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Limits to Redistribution and
Intertemporal Wedges:
Implications of Pareto
Optimality with Private
Information

Borys Grochulski

T raditionally an object of interest in microeconomics, models with pri-
vately informed agents have recently been used to study numerous
topics in macroeconomics.1 Characterization of Pareto-optimal allo-

cations is an essential step in these studies, because the structure of optimal
institutions of macroeconomic interest depends on the structure of optimal al-
locations. In models with privately informed agents, however, characterization
of optimal allocations is a complicated problem, relative to models in which
all relevant information is publicly available, especially in dynamic settings
with heterogenous agents, which are of particular interest in macroeconomics.

The objective of this article is to characterize Pareto-optimal allocations in
a simple macroeconomic environment with private information and heteroge-
nous agents. We focus on the impact of private information on the implications
of Pareto optimality. To this end, we consider two economies that are iden-
tical in all respects other than the presence of private information. In each
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1 These topics include business cycle fluctuations (e.g., Bernanke and Gertler 1989); optimal
monetary policy (Athey, Atkeson, and Kehoe 2005); unemployment insurance (Atkeson and Lucas
1995, Hopenhayn and Nicollini 1997, Stiglitz and Yun 2005); capital income and estate taxation
(Kocherlakota 2005, Albanesi and Sleet 2006, Farhi and Werning 2006); disability insurance and
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economy, we fully characterize the set of all Pareto-optimal allocations. By
comparing the structure of the sets of optimal allocations obtained in these
two cases, we isolate the effect private information has on the implications of
Pareto optimality.

The economic environment we consider is, on the one hand, rich enough
to have features of interest in a macroeconomic analysis, and, on the other
hand, simple enough to admit elementary, closed-form characterization of
Pareto-optimal allocations, both with and without private information. The
model we use is a stylized, two-period version of the Lucas (1978) pure capital
income economy that is extended, however, to incorporate a simple form of
agent heterogeneity. We assume that the population is heterogenous in its
preference for early versus late consumption. In particular, we assume that
a known fraction of agents are impatient, i.e., have a strong preference for
consumption in the first time period, relative to the rest of the population. In
the economy with private information, individual impatience is not observable
to anyone but the agent. A detailed description of the environment is provided
in Section 1.

In our analysis, we exploit the connection between Pareto-optimal alloca-
tions and solutions to so-called social planning problems, in which a (stand-in)
social planner maximizes a weighted average of the individual utility levels of
the two types of agents. These planning problems are defined and solved for
both the public information economy and the private information economy in
Section 2. The solutions obtained constitute all Pareto-optimal allocations in
the two economies.

In the third section, we compare the Pareto optima of the two economies
along two dimensions. First, we examine their welfare properties by compar-
ing the utility levels provided to agents in the cross-section of Pareto-optimal
allocations. The range of individual utility levels supported by Pareto op-
tima in the private information economy turns out to be much smaller than
that of the public information economy. In this sense, private information
imposes limits to redistribution that can be attained in this economic environ-
ment. Then, we compare the structures of optimal intertemporal distortions,
which are often called intertemporal wedges, across the Pareto optima of
the two economies. With public information, all Pareto-optimal allocations
are free of intertemporal wedges. In the economy with private information,
we find Pareto-optimal allocations characterized by a positive intertempo-
ral wedge, and others characterized by a negative intertemporal wedge. We
close Section 3 with a short discussion of the implications of wedges for the
consistency of Pareto-optimal allocations with market equilibrium outcomes,
which are studied in many macroeconomic applications. Section 4 draws a
brief conclusion.
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1. TWO MODEL ECONOMIES

We consider two parameterized model economies. The two economies have
the same preferences and technology. They differ, however, with respect to
the amount of public information.

The following features are common to both economies. Each economy is
populated by a unit mass of agents who live for two periods, t = 1, 2. There
is a single consumption good in each period, ct , and agents’ preferences over
consumption pairs (c1, c2) are represented by the utility function

θu(c1) + βu(c2),

where β is a common-to-all discount factor, and θ is an agent-specific pref-
erence parameter. Agents are heterogenous in their relative preference for
consumption at date 1. We assume a two-point support for the population
distribution of the impatience parameter θ . Agents, therefore, can be of two
types. A fraction μH of the agents are impatient with a strong preference for
consuming in period 1. Denote by H the value of the parameter θ representing
preferences of the impatient agents. A fraction μL = 1 − μH are agents of
the patient type. Their value of the impatience parameter θ , denoted by L,
satisfies L < H .2

In the economies we consider, the production side is represented by a
so-called Lucas tree. We assume that the economy is endowed with a fixed
amount of productive capital stock—the tree.3 Each period, the capital stock
produces an amount Y of the consumption good—the fruit of the tree. The
consumption good is perishable—it cannot be stored from period 1 to 2. The
size of the capital stock, i.e., the tree, is fixed: the capital stock does not
depreciate nor can it be accumulated.

In our discussion, we will focus attention on a particular set of values
for the preference and technology parameters. This will allow for explicit
analytical solutions to the optimal taxation problem studied in this article. In
particular, we will take

u(·) = log(·), β = 1

2
, H = 5

2
, L = 1

2
, μH = μL = 1

2
, Y = 1. (1)

Roughly, the model period is thought of as being 25 years. The value of the
discount factor β of 1

2 corresponds to the annualized discount factor of about
0.973. The fractions of the two patience types are equal, and preferences
are logarithmic. With H

L
= 5, we consider a significant dispersion of the

2 A formulation of preferences with the two types having different discount factors would be
equivalent.

3 In our study of optimal allocations, we abstract from private ownership of capital. Given
that (a) capital is publicly observable and seizable, and (b) the society does not value individual
utilities differently on the basis of individual wealth, this abstraction has no bearing on the problem
we study. That is, the set of Pareto optimal allocations does not depend on who holds wealth in
the economy.
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impatience parameter in the population. The per-period product of the capital
stock is normalized to one.

