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Semiparametric Estimation
of Land Price Gradients
Using Large Data Sets

Kevin A. Bryan and Pierre-Daniel G. Sarte

T raditional urban theory typically predicts land values that form a smooth
and convex surface centered at a central business district (CBD) (Mills
1972 and Fujita 1989). The fact that land values are highest near the

city center reflects a trade off between commuting costs and agglomeration
externalities at the CBD. As distance from the city center increases, so do
commuting costs for workers employed at the CBD. Agglomeration effects,
however, such as knowledge sharing or decreased shipment costs from a com-
mon port, are highest near the CBD. In equilibrium, therefore, the price of
residential land tends to be bid up most forcefully close to the city center
where commuting costs are lowest. In empirical work, the shape of the land
price surface is often estimated using a parametric regression that includes
a measure of Euclidian distance from the CBD or a polynomial function of
location data. The parameter associated with distance from the CBD, then,
captures the rate at which land prices decline as one moves away from the city
center and toward the rural outskirts. Though this is a straightforward method
to obtain estimates of the rate of price decline, parametric methods can be
misleading for two reasons.

First, as noted by Seyfried (1963) among others, cities are “not a fea-
tureless plain.” Bodies of water, mountains, and geography more generally
all distort the land price surface by influencing potential commuting patterns.
Second, and more importantly, there is growing evidence, both theoretical
and empirical, that the monocentric city of Mills (1972), for example, is
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being replaced by the polycentric city, where employment subcenters lead
to land price gradients of a form that may be difficult to uncover parametri-
cally. Anas, Arnott, and Small (1998) survey this literature, while Redfearn
(2007) provides an example of the employment density surface in LosAngeles.
A parametric model of such a city may smooth over important employment
subcenters and high-price suburbs. As such, nonparametric estimates of the
land price surface allow for a more robust description of the data.

Estimation of land gradients using nonparametric or semiparametric meth-
ods is somewhat involved relative to parametric regressions. In part, to econ-
omize on computations, early work in this area has tended to use only vacant
lot sales (Colwell and Munneke 2003), but the sparseness of that data can
lead to overly smooth price gradients. Furthermore, vacant lot sales are not
as informative when considering land prices outside of dense urban cores, as
there may be large areas without any nearby sale during the period studied. In
contrast, the number of residential house sales in a given period can be sub-
stantial. This article, therefore, reviews a method for constructing land price
gradients using a potentially large set of housing sales data. Drawing on work
byYatchew (1997) andYatchew and No (2001), we estimate a semiparametric
hedonic housing price equation where the contribution of housing attributes
to home prices is obtained parametrically, but the component of home prices
that varies with location is not assumed to lie in a given parametric family.

Using data from 2002–2006, we apply this method to the city of Richmond,
Virginia, and three surrounding counties. The region under consideration cov-
ers approximately 1,218 square miles, comprises nearly one million people,
and has boundaries that are agricultural in nature. Since our technique uses
home transaction sales, and not simply vacant land, we are able to construct a
land gradient from over 100,000 observations. Surprisingly, given the recent
trend toward polycentric cities in the United States, we find that the price sur-
face in Richmond is largely monocentric, with land prices falling from over
$100 per square foot (in 2006 constant dollars) around the CBD to less than $1
per square foot in the rural outskirts. Though the CBD is the dominant feature
on the price surface, larger suburbs, such as Mechanicsville, Ashland, Short
Pump, and Midlothian, and corridors along Interstates 64 and 95, are easily
identified. Furthermore, the presence of these subcenters distorts estimates of
parametric surfaces even when they assume one dominant center.

An exponential function fitted to our estimates of land prices reveals that
prices fall, on average, at the rate of 2.8 percent per mile as one moves away
from Richmond’s CBD. Put another way, land prices fall by 1

2 every 25 miles.
This rate is significantly higher than the rate of decline estimated with a least
squares regression of home prices on housing characteristics and a measure of
distance from the CBD, which finds prices falling at only 1 percent per mile.
This difference arises because conventional parametric methods do not allow
for local variations in housing prices and, consequently, achieve a considerably
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worse fit over a large area. In particular, the parametric regression is associated
with a much poorer fit of the data relative to its semiparametric counterpart.

