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A Quantitative Study of the
Role of Wealth Inequality
on Asset Prices

Juan Carlos Hatchondo

T here is an extensive body of work devoted to understanding the deter-
minants of asset prices. The cornerstone formula behind most of these
studies can be summarized in equation (1). The asset pricing equation

states in recursive formulation that the current price of an asset equals the
present discounted value of future payments delivered by the asset. Namely,

p (st ) = E
[
m (st , st+1) (x (st+1) + p (st+1)) | st

]
, (1)

where p (s) denotes the current price of an asset in state s; x (s) denotes the
payments delivered by the asset in state s; and m

(
s, s ′) denotes the stochastic

discount factor from state s today to state s ′ tomorrow, that is, the function that
determines the equivalence between current period dollars in state s and next
period dollars in state s ′. It is apparent from equation (1) that the stochastic
discount factor m plays a key role in explaining asset prices.

One strand of the literature estimates m using time series of asset prices, as
well as other financial and macroeconomic variables. The estimation proce-
dure is based on some arbitrary functional form linking the discount factor to
the explanatory variables. Even though this strategy allows for a high degree
of flexibility in order to find the stochastic discount factor that best fits the
data, it does not provide a deep understanding of the forces that drive asset
prices. In particular, this approach cannot explain what determines the shape
of the estimated discount factor. This limitation becomes important once we
want to understand how structural changes, like a modification in the tax code,
may affect asset prices. The answer to this type of question requires that the
stochastic discount factor is derived from the primitives of a model.
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This is the strategy undertaken in the second strand of the literature.1 The
extra discipline imposed by this line of research has the additional benefit
that it allows one to integrate the analysis of asset prices into the framework
used for modern macroeconomic analysis.2 On the other hand, the extra
discipline imposes a cost: it limits the empirical performance of the model.
The most notable discrepancy between the asset pricing model and the data
was pointed out by Mehra and Prescott (1985). They calibrate a stylized
version of the consumption-based asset pricing model to the U.S. economy
and find that it is incapable of replicating the differential returns of stocks
and bonds. The average yearly return on the Standard & Poor’s 500 Index
was 6.98 percent between 1889 and 1978, while the average return on 90-day
government Treasury bills was 0.80 percent. Mehra and Prescott (1985) could
explain an equity premium of, at most, 0.35 percent. The discrepancy, known
as the equity premium puzzle, has motivated an extensive literature trying to
understand why agents demand such a high premium for holding stocks.3 The
answer to this question has important implications in other areas. For example,
most macroeconomic models conclude that the costs of business cycles are
relatively low (see Lucas 2003), which suggests that agents do not care much
about the risk of recessions. On the other hand, a high equity premium implies
the opposite, which suggests that a macro model that delivers asset pricing
behavior more aligned with the data may offer a different answer about the
costs of business cycles.

The present article is placed in the second strand of the literature men-
tioned above. The objective here is to explore how robust the implications
of the standard consumption-based asset pricing model are once we allow
for preferences that do not aggregate individual behavior into a representative
agent setup.

Mehra and Prescott (1985) consider an environment with complete mar-
kets and preferences that display a linear coefficient of absolute risk tolerance
(ART) or hyperbolic absolute risk aversion (HARA).4 This justifies the use of
a representative-agent model. Several authors have explored how the presence
of heterogenous agents could enrich the asset pricing implications of the stan-
dard model and, therefore, help explain the anomalies observed in the data.
Constantinides and Duffie (1996), Heaton and Lucas (1996), and Krusell and

1 Lucas (1978) represents the basic reference of the consumption-based asset pricing model.
He studies an endowment economy with homogeneous agents and shows how the prices of assets
are linked to agents’ consumption.

2 See Jermann (1998) for an example of a study of asset prices in a real business cycle
model.

3 McGrattan and Prescott (2003) argue that the actual equity premium is lower than 6 per-
cent after allowing for diversification costs, taxes, and the liquidity premium of the short-term
government bonds.

4 The coefficient of absolute risk tolerance is defined as − u′(c)
u′′(c) .
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Smith (1997) are prominent examples of this literature. These articles main-
tain the HARA assumption, but abandon the complete markets setup. The
lack of complete markets introduces a role for the wealth distribution in the
determination of asset prices.

An alternative departure from the basic model that also introduces a role for
the wealth distribution is to abandon the assumption of a linearART. This is the
avenue taken in Gollier (2001). He studies explicitly the role that the curvature
of the ART plays in a model with wealth inequality. He shows in a two-
period setup that when the ART is concave, the equity premium in an unequal
economy is larger than the equity premium obtained in an egalitarian economy.
The aim of the present article is to quantify the analytical results provided in
Gollier’s article. Preferences with habit formation constitute another example
of preferences with a nonlinearART. Constantinides (1990) and Campbell and
Cochrane (1999) are prominent examples of asset pricing models with habit
formation. As in Gollier (2001), these preferences also introduce a role for the
wealth distribution, but this channel is shut down in these articles by assuming
homogeneous agents.

The present article considers a canonical Lucas tree model with complete
markets. There is a single risky asset in the economy, namely a tree. This
asset pays either high or low dividends. The probability distribution governing
the dividend process is commonly known. Agents also trade a risk-free bond.
Each agent receives in every period an exogenous endowment of goods, which
can be interpreted as labor income. The endowment varies across agents. For
simplicity, it is assumed that a fraction of the population receives a higher
endowment in every period, that is, there is income inequality. Agents are
also initially endowed with claims to the tree, which are unevenly distributed
across agents. The last two features imply that wealth is unequally distributed.
Agents share a utility function with a piecewise linear ART.

