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R ecently the study of optimal monetary policy has shifted from an
analysis of the welfare effects of simple parametric policy rules to
the solution of optimal planning problems. Both approaches evaluate

the welfare effects of monetary policy in an explicit monetary model of the
economy, but they differ in the scope of analysis. The first approach is more
restrictive in that it finds the optimal policy within a class of prespecified pol-
icy rules for the monetary policy instrument. On the other hand, the second
approach finds the optimal monetary policy among all allocations that are
consistent with a competitive equilibrium in the monetary economy. Since
monetary policy, in general, does not choose the economy’s allocation but
implements policy through a rule for the policy instruments, it is natural to
ask whether the policy rule implied by the solution to the planning problem
implements the optimal planning allocation. In most work on optimal plan-
ning problems, it is indeed taken for granted that the solution of the planning
problem can be implemented through some policy rule for the monetary policy
instrument but, as we show in this article, this need not always be the case.

There is a vast literature on optimal monetary policy that studies the solu-
tion to planning problems. The environments examined are diverse, ranging
from models in which there are no private sector distortions other than an in-
flation tax to models where economies are subject to various types of nominal
rigidities. The policymaker is assumed to choose among all the allocations
that are consistent with a market equilibrium in the given environment. In
addition, different assumptions are made as to whether a policymaker can or
cannot commit to his future choices. Under a full-commitment policy, we as-
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sume that the policymaker chooses all current and future actions in an initial
period. Alternatively, under time consistency we assume that in every period
a policymaker chooses the optimal action, taking past outcomes as given. For
either specification, the solution to the planning problem specifies a rule that
determines the allocation, and part of the allocation is the setting of the policy
instrument.

The question is whether the policy rule implied by the solution to the
planning problem (or a variation thereof) can implement the optimal allocation
for the planning problem. Specifically, how would the competitive economy
behave if the monetary authority simply announced the policy rule implied by
the solution to the planning problem? In particular, conditional on the policy
rule, will there be a unique competitive equilibrium?

Giannoni and Woodford (2002a, 2002b) discuss the implementability of
optimal policy for local approximations of the planning problem with full com-
mitment. This starts with a log-linear approximation around the steady state
of the solution to the full-commitment problem. Within the approximation
framework, implementability of the optimal policy rule is equivalent to the
existence and uniqueness of rational expectations equilibria in linear models.
As such, implementability is concerned with “dynamic” uniqueness, that is,
the existence of a unique stochastic process that characterizes the competitive
equilibrium.

King and Wolman (2004) discuss the implementation of Markov-perfect
policy rules for time-consistent solutions to the planning problem. King and
Wolman (2004) show that Markov-perfect policies with an optimal nominal
money stock instrument can imply equilibrium indeterminacy at two levels.
First, it can imply multiple steady states. Second, around each steady state
it can imply static price level indeterminacy, that is, conditional on future
outcomes there can be multiple current equilibrium prices.

In this article, we review implementability of both the optimal
full-commitment and time-consistent Markov-perfect monetary policies when
the policymaker uses a nominal money stock instrument. We study optimal
policy in a simple New Keynesian economic model as described in Wolman
(2001) and King andWolman (2004). We first characterize the solution to a lin-
earized version of the first-order conditions (FOCs) of the planning problems.
We show that optimal monetary policy locally implements the planning allo-
cation for the full-commitment and the Markov-perfect case. We then study
whether the policy rules implement the planning allocations globally. We re-
view King and Wolman’s (2004) argument that the Markov-perfect policy rule
cannot implement the planning allocation. Finally, we provide a partial argu-
ment that the full-commitment policy rule globally implements the planning
allocation.
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1. A SIMPLE ECONOMY WITH STICKY PRICES

We investigate the question of the implementability of optimal monetary policy
within the confines of a simple New Keynesian economic model. The model
contains an infinitely lived representative household with preferences over
consumption and leisure. The consumption good is produced using a constant-
returns-to-scale technology with a continuum of differentiated intermediate
goods. Each intermediate good is produced by a monopolistically competitive
firm with labor as the only input. Intermediate goods firms set the nominal
price for their products for two periods, and an equal share of intermediate
firms adjust their nominal price in any period. We describe a symmetric
equilibrium for the economy, and we characterize the two distortions that make
the equilibrium allocation suboptimal relative to the Pareto-optimal allocation.

The Representative Household

The representative household’s utility is a function of consumption, ct , and
the fraction of time spent working, nt ,

E0

∞∑
t=0

βt [ln ct − χnt ] , (1)

where χ ≥ 0, and 0 < β < 1. The household’s period budget constraint is

Ptct + Bt+1 +Mt ≤ Wtnt + Rt−1Bt +Mt−1 +Dt + Tt , (2)

where Pt (Wt ) is the money price of consumption (labor), Bt+1 (Mt+1) are the
end-of-period holdings of nominal bonds (money), Rt−1 is the gross nominal
interest rate on bonds, Tt are lump-sum transfers, andDt is profit income from
firms owned by the representative household. The household is assumed to
hold money in order to pay for consumption purchases

Mt = Ptct . (3)

We will use the term “real” to denote nominal variables deflated by the price
of consumption goods, and we use lower-case letters to denote real variables.
For example, real balances are m ≡ M/P .