The two economies we consider differ with respect to the scope of public
knowledge of each agent’s individual impatience parameter. In the first econ-
omy we consider, each agent’s preference type is public information, i.e., it is
known to the agent and everyone else. In the second economy, each agent’s
individual impatience is known only to himself.

2. PARETO-EFFICIENT ALLOCATIONS

An allocation in this environment is a description of how the total output (i.e.,
the economy’s capital income Y ) is distributed among the agents each period.
We consider only type-identical allocations, in which all agents of the same
type receive the same treatment. An allocation, therefore, consists of four
positive numbers, c = (c1H , c1L, c2H , c2L), where ctθ denotes the amount of
the consumption good in period t assigned to each agent of type θ .

In this section, we describe the efficient allocations. We use the standard
notion of Pareto efficiency applied to type-identical allocations. We say that
an allocation c is Pareto-dominated by an allocation ĉ if all types of agents
are at least as well off at ĉ as they are at c and some are strictly better off. In
our model, allocation c is Pareto-dominated by an allocation ĉ if

θu(ĉ1θ ) + βu(ĉ2θ ) ≥ θu(c1θ ) + βu(c2θ )

for both θ = H, L, and if

θu(ĉ1θ ) + βu(ĉ2θ ) > θu(c1θ ) + βu(c2θ )

for at least one θ . An allocation c is Pareto-efficient in a given class of alloca-
tions if c belongs to this class and is not Pareto-dominated by any allocation
ĉ in this class of allocations.

Pareto Optima in the Public Types Economy

In our economy with public preference types, resource feasibility is the sole
constraint on the class of allocations that can be attained. An allocation is
resource-feasible if the total amount consumed each period does not exceed
the total available output. That is, in our model, allocation c is resource-
feasible (RF) if for t = 1, 2,

∑
θ=H,L

μθctθ ≤ Y. (2)

In the public types economy, therefore, we are interested in allocations
that are Pareto-efficient in the class of all RF allocations. We will refer to such
allocations as First Best Pareto optima.
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Characterizing the Set of All First Best Pareto Optima

In order to find all First Best Pareto-optimal allocations, it will be useful to
consider a social planning problem defined as follows:

First Best Planning Problem For each γ ∈ [0, +∞], find an alloca-
tion c = (c1H , c1L, c2H , c2L) that maximizes the value of the welfare
objective

γ [Hu(c1H) + βu(c2H)] + Lu(c1L) + βu(c2L), (3)

subject to resource feasibility constraints (2).4

In this problem, which we will refer to as the First Best planning problem,
γ represents the relative weight that the social welfare criterion (3) puts on
the agents of type H . The constraint set of the First Best planning problem is
defined by the RF constraints (2). It is easy to check that this constraint set is
compact (i.e., closed and bounded). This, and the fact that the objective (3) is
continuous, implies that a solution to the First Best planning problem exists for
every γ ∈ [0, +∞]. Also, since the RF constraints are linear in consumption,
the constraint set is convex. The objective (3) is strictly concave for each
γ ∈ (0, +∞). Thus, the First Best planning problem has a unique solution
for every γ ∈ [0, +∞].5 Denote this unique solution by c∗(γ ).

The social planning problem is a useful tool for welfare analysis due to the
following result: If the set of all feasible allocations is convex and the utility
functions of all agent types are strictly increasing and strictly concave, then
every solution c∗(γ ) to the social planning problem is a Pareto optimum, and
every Pareto optimum is a solution to the social planning problem for some
γ ∈ [0, +∞].6

Because of the concavity of u and the convexity of the set of RF allocations,
this result applies in our economy with public types. Thus, we can exploit the
connection between the set of Pareto optima and the set of solutions to the
First Best social planning problem. We will solve the social planning problem
for each γ ∈ [0, +∞]. The solutions we obtain, c∗(γ ), will determine the
set of First Best Pareto optima as we adjust the value of γ between zero and
infinity.

Since the First Best planning problem is concave for each γ ∈ [0, +∞],
the solution c∗(γ ) is given by the necessary and sufficient first-order conditions

4 Alternatively, we could write the social objective as α [Hu(c1H ) + βu(c2H )] + (1 −
α) [Lu(c1L) + βu(c2L)], with α ∈ [0, 1]. Our formulation (3) is equivalent when γ = α/(1 − α).
Thus, γ = +∞ corresponds to α = 1, i.e., the social objective under γ = +∞ is given by
Hu(c1H ) + βu(c2H ).

5 The optima for γ = 0 and γ = ∞, trivially, are unique as well, with optimal allocations
assigning all consumption respectively to type L and type H .

6 The argument for this is entirely standard. See, e.g., section 16E of Mas-Colell, Whinston,
and Green (1995).
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of this problem. Thus, we can find the solution c∗(γ ) by taking the first-order
conditions and solving for c. Denoting by ρt the Lagrange multiplier of
the RF constraint at date t = 1, 2, the first-order conditions with respect to
consumption are as follows:

γHu′(c1H) = ρ1μH, (4)

Lu′(c1L) = ρ1μL, (5)

γ βu′(c2H) = ρ2μH, and (6)

βu′(c2L) = ρ2μL. (7)

The multipliers ρt must be strictly positive at the solution because the
objective (3) is strictly increasing in consumption, i.e., both RF constraints
bind. For each γ ∈ [0, +∞], the optimum c∗(γ ) is the solution to the sys-
tem of equations consisting of the first-order conditions (4)–(7) and the RF
constraints (2).