The technique for estimating land prices proposed in this article makes
no assumptions about the geography of the Richmond area or the structure of
the land price surface. In a parametric estimation of land prices, the inclusion
of variables to represent location within a certain county or distance from an
identified “employment subcenter” (such as Chicago O’Hare airport in Colwell
and Munneke [1997]) is essential to achieving a reasonably accurate land price
surface. However, identifying locations such as an employment subcenter can
be a difficult and arbitrary task (Giuliano and Small [1991] and McMillen
[2001]). Moreover, independent of commuting considerations, proximity to
geographical features such as lakes may enhance the value of certain locations.
By construction, this feature of land prices cannot be captured by parametric
methods based on distance from a CBD. In contrast, because no arbitrary
decisions about the functional form of the land surface need to be made with
the method used in this article, it can be directly applied to any urban region
of any shape and size.

The rest of the article proceeds as follows. In Section 1, we describe the
data and features of the Richmond area. Section 2 describes the empirical
model and discusses how semiparametric land price estimates are computed.
In Section 3, we construct the land price surface and compare our estimates
with those constructed using simpler polynomial and distance-from-CBD
estimates. Section 4 concludes.

1. DATA DESCRIPTION

This article estimates the land price gradient from a full sample of residential
sales in the city of Richmond and three nearby counties—Hanover, Henrico,
and Chesterfield—from 2002–2006. Richmond is a mid-sized regional center
with a population just over 200,000, lying 100 miles south of Washington,
D.C., at the intersection of Interstates 95 and 64. The urban core was well
developed by the late 19th century, when the city served as the Confederate
capital during the Civil War. As such, the mean age of the housing stock in the
city itself is more than 66 years. Hanover County lies due north of Richmond,
with a largely rural population of less than 100,000, though significant suburbs
do line the Interstate 95 corridor. Henrico County lies both to the west and to
the east of Richmond, with a population just under 300,000, and is home to
a number of quickly growing suburbs surrounding Interstate 64, notably the
areas around Short Pump and Mechanicsville. Chesterfield County, with a
population over 300,000, lies to the south of Richmond and is primarily made
up of low density suburban areas, along with a few notable small towns such
as Chester and Midlothian. A map of Richmond and surrounding counties
is given in Figure 1. All told, the region includes almost one million people
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Figure 1 Richmond and Surrounding Counties
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residing in over 1,218.5 square miles. Aside from the far southern end of
Chesterfield County, which abuts the cities of Colonial Heights and Petersburg,
the edge of this region consists of rural farmland.

We acquired a full record of property sales, with matched housing char-
acteristics, from the city and counties. These characteristics include the fur-
nished square footage of a house, the number of years since the house was
first built, its plot acreage, and the number of bathrooms available. We also
include binary variables that indicate whether a house has air conditioning,
whether its exterior is made of brick, vinyl, or wood, and whether it is heated
using oil, hot water, or central air. Before carrying out the estimation, we
filter the data along several dimensions. First, all nonresidential properties
were removed, as the parametric portion of our estimation requires data on,
for instance, livable square footage. Next, we remove houses that appear to
have improperly entered data—this includes houses with construction dates
before 1800, houses with sales prices of less than one dollar, houses that ap-
pear to have been sold in a lot where no breakdown of the sales price per house
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Table 1 Data Summary

Variable Mean St. Dev. Min. Max.
Sales Pricea 210,068.63 152,035.95 6.46 5,639,195.45
Age 33.14 28.61 1 207
No. of Bathrooms 2.13 0.90 0 72
Air Conditioning 0.66 0.47 0 1
Square Footage 1,876.0 903.4 319 63,233
Lot Acreage 0.70 2.44 0.02 98.77
Brick Exterior 0.20 0.40 0 1
Vinyl Exterior 0.31 0.46 0 1
Wood Exterior 0.18 0.38 0 1
Gas Heating 0.09 0.29 0 1
Oil Heating 0.17 0.38 0 1
Hot Water Heating 0.14 0.35 0 1
Central Air Heating 0.13 0.33 0 1

Notes: aExpressed in constant 2006 dollars.

is available, and houses with plot acreage lower than .02 acres (871 square
feet).