The exercise conducted in this article compares the equilibrium asset
prices in an economy that features an unequal distribution of wealth with
an egalitarian economy, that is, an economy that displays the same aggregate
resources as the unequal economy, but in which there is no wealth hetero-
geneity. For a concave specification of the ART, this article finds evidence
suggesting that the role played by the distribution of wealth on asset prices
may be non-negligible. The unequal economy displays an equity premium
between 24 and 47 basis points larger than the egalitarian economy. This is
still far below the premium of 489 basis points observed in the data.5 The

5 This number is 129 basis points smaller than the premium documented in Mehra and
Prescott (1985). There are two reasons for this. First, the sample period used in the present
article is 1871 to 2004, while Mehra and Prescott (1985) use data from 1889 to 1978. Second,
the present article uses one-year Treasury bills as a proxy for the risk-free rate, while Mehra and
Prescott (1985) use 90-day Treasury bills.
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risk-free rate in the unequal economy is between 11 and 20 basis points lower
than in the egalitarian economy.

The rest of the article is organized as follows. Section 1 discusses the
assumption of a concave ART. Section 2 introduces the model. Section 3
outlines how the model is calibrated. Section 4 presents the results, defining
the equilibrium concept and describing how the model is solved. Finally,
Section 5 presents the conclusions.

1. PREFERENCES

It is assumed that agents’ preferences with respect to random payoffs satisfy
the continuity and independence axioms and, therefore, can be represented
by a von Neumann-Morgenstern expected utility formulation. The utility
function is denoted by u (c). The utility function is increasing and concave in
c. The concavity of u (c) implies that agents dislike risk, that is, agents are
willing to pay a premium to eliminate consumption volatility. The two most
common measures of the degree of risk aversion are the coefficient of absolute
risk aversion and the coefficient of relative risk aversion. The coefficient of
absolute risk aversion measures the magnitude of the premium (up to a constant
of proportionality) that agents are willing to pay at a given consumption level c,
in order to avoid a “small” gamble with zero mean and payoff levels unrelated
to c. The coefficient of absolute risk aversion (ARA) is computed as follows:

ARA (c) = −u′′ (c)
u′ (c)

.

The coefficient of relative risk aversion (RRA) also measures the mag-
nitude of the premium (up to a constant of proportionality) that agents are
willing to pay at a given consumption level c to avoid a “small” gamble with
zero mean, but with payoff levels that are proportional to c. The coefficient
of relative risk aversion is computed as follows:

RRA (c) = −cu′′ (c)
u′ (c)

.

The coefficient of ART is the inverse of the coefficient of ARA. The utility
function used in this article is reverse engineered to display a piecewise linear
ART, namely,

ART (c) = − u′ (c)
u′′ (c)

=
{

a0 + b0c if c ≤ ĉ

a1 + b1c if c > ĉ
,

where a1−a0 = (b0 − b1) ĉ. This equality implies that theART is continuous.
It is assumed that both slope coefficients, b0 and b1, are strictly positive. When
b1 < b0, the ART is concave, and when b1 > b0, the ART is convex. The
standard constant RRA utility function corresponds to the case where b1 = b0,
and a1 = a0 = 0.
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The previous formulation implies that individual preferences can be rep-
resented by the following utility function.6

u (c) =

⎧⎪⎨
⎪⎩

K0 (a0 + b0c)

(
1− 1

b0

)
+ K1 if c ≤ ĉ

(a1 + b1c)

(
1− 1

b1

)
if c > ĉ

,

where

K0 = − (b1 − 1)
(
a1 + b1ĉ

)− 1
b1

(b0 − 1)
(
a0 + b0ĉ

)− 1
b0

,

and

K1 = − (a1 + b1ĉ
)(1− 1

b1

)
− K0

(
a0 + b0ĉ

)(1− 1
b0

)
.

The present parameterization of the utility function has several advantages.
First, it nests the concave and convex ART cases in a simple way. Second, it
enables us to introduce a high degree of curvature of the ART. Finally, it helps
provide a transparent explanation of the results.

On the Concavity of the Coefficient of Absolute Risk
Tolerance

The results in Gollier (2001) suggest that wealth inequality may help in rec-
onciling the model with the equity premium observed in the data as long as
agents display a concave ART. This section discusses to what extent this is a
palatable assumption.

One possible way to verify the validity of a concave ART is to contrast
the testable implications of a concave (or convex) ART in terms of individual
savings and portfolio behavior with the data. This is the avenue taken in Gol-
lier (2001). He argues that the evidence is far from conclusive. He documents
that even though saving and investment patterns do not seem to favor a con-
cave ART, several studies are able to explain this behavior without relying on
a convex ART. More precisely, an increasing and concave ART would imply
that the fraction invested in risky assets is increasing with wealth, but at a
decreasing rate. This is not observed in the data. However, once the complete
information setup is abandoned, one alternative explanation emerges: infor-
mation does not appear to be evenly distributed across market participants.
This is supported by Ivkovich, Sialm, and Weisbenner (forthcoming), who
find evidence suggesting that wealthier investors are more likely to enjoy an
informational advantage and earn higher returns on their investments, which
may feed into their appetite for stocks.

