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R esearch on monetary policy, both at academic and monetary policy in-
stitutions, has increasingly been performed within an analytical frame-
work that assumes limited nominal price adjustment, “sticky prices”

for short. At the heart of much of this analysis is a so-called New Keyne-
sian (NK) “expectational” Phillips curve that relates current inflation, πt , to
expected future inflation and the deviation of marginal cost from trend ŝt :

πt = βEtπt+1 + ξ ŝt , (1)

with β, ξ > 0. Empirical estimates of the coefficient on the marginal cost
term, ξ , in this NK Phillips curve tend to be positive but small in absolute
value, e.g., Sbordone (2002) and Galı́ and Gertler (1999).1 This represents a
problem for the sticky-price framework since the coefficient ξ is directly re-
lated to the frequency with which nominal prices are assumed to be adjusted:
the coefficient is smaller the less frequently prices are adjusted. Within stan-
dard sticky-price models, estimated values of ξ imply that prices are adjusted
less than once per year. This macro estimate of price stickiness is implau-
sibly high from the perspective of the micro estimates surveyed in Wolman
(forthcoming).

It has been conjectured widely that nominal rigidities, such as sticky
prices, have more persistent real effects if they interact with real rigidities.
For example, the basic NK Phillips curve (1) has been derived for an environ-
ment with nominal frictions, but essentially no real rigidities: firms rent factors

For helpful comments we would like to thank Andrew Foerster, Bob Hetzel, Ned Prescott, and
Pierre Sarte. The views expressed in this article are those of the authors and not necessarily
those of the Federal Reserve Bank of Richmond or the Federal Reserve System.

1 Expression (1) is derived in Woodford (2003, ch. 3) for an economy with Calvo-type sticky
prices. Woodford’s (2003) textbook presents a unified framework for thinking about monetary policy
based on sticky-price models. For a critical review of this line of research, see Green (2005).
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of production—capital and labor—in frictionless markets. Now, suppose that
there is a real rigidity in addition to the sticky prices. In particular, assume
that capital is specific to individual firms, and it is costly for these firms to
adjust their capital stock. Introducing firm-specific capital adjustment costs
into sticky-price models substantially complicates the analysis, yet Woodford
(2005) manages to derive an almost closed-form solution to this problem. In
particular, Woodford (2005) again derives an NK Phillips curve of the form
(1), but now the marginal cost coefficient, ξ , depends not only on the extent
of price stickiness, but also on the magnitude of capital adjustment costs: the
coefficient is smaller the less frequently prices are adjusted and the more costly
it is to adjust capital. Thus low estimated values of ξ do not necessarily imply
a high degree of price stickiness.

Woodford’s (2005) clean analytical solution of the modified NK Phillips
curve does come with a cost. His approach is based on the linear approxi-
mation of an economy with Calvo-type nominal price adjustment around an
equilibrium with zero average inflation. The assumption of zero average infla-
tion makes the theoretical analysis of the firm aggregation problem possible,
yet it is not empirically plausible. Even though in recent years inflation has
been remarkably stable in many industrialized countries, average inflation has
been positive. Furthermore, most estimates of the NK Phillips curve use data
from periods of moderate inflation. Thus, it is important to know whether the
behavior of these models is sensitive to the steady-state inflation rate.2

In this article we evaluate the relative impact of positive average inflation
versus zero inflation in an economy with nominal rigidities and firm-specific
capital adjustment costs. Unlike Woodford (2005), we model nominal rigidi-
ties as Taylor-type staggered price adjustment, and not as Calvo-type proba-
bilistic price adjustment. This approach is necessary since at this time there
are no aggregation results for our economic environment with Calvo-type pric-
ing and nonzero average inflation. We show that for small values of positive
average inflation, the Taylor principle, which states that a central bank should
increase the nominal interest rate more than one-for-one in response to a de-
viation of inflation from its target, is no longer sufficient to guarantee that
monetary policy does not become a source of unnecessary fluctuations in our
economy.

The fundamental difficulty with incorporating firm-specific capital into a
model with sticky prices is that firm-specific capital can amplify the hetero-
geneity associated with price stickiness. With Calvo price setting, firms face
a constant exogenous probability of being able to readjust their price. If there

2 Furthermore, even though overall inflation has been low and stable, trends have remained in
disaggregated measures of prices—for example, services prices have a positive trend and durable
goods prices have a negative trend. This means that in a multi-sector model with zero inflation, the
steady state would involve trends in individual nominal prices and thus a nondegenerate distribution
of prices across sticky-price firms (Wolman 2004).
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are no state variables specific to the firm (other than price), then all firms that
adjust in a given period choose the same price. In that case, even though the
true distribution of prices is infinite, it is possible to summarize the relevant
distribution with just a small number of state variables.3 If instead capital is
firm specific, firms that adjust in the same period generally do not have the
same capital stock. Their marginal cost is not the same, and in general they will
not choose the same price. Thus, combining Calvo pricing and firm-specific
capital appears to lead to an intractable model.

The model is intractable in its exact form, but Sveen andWeinke (2004) and
Woodford (2005) have shown how to derive a tractable linear approximation
to the model, under the assumption that the average inflation rate is zero. The
key to these derivations is the fact that in the zero-inflation steady state there
is no heterogeneity: all firms charge the same price.

Given the tractability problem, there is little hope of being able to learn how
the Calvo model with firm-specific capital behaves away from a zero-inflation
steady state. Fortunately, there is another class of sticky-price models that
remains tractable when combined with firm-specific capital. The staggered
pricing framework associated with Taylor (1980) assumes that there are J
different types of firms; each period a fraction 1/J of firms adjusts their prices,
and their prices remain fixed for J periods. Firm-specific capital presents no
problems in the Taylor model, because it remains the case that all firms that
adjust in a given period enter with the same capital stock and thus will choose
the same price.

We solve the linear approximation to the Taylor model numerically and
ask whether the model’s dynamics are sensitive to the steady-state inflation
rate around which we linearize.4 We find that a small but positive inflation rate
can have a big impact on the set of parameters for monetary policy rules and
investment adjustment costs for which a rational expectations (RE) equilib-
rium is unique.5 If the equilibrium is not unique, that is, there is equilibrium
indeterminacy, then possible equilibrium outcomes can depend on shocks that
do not constrain the resource feasible allocations in an economy. In these
equilibria self-fulfilling expectations that coordinate on such nonfundamen-
tal shocks, known as “sunspots,” introduce unnecessary fluctuations into the
economy.