Using the parameterization (1), we can obtain a closed-form expression
for the set of all First Best Pareto-optimal allocations, indexing the allocations
in this set by γ . Solving for the optimal consumption values, as a function of
γ , we get

c∗
1H(γ ) = 10γ

1 + 5γ
, (8)

c∗
1L(γ ) = 2

1 + 5γ
, (9)

c∗
2H(γ ) = 2γ

1 + γ
, (10)

c∗
2L(γ ) = 2

1 + γ
. (11)

As we see, at any Pareto optimum, consumption allocated to the impatient type
H is front-loaded, i.e., c∗

1H(γ ) > c∗
2H(γ ), and consumption assigned to the

less impatient type L is back-loaded, i.e., c∗
1L(γ ) < c∗

2L(γ ). Looking across
Pareto optima, consumption of the H -type is strictly increasing, at both dates,
in the weight γ , while consumption of the L-type is strictly decreasing.

Figure 1 provides an Edgeworth-box representation of the set of all First
Best Pareto optima. The Edgeworth box represents the set of all RF allocations
at which the RF constraints (2) are satisfied as equalities (i.e., there is no
waste of resources). In the Edgeworth box of Figure 1, the bottom-left corner
represents the origin of measurement of consumption allocated to the agents of
type H . The horizontal axis measures consumption in period 1. For example,
point A in Figure 1, whose coordinates are (1, 1.5), represents an allocation
at which the consumption of the H -type agents is (c1H , c2H) = (1, 1.5).
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Figure 1 The Set of First Best Pareto Optima

2                                     1                                    0L

c2H  1

c1L

c1H

0H 1                                    2

1c2L

.A

FBPO

Note that since the fractions of the two types are equal and the resource
constraints (2) are binding, we can write them as

ctL = 2 − ctH (12)

for t = 1, 2. Thus, for a given consumption (c1H , c2H) allocated the H -type,
the consumption allocated the L-type is given by

(c1L, c2L) = (2 − c1H , 2 − c2H).

Since the Edgeworth box represents only non-wasteful allocations, the top-
right corner of the box of Figure 1, whose coordinates are (2, 2), is the origin
of measurement of consumption allocated to the agents of type L. Point
A in Figure 1, for example, represents an allocation that assigns amounts
(2 − 1, 2 − 1.5) = (1, 0.5) to the agents of type L.

The solid curve in Figure 1 represents the set of all First Best Pareto-
optimal allocations given in (8)–(11). The allocations in this set are indexed
by γ with the Pareto optimum for γ = 0 being in the bottom-left corner of
the box, and the one obtained for γ = ∞ in the top-right corner. The curve
representing the Pareto set is strictly increasing, which reflects the fact that
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consumption of the H -type is strictly increasing in γ . As we noted before,
for any weight γ , it is efficient to front-load consumption of the H -type and
back-load consumption of the L-type. In the Edgeworth box of Figure 1, this
is reflected by the fact that the First Best Pareto set lies below the 45 degree
line (not depicted).

Pareto Optima in the Private Types Economy

In the second economy we consider, agents have private knowledge of their
own impatience type θ . This imposes additional constraints on the set of
allocations that are feasible in this environment.

As an example, suppose that the social planner—or simply the
government—wants to distribute the total output of the Lucas tree according
to the Pareto-optimal allocation c∗(0) = (c∗

1H(0), c∗
1L(0), c∗

2H(0), c∗
2L(0)) =

(0, 2, 0, 2). At this particular Pareto optimum, type H agents are assigned zero
consumption in both periods (as the social welfare criterion (3) with γ = 0
does not value their utility at all), and agents of type L consume the whole
output of the Lucas tree Y = 1. (Each agent of the L-type consumes 2 units,
and the mass of the L-type agents is 1

2 , so the total consumption of the L-type
agents is 1.) It is clear that when agents’ types are private information, it is
impossible for the government to attain this distribution of consumption. How
will the government know which agent should be assigned zero consumption,
as agents themselves are the only possible source of information about their
preference type? If revealing the preference type H to the government means
consuming zero in both periods, no impatient agent will admit being impa-
tient. Thus, the Pareto optimum c∗(0) is not feasible for the social planner
when the impatience type is private information.

As this example demonstrates, the set of allocations feasible in the econ-
omy with private information is smaller than the set of all allocations satisfy-
ing the resource feasibility constraints (2). In particular, in addition to being
resource-feasible, a feasible allocation of consumption c must also be incen-
tive compatible. This requirement states that when faced with an allocation
c, agents of both types must be willing to reveal truthfully their type to the
government.7

Formally, an allocation c = (c1H , c1L, c2H , c2L) is incentive compatible
(IC) if it satisfies the following two constraints:

Hu(c1H) + βu(c2H) ≥ Hu(c1L) + βu(c2L) (13)

and

Lu(c1L) + βu(c2L) ≥ Lu(c1H) + βu(c2H). (14)

7 A general result known as the Revelation Principle (see Harris and Townsend 1981) guar-
antees that imposing the incentive compatibility requirement is actually without loss of generality.