6 See Appendix A for a description of how the utility function is recovered from the ART.
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In a model without uncertainty, a concave ART would imply an increasing
marginal propensity to consume out of wealth. The data contradict this result.
But there are various alternative explanations for the increasing propensity to
save that do not rely on a convex ART. The presence of liquidity constraints
is one of them. The fact that the investment set is not uniform across agents
is another one.7

Another alternative to test the validity of a concaveART is to use the results
from experimental economics. However, Rabin and Thaler (2001) argue that
not only is the coefficient of risk aversion an elusive parameter to estimate, but
also the entire expected utility framework seems to be at odds with individual
behavior. In part, this has motivated the burst of behavioral biases models in
the finance literature.8 The landscape is different in the macro literature. The
expected utility framework is still perceived as a useful tool for understanding
aggregate behavior.

The previous arguments suggest that the data do not provide strong ev-
idence in favor of or against a concave ART, which does not invalidate a
concave specification of the ART as a possible representation of individual
preferences. The rest of the article focuses on this case in order to measure
the role of wealth inequality on asset pricing.

2. THE MODEL

This article analyzes a canonical Lucas tree model. The only difference with
Lucas (1978) is that our model features heterogeneous agents. We consider
a pure exchange economy with complete information. There is a single risky
asset in the economy: a tree. There is a unit measure of shares of the tree. The
tree pays either high dividends (dh) or low dividends (dl). The probability that
the tree pays high dividends tomorrow given that it has paid high dividends
today is denoted by πh.9 The probability that the tree pays high dividends
tomorrow given that it has paid low dividends today is denoted by πl . There
is a measure one of agents in the economy. Agents are initially endowed
with shares of the tree and receive exogenous income y in every period. A
fraction φ of the population is endowed in every period with high income yr .
The remaining agents receive low income yp.10 The exogenous income is not
subject to uncertainty. This can be viewed as an extreme representation of
the fact that labor income is less volatile than capital income. Agents trade in

7 See Quadrini (2000).
8 See Barberis and Thaler (2003).
9 It is assumed that the tree pays high dividends in the first period.
10 In order to assist the reader, the subscript r stands for “rich,” while the subscript p stands

for “poor.”



J. C. Hatchondo: Role of Wealth Inequality on Asset Prices 79

stocks and one-period risk-free bonds. These two assets are enough to support
a complete markets allocation.

The economy is inhabited by a measure 1 of infinitely lived agents. Agents
have preferences defined over a stream of consumption goods. Preferences
can be represented by a time-separable expected utility formulation, namely,

U0 = E

[ ∞∑
t=0

βtu (ct )

]
=

∞∑
t=0

∑
zt∈Zt

βtP r
(
zt | z0

)
u
(
ct

(
zt
))

,

where Zt denotes the set of possible dividend realizations from period 0 up
to period t , zt denotes an element of such a set, ct (·) denotes a consumption
rule that determines the consumption level in period t for a given stream of
dividend realizations, and Pr

(
zt | z0

)
denotes the conditional probability of

observing stream of dividend realizations zt , given that the initial realization
is z0. Trivially, z0 ∈ {dl, dh}.

The consumer’s objective is to maximize the present value of future utility
flows. Let us assume for the moment that the price of a stock is given by the
function p (s), and the price of a risk-free bond is given by the function q (s),
where s denotes the aggregate state. In the present framework, the aggregate
state is fully specified by the dividend realization and the distribution of wealth.
Given that the price functions are time-invariant, the consumer’s optimization
problem can be expressed using a recursive formulation.

The timing within each period is as follows: at the beginning of the period
the aggregate tree pays off and agents receive dividend income. After that, they
cash in the bonds and stocks purchased in the previous period and receive the
exogenous endowment (labor income). The sum of these three components
define the cash-on-hand wealth available for investment and consumption.
Agents trade in two markets: the market of risk-free bonds and the market of
claims to the tree. At the end of the period, they consume the resources that
were not invested in stocks or bonds.

The following Bellman equation captures the individual optimization prob-
lem of agent i:

Vi (ω, s) = Max
a′,b′

⎧⎨
⎩u (c) + β

∑
s′∈ S′(s)

P r
(
s′ | s

)
Vi

(
ω′ (s′) , s′)

⎫⎬
⎭ , (2)

subject to

p (s) a′ + q (s) b′ + c = ω,

ω′ (s′) = a′ [d (s′)+ p
(
s′)]+ b′ + yi, and

c ≥ 0.

The agent’s type, i, depends on the exogenous endowment the agent re-
ceives. This means that i ∈ {r, p}. There are two relevant state variables for
any given individual: the cash-on-hand wealth available at the beginning of the
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period (denoted by ω) and the aggregate state of the economy. The aggregate
state determines the current prices and the probability distribution over future
prices. The state of the economy, s, is represented by the vector (ωr, ωp, d).
The first two components characterize the distribution of wealth, while the last
component captures the current dividend realization. The amount of stocks
purchased in the current period is denoted by a′. The amount of bonds pur-
chased in the current period is denoted by b′. The next-period state realization
is denoted by s′. The set of possible aggregate state realizations in the follow-
ing period is denoted by S′. The aggregate state realization in the next period
may depend on the current aggregate state, s. The function d (s) represents
the mapping from aggregate states into dividend payoffs.