3 We say the true distribution is infinite because a positive fraction of firms charges a price
set arbitrarily many periods in the past.

4 Others have worked with the Taylor model with firm-specific capital; see, for
example, Coenen and Levin (2004) and de Walque, Smets, and Wouters (2004). They have not
studied the role of steady-state inflation.

5 Since we are studying linear approximations of equilibria, all of our statements have to be
understood as applying to local properties of the equilibria for small deviations from the steady
state. Wolman and Couper (2003) discuss the potential pitfalls of this type of analysis, especially
as it relates to statements about the uniqueness of equilibrium.
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In standard sticky-price models, monetary policy rules that set the nom-
inal interest rate in response to deviations of inflation from its target value
achieve a unique RE equilibrium, if they follow the Taylor principle. The
principle states that the nominal interest rates increase more than one-for-one
with an increase of the inflation rate. This policy response does not have to
be very big, as long as it is greater than one. We show that in the sticky-price
model with firm-specific capital, positive steady-state inflation generally in-
creases the region of the parameter space for which there is indeterminacy
of equilibrium. In other words, for the same magnitudes of price-stickiness
and capital-adjustment costs, monetary policy has to be much more respon-
sive to deviations of inflation from its target in order to maintain a unique RE
equilibrium outcome. These results suggest that it may be misleading to in-
terpret history and make policy recommendations based on findings from the
zero steady-state inflation case. Our results complement those in Sveen and
Weinke (2005), who show that moving from a rental market to firm-specific
capital leads to a larger region of the parameter space for which there is inde-
terminacy of equilibrium when steady-state inflation is zero.

In Section 1 we describe the economy with firm-specific capital adjust-
ment cost and the two types of sticky prices: Calvo-type and Taylor-type
nominal price setting. In Section 2 we outline how Woodford (2005) solves
the aggregation problem for Calvo-type pricing and derives the modified NK
Phillips curve. In Section 3 we characterize the economy with Taylor-type
pricing, and in Section 4 we study the impact of capital adjustment costs and
nonzero average inflation on the economy with Taylor-type pricing.

1. STICKY-PRICE MODELS WITH FIRM-SPECIFIC CAPITAL

This section presents the common features of Calvo and Taylor sticky-price
models. There is an infinitely lived representative household and a continuum
of differentiated firms. The firms act as monopolistic competitors in their
differentiated output markets, but they are competitive in their differentiated
labor markets. The differentiated output goods of the firms are used to produce
an aggregate output good in a competitive market. The aggregate output good
can be used for consumption or investment. Firms use investment goods
to augment their firm-specific capital stocks, subject to capital adjustment
costs. Firms set the nominal price of their differentiated output good, and
only infrequently do they have the opportunity to adjust their nominal price.

The Representative Household

The household values consumption, ct , and experiences disutility from the
supply of differentiated labor to a continuum of markets, ht (j). The expected
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present value of utility is

E0

∞∑
t=0

βt
{
c1−σ
t − 1

1 − σ
− γ

∫ 1

0

ht (j)
ν+1

ν + 1
dj

}
, (2)

with discount factor, β. Period utility is an increasing (decreasing) concave
(convex) function of consumption (work time), σ , ν, γ > 0. The represen-
tative household owns shares in the continuum of firms and holds nominal
bonds. The household’s budget constraint is

Ptct +
∫ 1

0
Qt (j) at+1 (j) dj + Bt+1 =

∫ 1

0
Wt (j) nt (j) dj

+
∫ 1

0
[Qt (j)+Dt (j)] at (j) dj + (1 + it ) Bt , (3)

where Pt is the nominal price of the aggregate output good, Qt (j) is the
nominal price of a share in firm j ,Wt (j) is the nominal wage paid by firm j ,
Dt (j) is the nominal dividend paid by firm j , it is the nominal interest rate on
nominal bond holdings Bt , and at (j) is the household’s firm-share holdings.

Optimal choice of work effort implies the following firm-specific labor
supply functions

wt (j) = γ ht (j)
ν /λt , (4)

where wt (j) = Wt (j) /Pt is the real wage paid by firm j , and λt is marginal
utility of consumption

λt = c−σt . (5)

Optimal asset and bond holdings imply the following Euler equations for
bonds and firm shares

1 = Et

[
β
λt+1

λt

1 + it

Pt+1/Pt

]
and (6)

1 = Et

[
β
λt+1

λt

[
Qt+1 (j)+Dt+1 (j)

]
/Qt (j)

Pt+1/Pt

]
. (7)

The representative household chooses consumption such that the household is
indifferent between consuming slightly more, with a corresponding reduction
in asset holdings, and consuming slightly less, with a corresponding increase
in asset holdings. The Euler equations embody this indifference. In an equi-
librium, the representative household owns all firms, at (j) = 1.
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Aggregate Output

The aggregate output, yt , is produced from the continuum of differentiated
inputs,yt (j), using a constant-elasticity-of-substitution production function

yt =
[∫ 1

0
yt (j)

(θ−1)/θdj

]θ/(θ−1)

, (8)

where θ ≥ 1 denotes the elasticity of substitution between goods. This is the
Dixit-Stiglitz (1977) formulation used by Blanchard and Kiyotaki (1987). Pro-
duction is competitive and given nominal prices, Pt (j), for the differentiated
inputs, cost minimization implies the following nominal price index/marginal
cost for the aggregate output

Pt =
[∫ 1

0
Pt (j)

1−θ dj
] 1

1−θ
. (9)

Given aggregate output, the demand for a differentiated good is a function of
its relative price, pt (j) ≡ Pt (j) /Pt ,

yt (j) = pt (j)
−θ yt . (10)

Aggregate output can be used for consumption or for the accumulation of
firm-specific capital by the producers of differentiated goods, xt (j). Market
clearing for goods implies that aggregate output equals the sum of consumption
and aggregate investment

yt = ct +
∫ 1

0
xt (j) dj . (11)

Firms

The differentiated goods are produced by a continuum of monopolistically
competitive firms, and these are the same firms to which the household supplies
labor. The differentiated goods are produced using the inputs capital and labor,
both of which are specific to each firm. The differentiated firms can adjust the
nominal prices they set for their product only infrequently.