B. Grochulski: Pareto Optimality with Private Information 181

Using this definition, we can simply say that the Pareto optimum c∗(0) is
not feasible in the economy with private types because it is not IC, as

Hu(c∗
1H(0)) + βu(c∗

2H(0)) = Hu(0) + βu(0)

< Hu(2) + βu(2)

= Hu(c∗
1L(0)) + βu(c∗

2L(0)),

and thus the IC constraint for the H -type, (13), is violated. The example of
allocation c∗(0) demonstrates that the set of feasible allocations in the private
information economy is a strict subset of the set of allocations feasible in the
public information economy. Moreover, this restriction on the feasibility is
not irrelevant from the welfare perspective, as c∗(0) is a Pareto optimum.

Characterizing the Set of Feasible Allocations with
Private Types

Using the parameter values in (1), we can further characterize the set of feasible
allocations in the private information economy, i.e., the set of all allocations
that are RF and IC. Substituting the values in (1), the IC constraints (13) and
(14) are given by, respectively,

5

2
log(c1H) + 1

2
log(c2H) ≥ 5

2
log(c1L) + 1

2
log(c2L)

and
1

2
log(c1L) + 1

2
log(c2L) ≥ 1

2
log(c1H) + 1

2
log(c2H).

Using the RF constraints (12), we can eliminate from these inequalities con-
sumption of the L-type agents. Simplifying and solving for c2H , we obtain the
following expressions for the IC conditions for the type H and L, respectively,

c2H ≥ 2(2 − c1H)5

c1H
5 + (2 − c1H)5

(15)

and

c2H ≤ 2 − c1H . (16)

Figure 2 depicts the set of all IC allocations in the Edgeworth box. The
resource-feasible allocations that satisfy the IC constraint for type H , (15),
lie on and above the curve ICH in Figure 2. Allocations that satisfy the IC
constraint for type L, (16), lie on and below the line ICL. The shaded area,
therefore, represents all IC allocations, i.e., those allocations that satisfy both
IC conditions.

As we can see in Figure 2, the set of IC allocations (also satisfying the RF
constraints as equalities) is convex. This property is not obvious a priori, as the
IC constraints are given by nonlinear inequalities. Thus, the set of allocations
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Figure 2 Incentive-Compatible Allocations in the Private Information
Economy
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feasible in the private information economy, i.e., those that satisfy the RF
constraints as equalities and are incentive compatible, is convex.8 Similar to
the case of public information, this property is valuable as we can characterize
the set of all Pareto optima in the private information economy by solving a
planning problem.

Characterizing the Set of All Second Best Pareto Optima

Consider a planning problem defined as follows:

8 Generally, the feasible set is not always convex in private information economies. Alloca-
tions involving lotteries over consumption bundles have been used in the literature to convexify
the feasible set (see, e.g., Kehoe, Levine, and Prescott 2002). Also, when agents who misrepre-
sent their type are more risk averse than those who report their type truthfully, lotteries may be
welfare-improving even if the feasible set is convex (see Cole 1989). Neither of these reasons to
consider lottery allocations, however, is present in the environment we consider in this article.
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Second Best Planning Problem For each γ ∈ [0, +∞], find an allocation
c = (c1H , c1L, c2H , c2L) that maximizes the value of the welfare ob-
jective (3) subject to resource feasibility constraints (2) and incentive
compatibility constraints (13), (14).

Thanks to the convexity of the set of feasible allocations and the concavity
of the objective, any solution to the Second Best planning problem is a Pareto
optimum of the private information economy, and all such optima, referred to
as the Second Best Pareto optima, can be obtained by solving this problem for
all γ ∈ [0, +∞].9

Similar to the First Best planning problem, the Second Best planning
problem is a concave maximization problem. Thus, for each γ , a unique
solution exists. Let us denote this solution by c∗∗(γ ). As before, we can find
c∗∗(γ ) using the first-order conditions.

There is, however, one difficulty in the private information economy that
does not appear in the public information case: we do not know which, if
any, IC constraints (13), (14) bind in the Second Best planning problem for a
particular value of γ .

To determine which IC constraints bind for different values of γ , it will
be helpful to return to the Edgeworth box. Figure 3 combines the curve
representing the set of First Best Pareto optima from Figure 1, denoted by
FBPO, with the set of IC allocations from Figure 2.

The first observation we make in Figure 3 is that a whole segment of
the FBPO curve lies inside the IC set of the Second Best planning problem.
Thus, for the values of the weight parameter γ for which the First Best Pareto
optimum c∗(γ ) satisfies the IC constraints, the First Best Pareto optimum is
also a solution to the Second Best planning problem, so c∗∗(γ ) = c∗(γ ).

Second, we see that the First Best Pareto optima in the segment of the
set FBPO that lies above the IC set are not incentive compatible because they
violate the IC constraint of the L-type, (14). Similarly, the First Best Pareto
optima in the segment of the set FBPO that lies below the IC set are not
incentive compatible because they violate the IC constraint of the H -type,
(13).

These observations suggest what the following lemma demonstrates for-
mally. See the Appendix for a formal proof.

9 Second Best Pareto optima are often referred to in the literature as constrained Pareto
optima.
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Figure 3 Incentive-Compatible Allocations and the First Best Pareto
Optima
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Lemma 1 In the Second Best planning problem, we have the following.
For all γ ∈ [γ 1, γ 2], where

γ 1 = 5− 5
6 ≈ 0.26,

γ 2 = 5− 1
2 ≈ 0.45,

no IC constraints bind.
For all γ > γ 2, the IC constraint of the L-type, (14), binds, and the IC
constraint of the H -type, (13), does not.
For all γ < γ 1, the IC constraint of the H -type, (13), binds, and the IC
constraint of the L-type, (14), does not.