We geocode data from street addresses in ArcGIS using SPCS NAD83
coordinates, which, unlike simple latitude and longitude, allow easy calcu-
lation of Euclidean distance in feet between any two points. In some cases,
the geocoder was unable to positively identify a street address; unidentified
houses are left out of the final sample. Descriptive statistics of our data are
reported in Table 1.

2. THE EMPIRICAL MODEL

This section sets up the basic framework we use throughout the remainder of
the article. We denote the city of Richmond (and its four surrounding counties)
byC and a location in the city by � = (x, y) ∈ C, where x and y are Cartesian
coordinates. We denote the (log) per-square-foot price of a home in Richmond
by p. Our analysis begins with the following hedonic price equation,

p = Xβ + f (�)+ ε, (1)

where X is a k-element vector of conditioning housing characteristics such
that cov(X|�) = �X|�, f (�) is the component of a home price directly re-
lated to location, and ε is a random variable such that E(ε|�,X) = 0 and
var(ε|�) = σ 2

ε . The matrix X consists of all of the variables from Table 1
and quadratic terms for lot acreage and square footage, as Brownstone and
De Vany (1991), among others, find that land price per acre is a concave func-
tion of parcel size. The coefficients, β, capture the reduced-form effects of
particular housing attributes, such as the size of the living area of a house or
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whether air conditioning is available, on home prices. Moreover, sincep−Xβ
represents housing prices purged of the contribution from specific attributes,
we think of f (�) as capturing the value of land per-square-foot at a given
location. While this general semi-log specification is standard in the analysis
of real estate data, some differences exist regarding the functional form that
describes the function f (.). One option is to specify f (.) as a polynomial
function of location data, as in Galster, Tatian, and Accordino (2006),

f (x, y) = α0x + α1y + α3x
2 + α4y

2 + α5xy. (2)

Substituting equation (2) into equation (1), one can then consistently estimate
the coefficients β and αi , i = 1, .., 5, using least squares.

An alternative approach that uses least squares estimation is to parame-
terize f (.) as a function of distance from the CBD, as in Zheng and Khan
(2008),

f (x, y) = αd
√
(x − xc)2 + (y − yc)2, (3)

where �c = (xc, yc) denotes the location of the CBD. Recalling that p is
measured in log units, αd then captures the exponential rate of change in land
values as one moves away from the CBD.

In contrast to either of these approaches, this article does not assume that
f (�) lies in a given parametric family. The only restriction that we shall
impose on f (�) is that it satisfies a Lipschitz condition,

||f (�a)− f (�b)|| < L||�a − �b||, L ≥ 0. (4)

Semiparametric Regression

Estimating the nonparametric component of equation (1), f (�), requires that
we first address estimation of the parametric effects, β. One strategy would
be to estimate equation (1) in two stages, first ignoring the nonparametric
component, f (�), in order to obtain estimates of β by regressing p on X, and
then applying nonparametric methods to purged home prices, p− Xβ̂, where
β̂ denotes the previously obtained estimates of β. However, since the reduced
form model contains a component related to location that is being ignored,
estimates of β obtained in this way will be biased when housing attributes, X,
are correlated with location, �. Rather, a two-step estimation strategy must
somehow “get rid” of the nonparametric component in the first step.

Let n denote the number of observations in our data set. A popular ap-
proach, pioneered by Robinson (1988), recognizes as a first step that equation
(1) implies that

p − E(p|�) = [X − E(X|�)]β + ε. (5)
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In other words, the conditional differencing of equation (1) gets rid of the
nonparametric component. Robinson (1988) then shows that by replacing
E(p|�) and E(X|�) with nonparametric kernel estimates (to be described
below) Ê(p|�) and Ê(X|�), respectively, and then regressing p− Ê(p|�) on
[X − Ê(X|�)], yields estimates of β that are

√
n consistent. Unfortunately,

this method can be quite onerous since separate nonparametric regressions are
required for each housing attribute in X, where both the number of relevant
housing attributes and the number of observations are large in our case. To
avoid this problem, we summarize instead a differencing method developed
more recently by Yatchew (1997) and Yatchew and No (2001), and adopted,
for example, in Rossi-Hansberg, Sarte, and Owens (2008).