Production

Production is constant-returns-to-scale; in particular, we assume that the pro-
duction function is Cobb-Douglas:

yt (j) = kt (j)
α [Atht (j)]

1−α ; (12)

yt (j) is firm j ’s output in period t, and kt (j) and ht (j) are, respectively, the
capital input and labor input used by firm j in period t. There is an aggregate
productivity disturbance given by At . At the beginning of period t , firm j ’s
capital input is predetermined as a result of the investment decision firm j made
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in period t − 1. Furthermore, there are convex costs of changing the capital
stock, which we will specify further below. Labor is hired in competitive
markets, but because households receive distinct disutility from the labor they
provide to each firm, the wage can differ across firms.6

In order to change its capital stock from kt in period t to kt+1 in period
t + 1, a firm needs xt units of the aggregate output good

xt (j) = kt (j)G
[
kt+1 (j) /kt (j)

]
. (13)

The firm incurs capital adjustment costs determined by the increasing and
convex function,G(kt+1/kt ). As in Woodford (2005),G(1) = δ, G′ (1) = 1
and G′′ (1) = εψ, where εψ > 0 is a parameter. If the firm exactly replaces
depreciated capital, then the marginal investment cost is one, but if the firm
increases its capital stock, then the marginal cost of each additional unit of
capital is greater than one and increasing with the rate at which the capital
stock increases.

Prices

Firms in the model face limited opportunities for price adjustment. In partic-
ular, we assume that any firm faces an exogenous probability of adjusting its
price in period t and that the probability may depend on when the firm last
adjusted its price. The key notation describing limited price adjustment will
be a vector� (possibly with a countably infinite number of elements); the sth

element of�, called φs , is the probability that a firm adjusts its price in period
t, conditional on its previous adjustment having occurred in period t − s.

There is a time invariant distribution of firms according to when they last
adjusted their price, since the price-adjustment probabilities do not vary with
time. Let ωs denote the fraction of firms in period t , charging prices set in
periods t − s, with the corresponding vector, �. Given the price-adjustment
probabilities, the time invariant distribution satisfies

ωs = (
1 − φs

)
ωs−1, for s = 1, 2, ..., and (14)

ω0 = 1 −
J−1∑
s=1

ωs.

The most common pricing specifications in the literature are those first
described by Taylor (1980) and Calvo (1983). Taylor’s specification is one
of uniformly staggered price setting: every firm sets its price for J periods,
and at any point in time a fraction 1/J of firms charge a price set s peri-
ods ago. The J -element vector of adjustment probabilities for the Taylor
model is � = [0, ..., 0, 1], and the J -element vector of fractions of firms is

6 Labor market clearing is implicitly imposed by not differentiating between the labor supplied
to the j th type of firm and the labor demanded by the j th type of firm.
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� = [1/J, 1/J, ..., 1/J ]. In contrast, Calvo’s specification involves uncer-
tainty about when firms can adjust their price. No matter when a firm last
adjusted its price, it faces a probability φ of adjusting. Thus, the infinite vec-
tor of adjustment probabilities is � = [φ, φ, ...], and the infinite vector of
fractions of firms is ωs = φ (1 − φ)s , s = 0, 1, ....

Firm Value

We assume that a firm pays out each period’s profits as dividends to its share-
holders:

dt (j) = pt (j) yt (j)− wt (j) ht (j)− xt (j) . (15)

Conditional on the firm’s relative price, pt (j), sales, yt (j), are determined
by the demand curve (10). The firm’s demand for labor is

h (j) = H [y (j) , k (j) , A] =
[
y (j)

k (j)α

]1/(1−α)
A−1. (16)

The rationale behind solving for labor input in (16) is that in period t the
firm’s capital stock is predetermined, and thus the labor input it must employ
is determined by its technology, given the level of demand, yt (j). Conditional
on the available capital stock, the marginal (labor) cost of output is then

st (j) = 1

1 − α

wt (j) yt (j)

ht (j)
. (17)

Investment is determined by the capital stock the firm operates at the
beginning of the period and the capital stock the firm plans to operate in the
next period, equation (13). With some abuse of notation we can rewrite the
real dividends of a firm as a function of its idiosyncratic state and control
variables: the relative price and the beginning-of-period and end-of-period
capital stocks,

dt (j) = dt
[
pt (j) , kt (j) , kt+1 (j)

]
. (18)

The dependence on the aggregate state of the economy (aggregate demand,
productivity, wages) is subsumed in the time subscript t for the function d.

The firms maximize the discounted expected present value of future divi-
dends. The relevant discount factor is the representative household’s intertem-
poral marginal rate of substitution, since the firms are owned by the household,

maxEt

∞∑
τ=0

βτ
λt+τ
λt

dt+τ (j) . (19)

Let vt (p−1, k, j) denote the value of a firm with relative price, p−1, in
the last period and beginning of period capital stock k. Let j denote when the
firm last adjusted its nominal price. If j = 0, the firm can adjust its nominal
price in the current period, that is, p−1 does not affect the firm’s value and we
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write vt (k, 0). We can write the value of a firm as a function of its own state
variables recursively,

vt (kt , 0) = max
p∗
t ,kt+1

{
dt
(
p∗
t , kt , kt+1

)+ E

[
β
λt+1

λt

{
φ1vt+1 (kt+1, 0)

+ (1 − φ1) vt+1
(
p∗
t , kt+1, 1

)]}
, (20)

vt (pt−1, kt , j) = max
kt+1

{
dt (pt , kt , kt+1)+ E

[
β
λt+1

λt

{
φj+1vt+1 (kt+1, 0)

+ (
1 − φj+1

)
vt+1 (pt , kt+1, j + 1)

]}
, (21)

and pt = pt−1
Pt−1

Pt

Note that for Calvo pricing,φj = φ, and thereforevt (p−1, k, 1) = vt (p−1, k, j)

for all j ≥ 1. On the other hand, for Taylor pricing the firm value functions
are only defined for j ≤ J − 1, since φJ = 1.