The first-order conditions of agent i are represented by equations (3) and
(4).

p (s) =
∑

s′
Pr

(
s′ | s

)
mi

(
s, s′) [d (s′)+ p

(
s′)] . (3)

q (s) =
∑

s′
Pr

(
s′ | s

)
mi

(
s, s′) . (4)

These two equations illustrate how the asset pricing equation (1) presented
at the beginning of this article can be derived from a consumer’s optimization
problem. The stochastic discount factor of agent i is now a well-defined
function of observables (wealth and income), namely

mi

(
s, s′) = βu′ (ci

(
s′))

u′ (ci (s))
,

where ci (s) denotes the optimal consumption of agent i in state s. In equi-
librium, equations (3) and (4) must be satisfied for all agents, which means
that any individual stochastic discount factor can be used to characterize the
equilibrium prices of stocks and bonds.

A recursive competitive equilibrium consists of a set of policy functions
ga

r (ω, s), gb
r (ω, s), ga

p (ω, s), gb
p (ω, s), price functions p (s), q (s), and an

aggregate law of motion S ′ (s), such that:

1. The policy functions ga
i (ω, s), gb

i (ω, s) solve the consumer’s problem
(2) for i = r, p.

2. Markets clear,

φga
r

(
ωr, s

)+ (1 − φ) ga
p

(
ωp, s

) = 1, and

φgb
r

(
ωr, s

)+ (1 − φ) gb
p

(
ωp, s

) = 0

for all possible values of ωr , ωp, and s.
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Table 1 Parameter Values

dh dl πh πl yr yp φ ar
initial period b0 b1 ĉ

1.18 0.82 0.87 0.18 4.0 1.0 0.33 1.5 0.5 0.2 2.5

3. The aggregate law of motion is consistent with individual behavior, that
is, ∀ s′ = (

ωr ′ (d ′) , ωp ′ (d ′) , d ′) ∈ S ′ (s) it is the case that

ωr ′ (
d ′) = ga

r

(
ωh, s

) [
p
(
ωr ′ (

d ′) , ωp ′ (
d ′) , d ′)+ d ′]+gb

r

(
ωr, s

)+yr,

ωp ′ (
d ′) = ga

p

(
ωp, s

) [
p
(
ωr ′ (

d ′) , ωp ′ (
d ′) , d ′)+ d ′]+gb

p

(
ωp, s

)+yp.

The above implies that Pr
(
s′ | s

) = Pr
(
d
(
s′) | s

) ∀ s′ ∈ S′ (s).
Notice that given that markets are complete, marginal rates of substitution

are equalized across agents, states, and periods. Given the time separability
of preferences, the equalization of marginal rates of substitution implies that
the sequence of consumption levels of rich (poor) agents only depends on
the aggregate dividend realization and not on the time period. This means
that the individual wealth of rich (poor) agents only depends on the aggregate
dividend realization and not on the time period. This simplifies the dynamics
of the model: the economy fluctuates over time across two aggregate states
characterized by different dividend realizations and wealth distributions. The
Appendix provides a detailed description of how the model is solved.

3. CALIBRATION

The baseline parameterization used in this article is described in Table 1. The
volatility of dividends is parameterized using the index of real dividends paid
by stocks listed in the Standard & Poor’s 500 Index.11 First, a linear trend
is applied to the logarithm of the series of dividends in order to remove the
long-run trend of the series.12 Second, the exponential function is applied to
the filtered series. Figure 1 shows the logarithm of the index of real dividends
and its trend. Figure 2 shows the distribution of percentage deviations between
the index of real dividends and its trend value. The average deviation over

11 The dividend index can be found in http : //www.econ.yale.edu/ shiller/data/ie data.htm.
All nominal variables are deflated using the overall Consumer Price Index.

12 This procedure delivers a smoother trend than what could be found using a Hodrick-
Prescott filter with a value of λ equal to 100, which is the value commonly used to detrend
annual variables. However, in the present case, a smoothing parameter of 100 implies that a high
fraction of the volatility of the detrended series of dividends would be absorbed by movements in
the trend, which may underestimate the actual risk perceived by individual investors.
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Figure 1 Logarithm of Real Dividends Paid by Stocks in the Standard
& Poor’s 500 Index
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the sample period is 17.6 percent. However, this represents the volatility of
a highly diversified portfolio. Several studies document that agents do not
diversify as much as standard portfolio theories predict. Thus, the dividend
volatility of the stocks actually held by individuals may very well be larger
than this measure. The benchmark values of dh and dl were chosen to deliver
a coefficient of variation of 17.3 percent but we also report results for higher
dividend volatility.

In order to estimate the transition probabilities πl and πh, the periods with
dividends above the trend are denoted as periods of high dividends, and the
periods with dividends below the trend are denoted as periods of low divi-
dends. The values of πh and πl —the probabilities of observing a period with
high dividends following a period with high (low) dividends—were chosen
to maximize the likelihood of the stream of high and low dividends observed
between 1871 and 2004. A value of πl = 0.18 and a value of πh = 0.87 are
obtained.

Reproducing the degree of inequality is a more difficult job. First, there
have been sizable changes in the wealth distribution over the last decades.
Second, for the purpose of this article, the relevant measure is the wealth
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Figure 2 Histogram of Deviations of Dividends with Respect to Trend
Values (in Absolute Value and in Percentage Terms)
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inequality among stockholders, which is not readily available. As an approxi-
mation, the present calibration focuses only on households that had an income
higher than $50,000 in 1989. Even though this group does not represent the
entire population, it represents a large fraction of stockholders.13 According
to the Survey of Consumer Finances (SCF), 8.6 percent of American families
received an annual income higher than $100,000 in 1989, while the fraction
of families receiving an annual income between $50,000 and $100,000 in the
same year was 22.7 percent.