The basic idea behind differencing the data works as follows. We would
like to re-order our data, (p1,X1, �1), (p2,X2, �2), ... , (pn,Xn, �n) so that the
�’s are close, in which case differencing tends to remove the nonparametric ef-
fects. To get a sense of the implications of differencing, suppose that locations
constitute a uniform grid on the unit square (the re-scaling is without loss of
generality). Each point may then be thought of as taking up an area of 1

n
, and

the distance between adjacent observations is therefore 1√
n
. Suppose further

that the data have been re-ordered so that ||�i−�i−1|| = 1√
n
. First-differencing

of (1) then yields

pi − pi−1 = (Xi − Xi−1)β + f (�i)− f (�i−1)+ εi − εi−1. (6)

Assuming that equation (4) holds, the difference in nonparametric components
in (6) vanishes asymptotically. Yatchew (1997) then shows that the ordinary
least squares estimator of β using the differenced data (i.e., by regressing
pi − pi−1 on Xi − Xi−1) is also

√
n consistent. This estimator of β, how-

ever, achieves only 2
3 efficiency relative to the one produced by Robinson’s

method. This can be improved dramatically by way of higher-order differ-
encing. Specifically, define �p to be the (n−m)× 1 vector whose elements
are [�p]i = ∑m

s=0 ωspi−s , �X to be the (n − m) × k matrix with entries
[�X]ij = ∑m

s=0 ωsXi−s,j , and similarly for �ε. The parameter m governs
the order of differencing and the ω’s denote constant differencing weights.
Equation (6) can then be generalized as

�p = �Xβ +
m∑
s=0

ωsf (�i−s)+�ε, i = m+ 1, ..., n, (7)

where the following two conditions are imposed on the differencing coeffi-
cients, ω0, ..., ωm:

m∑
s=0

ωs = 0 and
m∑
s=0

ω2
s = 1. (8)

The first condition ensures that differencing removes the nonparametric effect
in (1) as the sample size increases and the re-ordered �’s get closer to each
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other. The second condition is a normalization restriction that implies that
the variance of the transformed residuals in (7) is the same as the variance
of the residuals in (1). When the differencing weights are chosen optimally,
the difference estimator β� obtained by regressing �p on �X approaches
asymptotic efficiency by selectingm sufficiently large.1 In particular,Yatchew
(1997) shows that

β̂� ∼A N(β, (1 + 1

2m
)
σ 2
ε

n
�−1

X|�),

s2
� = 1

n

n∑
i=1

(�pi −�Xi β̂)
2 →P σ 2

ε, and (9)

�̂u,� = 1

n
�X′�X →P �X|�.

These results will allow us to do inference on β̂�. By equation (9), the R2

statistic associated with our original empirical specification (1) can be esti-

mated as R2 = 1 − s2
�

s2p
. In our estimation exercise, we use m = 10, which

produces coefficient estimates that are approximately 95 percent efficient when
using optimal differencing weights.

Finally, note that because locations lie in R2, the initial re-ordering of the
�’s is not unambiguous in this case. A Hamiltonian cycle over distance is the
ordering of housing sale coordinates such that the sum of differenced distances
is minimized. However, computing a Hamiltonian cycle for over 100,000
points is not yet tractable on a personal computer.2 In this article, we re-
order locations using a nearest-neighbor algorithm that finds an approximate
Hamiltonian cycle in the following way: First, we select an arbitrary starting
location from which we then find the location of a sale in our data set nearest to
it in Euclidean distance. From this second location, we then find the nearest
third sale location among the set of remaining observations (i.e., those not
already identified). This process is repeated until every sale location has been
selected.3 Figure 2 displays the path chosen by our algorithm. The median
distance between points in our sample is 86 feet. As this figure is darker in
areas where there are more residential sales, it also serves as a rough guide to
residential density in the Richmond area. The origin represents the CBD of
Richmond City.