The FOCs of the representative household’s problem are

χ = wt/ct , and (4)

1 = βEt

[
ct

ct+1
· Rt

Pt+1/Pt

]
. (5)

Equation (4) states that the marginal utility derived from the real wage equals
the marginal disutility from work. Equation (5) is the Euler equation, which
states that if the real rate of return increases, then the household increases
future consumption relative to today’s consumption.
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Firms

The consumption good is produced using a continuum of differentiated inter-
mediate goods as inputs to a constant-returns-to-scale technology. Producers
of the consumption good behave competitively in their markets. There is a
measure one of intermediate goods, indexed j ∈ [0, 1]. Production of the
consumption good c as a function of intermediate goods, y (j), used is

ct =
[∫ 1

0
yt (j)

(ε−1)/εdj

]ε/(ε−1)

, (6)

where ε > 1. Given nominal prices, P (j) , for the intermediate goods, the
nominal unit cost and price of the consumption good is

Pt =
[∫ 1

0
Pt(j)

1−εdj
]1/(1−ε)

. (7)

For a given level of production, the cost-minimizing demand for intermediate
good j depends on the good’s relative price, p (j) ≡ P(j)/P,

yt (j) = pt (j)
−ε ct . (8)

Each intermediate good is produced by a single firm, and j indexes both
the firm and good. Firm j produces y(j) units of its good using a constant-
returns technology with labor as the only input,

yt (j) = ξ tnt (j), (9)

and ξ t is a positive iid productivity shock with mean one. Each firm behaves
competitively in the labor market and takes wages as given. Real marginal
cost in terms of consumption goods is

ψt = wt/ξ t . (10)

Since each intermediate good is unique, intermediate goods producers
have some monopoly power, and they face downward sloping demand curves,
(8). Intermediate goods producers set their nominal price for two periods, and
they maximize the discounted expected present value of current and future
profits:

max
Pt (j)

(
Pt (j)

Pt
− ψt

)
yt (j)+βEt

[
ct

ct+1
·
(
Pt (j)

Pt+1
− ψt+1

)
yt+1 (j)

]
. (11)

Since the firm is owned by the representative household, the household’s
intertemporal marginal rate of substitution is used to discount future profits.
Using the definition of the firm’s demand function, (8), the first-order condition
for profit maximization can be written as
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0 =
(
Pt (j)

Pt

)1−ε (
1 − μ

ψt

Pt (j) /Pt

)
(12)

+βEt
[(
Pt (j)

Pt+1

)1−ε (
1 − μ

ψt+1

Pt (j) /Pt+1

)]
,

with μ = ε/ (ε − 1).

A Symmetric Equilibrium

We will assume a symmetric equilibrium, that is, all firms who face the same
constraints behave the same. Each period, half of all firms have the option to
adjust their nominal price. This means that in every period there will be two
firm types: the firms who adjust their nominal price in the current period, type
0 firms with relative price p0, and the firms who adjusted their price in the last
period, type 1 firms with current relative price p1.

Conditional on a description of monetary policy, the equilibrium of the
economy is completely described by the sequence of marginal cost, relative
prices, inflation rates, nominal interest rates, aggregate output, and real bal-
ances {ψt, p0,t , p1,t , π t , Rt , ct , mt} such that (3), and

ψt = χct/ξ t , (13)

1 = 1

2

[
p1−ε

0,t + p1−ε
1,t

]
, (14)

0 = p1−ε
0,t

(
1 − μ

ψt

p0,t

)
+ βEt

[
p1−ε

1,t+1

(
1 − μ

ψt+1

p1,t+1

)]
, (15)

πt+1 = p0,t

p1,t+1
, and (16)

1 = βEt

[
ct

ct+1
· Rt

πt+1

]
. (17)

Equation (13) uses the optimal labor supply condition (4) in the definition of
marginal cost (10). Equation (14) is the price index equation (7) and equation
(15) is the profit maximization condition (12) for the two firm types. Equation
(16) just restates how next period’s preset relative price p1,t+1 is related to the
relative price that is set in the current period, p0,t , through the inflation rate
πt+1. Finally, equation (17) is the household’s Euler equation, (5).

Distortions

Allocations in this economy are not Pareto-optimal because of two distortions.
The first distortion results from the monopolistically competitive structure of
intermediate goods productions: the price of an intermediate good is not equal
to its marginal cost. The average markup in the economy is the inverse of the
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real wage,Pt/Wt , that is, according to equation (10), the inverse marginal cost,
1/
(
ξ tψt

)
. The second distortion reflects inefficient production when relative

prices are different from one. Using the expressions for the production of final
goods and the demand functions for intermediate goods, (6) and (8), we can
obtain the total demand for labor as a function of relative prices and aggregate
output. Solving aggregate labor demand for aggregate output, we obtain an
“aggregate” production function

dtct = ξ tnt with dt ≡ (1/2)
(
p−ε

0,t + p−ε
1,t

)
. (18)

Given the symmetric production structure, equations (6) and (9), efficient
production requires that equal quantities of each intermediate good are pro-
duced. Allocational efficiency is reflected in the term dt ≥ 1. The allocation
is efficient if p0,t = p1,t = dt = 1.