The first group represents the “rich” agents in the model. The second
group represents the “poor” agents in the model. Thus, rich families represent
27 percent of all families with income higher than $50,000 in 1989. A fraction
φ equal to 33 percent is used in the article. The exogenous endowment (labor
income) received in each period by rich individuals is set equal to 4, while
the exogenous endowment of poor individuals is set equal to 1. The initial
endowment of stocks of rich individuals is set equal to 1.5, which leaves the

13 The fact that the characteristics of stockholders may differ from the characteristics of the
rest of the population was first pointed out in Mankiw and Zeldes (1991).
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poor with an initial endowment of stocks of 0.75. Thus, on average, rich
agents receive three times as much income as poor individuals. According
to the SCF, the ratio of mean total income between rich and poor was 3.4 in
1989. In addition, the previous parameterization implies a ratio of aggregate
“labor income” to capital income (dividends) equal to 2. It is worth stressing
that the “poor” in this calibration are not strictly poor. They are intended to
represent the set of stockholders who are less affluent. Thus, the previous
parameterization yields a distribution of wealth that is less unequal than the
overall distribution of wealth.

Finally, the preference parameter b0 is set equal to 0.5, a0 is set equal to
0, and b1 is set equal to 0.2. This implies that a representative agent would
display an average coefficient of relative risk aversion of 2.2, which is within
the range of values assumed in the literature. The threshold value ĉ is set equal
to 2.5. This guarantees that the consumption of poor agents always lives in
the region with steep ART, and the consumption of rich agents always lives in
the region of relatively flat ART.

It should be stressed that the pricing kernel used in the present article is
not based on aggregate consumption data. In fact, the consumption process
of the two groups considered in the article displays a higher volatility and
higher correlation with stock returns than aggregate consumption. The reason
for this is twofold. First, there is evidence against perfect risksharing among
households.14 This suggests that using a pricing kernel based on aggregate
consumption data can be potentially misleading. Second, as was pointed out
by Mankiw and Zeldes (1991), stockholding is not evenly distributed across
agents. Guvenen (2006) and Vissing-Jorgensen (2002) provide further evi-
dence that the consumption processes of stockholders and non-stockholders
are different. Thus, the pricing kernel of stockholders appear as a more ap-
propriate choice to study asset prices than the pricing kernel implied by the
aggregate consumption.

4. RESULTS

The expected return of a tree in state i is denoted by Re
i , where

Re
i = πi

(ph + dh)

pi

+ (1 − πi)
(pl + dl)

pi

.

The return on a risk-free bond in state i is denoted by R
f

i , where

R
f

i = 1

qi

.

14 See Cochrane (1991); Attanasio and Davis (1996); Hayashi, Altonji, and Kotlikoff (1996);
and Guvenen (2007).
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Table 2 Average Returns and Volatility

Variable Egalitarian Economy Unequal Economy Data 15

Mean Returns on Equity 4.77 4.91 7.86
Mean Risk-Free Rate 3.78 3.67 2.83
Equity Premium 0.96 1.20 4.89
Std. Dev. of Equity Returns 11.43 12.75 14.3
Std. Dev. of Risk-Free Rate 4.23 4.76 5.8

The asset pricing moments are computed using the stationary distribution.
In the long run, the probability that the economy is in a state with high dividends
is denoted by π , where

π = πl

1 + πl − πh

.

The average long-run return on a stock is denoted by Re. The average
long-run return on a bond is denoted by Rf . They are computed as follows:

Re = πRe
h + (1 − π) Re

l , and

Rf = πR
f

h + (1 − π) R
f

l .

Table 2 compares the first two moments of the equilibrium long-run risk-
free rate and stock returns in two hypothetical economies. The unequal econ-
omy refers to the economy described in Section 2. In the egalitarian economy,
however, every agent is initially endowed with the same amount of stocks
and receives the same exogenous endowment in every period. The aggregate
resources are the same as in the unequal economy.

Table 2 reports that the role of wealth inequality on asset prices is small
but non-negligible.16 The risk-free interest rate in the unequal economy is
11 basis points lower than the risk-free rate in the egalitarian economy. The
premium for holding stocks is 24 basis points larger in the unequal economy.
As the distribution of wealth becomes more unequal, the gap in the equity
premium increases. For example, when each rich agent is initially endowed
with 2 stocks, instead of 1.5, the premium for holding stocks is 34 basis points
higher in the unequal economy compared to the egalitarian economy.17

The present model generates a higher equity premium than Mehra and
Prescott (1985) for two reasons. First, agents bear more risk by holding

15 The equity returns correspond to the real returns of the stocks listed in the Standard &
Poor’s 500 Index. The risk-free interest rate corresponds to one-year Treasury bills. The sample
period is 1871–2004.

16 The actual data reported in Table 2 differ from Mehra and Prescott (1985). See footnote
5.

17 In this case, the ratio of financial wealth between rich and poor agents is equal to 4. The
ratio equals 2 in our benchmark parameterization.
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Table 3 Sharpe Ratio and Moments of the Stochastic Discount Factor
in the Egalitarian Economy

Aggregate State Sharpe Ratio Corr
(
m, Re | di

)
E (m | di) σ (m | di)

dh 0.0990 -1 0.099 0.998
dl 0.0940 -1 0.087 0.919

stocks. The present article features a risky asset that is riskier than the risky
asset in Mehra and Prescott (1985). In their model, agents only receive a risky
endowment that is calibrated to mimic the behavior of real per capita con-
sumption between 1889 and 1978. In the present setup, the risky endowment
mimics the behavior of the dividend process of the stocks contained in the S&P
500 Index, which is more volatile than aggregate consumption. The second
reason why the present article delivers a higher equity premium is because
stocks provide poor diversification services and, therefore, agents demand a
higher premium per unit of risk. This is reflected in a higher Sharpe ratio. The
Sharpe ratio—described in equation (5)—measures the excess returns per unit
of risk that agents demand for holding stocks. Equation (5) can be obtained
from equation (1) after using the property that

R
f

i = 1

E (m | di)
.