1 Optimal differencing weights, ω0, ..., ωm, solve min δ = ∑m
k=1(

∑
s ωsωs+k)2 subject to

the constraints in (7). See Proposition 1 in Yatchew (1997).
2 The Hamiltonian cycle is the solution to the famous Traveling Salesman Problem (TSP).

As of 2007, the largest TSP ever solved on a supercomputer involved 85,900 points, which is
smaller than our problem (Applegate et al. 2006).

3 See Rosenkrantz, Stearns, and Lewis (1977). Although the starting point is arbitrary, it has
little implications for our findings.
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Figure 2 Path of Approximate Hamiltonian Cycle
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Nonparametric Kernel Estimation of f (�)

Denote by z the price of a home “purged” of its contribution from housing
characteristics, where z is obtained using first stage estimates, z = p− Xβ̂�,
and construct the data (z1, �1), (z2, �2),...,(zn, �n). Then, because β̂� is a
consistent estimator of β, the consistency of f (�) obtained using standard
kernel estimation methods applied to purged home prices remains valid.

The Nadaraya-Watson kernel estimator of f at location �j is given by

f (�j ) = n−1
n∑
i=1

Whi(�j )zi . (10)

In other words, the value of land at location �j is a weighted-average of the
z’s in our data sample. The weight, Whi(�j ), attached to each purged price,
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zi , is given by

Whi(�j ) = Kh(�j − �i)

n−1
∑n

i=1Kh(�j − �i)
, (11)

where

Kh(u) = h−1K(
u

h
),

and K(ψ) is a symmetric real function such that
∫ |K(ψ)|dψ < ∞ and∫

K(ψ)dψ = 1. Thus, we may choose to attach greater weight to observations
on prices of homes located near �j rather than far away by suitable choice of
the function K . In particular, as in much of the literature, our estimation is
carried out using the Epanechnikov kernel,

K(
u

h
) = 3

4

(
1 −

(u
h

)2
)
I (

∣∣∣u
h

∣∣∣ ≤ 1), (12)

where I (.) is an indicator function that takes the value 1 if its argument is true
and 0 otherwise. The distance between location �j and some other location �i
in Richmond is simply measured as a Euclidean distance in feet. The kernel
in (12) then implies that prices of homes located more than a distance of h feet
from �j will receive a zero weight in the estimation of f (�j ). In that sense,
the bandwidth, h, has a very natural interpretation in this case. In practice, the
estimation of f (�) is affected to a greater degree by the choice of bandwidth
rather than the choice of kernel.4

How then does one choose what bandwidth is appropriate? A seemingly
natural method for choosing the bandwidth is to minimize the sum of squared
residuals,

MSE = n−1
n∑
i=1

[zi − f (�i)]
2.

However, because zi is used when estimating f (�i), the mean squared error
can be arbitrarily reduced by decreasing the bandwidth until all weight in
f (�i) is effectively placed on zi . To avoid this problem, the cross-validation
method proposes that the bandwidth parameter be chosen by minimizing the
sum of squared residuals from an alternative kernel regression in which zi is
dropped in the estimation of f (�i). Hence, we select h so that it solves

min
h
CV (h) = n−1

n∑
i=1

[zi − f̃h(�i)]
2, (13)

4 See DiNardo and Tobias (2001).
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where

f̃h(�j ) = n−1
n∑
i �=j

Whi(�j )zi.

We estimate equation (7) using 103,543 observations over the period
2002–2006. All prices are deflated using the consumer price index and mea-
sured in 2006 constant dollars. We include among our conditioning variables,
X, a set of time dummies associated with the sale date of a home that captures
secular citywide increases in real home prices, where 2006 is set as the base
year.

3. FINDINGS

This section reviews our findings. Before describing the results from the
semiparametric estimation, we first present estimates from the polynomial
specification of Galster, Tatian, and Accordino (2006), equation (2), and the
parameterized distance function of Zheng and Khan (2008), equation (3), as
benchmarks.