For the following analysis of optimal policy, it is useful to rewrite the
household’s period utility from the equilibrium allocation as a “reduced form”
utility function of the markup and efficiency distortion. Combining expression
(13) for equilibrium consumption as a function of marginal cost and productiv-
ity with the characterization of the aggregate production function (18) yields
equilibrium work effort

nt = dtψt/χ. (19)

We can substitute expressions (13) and (19) for consumption and work effort
in the household’s utility function and obtain the reduced form utility function

E0

∞∑
t=0

βt
[
ln
(
ψt

)− dtψt

]
, (20)

after dropping any constant or additive exogenous terms.

2. MONETARY POLICY

Since the allocation of the above-described monopolistically competitive equi-
librium with sticky prices is suboptimal, there is the potential for welfare-
improving policy interventions. In view of the role of nominal rigidities, we
want to characterize optimal monetary policy. In particular, we want to know
how optimal monetary policy can be implemented given some choice of pol-
icy instrument. We examine the implications of choosing the nominal money
stock as the policy instrument. This is the policy instrument considered in
King and Wolman (2004), where they assume that the policymaker chooses
a sequence for the nominal money stock {Mt}. Alternatively the policymaker
could select the nominal interest rate,Rt , as the policy instrument. The choice
of policy instrument can be crucial for questions of the implementability of
optimal monetary policy, and we will get back to this issue in the conclusion.

For the analysis of the monetary policy planning problem, it is convenient
to define monetary policy in terms of the money stock normalized relative to
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the preset nominal prices,

m1t = Mt

P1,t
, (21)

rather than the nominal money stock, Mt, directly. This normalization is not
restrictive for the analysis of a policymaker that can commit to future policy
choices, the full-commitment case. In the case of time-consistent policies,
when a policymaker cannot commit to future policy choices, we will argue that
for the particular class of Markov-perfect policies that we study, the normalized
money stock is the relevant choice variable. Combining the policy rule with the
cash-holding condition, (3), and usingP1,t = P0,t−1, we obtain an equilibrium
condition for consumption

ct = p1,tm1t . (22)

Optimal Monetary Policy

The objective of monetary policy is well-defined: the policymaker is to choose
an allocation that maximizes the representative household’s utility subject to
the constraint that the allocation can be supported as a competitive equilibrium.
For our simple example, any allocation that satisfies equations (13)–(16), (18),
and (22) is a competitive equilibrium. We summarize these constraints as

Et
[
h
(
xt+1, xt ; ξ t+1, ξ t

)] = 0 for t ≥ 0. (23)

The vector xt = (yt , zt ) contains the private sector variables,
yt = (

p0,t , p1,t , π t , ψt , dt , ct
)
, and the policy instrument, zt = m1t .1 For-

mally, the policymaker’s optimization problem is then defined as

maxE0

∞∑
t=0

βtu (xt ) s.t. Et
[
h
(
xt+1, xt ; ξ t+1, ξ t

)] = 0 for t ≥ 0, (24)

where u denotes the period utility function of the representative household as
defined in equation (20). A solution to this problem will have xt as a function
of the current and past state of the economy.

We will solve two alternative versions of the planning problem. First, we
assume that the policymaker at time zero chooses once and for all the optimal
allocation among all feasible allocations that can be supported as a competitive
equilibrium. This approach delivers the constrained optimal allocation, but
frequently the chosen allocation is not time consistent. The allocation is not
time consistent in the sense that if a policymaker gets the option to reconsider
his choices after some time, he would want to deviate from the initially chosen

1 The characterization of the private sector involves equilibrium prices and quantities. With
some abuse of standard terminology, we will call the vector y the equilibrium allocation.
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path. The alternative approach then finds optimal time-consistent monetary
policies. In particular, we will restrict attention to Markov-perfect policy
rules, that is, rules that make policy choices contingent on payoff-relevant
state variables only.

For the planning problem, we are not specific about how the policymaker
can implement the policy: we simply assume that the policymaker can se-
lect any allocation subject to the constraint that the allocation is consistent
with a competitive equilibrium allocation. We will say that a policy can be
implemented if a unique rational expectations equilibrium exists when the
policymaker sets the policy instrument, zt , according to the state-contingent
rule implied by the planning problem.

Optimal Policy with Full Commitment

Suppose that at time zero the policymaker chooses a sequence {xt} for the
market allocation and the policy instrument that solves problem (24). We
assume that the policymaker is committed to this outcome for all current and
future values of the market outcome and the instrument. The FOCs for this
constrained maximization problem are

0 = Du (xt)+ λtEt
[
D2h

(
xt+1, xt ; ξ t+1, ξ t

)]
(25)

+λt−1D1h
(
xt , xt−1; ξ t , ξ t−1

)
for t > 0, and

0 = Du (xt)+ λtEt
[
D2h

(
xt+1, xt ; ξ t+1, ξ t

)]
for t = 0. (26)

Note that the FOC for the initial time period, t = 0, is essentially the same as
the FOCs for future time periods, t > 0, if we assume that the lagged Lagrange
multiplier in the initial time period is zero, λ−1 = 0. This simply means that
in the initial time period, the policymaker’s choices are not constrained by
past market expectations of outcomes in the initial period.