Government Policy

We assume that there is neither taxation nor government spending. Monetary
policy chooses a desired steady-state level for the inflation rate, π∗. Given the
steady-state real interest rate, 1/β, the steady-state nominal interest rate, i∗,
consistent with the inflation rate, π∗, is

1 + i∗ = 1 + π∗

β
. (22)

Monetary policy is assumed to set the period nominal interest rate in response
to deviations of the inflation rate and output from their respective steady-state
values,

it = i∗ + fπ
[
Pt/Pt−1 − (

1 + π∗)]+ fy

[
yt − y∗

y∗

]
. (23)

2. THE CALVO MODEL

We now outline how the equilibrium of the economy with Calvo pricing can
be characterized for a log-linear approximation around a steady state with zero
inflation. In particular, we show that despite the fact that firms differ according
to their relative prices and their capital stocks, calculating simple averages over
all these firms yields a consistent aggregation. We do not provide a complete
characterization of the equilibrium; for this we refer the reader to Woodford
(2005). Although our results below on equilibrium indeterminacy are for the
Taylor model, we present the equilibrium characterization for the Calvo model
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because it helps to explain the appeal of firm-specific capital. It is only in the
zero-inflation Calvo model that one can solve for a simple NK Phillips curve
involving aggregate marginal cost and see how the coefficient on marginal
cost depends on investment adjustment costs as well as price stickiness.

The crucial element of the procedure is that the approximation proceeds
around a deterministic steady state where all firms are identical, so that the log-
linearized first-order conditions are the same for all firms. This feature makes
it possible to derive a first-order aggregation over firms that may temporarily
deviate from the deterministic steady state, and may therefore be characterized
by firm-specific state variables, kt (j) and Pt (j).

Since firms differ only because they may or may not have the chance to
adjust their prices, there are only two possibilities for firms to be the same
in the steady state despite the fact that they do not all adjust their prices at
the same time. First, there is zero steady-state inflation. In this case there is
no need for firms to adjust their prices and they will all be the same anyway.
Second, there is indexation: if firms cannot adjust their price optimally to
their current state, their price is nevertheless adjusted according to the average
inflation rate. Thus the firm’s relative price also does not change. In the
following we study the first case, zero steady-state inflation.

To summarize, we study the log-linear approximation of an economy
with a deterministic steady state where all firms are identical. That is, we
have psst (j) = 1 and ksst (j) = k∗.

Optimal Capital Accumulation

Taking the firm’s price decision as given for the time being, optimal choices
of kt+1 (j) and xt (j) maximize the expectation of (19) subject to the firm’s
product demand function (10), capital adjustment costs (13), and demand for
labor (16).

The first-order conditions for kt+1 imply the following Euler equation:

G′
(
kt+1 (j)

kt (j)

)
(24)

= Et

[
β
λt+1

λt

{
G

(
kt+2 (j)

kt+1 (j)

)
·
(
G′ [kt+2 (j) /kt+1 (j)

]
G
[
kt+2 (j) /kt+1 (j)

] · kt+2 (j)

kt+1 (j)
− 1

)
+ut+1 (j)}

]
,

where ut+1 (j) denotes the value of having an additional unit of capital in
period t + 1. This value, u, is the marginal labor cost reduction from the
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additional capital:

ut+1 (j) = −wt+1 (j)
∂H

[
yt+1 (j) , kt+1 (j) , At+1

]
∂kt+1 (j)

(25)

= α

1 − α
wt+1 (j) ht+1 (j) /kt+1 (j) .

The Euler equation is somewhat complicated, but it embodies the fact that a
marginal increase in next period’s capital stock has three effects. It subtracts
from resources available for current consumption; it adds to resources available
for future consumption; and it reduces future labor costs.

We now derive the log-linear approximation of the firm’s Euler equation
for capital (24). Let x̂ denote the percentage deviation of a variable from its
steady-state value x∗, x̂ = dx/x∗. Because ksst+1 (j) /k

ss
t (j) = 1, the log-

linear approximation of the Euler equation is

G′′ (1)
G′ (1)

[
k̂t+1 (j)− k̂t (j)

]
= Et

[
β
G′′ (1)
G′ (1)

[
k̂t+2 (j)− k̂t+1 (j)

]
(26)

+ [1 − β (1 − δ)] ût+1 (j)+ λ̂t+1 − λ̂t

]
.

Note thatG′′ (1) /G′ (1) = εψ . The log-linear approximation of the marginal
value of capital (24) is

ût+1 (j) = ŵt+1 (j)+ ĥt+1 (j)− k̂t+1 (j) . (27)

After substituting for firm-specific labor supply using (5), this equation can
be written as

ût+1 (j) =
[
νĥt+1 (j)− λ̂t+1

]
+ ĥt+1 (j)− k̂t+1 (j) . (28)

Next, substituting for the equilibrium employment from (16) and then substi-
tuting for firm j ’s output using the demand function (10), we get the marginal
value of a unit of firm-specific capital in terms of the firm-specific variables
(relative price and capital stock) and the aggregate variables (aggregate de-
mand, marginal utility, and technology):

ût+1 (j) = −θ ν + 1

1 − α
p̂t+1 (j)−

[
(ν + 1) α

1 − α
+ 1

]
k̂t+1 (j)

+ ν + 1

1 − α
ŷt+1 − λ̂t − (ν + 1) Ât+1. (29)

Notice that the Euler-equation approximations (26) and (29) are the same
for all firms, independent of their idiosyncratic state. We can now aver-
age/aggregate over these approximate first-order conditions of all firms. For
the following, let

k̂t ≡
1∫
0

k̂t (j) di (30)
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be the deviation of the aggregate capital stock from its steady-state value, and
similarly for all other variables. Aggregating over the first-order conditions
(26) and (29), we have

εψ

(
k̂t+1 − k̂t

)
= Et

[
λ̂t+1 − λ̂t + βεψ

(
k̂t+2 − k̂t+1

)
+ {1 − β (1 − δ)} ût+1

] ; (31)

