much greater than that
suggested by current sticky-price models. The latter findings confirm earlier
observations by Blinder and Maccini (1991) and, more recently, Ramey and
West (1997).

We also used our empirical framework to gauge the relative importance
of both nominal and real disturbances as sources of fluctuations in the manu-
facturing sector. The results indicate that nominal shocks generally contribute
little to the forecast error variance in both sales and the inventory:sales ratio
at all horizons. Instead, fluctuations in real variables are mainly driven by real
disturbances. In addition, the latter results appeared to hold consistently at the
business cycle frequency throughout the sample period under consideration.
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