Marcet and Marimon (1998) show how to rewrite the planning problem as
a recursive saddlepoint problem such that dynamic programming techniques
can be applied. Following their approach, the Lagrange multiplier, λt−1, can
be interpreted as a state that reflects the past commitments of the planner.
Given the dynamic programming formulation, the optimal policy choice will
then be a function of the state of the economy,

xt = gFCx
(
λt−1, ξ t

)
and λt = gFCλ

(
λt−1, ξ t

)
. (27)

The policymaker’s optimization problem is not time consistent because of
the particular status of the initial period. If a policymaker gets the opportunity
to reevaluate his choices at some time t ′ > 0, then equation (25) will no
longer characterize the optimal decision at t ′. Rather equation (26) will apply
at the time t ′, and, in general, the policymaker would want to deviate from
his original decision. If the policymaker has no way to precommit to future
policy actions, the optimal policy will therefore not be time consistent.
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Markov-Perfect Optimal Policy

We study a particular class of time-consistent policies, namely Markov-perfect
policies. For a Markov-perfect policy, the optimal policy rule is restricted to
depend on payoff-relevant state variables only, that is, predetermined variables
that constrain the attainable allocations of the economy. We can think of
today’s policymaker as taking his own future actions as given by a policy rule
that makes his choices contingent on the future payoff-relevant state variables.
Given these future choices, the policymaker’s optimal choice for today will
then also depend on payoff-relevant state variables only.

In our environment, predetermined nominal prices do not constrain the
policymakers’ choices among the allocations that are consistent with a com-
petitive equilibrium. Even though the nominal price set by a firm that adjusted
its price in the last period, P1,t , is predetermined, the relevant variable is that
firm’s relative price, p1,t , which is not predetermined. Since the predeter-
mined nominal price is not payoff-relevant, the policymaker has to choose the
nominal money stock in a way such that the predetermined nominal price can-
not affect outcomes. But this just means that the policymaker cannot choose
the nominal money stock,Mt , but has to choose the normalized money stock,
m1t .

Our environment as described by (23) then has the feature that, except for
the exogenous shocks, ξ t , there are no predetermined variables that constrain
the equilibrium allocation. In other words, in any time period the values for the
variables that characterize the competitive equilibrium have to be consistent
with future values of the same variables, but the variables can be chosen
independently of any values they took in the past.

In a Markov-perfect equilibrium, the current policymaker then assumes
that future choices and outcomes are time invariant functions of ξ , xt ′ =
gMPx

(
ξ t ′
)
, for t ′ > t . For this reason, current policy choices have no effect on

future outcomes, and the policymaker’s choice problem simplifies to

x∗
t

(
ξ t ; gMPx

) = arg max
x
u (xt ) (28)

s.t. 0 = Et
[
h
(
gMPx

(
ξ t+1

)
, xt ; ξ t+1, ξ t

)]
.

The FOCs for this problem coincide with the FOCs of the optimization problem
with commitment for the initial period, equation (26).2 In a time-consistent
Markov-perfect equilibrium, the optimal policy choice satisfiesx∗

t

(
ξ t ; gMPx

) =
gMPx

(
ξ t
)
.

2 In general, the FOCs for a Markov-perfect optimal policy are different from the initial
period FOCs for an optimal policy with full commitment. If there are endogenous state variables,
then even with Markov-perfect optimal policies, a policymaker can influence future policy choices
by changing next period’s state variables and thereby affecting the constraint set of next period’s
policymaker.
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Implementability of Optimal Policy

If the only requirement for feasible monetary policy is the consistency with a
competitive equilibrium, then there is no reason to distinguish between private
sector choices, yt , and the policy instrument, zt . We might as well assume
that the policymaker chooses both variables, xt , subject to the consistency
requirements. Now suppose that the outcome of the optimization problem is
a policy rule that specifies choices for the instrument and the private sector
allocation contingent on outcomes that may include the current and past states
of the economy

zt = gzt (·) and yt = gxt (·) . (29)

A somewhat narrower definition of what constitutes a feasible monetary pol-
icy not only requires that the allocations implied by g are consistent with a
competitive equilibrium, but also requires that, conditional on the rule for the
policy instrument, gz, the rule for the private sector allocation, gy , is the unique
competitive equilibrium outcome. That is, gy is the unique solution of

Et
[
h
(
yt+1, gz,t+1 (·) , yt , gzt (·) ; ξ t+1, ξ t

)] = 0 for t ≥ 0. (30)

If we cannot find a unique solution, gy , to this dynamic system, then we say
that the optimal policy cannot be implemented since the associated competitive
equilibrium is indeterminate.

In the case of full-commitment policy rules, we can consider an expanded
version of the planner’s policy rule. Suppose that the planner can respond
contemporaneously to deviations of the competitive equilibrium allocation
from the allocation implied by the full-commitment policy rule. Then we can
define a modified rule for the policy instrument

g̃FCz
(
yt , λt−1, ξ t

) = gFCz
(
λt−1, ξ t

)+H
[
yt − gFCy,t

(
λt−1, ξ t

)]
,

whereH (0) = 0. Since the choice of the functionH is arbitrary, except for the
origin normalization, it then appears that, under these circumstances, a planner
can always implement the full-commitment solution. Note that a Markov-
perfect policy rule cannot be augmented in this way since the contemporaneous
private sector allocation is not a payoff-relevant state variable.