By Lemma 1, the Second Best Pareto optimum c∗∗(γ ) coincides with the
First Best Pareto optimum c∗(γ ) for all welfare weights γ ∈ [γ 1, γ 2]. Also,
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for γ < γ 1, the Second Best Pareto optimum c∗∗(γ ) can be found by solving
a relaxed Second Best planning problem in which the IC of the L-type, (14), is
dropped and the IC constraint of the H -type, (13), holds as equality. Similarly,
for γ > γ 2, the Second Best Pareto optimum c∗∗(γ ) can be found by solving
a relaxed Second Best planning problem in which the IC constraint of the
H -type is dropped and the IC constraint of the L- type holds as equality.

Taking the first-order conditions of the relaxed Second Best planning prob-
lem for γ > γ 2, we obtain

(γ − λL

L

H
)Hu′(c1H) = ρ1μH, (17)

(1 + λL)Lu′(c1L) = ρ1μL, (18)

(γ − λL)βu′(c2H) = ρ2μH, (19)

(1 + λL)βu′(c2L) = ρ2μL, (20)

where λL > 0 is the multiplier on the IC constraint (14). For each γ > γ 2, the
Second Best Pareto optimum c∗∗(γ ) is the solution to the system of equations
consisting of the first-order conditions (17)–(20), the resource constraints (2),
and the binding IC constraint (14). Using the parameter values in (1), we can
solve explicitly for the optimum. After some algebra, we obtain

c∗∗
1H (γ ) = c∗∗

2L (γ ) = 1 + 5γ

1 + 3γ
, (21)

c∗∗
2H (γ ) = c∗∗

1L (γ ) = 1 + γ

1 + 3γ
, (22)

for all γ > γ 2. Similarly, taking the first-order conditions of the relaxed
Second Best planning problem for γ < γ 1, we have

(γ + λH)Hu′(c1H) = ρ1μH, (23)

(1 − λH

H

L
)Lu′(c1L) = ρ1μL, (24)

(γ + λH)βu′(c2H) = ρ2μH, and (25)

(1 − λH)βu′(c2L) = ρ2μL, (26)

where λH > 0 is the multiplier on the IC constraint (13). Using the parameter
values in (1), for each γ < γ 1, we can solve these first-order conditions,
together with the resource constraints and the binding IC constraint, and obtain
the Pareto optimum c∗∗ (γ ).

Figure 4 represents the full set of Second Best Pareto-optimal allocations
in the Edgeworth box. This figure also depicts the set of IC allocation and the
set of First Best Pareto optima. For γ ∈ [γ 1, γ 2], the Second and First Best
Pareto optima coincide. The Second Best optima c∗∗(γ ) for γ < γ 1 lie on the
lower edge of the IC set, where the IC constraint for the H -type binds. Point
A represents the Second Best Pareto optimum c∗∗(0). Similarly, the Second
Best optima c∗∗(γ ) for γ > γ 2 lie on the upper edge of the IC set, where the
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Figure 4 The Set of Second Best Pareto Optima
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IC constraint for the L-type binds. Point B represents the Second Best Pareto
optimum c∗∗(∞).

3. COMPARING PARETO OPTIMA IN THE TWO ECONOMIES

Having characterized the sets of optimal allocations in the public and private
information economies, we can now compare their structures. In the first
subsection, we compare the welfare properties of the two sets of Pareto optima.
In the second subsection, we compare the structure of intertemporal wedges
characterizing optimal allocations in the two economies.
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Limits to Redistribution Under Private Information

Using the closed-form solutions we have obtained for the sets of First and
Second Best Pareto optima, we can compute the value of utility optimally
delivered to the two types of agents in the two economies. Denote by V ∗

θ (γ )

the lifetime utility delivered to each agent of type θ at the First Best Pareto
optimum c∗(γ ) for γ ∈ [0, ∞].10 By V ∗∗

θ (γ ) denote the lifetime utility
delivered to each agent of type θ at the Second Best Pareto optimum c∗∗(γ )

for γ ∈ [0, ∞].
Figure 5 depicts the so-called First Best Pareto frontier. The concave curve

represents the pairs of values (V ∗
H(γ ), V ∗

L(γ )) for γ between 0.025 and 40.
Outside this range, the frontier extends toward negative infinity and converges
to a horizontal and vertical line. Point A in Figure 5 represents the values
(V ∗

H( 1
3), V

∗
L( 1

3)). Point B marks the values (V ∗
H(1), V ∗

L(1)).
Figure 6 graphs the whole Second Best Pareto frontier, as well as a small

section of the First Best frontier. The Second Best Pareto frontier consists
of all points (V ∗∗

H (γ ), V ∗∗
L (γ )) for γ ∈ [0, ∞]. As in Figure 5, points A

and B represent the values (V ∗
H( 1

3), V
∗
L( 1

3)) and (V ∗
H(1), V ∗

L(1)). Because
1/3 ∈ [γ 1, γ 2], where First and Second Best Pareto optima coincide, point
A belongs to the Second Best Pareto frontier. However, B lies outside of this
set. The values (V ∗∗

H (1), V ∗∗
L (1)) are represented by point C in Figure 6.