ût+1 = ν + 1

1 − α
ŷt+1 − λ̂t+1 −

[
(ν + 1) α

1 − α
+ 1

]
k̂t+1

− (ν + 1) Ât+1. (32)

For the aggregate marginal value of capital we have used the fact that (9)
implies

1∫
0

p̂t (j) dj = 0. (33)

Now define a firm’s capital stock deviation from the aggregate deviation from
the steady state as

k̃t (j) = k̂t (j)− k̂t (34)

and subtract the aggregate conditions (31) and (32) from the firm-specific
conditions (26) and (29) to yield

εψ

{
k̃t+1 (j)− k̃t (j)

}
= Et

[
βεψ

{
k̃t+2 (j)− k̃t+1 (j)

}
+ {1 − β (1 − δ)} ũt+1 (j)

]
, (35)

ũt+1 (j) = − ν + 1

1 − α
θp̂t+1 (j)

−
{
(ν + 1) α

1 − α
+ 1

}
k̃t+1 (j) . (36)

Note that (35) and (36) define an autonomous system for the firm-specific
relative capital stock and relative price that is independent of aggregate vari-
ables. In order to complete this system, we need the expression for the un-
conditional expectation of the firm’s relative price in the next period. There
are two possibilities for next period’s relative price. First, with probability
1 −φ, the firm will be unable to adjust its nominal price, and its relative price
declines with the aggregate inflation rate π . Second, with probability φ, the
firm can adjust its nominal price and the optimal relative price choice is p̂∗:

Etp̂t+1 (j) = (1 − φ)
[
p̂t (j)− Etπt+1

]+ φEtp̂
∗
t+1 (j) . (37)

The analysis so far suggests that we can solve for the evolution of the
firm’s relative state variables independently of the evolution of aggregate state
variables, but it also implies that optimal capital accumulation and optimal
price setting will interact.
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The Interaction of Price Setting and Capital
Accumulation

We first show how aggregate inflation is related to the average price chosen
by all the firms that can adjust prices. Once we conjecture that a particular
price-adjusting firm’s deviation from this average optimal price depends only
on its relative capital stock, we can show how to solve for the evolution of
the firm’s relative capital stock. Conditional on the law of motion for the
firm’s optimal relative capital stock, one can then solve the firm’s optimal
price-setting problem. For an equilibrium, the conjecture on the optimal price-
setting rule in the first step has to be consistent with the solution of the price-
setting problem in the second step. This second step involves quite a bit of
algebra, and we refer the reader to Woodford (2005) for the solution. We do
state the Phillips curve equation that follows from these steps. The form of
the Phillips curve illustrates the appeal of firm-specific capital.

Aggregate Inflation

In the Calvo setup, aggregate inflation is determined as a weighted average of
the current distribution of relative prices and the optimal relative prices set by
price-adjusting firms. At the beginning of period t + 1, a fraction 1 − φ of all
firms keeps their price and a fraction φ adjusts their price conditional on their
state. For both groups we can use the unconditional distribution of all firms in
the economy. Thus, the deviation of the aggregate price level from the steady
state is

P̂t+1 = (1 − φ)

∫ 1

0
P̂t (j) dj +φ

∫ 1

0
P̂ ∗
t (j ) dj = (1 − φ) P̂t +φP̂ ∗

t+1. (38)

Subtract P̂t from both sides and the aggregate inflation rate is

πt+1 = P̂t+1 − P̂t = φ
(
P̂ ∗
t+1 − P̂t

)
. (39)

Adding and subtracting P̂t+1 on the right-hand side and using the definition of
the inflation rate, we get the inflation rate proportional to the average optimal
relative price

(1 − φ) πt+1 = φ
(
P̂ ∗
t+1 − P̂t+1

)
= φp̂∗

t+1. (40)

Using expression (40) for the inflation rate in the definition of next period’s
unconditional expected relative price (37) we get

Etp̂t+1 (j) = (1 − φ)

(
p̂t (j)− Et

[
φ

1 − φ
p̂∗
t+1

])
+ φE∗

t p̂t+1 (j)

= (1 − φ) p̂t (j)+ φEt
[
p̂∗
t+1 (j)− p̂∗

t+1

]
. (41)
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Now assume that the deviation of a firm’s optimal relative price from the
average optimal relative price is a function of the firm’s relative state only:

p̂∗
t (j ) = p̂∗

t − μk̃t (j) . (42)

Then equations (35), (36), (41), and (42) define an autonomous system for
the firm-specific relative capital stock, k̃ (j), and relative price, p̂ (j), that is
independent of aggregate variables. We are interested in a recursive solution
to this system, that is, a solution such that the firm’s choice for next period’s
relative capital stock, k̃t+1 (j), is a function of its own relative state only,[
k̃t (j) , p̂t (j)

]
:

k̃t+1 (j) = �k̃t (j)− τ p̂t (j) . (43)

Optimal Price Setting

Woodford (2005) solves the optimal price-setting problem conditional on the
optimal capital accumulation rule (43). In particular, the optimal price-setting
rule is shown to be of the form assumed in equation (42): the deviation of a
particular firm’s optimal relative price from the average optimal relative price,
p̂∗
t (i)− p̂∗

t , is a function of the firm’s relative state, k̃t (i). Woodford (2005)
shows how one can obtain the coefficients�, τ, and μ through the method of
undetermined coefficients.

The solution of the optimal pricing problem yields an expression for the
average optimal price as a function of the average marginal labor cost of
production, ŝt , and expected future optimal prices and inflation:

p̂∗
t = 1 − (1 − φ) β

�
ŝt + (1 − φ) βEt

[
πt+1 + p̂∗

t+1

]
, (44)

where � is a coefficient to be determined by the solution procedure. In partic-
ular, � will depend on the the price-adjustment probability φ and the degree
of capital adjustment costs, εψ . Average marginal cost is by definition

ŝt ≡
∫ 1

0

[
ŵt (j)+ ĥt (j)− ŷt (j)

]
dj

=
(
ν + 1

1 − α
− 1

)
ŷt − λ̂t − (ν + 1)

[
α

1 − α
k̂t + Ât

]
. (45)

We can now use again the expression for aggregate inflation in the Calvo
model in (40) and derive the “standard” New Keynesian Phillips curve

πt = [1 − (1 − φ) β]φ

(1 − φ)�
ŝt + βEt

[
πt+1

]
. (46)

For a simple Calvo model with no firm-specific capital, � = 1. Thus the
modified Calvo model with firm-specific capital adjustment costs generates
almost the same NK Phillips curve as the basic Calvo model, except for �.
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In particular, higher capital adjustment costs increase � and thereby reduce
the coefficient on the marginal cost term. Woodford (2005) and Eichenbaum
and Fisher (2004) thus argue that a low estimated coefficient on marginal cost
does not necessarily imply that the price-adjustment probability is very low;
it can also mean that the capital adjustment costs are very high.