3. LOCAL PROPERTIES OF OPTIMAL POLICY

We now discuss the local dynamics of full-commitment and Markov-perfect
optimal policy for our simple economy from Section 1. We derive necessary
conditions for the optimal policy and characterize the deterministic steady
state of the economy for the types of policy. We then study the properties of
optimal policy for a local approximation around its steady state. Our approach
follows King and Wolman (1999) and Khan, King, and Wolman (2003) in that
we study the dynamics of a linear approximation to the FOCs and constraints
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of the optimal planning problem.3 The two optimal policies imply differ-
ent policy rules for a money stock instrument. We show that for the local
approximation, both implied that policy rules implement a unique rational
expectations equilibrium.

Consider a policymaker who uses the money supply as an instrument,
that is, the policymaker chooses the money stock according to equation (21).
We can then write the competitive equilibrium conditional on the instrument
choice in terms of the variables yt = p1,t and zt = m1t . Conditional on the
relative preset price and the policy instrument, consumption is determined by
(22); the relative flexible price is determined by (14); allocational efficiency
is determined by (18); and marginal cost is determined by (13) and (22).
The nominal interest rate is determined residually from equation (17). The
policymaker’s objective function is

E0

∞∑
t=0

βt
{
ln
(
m1tp1,t

)− χd
(
p1,t

)
m1tp1,t /ξ t

}
, (31)

and the FOC for profit maximization (15) corresponds to the dynamic con-
straint (23) for t ≥ 0:

0 = p0
(
p1,t

)1−ε
(

1 − μχ
p1,t

p0
(
p1,t

)m1t

ξ t

)
(32)

+βEt
[
p1−ε

1,t+1

(
1 − μχ

m1t+1

ξ t+1

)]
.

Optimal Policy with Full Commitment

Under full commitment, the policymaker maximizes the value function (31)
subject to the constraints (32). The FOCs corresponding to equations (25) for
t > 0 are

0 =
1

m1t /ξ t
–χdtp1t–μχλtp

−ε
ot p1t–μχλt−1p

1−ε
1t , and (33)

0 =
1

p1t
–χ
m1t

ξ t
dt–χ

m1t

ξ t
p1t

∂dt

∂p1t
(34)

3 Another common approach to the analysis of optimal monetary policy starts with a linear-
quadratic approximation of the planning problem, e.g., Giannoni and Woodford (2002a, 2002b).
For this alternative approach, one obtains a quadratic approximation of the objective function and
a linear approximation of the constraints around the steady state of the planning problem and
then solves the linear-quadratic (LQ) optimization problem. In general, the results from the two
approaches will differ since the LQ approach does not use the second-order terms in the constraint
functions, whereas the approach that linearizes the first-order conditions does use this information.
Recently, Benigno and Woodford (2005) have shown how to modify the LQ problem such that
the analysis of the LQ problem is equivalent to the analysis of the linearized FOCs.
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+λtp
−ε
0t

{
(1–ε)

(
1–μχ

m1t

ξ t

p1t

p0t

)
∂p0t

∂p1t
–μχ

m1t

ξ t

(
1–
p1t

p0t

∂p0t

∂p1t

)}

+λt−1p
−ε
1t (1–ε)

(
1–μχ

m1t

ξ t

)
.

Equation (33) denotes the FOC with respect to real balances,m1, and equation
(34) denotes the FOC with respect to the relative price, p1.

The Deterministic Steady State of the Full-Commitment
Policy

In the deterministic steady state of the full-commitment policy, there is zero
inflation (King and Wolman 1999; Wolman 2001). We can easily verify that
π = p0 = p1 = d = 1 is indeed a deterministic steady state of equations (32),
(33), and (34). Combining equation (13) with the monetary policy equation
(22) yields an expression that relates marginal cost to real balances and the
preset relative price

ψ = χm1p1. (35)

We can substitute this expression for marginal cost in the FOC for profit
maximization of price-adjusting firms, (32), and, using the definition of the
inflation rate π , (16), obtain

m1 = 1

χμ

1 + βπε−1

1/π + βπε−1
. (36)

Thus conditional on no inflation, πFC = 1, real balances aremFC1 = 1/ (χμ),
and marginal cost is ψFC = 1/μ. Substituting for marginal cost in the FOC
for real balances (33) yields the steady state value for the Lagrange multiplier
λFC = (1 − 1/μ) /2, and the FOC for preset relative prices, (34), is satisfied.

Local Properties of the Full-Commitment Solution

First, we show that the solution to the full-commitment problem stabilizes the
prices in response to productivity shocks (King and Wolman 1999). Second,
we show that the full-commitment policy rule implements the competitive
equilibrium. In the following, let a hat denote the percentage deviation of a
variable from its steady state value.