Comparing Figures 5 and 6, we note that private information severely
restricts the range of the utility levels that can be provided to the two agent
types, relative to the public information economy. With public information,
the impatient type H can be provided with welfare as high as V ∗

H(∞) = 2. 08,
while under private information, the maximum welfare for the impatient type
is V ∗∗

H (∞) = 0.78. For the agents of the patient type L, these maximal values
are V ∗

L(0) = 0.69 and V ∗∗
L (0) = 0.17, respectively. Private information, thus,

puts limits on the amount of redistribution that can be attained by a social
planner.11

To gain some intuition on how these limits arise, we return to Figure 4 and
consider the optimal allocation at the upper end of the range of γ for which
private and public information optima coincide, i.e., γ = γ 2. The impact
of private information on welfare attained in the two economies can be seen
as we consider the values of γ > γ 2. In the public information economy,
in order to increase welfare of the type H agents, the social planner simply
increases consumption allocated to type H at both dates. That is, both c∗

1H(γ )

and c∗
2H(γ ) increase in γ , which of course means that both c∗

1L(γ ) and c∗
2L(γ )

decrease in γ . As γ grows, the consumption of the L-type becomes smaller

10 That is, V ∗
θ (γ ) = θu(c∗

1θ ) + βu(c∗
2θ ) for θ = H, L and γ ∈ [0, ∞].

11 Redistribution is measured here in terms of utility, relative to a benchmark level, which
does not have to be explicitly specified as the statement is true for any benchmark.
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Figure 5 The First Best Pareto Frontier
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and smaller. Resource feasibility is the only limit to this process. Eventually,
the H -type consumes the economy’s whole output.

Private information, however, puts a much more stringent limit on how
small consumption of the agents of type L can be. At the Second Best optimum
with γ = γ 2, consumption of the L-type is already small enough that the
agents of type L are indifferent between their allocation and that intended
for the H -type. Maximizing the social welfare criterion with γ > γ 2, the
planner cannot improve the H -types’ welfare by increasing its consumption
at both dates, as this would violate the incentive compatibility condition for
the L-type, i.e., the agents of type L would misrepresent their type. As γ is
raised above γ 2, the planner increases H -types’ welfare by increasing their
consumption at date 1 and preserves incentive compatibility for the L-types
by increasing their consumption at date 2. Because type H has a strong
preference for consumption at date 1, relative to type L, it is possible to
simultaneously compensate the L-type and increase the welfare of the H -type,
to a point. In Figure 4, the Second Best Pareto optima c∗∗(γ ) for γ > γ 2
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Figure 6 The First and Second Best Pareto Frontier
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lie on the negative 45 degree line given by the upper edge of the set of IC
allocations. At point B, which represents the Second Best optimum c∗∗(∞),
the planner wants to further maximize H -types’ welfare, regardless of type
L’s welfare. However, no further increase in H -types’ welfare is possible. At
c∗∗
H (∞) = ( 5

3 ,
1
3), the marginal utility levels of H -types’ consumption at dates

1 and 2 are equal.12 Adding one unit of consumption at date 1 and subtracting
one unit of consumption at date 2 is not going to improve H -types’ welfare.
But in order to preserve incentive compatibility, the planner has to compensate
any increase in H -types’ consumption at date 1 with a one-to-one increase of
L-types’ consumption at date 2. Preserving incentive compatibility for the
L-type, therefore, becomes too expensive for the planner to be able to further
increase H -types’welfare. Thus, even though the social welfare objective does

12 It is easy to check that Hu′(c∗∗
1H

(∞)) = βu′(c∗∗
2H

(∞)) = 3
2 .
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not value the utility of L-type at all, it is not feasible in the private information
economy to further redistribute to the H -type agents.

The same intuition applies to the limit that private information puts on
the value that can be delivered to the L-type. As γ decreases below γ 1, the
planner increases the utility of the L-types by increasing their consumption
at date 2 and compensates the H -types with an increase in their consumption
at date 1. At point A in Figure 4, the compensation for the H -type needed
to preserve incentive compatibility becomes too large (and L-types’ marginal
utility of consumption at date 2 relative to marginal utility of consumption at
date 1 too small) for a further increase in L-types’ welfare to be feasible.

In Figure 6, we see that the presence of private information affects the
value delivered to the disfavored type much more strongly than it affects the
value delivered to the favored type, under any γ outside of [γ 1, γ 2]. When
γ = ∞, the L-type consumes zero at the First Best Pareto optimum c∗(∞),
i.e., V ∗

L(∞) = −∞. In the private information economy, however, the L-
type receives consumption ( 1

3 ,
5
3) at the Second Best Pareto optimum c∗∗(∞),

and V ∗∗
L (∞) = −0.29 > −∞. Similarly, with γ = 0, welfare of the type

H is −∞ in the public information economy, but it is a finite number in the
economy with private information.13

In addition, comparing points B and C in Figure 6, we see that when the
social welfare objective is purely utilitarian, i.e., γ = 1, the L-type agents are
better off in the private information economy. This observation generalizes.
It is not hard to show that for all γ > γ 2, the disfavored L-types are better off
when their type is private information, as in this case where the social planner’s
ability to redistribute to the H -type is hampered. Similarly, if γ < γ 1, i.e.,
when the H -types’ utility receives a low weight in the social welfare criterion,
we have that V ∗∗

H (γ ) > V ∗
H(γ ), i.e., the disfavored H -type is better off in the

private information economy.

Optimal Intertemporal Wedges

In order to gain further insight into the structure of the optimal allocations in
the public and private information economies, we examine the intertemporal
wedges in this subsection. Intertemporal wedge is defined as the difference
between the social and the individual shadow interest rate. Wedges associ-
ated with a given Pareto optimum give us an understanding of the implicit
distortions that are optimally imposed on the agents.