3. THE TAYLOR MODEL

In the Taylor model, price adjustment occurs every J periods for an individual
firm, and in any given period by a fraction 1/J of firms. Because there is no
uncertainty regarding when a firm will adjust its price, the state space does
not explode as it does in the Calvo model. Therefore, the Taylor model with
firm-specific capital can be approximated easily around a steady state with
nonzero inflation. Here we present the exact equations of the model. We then
linearize them and compute the model’s local dynamics.

Pricing

An individual firm that can adjust its price in period t chooses a sequence of
nominal prices,

{
P ∗
t+J s (j)

}
, every J periods, and a sequence of capital stocks{

k∗
t+1 (j)

}
every period, that maximizes the objective function

maxEt

∞∑
s=0

βJs
J−1∑
τ=0

βτ
λt+J s+τ
λt

× (47){[
P ∗
t+J s (j)
Pt+J s+τ

]1−θ
yt+J s+τ − wt+J s+τ (j) ht+J s+τ (j)− xt+J s+τ (j)

}
,

subject to the demand for the firm’s goods (10) and the firm’s demand for labor
(16). Note that in contrast to the Calvo model, the expectation operator in (47)
is the unconditional expectation operator—there is no uncertainty in the price
adjustment process. The first-order conditions for optimal price setting are

Et

J−1∑
τ=0

βτ
λt+τ
λt

(1 − θ)
1

Pt+τ

(
P ∗
t (j )

Pt+τ

)−θ
yt+τ

+θEt
J−1∑
τ=0

βτ st+τ (j)
λt+τ
λt

1

Pt+τ

(
P ∗
t (j )

Pt+τ

)−θ−1

yt+τ = 0, (48)

where st (j) is the firm’s marginal (labor) cost of production, (17). The first-
order conditions for optimal capital accumulation are the same as in the Calvo
model, equations (25) and (26).
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To simplify (48) we will solve for the optimal price P ∗
t (j ), at the same

time dividing both sides of the equation by Pt :

P ∗
t (j )

Pt
=
(

θ

θ − 1

) Et∑J−1
τ=0 β

τ st+τ (j) λt+τλt
(

Pt
Pt+τ

1
Pt

)−θ
yt+τ

Et
∑J−1

τ=0 β
τ λt+τ
λt

Pt
Pt+τ

(
Pt
Pt+τ

1
Pt

)−θ
yt+τ

. (49)

Next, note that P θt cancels from the numerator and denominator:

P ∗
t (j )

Pt
=
(

θ

θ − 1

) Et∑J−1
τ=0 β

τ st+τ (j) λt+τλt
(
Pt+τ
Pt

)θ
yt+τ

Et
∑J−1

τ=0 β
τ λt+τ
λt

(
Pt+τ
Pt

)θ−1
yt+τ

. (50)

Until now we have carried around the firm’s index j , which lies in the interval
[0, 1] . However with Taylor pricing, it is only necessary to keep track of J
different types of firms—any firms that set their price in the same period behave
identically. Of course, this is not the case in the Calvo model.7 Henceforth
the index j denotes the finite types J . For example, the marginal cost for a
firm that set its price in period t − j will be sj,t ; the price in period t charged
by a firm that last set its price in period t − j will be Pj,t . Thus, instead of
P ∗
t (j ) we will write P0,t .

P0,t

Pt
= θ

θ − 1
·
Et
∑J−1

j=0 β
jsj,t+jλt+j

(
Pt+j
Pt

)θ
yt+j

Et
∑J−1

j=0 β
jλt+j

(
Pt+j
Pt

)θ−1
yt+j

. (51)

Imposing the fact that there are only J prices charged, the price index can
be written as

Pt =
⎧⎨⎩ 1

J

J−1∑
j=0

P 1−θ
0,t−j

⎫⎬⎭
1

1−θ

, (52)

and the demand equations are

yj,t = p−θ
j,t yt , j = 0, 1, ..., J − 1. (53)

Also, from the household side we have the labor supply equations

γ hυj,t

λt
= wj,t , j = 0, 1, ..., J − 1. (54)

7 We could also study the Taylor model under the assumption that firms that set their price in
the same period have initial conditions that involve heterogeneous capital. Under this assumption,
there would be multiple prices chosen in the same period. However, as long as the size of the
initial state was manageable, it would be feasible to analyze such a situation.
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Investment and Labor Demand

Here, for convenience, we collect the equations that were stated in Section 1
for the general model and the equations for optimal capital accumulation from
the Calvo model. We express these equations in a form specific to the Taylor
model. The technology is

yj,t = kαj,t
(
Athj,t

)1−α
. (55)

Adjustment costs for the capital stock are

xj,t = kj,tG
(
kj+1,t+1/kj,t

)
. (56)

The first-order condition for next period’s capital stock depends on the stage
of the price cycle that a firm is in. To simplify notation, let “j + i” denote
(j + i)mod (J − 1) for j = 0, 1, ..., J − 1. For example for j = J − 2 and
i = 3, j + i = 2. The rewritten first-order condition (24) for next period’s
capital stock is then

G′
(
kj+1,t+1

kj,t

)
= βEt

[
λt+1

λt

{
kj+2,t+2

kj+1,t+1
G′
(
kj+2,t+2

kj+1,t+1

)
−G

(
kj+2,t+2

kj+1,t+1

)
+ uj+1,t+1

}]
. (57)

Real profits in period t for firm j are given by

dj,t = pj,tyj,t − wj,thj,t − xj,t . (58)

The marginal cost of production is

sj,t = wj,thj,t

(1 − α) yj,t
. (59)

4. RESULTS FOR THE TAYLOR MODEL

In this section we present results describing how the behavior of the Tay-
lor model with firm-specific capital varies with the steady-state inflation rate
around which it is linearized. We follow Sveen and Weinke’s (2005) analysis
of the Calvo model with firm-specific adjustment costs and zero steady-state
inflation. First, we report on the range of parameters for the monetary policy
rule and adjustment costs for which we can find unique RE equilibria. This
range is sensitive to the steady-state inflation rate: higher inflation rates re-
duce the set of parameters for which there is a unique RE equilibrium. Next,
we compare impulse response functions to a productivity shock for zero and
moderate inflation. They differ, but not dramatically.