The log-linear approximation of equations (32), (33) and (34) around the
no-inflation steady state for t > 0 are

0 = 2p̂1t+
(
m̂1t − ξ̂ t

)
+βEt

[
m̂1,t+1 − ξ̂ t+1

]
, (37)

0 = p̂1t+
(
m̂1t − ξ̂ t

)
+λFC

(
λ̂t + λ̂t−1

)
, and (38)

0 =

[
μ

2μ− 1

μ− 1

]
p̂1t+ [1+χ (μ− 1)]

(
m̂1t − ξ̂ t

)
+ (μ− 1) λ̂t . (39)
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We solve this linear difference equation system through the method of undeter-
mined coefficients. Given the structure of the equation system, it is reasonable
to guess that the only relevant state variable is the lagged Lagrange multiplier,
λt−1, and that the solution is of the form

m̂1t − ξ̂ t = γ λ̂t−1, p̂1t = θλ̂t−1, and λ̂t = ωλ̂t−1 for t > 0. (40)

Now substitute these expressions in equations (37)–(39) and confirm that they
solve the difference equation system. This procedure yields three equations
that can be solved for the unknowns (ω, γ , ρ).

The optimal full-commitment policy increases normalized real balances
m1 with productivity shocks such that relative prices are not affected, (40).
Relative prices respond to past commitments of the policymaker as reflected in
the Lagrange multiplier λ, and the Lagrange multiplier evolves independently
of productivity shocks. When the Lagrange multiplier attains its steady state
value it stays there and optimal policy from thereon fixes the price level and
relative prices. We do not prove it, but for reasonable numerical values of
(β, μ, χ) the coefficient ω is negative but less than one in absolute value, that
is, the system oscillates, but it is stable. In Figure 1 we graph the transitional
dynamics of the economy for some parameter values that are standard for
quantitative economic analysis, β = 0.99,μ = 1.1, andχ = 1. As we can see,
all variables display dampened oscillations around their steady state values.
As discussed above, the FOCs for the initial period of the full-commitment
problem are equivalent to the FOCs (38) and (39) with λ−1 = 0, that is, λ̂−1 =
−1. Thus during a transition period, as the Lagrange multiplier converges to
its steady state value, relative prices change in proportion to the value of the
Lagrange multiplier.

The money-supply policy rule, defined as the first and third expression in
(40), implements the optimal allocation as a competitive equilibrium. To see
this, substitute the policy rule into the log-linear approximation of the optimal
pricing equation (37), and we get

p̂1t = 1

2
γ (1 + βω) λ̂t−1. (41)

Thus, conditional on the full-commitment optimal policy rule for real balances,
there exists a unique rational expectations equilibrium (REE) for the economy.

Markov-Perfect Optimal Policy

For a Markov-perfect optimal monetary policy, the policymaker at time t
maximizes the value function (31) subject to the constraints (32), assuming
that future policy choices are some function of the future exogenous shock.
The FOCs for this problem correspond to equations (26) for t = 0 and are
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Figure 1
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0 =
1

m1t /ξ t
–χdtp1t–μχλtp

−ε
ot p1t , and (42)

0 =
1

p1t
–χ
m1t

ξ t
dt–χ

m1t

ξ t
p1t

∂dt

∂p1t
(43)

+λtp
−ε
0t

{
(1–ε)

(
1–μχ

m1t

ξ t

p1t

p0t

)
∂p0t

∂p1t
–μχ

m1t

ξ t

(
1–
p1t

p0t

∂p0t

∂p1t

)}
.

Equation (42) denotes the FOC with respect to real balances,m1, and equation
(43) denotes the FOC with respect to the relative price, p1.

The Deterministic Steady State of the Markov-Perfect Policy

The deterministic steady state of the Markov-perfect equilibrium has positive
inflation, as opposed to the steady state of the full-commitment solution. It
is straightforward to show that optimal policy does not stabilize prices in the
steady state. Suppose to the contrary that there is no inflation in the steady
state, p0 = p1 = 1, then evaluating equations (32), (42), and (43) at their
deterministic steady state implies that ∂d/∂p1 < 0. But with stable prices,
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Figure 2
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π = 1, the derivative of allocational efficiency with respect to p1,

∂d/∂p1 = εp−ε−1
1

(
π−ε−1 − 1

)
, (44)

is zero, and we have a contradiction. On the other hand, with positive inflation,
the impact of p1 on allocational efficiency is negative. This suggests that the
steady state inflation rate is positive, as indeed shown by Wolman (2001). We
can find the steady state inflation rate as the solution to the following fix-point
problem. Conditional on some inflation rate, π, use equations (35) and (36) to
determine steady state real balances,m1, and marginal cost,ψ . Conditional on
(π,m1, ψ) , use equation (42) to obtain the steady state Lagrange multiplier
λ. Finally, we have to verify that equation (43) is satisfied.