Table 2 presents estimates from the specification where the value of land is
modeled as a quadratic function of location data, as in equation (2), under the
heading “Parametric Model 1.” The estimation of the coefficients is carried
out using least squares. Virtually all housing characteristics are statistically
significant at the 5 percent critical level and most are significant at the 1
percent level. The coefficients associated with the sale date are significant
over and above prices being measured in constant dollars. In particular, the
findings suggest a general increase in real home prices over our sample period
(recall that 2006 is set as the base year). In addition, the regression achieves
a relatively good fit for cross-sectional data, with an R2 of about .50.

Of central interest in the first two columns of Table 2 are the parameters
that govern the value of land associated with the Cartesian location data. The
coefficients of the polynomial in equation (2) are all highly significant, with the
exception of the cross-term, which is statistically significant at the 10 percent
critical level only. Figure 3 shows the land value surface associated with these
parameters. The origin roughly represents the CBD of the city of Richmond,
at the intersection of 7th Street and Canal Street. This location corresponds
to coordinates within an area generally considered the employment center of
Richmond, with high employment density and a preponderance of commercial
and office buildings. The polynomial estimate of land prices, however, has a
peak nearly 20 miles away from the CBD, roughly located in a far western
suburb known as Short Pump. Since the polynomial in equation (2) permits, at
most, one local interior maximum, this parametric regression imposes a land
price surface typical of a monocentric city. Essentially, the polynomial will
choose a maximum in an area for which there exist many house sales with a
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fairly high land value, even if there are other local maxima (near the CBD) on
the true land price surface with higher prices but fewer sales.

Table 2 also presents estimates from the parametric specification where
land prices (per square foot) are assumed to decline at an exponential rate with
distance from the CBD, equation (3), under the heading “Parametric Model
2.” The results generally mimic those of our first parametric model, both
in terms of the coefficients associated with the different housing attributes
and their statistical significance. For example, an additional bathroom adds
approximately $0.13 to the log per-square-foot price of a home under the first
specification in Table 2 and $0.16 under the second parameterization. This
translates to an additional bathroom, adding $2.39 and $2.68, respectively,
to the per-square-foot price of an average home. Note, however, that the
parametric specification for Model 2 achieves a slightly worse fit than that for
Model 1, with an R2 statistic of 0.47.

Under the parametric specification including distance from the CBD, we
find that the log price per square foot of land declines at a rate of .0103 per mile
as one moves away from Richmond’s CBD. This translates into a price per
square foot of land that falls exponentially at a rate of 1.03 percent per mile as
distance from the CBD increases. Alternatively, this exponential rate of decay
implies that land prices fall by 1

2 approximately every 67 miles. This rate of
decline in land prices is significantly slower than those estimated by Zheng
and Khan (2008) for Beijing, and Colwell and Munneke (1997) for Chicago.
The difference occurs because our estimation exercise extends over an area
much larger than that covered in the latter two papers, extending 50 miles
in diameter in our case, using a similar specification. Because differences
in geography are potentially much more pronounced over a larger area, the
restriction embedded in the parametric specification related to location will
be more stringent and its fit becomes poorer. Figure 4 shows the land price
surface associated with our second parametric model. By construction, given
the specification in equation (3), this surface reaches a peak at the location
that we defined as the center of the CBD, �c = (xc, yc) in equation (3). As
in the other parametric regression estimated above, this specification imposes
a single peak on the land price surface as expected for a monocentric city.
Compared to Figure 3, Figure 4 suggests considerably less variation in land
prices throughout the city, with a peak price of $7.60 per square foot at the
CBD and approximately $3.80 at the boundaries of greater Richmond. These
figures translate to $33,106 and $16,553, respectively, for a 0.1 acre lot.

Given the variation in home prices in greater Richmond depicted in Table
1, this relatively narrow range in estimated land prices implied by Model 2
is potentially surprising. Moreover, the fact that these estimates stem from a
parametric regression whose fit is slightly worse than that associated with the
first parametric model in Table 2 should leave us somewhat skeptical. As we
now discuss, the alternative specification where f (�) in equation (1) is treated
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Figure 3 Land Price Surface Estimated from Parametric Model I
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nonparametrically yields a significantly better fit, and implies a much more
varied and greater range in land prices.