Sharpe ratio = E (Re | di) − R
f

i

σ (Re | di)
= −Corr

(
m, Re | di

) σ (m | di)

E (m | di)
. (5)

Table 3 illustrates the magnitudes of the moments present in equation (5)
for the case of the egalitarian economy. The model generates a Sharpe ratio
slightly lower than 0.10. This value can be explained by the high negative
correlation between the stochastic discount factor and the returns on stocks,
and by the relatively high standard deviation of the stochastic discount factor.
The perfect negative correlation between the stochastic discount factor and the
returns on stocks is due to the assumption of a binary process for dividends.18

18 One way to contrast this correlation with the data is to look at the correlation between
consumption growth and stock returns. The motivation for this is that when agents display a utility
function with a constant coefficient of relative risk aversion, the discount factor has the following
form:

m
(
s, s′

) = β

(
c
(
s′
)

c (s)

)−γ

,

where γ denotes the coefficient of relative risk aversion. Thus, the stochastic discount factor is
inversely proportional to consumption growth. In the present article, the utility function does not
display a constant coefficient of relative risk aversion, but there is still a close relationship between
consumption growth and the discount factor. In fact, in the present model, the counterpart of a
perfect negative correlation between the discount factor and stock returns is a perfect correlation



J. C. Hatchondo: Role of Wealth Inequality on Asset Prices 87

Table 4 Average Returns and Volatility for the Baseline
Parameterization and for a Parameterization with Higher
Dispersion of Dividends

dh = 1.18 and dl = 0.82 dh = 1.25 and dl = 0.75
Egalitarian Unequal Egalitarian Unequal

Mean Returns on Equity 4.77 4.91 5.34 5.62
Mean Risk-Free Rate 3.78 3.67 3.41 3.21
Equity Premium 0.96 1.20 1.87 2.34
Std. Dev. of Equity Returns 11.43 12.75 16.20 18.16
Std. Dev. of Risk-Free Rate 4.23 4.76 5.87 6.62

As far as the standard deviation of the stochastic discount factor is concerned,
it can be approximated by

σ (m) ≈ γ σ (�lnc) ,

where γ stands for the coefficient of relative risk aversion and σ (�lnc) rep-
resents the standard deviation of the growth rate in consumption (see footnote
18). In the model, the coefficient of relative risk aversion of the representative
agent is above 2.2, while the volatility of the growth rate in consumption is
slightly below 0.05. This value is higher than the standard deviation of the
growth rate of aggregate consumption (below 2 percent in the postwar years),
but it does not differ significantly from the estimates of the standard deviation
of consumption growth of stockholders. Mankiw and Zeldes (1991) estimate a
standard deviation of consumption growth of U.S. stockholders slightly above
3 percent over the period 1970–1984.19

Table 4 shows that as the dispersion of dividends increases to 24 percent,
the equity premia in the unequal economy is 47 basis points larger in the
unequal economy compared to the egalitarian economy. The risk-free rate
is 20 basis points lower in the unequal economy compared to the egalitarian
case. A dispersion of dividends of 24 percent is not such a large figure once we
internalize the fact that investors do not diversify as much as standard portfolio
theories predict.20

between consumption growth and stock returns or excess returns (Re − Rf ). Mankiw and Zeldes
(1991) find that the correlation between consumption growth and excess returns ranges from 0.26
to 0.4 using aggregate data, and it can be as high as 0.49 when the data refer to the consumption
of shareholders.

19 Attanasio, Banks, and Tanner (2002) find a standard deviation of consumption growth of
stockholders ranging from 3.7 to 6.5 percent in the case of the UK.

20 See Ivkovich, Sialm, and Weisbenner (forthcoming).
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Figure 3 Effect of a Concave ART on the Marginal Rates of
Substitution of Rich and Poor Agents
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Notes: Ci denotes average consumption in state i, cr
i

denotes consumption of a rich

agent in state i when the ART is represented by AB, and c
p
i

denotes consumption of
a poor agent in state i when the ART is represented by AB. The arrows illustrate how
the consumption of rich and poor agents move when the ART is given by the curve OB,
instead of AB.

Interpretation of the Results

Gollier (2001) shows that in an economy with wealth inequality, the ART of
the hypothetical representative agent consists of the mean ART of the market
participants. Thus, when the ART is concave, Jensen’s inequality implies that
the ART of a hypothetical representative agent in an economy with wealth
inequality is below the ART of the representative agent in an economy with an
egalitarian distribution of wealth. In turn, Gollier shows that this implies that
the equity premium in an economy with an unequal distribution of wealth is
higher than the equity premium in an economy with an egalitarian distribution
of wealth. This result holds regardless of whether the ART is increasing
or decreasing with consumption. The baseline parameterization used in this
article considers the first case, which appears to be in line with the data. It
implies that in equilibrium, wealthier agents bear more aggregate risk.
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Even though Gollier (2001) relies on a two-period model, the results in
this section suggest that his results also hold in an infinite-horizon setup.
An intuitive explanation is provided in Figure 3. The graph describes how the
consumption of rich and poor agents is affected by the nonlinearity of theART.
The solid line describes the ART. If the ART was linear and represented by the
dashed line AB, the economy would behave as if there was a representative
agent. In this case, the consumption levels of rich and poor agents in state
i would correspond to points like cr