The competitive equilibrium constraint (32), together with the FOCs for
optimal policy, (42) and (43), evaluated at their deterministic steady state
indeed yield a unique solution for the steady state,

(
πMP ,mMP1 , ψMP

)
. Note,

however, that contingent on the steady state Markov-perfect real balances
mMP1 , the competitive equilibrium constraint alone is consistent with multiple
steady states. In Figure 2, we graph real balances as a function of the inflation
rate, π , based on equation (36). Notice that as the inflation rate increases, real
balances first increase and then decline. This means that for a given choice of
real balances that is not too high,m1 > mFC1 = 1/ (χμ), there are two steady
state inflation rates.
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Local Properties of the Markov-Perfect Policy

For a local approximation of the optimal Markov-perfect policy we can show
that the policy stabilizes prices around the trend growth path in response to
productivity shocks. Because the steady state involves positive inflation, the
expressions for the local approximations are quite convoluted, and we do not
display them here. Suffice it to say that locally the optimal Markov-perfect
solution is of the form

p̂1t = m̂1t − ξ̂ t = λ̂t = 0. (45)

We can substitute the local approximation of the Markov-perfect policy rule,
second and third equalities of (45), into the log-linear approximation of the
optimal pricing equation (15) when the steady state has non-zero inflation and
get

p̂1t =
[
β

(ε − 1) (1 − μχm1) π
ε

(ε − 1) πe − μχm1
(
1 + επε−1

)
]
p̂1,t+1. (46)

Note that for a steady state with zero inflation, the coefficient on the right-hand
side term is zero. Since the steady state of the Markov-perfect equilibrium
involves only a very small amount of inflation, the coefficient on future prices
is close to zero and certainly less than one. Thus, solving the equation forward
implies that there exists a unique REE, p̂1t = 0.

4. GLOBAL PROPERTIES OF OPTIMAL POLICY

We now show that the policy rule implied by a Markov-perfect optimal policy
does not globally implement the optimal policy allocation. We also conjecture
that the policy rule implied by the full-commitment policy may not always be
implementable. An augmented full-commitment policy rule that can respond
to contemporaneous variables as described in Section 2, however, is likely to
implement the optimal policy allocation.

For the analysis of the global properties of policy rules, it will be use-
ful to rewrite a firm’s profit maximization condition (12), which represents
the competitive equilibrium constraint for the planning problem. Solve this
expression for a firm’s optimal relative price as a markup over the average
marginal cost for which the price is set

Pt (j)

Pt
= μ

ψt + βEt
[
ψt+1 (Pt+1/Pt)

ε
]

1 + βEt
[
(Pt+1/Pt)

ε−1
] . (47)

We can think of this expression as a firm’s optimal relative price choice on
the left-hand side, p0t , conditional on the relative prices set by all other firms,
p̄0t , determining the right-hand side of the equation. The behavior of the other
firms is reflected in the equilibrium values of marginal cost and the inflation
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rate. For our argument, we will assume that there are no shocks to the economy,
that is, productivity is constant. Using the equilibrium conditions (13), (16),
and (22) for the right-hand side of (47), we then get

p0,t = μχ
m1tp1

(
p̄0,t

)+ βm1,t+1p̄0,tπ
ε−1
t+1

1 + βπε−1
t+1

with πt+1 = p̄0,t /p1
(
p̄0,t+1

)
.

(48)

Markov-Perfect Policy

The Markov-perfect policy rule not only stabilizes prices in response to small
productivity shocks, but stabilization is the globally optimal response to shocks,

m1t = mMP1 ξ t . (49)

We can verify that (49) is the optimal response to productivity shocks by
substituting the expression for m1t into equations (32), (42), and (43). This
policy rule reflects the definition of a Markov-perfect policy: it depends only
on payoff-relevant state variables, that is, ξ t only in our case.

In general, the Markov-perfect policy rule cannot implement the planning
allocation as a competitive equilibrium outcome. King and Wolman (2004)
argue that a Markov-perfect optimal policy introduces strategic complemen-
tarities into the firms’ price-setting behavior and thereby makes multiple equi-
libria possible. With constant normalized real balances of the Markov-perfect
policy and no productivity shocks, the optimal pricing condition (48) simpli-
fies to

p0,t = μχmMP1

p1
(
p̄0,t

)+ βp̄0,tπ
ε−1
t+1

1 + βπε−1
t+1

. (50)

Strategic complementarities are said to be present if a representative firm
increases its own control variable when it perceives that all other firms increase
their control variable. In terms of the price-setting equation (50): a firm
increases its own relative price, p0t , on the left-hand side of the expression
if all other firms increase their relative price, p̄0t , on the right-hand side of
the expression. Essentially, if all other firms increase their price, p̄0t , then
the expected inflation rate increases, and therefore a firm will increase its own
relative price in order to prevent an erosion of its relative price in the next
period. Since the equilibrium relative price is a fix-point of expression (50),
p0t = p̄0t , strategic complementarities raise the possibility of multiple fixed
points, that is, multiple equilibria.

In Figure 3 we graph the RHS of (50), conditional on some value
for p1,t+1. If we evaluate the RHS of (50) at p̄0t = 1, we get p0t = 1 and
RHS = μχmMP1 > 1. If we consider the limit of the RHS as p̄0t becomes
arbitrarily large, we see that p̄1t converges to a finite value and the inflation
rate becomes arbitrarily large, thus the RHS converges to a line through the
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Figure 3
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origin with slope μχmMP1 > 1. Without a further analysis of the behavior of
the RHS for finite positive values of p̄0t , this at least suggests the possibility of
two intersection points of the RHS with the diagonal. Furthermore we know
that in the steady state, when p1,t+1 = pMP1 , there are indeed two solutions
for p0 to equation (36). King and Wolman (2004) show that, in general, there
exist two intersection points. Thus there is no unique equilibrium and the
Markov-perfect policy rule does not implement the planning allocation.