In contrast to the findings from the parametric approaches we have just
reviewed, the last two columns of Table 2 present estimates from the semi-
parametric method described in Section 2. As before, virtually all variables
are statistically significant at the 1 percent critical level, but the magnitude
of the coefficients differs somewhat from those of our first two parametric
specifications. For example, an additional bathroom now contributes .038 to
the log per-square-foot price of a home as opposed to .13 for Model 1 and
.16 for Model 2. The difference stems from the fact that we now estimate
the component of home prices associated with location nonparametrically. In
particular, observe that this semiparametric specification achieves a notice-
ably better fit relative to the previous two parametric specifications with anR2

statistic of 0.77 instead of 0.50. Put another way, the semiparametric method
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Figure 4 Land Price Surface Estimated from Parametric Model II
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adopted here improves the fit of the parametric regressions carried out earlier
by almost 60 percent.

Figure 5 illustrates the land price surface obtained using kernel estimation.
Evidently, this surface differs considerably from those shown in Figures 3
and 4 along at least two important dimensions. First, this surface displays
more variation in land prices across different areas of Richmond than could
be obtained from parametric estimates. Observe, for instance, that the West
End of Richmond is generally characterized by higher land prices than the
area east of the city. The surface also displays multiple local peaks in prices
associated with different parts of the city. Second, although the nonparametric
estimation identifies one main peak, land prices where this peak is located are
as high as $130 per square foot, in contrast to $10 per square foot using the
polynomial specification in (2). A typical 0.1 acre lot in the most expensive
neighborhoods of Richmond, therefore, is estimated at around $566,280 as
opposed to $43,560 obtained earlier with the polynomial parameterization.
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Figure 5 Land Price Surface Estimated from Semiparametric Model
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The main reason underlying these differences arises because nonparamet-
ric estimation relies on local averaging of the data—sharp peaks and valleys are
much more easily discovered with a nonparametric estimation. More specifi-
cally, the bandwidth that minimizes the cross-validation criterion in equation
(13) is around 5,000 feet in our case. In other words, in estimating land prices
at any given location, our procedure uses data within 5,000 feet of that loca-
tion, with weights that decay quadratically in (12) as one moves away from
the point of estimation.

Figure 6 shows the contour map corresponding to the land price surface
shown in Figure 5. A main peak is clearly visible just to the north and west
of the CBD and corresponds to an area of expensive row houses known as the
Fan District in Richmond. Prices in that neighborhood are as high as $80 to
$130 per square foot.

In contrast, land prices near the boundaries of Richmond range from only
$1 to $2 per square foot and capture the opportunity cost of land related to
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Figure 6 Contour Map of Land Price Surface
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agricultural activity at those locations. Local peaks in prices in Figure 6 are
also visible five to 15 miles north and west of the city, around areas known as
Short Pump and the West End more generally. These areas lie around Interstate
64 and consist of a number of newer suburban neighborhoods generally made
up of single-family homes. The contour plot also shows evidence of local
peaks extending north from the CBD around the Interstate 95 corridor and
mid-sized towns such as Ashland and Mechanicsville. Finally, a series of
local maxima can be found 12 miles west and 6 miles south of the CBD, in a
region featuring a number of small lakes and golf courses.

Interestingly, despite the variations in land values shown in Figures 5 and
6, our findings suggest that Richmond remains largely a monocentric city.
The more recent expansion in activity in the areas of Short Pump, west of
the city, is associated with higher land prices on average compared to other
areas located a similar distance away from Richmond’s CBD. On the whole,
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Table 3 Estimates versus Assessments

(Per Square Foot) Assessments Estimate
Mean 2.46 9.50
Median 2.02 9.15
Maximum 30.75 33.89
Standard Deviation 1.98 5.18

however, land values are highest in the older sections of Richmond near the
center of the city.