13 The value of negative infinity is specific to the logarithmic utility. Under a constant relative
risk aversion utility function with relative risk aversion smaller than one, for example, this value
would be zero, i.e., a finite number. That the value delivered to the disfavored type is strongly
impacted by the presence of private information remains true, however, for any strictly concave
utility function.
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We clarify the definitions as follows: the social shadow interest rate
R∗ associated with a Pareto-optimal allocation c∗ is the number R at which
the planner would choose to not alter the allocation c∗ if given a chance to
re-solve the social planning problem with access to a borrowing and savings
technology with gross interest rate R. Similarly, the private shadow interest
rate R∗

θ for θ = H, L is the number R at which the agents of type θ would not
find it beneficial to trade away from their individual consumption allocation
c∗
θ if they could borrow and save at the gross interest rate R.

In the simple economic environment that we consider, characterization of
social and private shadow interest rates is straightforward. The social shadow
interest rate is given by the ratio ρ1

ρ2
of the Lagrange multipliers associated

with the resource feasibility constraints (2) at dates 1 and 2.14 The private
shadow interest rate of type θ at an optimum c∗ is given by the ratio of type
θ ’s marginal utility at date 1 and 2, i.e., θu′(c∗

1θ )/βu′(c∗
2θ ).

15

Public Information Economy

Directly from the first-order conditions (4)–(7), we obtain that the First Best
optima c∗(γ ) satisfy

θu′(c∗
1θ (γ ))

βu′(c∗
2θ (γ ))

= ρ1

ρ2
,

for both θ = H, L and any γ ∈ [0, ∞]. The intertemporal wedge, given
by the difference between the social and private shadow interest rate, is zero.
This means that it is never optimal to distort the private intertemporal margin
in the public information economy.

Private Information Economy

In the private information economy, the intertemporal wedges are zero at the
Second Best Pareto optimum c∗∗(γ ) for any γ ∈ [γ 1, γ 2], because the Second
Best Pareto optimum c∗∗(γ ) coincides with the First Best Pareto optimum
c∗(γ ) for each γ in this range.

14 If the planner could borrow and lend at the gross interest rate R, the resource feasibility
constraints of the social planning problem would be given by

∑
θ μθ c1θ +S ≤ Y and

∑
θ μθ c2θ ≤

Y +RS, where S is the planner’s saving at date 1. The first-order condition of this problem with
respect to S is −ρ1 +Rρ2 = 0. This means that if R = ρ1/ρ2, the presence of the intertemporal
saving technology does not alter the solution to the social planning problem, i.e., ρ1/ρ2 is the
social shadow interest rate.

15 This follows from the first-order condition with respect to individual savings s, evaluated
at s = 0, of the individual optimal re-trading problem maxs θu(c∗

1θ − s) + βu(c∗
2θ + Rs).



192 Federal Reserve Bank of Richmond Economic Quarterly

For γ > γ 2, the first-order conditions in the Second Best planning prob-
lem, (17)–(20), imply that

Lu′(c∗∗
1L(γ ))

βu′(c∗∗
2L(γ ))

= ρ1μL/(1 + λL)

ρ2μL/(1 + λL)
= ρ1

ρ2
,

which means that an intertemporal wedge of zero is optimal for the agents of
type L. From the same first-order conditions we obtain that

Hu′(c∗∗
1H(γ ))

βu′(c∗∗
2H(γ ))

= ρ1μH/(γ − λL
L
H

)

ρ2μH/(γ − λL)
<

ρ1μH/(γ − λL)

ρ2μH/(γ − λL)
= ρ1

ρ2
,

which means that a strictly positive intertemporal wedge is optimal for the
agents of type H at each Second Best Pareto optimum c∗∗(γ ) with γ > γ 2.
The positive wedge means that agents of type H are savings-constrained at
the optimal allocation of the private information economy when γ > γ 2.
If agents could trade away from the optimum by borrowing or saving at the
social shadow interest rate, the agents of type H would like to save. Note that
the L-type agents would choose to not trade away from their consumption
allocation, as their intertemporal wedge is zero.

The literature studying Pareto-optimal allocations in multi-period
economies with private information finds that the positive intertemporal wedge
characterizes Pareto-optimal allocations in many such environments.16

For γ < γ 1, the first-order conditions (23)–(26) of the Second Best plan-
ning problem imply that

Hu′(c∗∗
1H(γ ))

βu′(c∗∗
2H(γ ))

= ρ1μH/(γ + λH)

ρ2μH/(γ + λH)
= ρ1

ρ2
,

and

Lu′(c∗∗
1L(γ ))

βu′(c∗∗
2L(γ ))

= ρ1μL/(1 − λH
H
L
)

ρ2μL/(1 − λH)
>

ρ1μL/(1 − λH)

ρ2μL/(1 − λH)
= ρ1

ρ2
.

This means that the optimal intertemporal wedge is zero for the H -type, and
strictly negative for the L-type at any Second Best Pareto optimum c∗∗(γ ) with
γ < γ 1. Therefore, we have that agents of type L are borrowing-constrained
at the optimal allocation of the private information economy when γ < γ 1.
If agents could borrow and lend at the social shadow interest rate, the L-type
agents would like to borrow. This property is different from the intertemporal
wedge typically found in the literature, in which, as we mentioned before, the
positive intertemporal wedge is prevalent.

The intertemporal wedges associated with an optimal allocation give us
an understanding of what distortions are optimal in agents’ intertemporal con-
sumption patterns. These distortions are relevant for the analysis of the welfare

16 Articles that find this property of the optimal allocations include Diamond and Mirrlees
(1978); Rogerson (1985); and Golosov, Kocherlakota, and Tsyvinski (2003).
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properties of equilibrium outcomes in market economies. In a market econ-
omy, by definition, agents can use markets to trade away from the socially
optimal allocation. Therefore, the negative intertemporal wedge in the opti-
mal allocation for the L-type, which we have at any Pareto optimum c∗∗(γ )

with γ < γ 1, can be consistent with market equilibrium only if agents of
type L can be prevented from borrowing at the social shadow interest rate.
At the same time, however, any such disincentive to borrow cannot affect the
agents of type H , whose private shadow interest rate is aligned with the social
shadow interest rate at any optimum c∗∗(γ ) with γ < γ 1.