Full-Commitment Policy

Optimal full-commitment monetary policy stabilizes prices in response to
productivity shocks not only locally around the steady state, but also globally,

m1t = m̃1t ξ t , m̃1 = � (λt−1) , p1t = �(λt−1) , and λt = �(λt−1) . (51)

To see this, simply note that equations (32), (33), and (34) define a system in
(m̃1t , p1t , λt−1) that is independent of productivity shocks. Different from the
Markov-perfect policy, the Lagrange multiplier on the competitive equilibrium
constraint is not constant and therefore the normalized real balances are not
constant.

We do not have unambiguous results on the implementation of the planning
allocation through the full-commitment policy rule. On the one hand, we
can show that if the Lagrange multiplier has attained its steady state value,
λt−1 = λFC , then the full-commitment policy rule implements the planning
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solution. On the other hand, as long as the Lagrange multiplier has not attained
its steady state, the full-commitment policy rule suffers from some of the same
problems as does the Markov-perfect policy.

Suppose that the Lagrange multiplier has attained its steady state value,
λt−1 = λFC . If we substitute the value for the Lagrange multiplier in the FOCs
(33) and (34), we can see that they will always be satisfied from there on. But
this means that from there on the normalized real balances attain their steady
state value,mFC1 , and the competitive equilibrium constraint (32) simplifies to

0 = p1−ε
0t

(
1 − p1t

p0t

)
. (52)

Therefore p1t = p0t , that is PFCt = PFCt−1 , and prices are determined.
Now consider the transitional phase when the Lagrange multiplier differs

from its steady state value. Given the implied policy rule (51), we can construct
future nominal money stocks recursively as functions of the initial value of
the Lagrange multiplier

Mt = ξ t · � (λt−1) ·�(λt−1) · Pt, and (53)

Pt = p0,t−1

p1,t
Pt−1 = p0

(
p1,t−1

)
p1,t

Pt−1 = p0
[
�(λt−2)

]
�(λt−1)

Pt−1. (54)

With full commitment, a policymaker can always announce a time path for
the nominal money supply and follow through on that announcement. Given
the nominal money supply rule, we can rewrite the optimal pricing condition
(48) in nominal terms and get

P0t = μχ
Mt + βMt+1 (Pt+1/Pt)

ε−1

1 + β (Pt+1/Pt)
ε−1 (55)

with
Pt+1

Pt
=
[
P 1−ε

0,t+1 + P 1−ε
0,t

P 1−ε
0,t + P 1−ε

0,t−1

]1/(1−ε)
.

As we do for the analysis of the Markov-perfect policy, we are looking for
a fix point in the optimal nominal price, P0t , conditional on the past and
future nominal prices, P0,t−1 and P0,t+1, and the nominal money stocks, Mt

and Mt+1. Clearly for a constant money supply, that is, the constant steady
state Lagrange multiplier, there is a unique solution for P0t . If the Lagrange
multiplier converges globally to its steady state, then if the difference between
Mt and Mt+1 is small enough, we will also have a unique solution. We do
not, however, prove that there is a unique solution for the initial phase of the
transition period.

Note that for full-commitment policy, we have only outlined the same
potential for multiple equilibria as King and Wolman (2004) have shown to
exist for the Markov-perfect policy rule. We have not proven that the full-
commitment policy rule cannot implement the planning allocation. Whether
or not the full-commitment policy rule implements the planning allocation



132 Federal Reserve Bank of Richmond Economic Quarterly

may be irrelevant if one believes that a policymaker can always respond to
contemporaneous variables. If such a response is feasible, then an augmented
full-commitment policy rule as described in Section 2 may always implement
the planning allocation.

5. CONCLUSION

This paper has considered optimal monetary policy as the solution to both full-
commitment and time-consistent Markov-perfect planning problems. The so-
lutions are consistent with rational expectations competitive equilibria. The
optimal solution to the planning problem implies a rule for the assumed policy
instrument, in our case, a money supply instrument. We have then verified
that, for local approximations to the solution of the optimal policy problem,
the implied policy rules implement the planning allocations, that is, the plan-
ning allocation is the unique rational expectations equilibrium conditional on
the implied policy rule. However, following on the insights of King and Wol-
man (2004), we have then examined whether the implied policy rules also
implement the allocation globally. We find that a money supply rule that is
Markov-perfect does not implement the planning solution. We provide a par-
tial argument that the full-commitment money supply rule does implement the
planning solution, but we do not have a complete proof for this statement.

For the analysis, we have taken the choice of monetary instrument, in this
case the nominal money stock, as given but this choice is not innocuous. In
other work (Dotsey and Hornstein 2005), we have argued that equilibrium
indeterminacy may depend on the choice of policy instrument. In particular,
if the Markov-perfect policy uses the nominal interest rate as an instrument,
the equilibrium is determinate.
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