i and c
p

i , respectively. Ci denotes the
average per capita consumption in state i. In equilibrium, the marginal rates
of substitution are equalized across agents:

u′ (cr
l

)
u′ (cr

h

) = u′ (Cl)

u′ (Ch)
= u′ (cp

l

)
u′ (cp

h

) .
Poor agents are more risk-averse when the ART is represented by the solid
curve OB, instead of AB. This means that at the prices prevailing when the
economy behaves as if there was a representative agent, poor individuals are
willing to consume less than c

p

h in the high dividend state and more than c
p

l

in the low dividend state. Thus, the “new” equilibrium consumption levels of
rich and poor agents must move in the direction of the arrows. Notice that
the marginal rate of substitution for rich agents (u′ (cr

l

)
/u′ (cr

h

)
) is higher in

the economy with concave ART, compared to the economy with linear ART
(curve OB versus curve AB).

From the perspective of a rich individual, the mean price of stocks must
therefore decrease. The reason is that the tree is paying low returns in states
that have now become more valuable (low consumption) and high returns in
states that have become less valuable (high consumption). Since markets are
complete and the marginal rate of substitution are equalized across agents,
poor agents agree with their rich counterparts. As a consequence, the average
equity premium asked to hold stocks is larger than in the economy with a
representative agent.21

The Role of the Concavity of the Coefficient of Risk
Tolerance

In order to illustrate the role played by the curvature of the ART, this sec-
tion illustrates how the equity premium changes with alternative parameteri-
zations of the ART. The comparative statics exercise is reduced to alternative
parameterizations of b0. In order to make the results comparable with the ones

21 Note that the ranking of consumption in Figure 3 respects the ranking of consumption
given by the baseline parameterization. In particular, the average consumption level is always
above the threshold value ĉ.
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Figure 4 Concave and Convex Specifications of ART with the Same
Coefficient of ART for Rich and Poor Agents
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Notes: The solid line OB represents the baseline case with a concave ART. The dashed
line AD represents a case with a convex ART. In both cases, the average ART is the
same for poor and rich agents.

presented before, this section considers alternative values of b0, but restricts
the remaining parameters in the utility function change in such a way that,
on average, the ART remains constant in the economy with wealth inequality.
This is best illustrated in Figure 4. The graph displays two parameterizations
of the ART: the solid line OB represents the baseline case with a concave
ART. The dashed line AD represents a case with a convex ART. The line AD
features a lower slope (lower b0) on the first segment of the piecewise linear
formulation. The remaining coefficients of the line AD are chosen to satisfy
the following conditions: average ART is the same for poor and rich agents,
and the change in the slope of the ART occurs at ĉ.22

Figure 5 shows that when the ART is convex, the equity premium is larger
in an economy with an egalitarian distribution of wealth compared to the

22 Note that the equilibrium allocation of consumption of poor and rich agents in good and
bad states does not depend on the shape of the utility function. This is because of the complete
markets assumption.
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Figure 5 Equity Premium as a Function of bo
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Notes: The ART is concave (convex) for values of b0 above (below) 0.27. The equity
premium is barely affected by b0 in the economy with wealth inequality due to the fact
that the average degree of ART of poor and rich agents is kept constant.

economy with wealth inequality. Conversely, when the ART is concave, the
equity premium is lower in the economy with an egalitarian distribution of
wealth. These findings are in line with the results of Gollier (2001).

An alternative interpretation of Figure 5 is that if the data are actually
generated by the economy with wealth inequality, using a representative agent
model would generate biased predictions. A representative agent model—that
implicitly assumes that every agent is endowed with the same wealth level—
would overestimate the equity premium in the case with convex ART and
underestimate the equity premium in the case with concave ART.

5. CONCLUSIONS

The objective of this article is to quantify how robust the asset pricing implica-
tions of the standard model are once alternative preference specifications are
considered. The exercise is motivated on the grounds that there is no strong
evidence in favor of the constant ARA or constant RRA utility representations
usually used in the finance and macroeconomic literature. Following Gollier
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(2001), the article focuses on a case with a concave ART. In the economy
analyzed in this article, the heterogeneity of individual behavior is not washed
out in the aggregate. This introduces a role for the wealth distribution in the
determination of asset prices. The model is parameterized based on the his-
toric performance of U.S. stocks and approaches the salient features of the
wealth and income inequality among stockholders. For the baseline parame-
terization, the equity premium is 0.24 percent larger in the unequal economy
compared to the economy in which the wealth inequality is eliminated. The
premium increases if we allow for the fact that agents typically hold portfo-
lios that are more concentrated than the market portfolio. For example, if the
stocks display standard deviation of dividends of 25 percent, the increase in
the equity premium in the unequal economy increases to slightly less than half
a percentage point. This suggests that the role played by the distribution of
wealth on asset prices may be non-negligible.