The model is parameterized as follows. We interpret a period as a quarter,
and set the discount factor, β = 0.99; the risk aversion parameter, σ = 2; the
inverse labor supply elasticity, ν = 1; the capital depreciation rate, δ = 0.03;
and the capital income share, α = 0.36. This is a standard parameterization.
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We set the investment adjustment cost parameter, εψ = 3, as in Woodford
(2005). Based on evidence from aggregate data, Eichenbaum and Fisher
(2005) suggest that this value represents a lower bound for adjustment costs.
Around a zero-inflation steady state, there is no need to specify the function
G(.) beyond the two parameters, δ and εψ.Around steady states with nonzero
inflation however, it is necessary to specify the entire function. We use

G(x) =
(
δ − 1

1 + εψ

)
+ x1+εψ

1 + εψ
, (60)

which satisfies the desired propertiesG(1) = δ, G′ (1) = 1 andG′′ (1) = εψ.

Equilibrium Determinacy

A good monetary policy rule should imply a unique RE equilibrium. If the RE
equilibrium is not unique, then at any point in time several different equilibrium
time paths for current and future outcomes are possible. In other words, the
equilibrium is indeterminate. In this situation the path that is expected to
be chosen will occur, but many can be chosen. The choice of equilibrium
path then may depend on random shocks that are not fundamental to the
economy, that is, they do not constrain the set of resource-feasible allocations
in the economy. In these “sunspot” equilibria self-fulfilling expectations that
coordinate on the nonfundamental shocks introduce unnecessary fluctuations
into the economy.8 Since the representative agent is risk-averse, she will
prefer a smooth consumption path relative to the same smooth consumption
path with some added mean zero random fluctuations. This means that, in
general, “sunspot” equilibria are sub-optimal, and a good monetary policy
should not give rise to equilibrium indeterminacy.

Taylor (1993) proposed a monetary policy rule of the form fπ = 1.5
and fy = 0.125 based on the outcomes of model simulations.9 This policy
rule reflects the Taylor principle that monetary policy should increase nomi-
nal interest rates more than one-for-one for any increase of inflation. In basic
sticky-price models with reasonable specifications of price rigidity and with-
out capital, this principle will, in general, imply a unique RE equilibrium.
Sveen and Weinke (2005) evaluate the role of the policy parameter, fπ , and
the degree of price stickiness, φ, for the existence of unique RE equilibria in
the Calvo model with firm-specific capital. They show that as the degree of
price stickiness increases, the set of policy parameters for which there is local
uniqueness becomes smaller. For the Taylor model we provide an analog to

8 For a textbook treatment of sunspot equilibria, see, for example, Farmer (1993).
9 Taylor (1993) writes the policy rule for annual data, thus his fy = 0.5 coefficient on output

deviations translates to 0.125 = 0.5/4 in our quarterly model. Taylor’s proposed policy rule has
also spawned an empirical literature that tries to estimate whether actual monetary policy conforms
to some version of this policy rule, for example, Clarida, Galı́, and Gertler (2000).
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their results (price stickiness is now represented by J ). We also study the
impact of the steady-state inflation rate, π , and investment adjustment costs,
εψ , on equilibrium indeterminacy. We find that local uniqueness becomes
less likely for higher inflation rates. Depending on the degree of price stick-
iness, high or low values of the adjustment cost parameter εψ can lead to
indeterminacy.

In Figure 1, we plot several graphs in (π, fπ )-space that represent the
border between indeterminacy and uniqueness for a policy rule that does not
respond to output, fy = 0. We present this information in two panels because
for very low values of fπ , it is not possible to convey the relevant information
unless the fπ -axis scale is very fine. The inflation rate, π , is the rate of price
change from one period to the next, and since a period represents a quarter, a
gross inflation rate of 1.01 represents a 4 percent annual inflation rate. Each
graph corresponds to a different value of J . In the top panel of Figure 1,
which corresponds to relatively high values of fπ, the region of equilibrium
indeterminacy (uniqueness) for an economy with price stickiness, J , is be-
tween the graph and the southeast (northwest) corner of the figure. There is
no graph for J = 2 in the top panel because uniqueness holds everywhere in
the figure when J = 2. The bottom panel, corresponding to low values of fπ,
is less straightforward: for J = 2 there is indeterminacy below the graph; for
J = 3, 4 and 5 there is indeterminacy generally below and to the right of the
graphs.