To compare our estimated land prices with alternative estimates, we ob-
tain land price assessments from Chesterfield County, the county that lies in
the southern portion of our region.5 For tax purposes, Chesterfield County
computes assessments both for underlying land value and for improvements.
The land value assessment is updated every year and is based on “comparable”
vacant land sales from other regions in the county. Though this method allows
for much less local variation than our semiparametric approach, it provides a
rough estimate of land costs per square foot in the county. Over the period
studied, land assessments average just under $3 per square foot, with a number
of plots assessed at under $1 per square foot, and the most expensive county
land assessed at $20 to $30 per square foot. Table 3 displays characteristics of
each distribution. The most expensive plots were located near the golf courses
and lakes southwest of Richmond’s CBD that were identified as a local max-
imum in the semiparametric estimation. The assessed value of land tends to
be $3 to $6 per square foot less than our semiparametric estimation. This
difference reflects, in part, housing characteristics that we are unable to con-
trol for in the first step of the nonparametric estimation. For data availability
reasons, we cannot remove every piece of a house—for instance, there is no
dummy for the number of fireplaces, whether the lot is fenced, the particular
layout of the house, the quality of interior materials, etc. The fact that a house
exists on every land plot in our sample means that our definition of land is
more precisely that of a plot with a zero square foot, zero bathroom house
with some unidentified exterior and heating type. Practically, this means that
houses in our sample have already installed utility hookups and already have
the appropriate zoning for a residential house.

Unless the house is of very poor quality, a plot with those characteristics
will be more valuable than empty land, and, therefore, our nonparametric land
price estimates will be somewhat biased upwards. However, whatever bias

5 In many counties, full records of assessment data are not free to obtain; the Chesterfield
Assessment Office, however, was able to send us land assessments linked to our housing sales
data.
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Figure 7 Estimated Land Price Gradient
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exists will be evident across all locations, so that differences in the price of
land at one location relative to other locations should be similar in both the
land assessments and our estimated land price; this indeed appears to be the
case for Chesterfield County.

Finally, recall that the parametric specification, including distance from
the CBD, delivers a small range of land values and a very shallow price gradi-
ent. Figure 7 shows an estimate of the land gradient obtained by projecting our
estimates of (log) per-square-foot land prices at a given location onto distance
from the CBD at that location. Put another way, we estimate the following
equation,

f̂ (�) = α0 + αdd(�)+ e, (14)

where f̂ (�) denotes our nonparametric estimate of (log) land value at location
�, d(�) is the distance to the center of the CBD from �, and αd represents
an exponential rate of change in prices. Our findings suggest a substantially
faster rate of decay in land prices (the solid line) than estimated previously
for Richmond using the parametric specification in equation (3) (the dashed
line). The parametric specification estimated earlier gave a decline of 1.03
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percent per mile. In contrast, we now find that αd is approximately −.0278,
as opposed to −.0103 in Table 2. This implies that land prices decline at a
rate of 2.78 percent per mile on average as one moves away from Richmond’s
CBD. Alternatively, land prices fall by 1

2 approximately every 25 miles as
distance from the CBD increases.

4. CONCLUDING REMARKS

The complexity of the urban price surface means that the assumptions that
prices decline monotonically from a CBD or reflect a simple polynomial func-
tion of location data are not innocuous. Transit corridors, bodies of water,
parkland, golf courses, employment subcenters, and other topographical fea-
tures can have significant effects on land prices around a city. While these
features could in theory be controlled for, it is not straightforward to identify
what features or employment centers might be worth identifying.

Drawing on recent work by Yatchew (1997) and Yatchew and No (2001),
the semiparametric procedure outlined in this article allows for an approach
that does not require a priori assumptions regarding what features of the land-
scape might affect land prices. It also allows a very large data set—that of all
housing transactions in a region—to be used when estimating the land price
gradient. Since this procedure does not, unlike earlier work on land prices,
rely on local knowledge, it can be applied wholesale to any region or city.

Empirically, an application of this semiparametric approach to land price
estimation in Richmond, Virginia, identifies local maxima in the land price
surface principally along the Interstate 64 and 95 corridors, in the suburbs
of Ashland and Short Pump, and around the lakes and golf courses south of
Midlothian. The most expensive land in the region, by a large margin, lies
in the historic district of the Fan located close to the CBD; prices in the Fan
per acre are over 100 times more expensive than rural land in the surrounding
counties.
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