Detailed analysis of the issue of consistency between Pareto optima and
market equilibria is beyond the scope of this article. This issue, however, plays
an important role in the macroeconomic applications of private information
models. It is central, for example, in the study of information-constrained
optimal taxation problems.17

4. CONCLUSION

Our analysis of a simple macroeconomic environment with heterogenous
agents provides an elementary exposition of the implications of Pareto op-
timality with private information. We obtain closed-form representation of all
Pareto-optimal allocations with and without private information. We highlight
the limits that private information puts on the utility distributions that can be
attained in our environment. In addition, we provide a complete description
of intertemporal distortions that are consistent with Pareto optimality in the
private information case. Interestingly, we find that both negative and positive
intertemporal distortions are consistent with Pareto optimality.

APPENDIX

Proof of Lemma 1

Note that removing the IC constraints (13) and (14) from the Second Best
planning problem gives us exactly the First Best planning problem. Thus,
neither of the two IC constraints binds at a solution to the Second Best planning
problem with a given γ ∈ [0, +∞] if and only if the solution to the First Best
planning problem, c∗(γ ), satisfies both IC constraints. We now show that this
is the case if and only if γ ∈ [γ 1, γ 2].

17 See Kocherlakota (2006) for a survey of recent articles studying these problems. In foot-
note 1, we mention other relevant applications and give further references.
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Substituting the expression for the First Best optimum c∗(γ ) from (8)–(11)
into the IC constraint for the H -type, (15), we get

2γ

1 + γ
≥ 2(2 − 10γ

1+5γ
)5

(
10γ

1+5γ
)5 + (2 − 10γ

1+5γ
)5

.

Solving for γ , we get

γ ≥ 5− 5
6 . (27)

This means that the First Best optimal allocation c∗(γ ) satisfies the IC condi-
tion of the H -type if and only if γ ≥ 5− 5

6 = γ 1. Similarly, substituting c∗(γ )

into the IC constraint for the L-types, expressed as in (16), and solving for γ

we get

γ ≤ 5− 1
2 .

Thus, the First Best optimum c∗(γ ) satisfies the IC condition of the L-type
if and only if γ ≤ 5− 1

2 = γ 2. Furthermore, the First Best optimum c∗(γ )

satisfies both IC constraints if and only if γ ∈ [γ 1, γ 2].
Therefore, no IC constraints bind in the Second Best planning problem if

and only if γ ∈ [γ 1, γ 2]. Thus, at least one IC constraint binds in the Second
Best planning problem for each γ /∈ [γ 1, γ 2]. We now show that exactly one
IC constraint binds in this problem for each γ /∈ [γ 1, γ 2].

Suppose to the contrary that both IC constraints bind at the solution to
the Second Best planning problem for some γ . Then, (i) by complementary
slackness conditions, both IC constraints must be satisfied as equalities, and
(ii) the solution to the Second Best planning problem for this value of γ (as
for all other values) must be a Second Best Pareto optimum. Using the fact
that the RF constraints hold as equalities at any solution to the Second Best
planning problem (which follows from the fact that the RF constraints always
bind in this problem), it is easy to check (by simply solving the RF and IC
constraints for c) that both IC constraints are satisfied as equalities at only
one allocation: c = (1, 1, 1, 1). But this allocation is not a Second Best
Pareto optimum, because an allocation cε = (1 + ε, 1 − ε, 1 − ε, 1 + ε)

Pareto-dominates c for any ε > 0, as the H -type strictly prefers cε over c, and
the L-type is indifferent. (It is straightforward to confirm that cε is incentive
compatible for ε small enough.) Thus, (i) and (ii) are inconsistent—we have a
contradiction—so both IC conditions cannot bind at a solution to the Second
Best planning problem for any γ .

Thus, for each γ /∈ [γ 1, γ 2] exactly one IC constraint binds in the Second
Best planning problem.

Suppose now that for some γ̄ > γ 2, the IC constraint for the L-type does
not bind at a solution to the Second Best planning problem, and consider a
relaxed planning problem obtained from the Second Best planning problem
by dropping the IC constraint of the L-type. Since this IC constraint does not
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bind in the Second Best planning problem, the solution to the relaxed problem
coincides with the solution to the Second Best planning problem. We know
from (27) that for all γ ≥ γ 1 the First Best optimal allocation c∗(γ ) satisfies
the IC condition of the H -type. Thus, since γ̄ > γ 2 > γ 1, the First Best
optimal allocation c∗(γ̄ ) solves the relaxed planning problem. But then c∗(γ̄ )

must also be the solution to the Second Best planning problem, which we
know it is not, because γ̄ /∈ [γ 1, γ 2], a contradiction. Thus, the IC constraint
of the L-type must bind in the Second Best planning problem for all γ > γ 1.

Similarly, supposing that the IC constraint for the H -type does not bind
at a solution to the Second Best planning problem for some γ̄ < γ 1, we
construct a relaxed planning problem by dropping this constraint from the
Second Best planning problem, which leads to a false conclusion that c∗(γ̄ )

solves the Second Best planning problem for a γ̄ < γ 1, a contraction. Thus,
the IC constraint for the H -type must bind at a solution to the Second Best
planning problem for all γ < γ 1.
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