We find that for moderate steady-state inflation, if prices are fixed for
more than two periods then policy needs to respond to inflation significantly
more than one-to-one in order for the RE equilibrium to be unique. First, for
all values of J and π that we consider, equilibrium is indeterminate if fπ is
less than approximately 1.01 (the precise number varies with J and π ), as
seen in the lower panel of Figure 1. In contrast, for the Calvo model with zero
inflation, Sveen and Weinke (2005) find that there is a neighborhood of fπ = 1
such that equilibrium is unique. Second, for fixed degrees of price stickiness,
J > 2, the policy response fπ required to maintain a unique equilibrium can
become quite large as we increase the steady-state inflation rate, as seen in the
upper panel of Figure 1. This occurs even though the steady-state inflation
rates that we consider are moderate, less than 4 percent per year. For example,
if prices are fixed for three periods, around a zero-inflation steady state there
is a unique equilibrium if fπ � 1.02; in contrast, around a 4 percent inflation
steady state there is a unique equilibrium only if fπ � 1.73. The sensitivity
to steady-state inflation becomes more extreme for higher degrees of price
stickiness. If prices are fixed for four periods, around a zero-inflation steady
state there is a unique equilibrium if fπ ∈ {(1.02, 1.074) ∪ (1.47,∞)} ; in
contrast, around a 4 percent inflation steady state there is a unique equilibrium
only if fπ � 5.29. Finally, for a given steady-state inflation rate, the region of
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Figure 1 The Monetary Policy Response to Inflation and Equilibrium
Indeterminacy
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indeterminacy is increasing in the degree of price rigidity. This is consistent
with Sveen and Weinke (2005, Figure 1).
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Figure 2 Investment Adjustment Costs and Equilibrium Indeterminacy
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For steady-state inflation rates that are even moderately high, the RE equi-
librium tends to be indeterminate for a wide range of values of the adjustment
cost parameter, εψ , but the precise relationship is sensitive to the degree of
price stickiness. In Figure 2 we graph the borders between indeterminacy and
uniqueness in (π, εψ )-space for different values of price stickiness J and a
policy rule with fπ = 1.5 and fy = 0. For parameter combinations between
a graph and the left (right) border of the figure, the RE equilibrium is locally
unique (indeterminate) for J = 3 and J = 4 (there is also a region of unique-
ness near εψ = 0 for J = 4). For J = 5 there is indeterminacy (uniqueness)
above (below) the graph. For J = 2 there is uniqueness across the entire
figure. For J = 3 and J = 4 the region of indeterminacy is increasing in
the steady-state inflation rate. However, as the inflation rate increases, for
J = 3 indeterminacy first appears at high values of εψ, whereas for J = 4
indeterminacy first appears at low values of εψ.

Sveen and Weinke (2005) argue that if a monetary policy rule responds
not only to the inflation rate but also to output, then it is more likely that the RE
equilibrium is unique. Indeed the Taylor rule (1993) specifies the coefficient on
output as 0.125. In Figure 3 we graph the borders between indeterminacy and
uniqueness in (π, fπ )-space for different values of the coefficient on output
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Figure 3 The Monetary Response to Inflation and Output, and
Equilibrium Indeterminacy
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in the policy rule fy and fixed price stickiness J = 4. For parameter com-
binations between a graph and the left (right) border of the figure, the RE
equilibrium is locally unique (indeterminate). Again, as the steady-state in-
flation rate increases, it becomes more likely that the RE equilibrium is not
locally unique. For fixed steady-state inflation, the RE equilibrium is unique
if the policy response to output is sufficiently large. This confirms the findings
of Sveen and Weinke (2005). Note, however, that even for moderate steady-
state inflation, it takes a large coefficient on output to generate determinacy
in a rule that includes the standard Taylor coefficient, fy = 0.125, on output.
For example, for annual inflation of 4 percent (corresponding to π = 1.01
in Figure 3), the coefficient on inflation needs to be greater than 2 in order
to maintain a unique RE equilibrium. This is substantially more than the 1.5
value suggested by Taylor.

The overall message of these figures is that when the average inflation rate
is even moderately high—say, above 3.5 percent annually—the coefficient on
inflation must be large relative to conventional values such as Taylor’s 1.5 in
order to generate a unique RE equilibrium.
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Figure 4 Impulse Response to Productivity Shock
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Model Dynamics

Figure 4 plots the response of several of the model’s aggregate variables to a
white noise productivity shock. We set J = 4 and fπ = 5.5. The solid lines
correspond to a steady state of zero inflation, and the dashed lines correspond
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to a steady state of 4 percent annual inflation. The responses to a produc-
tivity shock differ somewhat across very low and moderate inflation, but the
differences are not dramatic, and they essentially disappear after the impact
period. Given our findings about indeterminacy in Figures 1 and 2, it may
seem surprising that the impulse responses do not differ more across steady-
state inflation rates. There is, however, a good explanation for this. Unlike
a crossing from uniqueness to nonexistence, a crossing from uniqueness to
multiplicity need not be “foreshadowed” by large changes in the model’s dy-
namics. As we change a model’s parameters and uniqueness disappears, the
solution we were tracking does not vanish—it is simply complemented with
other solutions.

5. CONCLUSIONS

Sveen and Weinke (2004) and Woodford (2005) have made important contri-
butions in showing how one can linearly approximate the Calvo sticky-price
model when capital is tied to the individual firm. Their work shows that
capital adjustment costs at the firm level are complementary to price sticki-
ness in generating a small coefficient on marginal cost in the New Keynesian
Phillips curve. Around a steady state with nonzero inflation, it is not (yet)
known how to approximate the Calvo model with firm-level investment; in
such a steady state there would be heterogeneity in both prices and capi-
tal stocks. Much recent empirical work on the NK Phillips Curve has used
data which is inconsistent with the zero-inflation approximation, so we would
like to have some means of evaluating the generality of results from the zero-
inflation case. In the Taylor sticky-price model it is straightforward to incorpo-
rate firm-specific capital even with nonzero steady-state inflation. Comparing
zero- and moderate (4 percent) rates of steady-state inflation, one finds that if
there is a locally unique equilibrium, quantitatively the model’s dynamics are
not very sensitive to the rate of inflation. This is consistent with the work ofAs-
cari (2004), who finds that the dynamics of the basic Taylor model (i.e., without
firm-specific capital) are relatively insensitive to average inflation, in compar-
ison to the Calvo model. However, we find that the range of parameter values
for which the model has a locally unique equilibrium is extremely sensitive to
even small changes in steady-state inflation—for example going from zero to
4 percent annual inflation causes a dramatic increase in the size of the param-
eter space for which there is local indeterminacy. The ability to deal with
nonzero inflation in the Taylor model points toward the value of conducting
empirical work on the New Keynesian Phillips curve in the Taylor model
framework. See Guerrieri (forthcoming) for an important step in this direc-
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tion.10 However, the sensitivity of the local equilibrium uniqueness to the
average inflation rate presents obstacles to further empirical progress.

10 Cogley and Sbordone (2005) is an important example of empirical work on the Phillips
curve that allows for the possibility of nonzero steady-state inflation. They use a Calvo model
with firm-specific capital but without firm-specific investment.
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