APPENDIX A: DERIVATION OF THE UTILITY
FUNCTION

Start from a linear formulation of the ART,

− u′ (c)
u′′ (c)

= a + bc. (A.1)

The above inequality implies that the primitive functions of any transfor-
mation of both sides of equation (A.1) must be equalized. In particular,∫

u′′ (c)
u′ (c)

dc =
∫

− 1

a + bc
dc. (A.2)

Thus,

ln
[
u′ (c)

] = −1

b
ln (a + bc) + C0, (A.3)

where C0 is a real scalar.
Equation (A.4) is obtained after applying the exponential function to both

sides of equation (A.3),

u′ (c) = eC0 (a + bc)− 1
b . (A.4)

Finally, equation (A.5) is obtained after integrating both sides of equation
(A.4),

u (c) = eC0 (a + bc)1− 1
b

1(
1 − 1

b

)
b

+ C̃1 = C̃0 (a + bc)1− 1
b + C̃1, (A.5)
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where C̃1 is another real scalar. Equation (A.5) implies that the piecewise linear
formulation of the ART considered in this article generates four constants
that need to be determined: two constants C̃0 and C̃1 for each of the two
combinations of coefficients (ai, bi). In order to pin down the values of these
constants, four restrictions are imposed. In the first section of values of the
ART—characterized by the parameters a0 and b0— the constants C̃0 and C̃1 are
chosen so that u (c) and u′ (c) are continuous. In the second section of values
of the ART—characterized by the parameters a1 and b1—the constants C̃0 and
C̃1 are normalized to take values of 1 and 0, respectively. This normalization
does not affect any of the results, given that an expected utility function is
unique only up to an affine transformation (see proposition 6.B.2 in Mas-
Colell, Whinston, and Green [1995]).

APPENDIX B: SOLVING FOR THE EQUILIBRIUM

The present model features complete markets. A well-known result in this
setup is that, in equilibrium, marginal rates of substitution across states and
periods are equalized across agents. This implies that

u′ (cr
h

)
u′ (cp

h

) = u′ (cr
l

)
u′ (cp

l

) = 1 − λ

λ
, with λ ∈ (0, 1) , (B.1)

where c
j

i denotes the consumption of agent j in a state where the tree pays
dividends di . The value of λ is determined in equilibrium.

The two equalities in equation (B.1), jointly with the aggregate resource
constraints

φch
r + (1 − φ) ch

p = dh + φyr + (1 − φ) yp, and

φcl
r + (1 − φ) cl

p = dl + φyr + (1 − φ) yp,

fully determine the allocation of consumption as a function of λ. In turn, the
consumption levels c

j

i (λ) can be used to retrieve the market prices implied by
λ. Market prices must satisfy equations (B.2)–(B.5), which are derived from
the first-order conditions of a rich individual.23

ph (λ) = β

[
πh (dh + ph (λ)) + (1 − πh)

u′ (cr
l (λ)

)
u′ (cr

h (λ)
) (pl (λ) + dl)

]
,

(B.2)

23 Given that marginal rates of substitution are equalized across agents, the same prices are
obtained using the first-order condition of poor individuals.
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pl (λ) = β

[
πl

u′ (cr
h (λ)

)
u′ (cr

l (λ)
) (dh + ph (λ)) + (1 − πl) (pl (λ) + dl)

]
, (B.3)

qh (λ) = β

[
πh + (1 − πh)

u′ (cr
l (λ)

)
u′ (cr

h (λ)
)
]

, and (B.4)

ql (λ) = β

[
πl

u′ (cr
h (λ)

)
u′ (cr

l (λ)
) + 1 − πl

]
, (B.5)

where pi (λ) denotes the price of a share of the tree in a period when the tree
has paid dividends di , and qi (λ) denotes the price of the risk-free bond in a
period when the tree has paid dividends di .

Notice that only the aggregate resource constraint has been used until this
point. In order to pin down values of λ consistent with the equilibrium alloca-
tion, an additional market-clearing condition must be considered. We use the
market-clearing condition for stocks. An initial condition is also required. For
this reason, it is assumed that the tree pays high dividends in the first period.
The results are not sensitive to this. Equations (B.6) and (B.7) define the two
initial conditions that the demand for bonds and stocks of agent j (a′j

h (λ) and
b′j

h (λ)) must meet,

ω
j

h − ph (λ) a′j
h (λ) − qh (λ) b′j

h (λ) = c
j

h (λ) , and (B.6)

yj + a′j
h (λ) (ph (λ) + dh) + b′j

h (λ) = ω
j

h, (B.7)

for j = r, p, and initial wealth levels ωr
h, and ω

p

h . Equation (B.6) states that
the investment decisions of an agent of type j must leave c

j

h (λ) available for
consumption in the first period. The second equation states that the cash-
on-hand wealth available at the beginning of the second period in a state in
which the tree pays high dividends must equal the initial wealth (recall that
the tree pays high dividends in the first period). The logic behind the second
condition is the following. Given the stationarity of the consumption and price
processes, the discounted value of future consumption flows in the first period
is identical to the discounted value of future consumption flows in any period
in which the tree pays high dividends. This means that the discounted value
of claims to future income must also be equalized across periods with high
dividend realizations, which implies that equation (B.7) must hold.

Thus, the value of λ consistent with the equilibrium allocation must satisfy

φa′r
h (λ) + (1 − φ) a′p

h (λ) = 1.

Finally, the following equation must also hold:

yj + a′j
l (λ) [ph (λ) + dh] + b′j

l (λ) = ω
j

h, (B.8)
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for j = r, p. The above equality states that if the tree has paid low dividends
in the current period, the cash-on-hand wealth available at the beginning of the
following period in a state where the tree pays high dividends must be equal
to the initial wealth of the agent. Equations (B.7) and (B.8) imply that, in
equilibrium, the individual portfolio decisions are independent of the current
dividend realization, that is,

a′j
h = a′j

l and b′j
h = b′j

l for j = r, p.
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