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Instability and
Indeterminacy in a Simple
Search and Matching Model

Michael U. Krause and Thomas A. Lubik

T he search and matching model of Mortensen and Pissarides (1994)
has become a popular and successful framework for analyzing labor
market dynamics in dynamic stochastic general equilibrium (DSGE)

models.1 In this article, we point out a potentially problematic feature of
this framework. We show that the solution to the dynamic model can be
nonexistent or indeterminate. In particular, uniqueness problems arise when
endogenous matching in response to labor market pressures is not elastic
enough. In such a scenario, extraneous uncertainty, “sunspots,” can lead to
business cycle fluctuations even in the absence of any other disturbances.
However, a solution does not exist when matching is too elastic. While these
determinacy problems are plausible outcomes, we argue that they are not
likely, as they are associated with regions of the parameter space that are at
the extremes of typical calibrations.

Indeterminacy in search and matching models has previously been ad-
dressed by Giammarioli (2003). Her article differs from ours in that it in-
troduces increasing returns in the matching function, which is a well-known
mechanism to generate multiplicity in DSGE models (see Farmer and Guo
[1994]). We show that indeterminacy in the search and matching model can
arise even under constant returns. Our paper is similar to Burda and Weder

We are grateful to Andreas Hornstein, Anne Davlin, Marianna Kudlyak, and Alex Wolman
for useful comments. The views expressed in this paper are those of the authors and should
not necessarily be interpreted as those of the Federal Reserve Bank of Richmond or the
Federal Reserve System. Krause is with the Economic Research Centre of the Deutsche
Bundesbank in Frankfurt, Germany. Lubik is a senior economist with the Richmond Fed.
E-mails: michael.u.krause@bundesbank.de; thomas.lubik@rich.frb.org.

1 A nonexhaustive list of references includes Merz (1995); Andolfatto (1996); Cooley and
Quadrini (1999); den Haan, Ramey, and Watson (2000); Krause and Lubik (2007); and Trigari
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(2002) in this respect. Their indeterminacy results are driven, however, by
the existence of labor market distortions, such as taxes, and the associated
fiscal policy functions, and not by the features of the matching process per
se. More recently, Hashimzade and Ortigueira (2005) analyzed the determi-
nacy properties of a real search and matching model with capital. They show
numerically how, for a given parameterization, the model admits sunspot equi-
libria. Zanetti (2006) incorporates the standard search and matching model
into a New Keynesian DSGE model, where monetary policy is governed by
an interest rate feedback rule. He shows that this expands the region of the
parameter space where the Taylor principle, and thus equilibrium uniqueness,
is violated. However, his paper focuses on the monetary policy rule as a
source of indeterminacy. Labor market search and matching only provides
a transmission mechanism, but is not analyzed as an independent factor of
determinacy problems.

This article proceeds as follows. We present a canonical DSGE model
with search and matching frictions in the next section. This is a bare-bones
version of the model that does not rely on any increasing returns to scale in the
functional forms. Our model specification has the advantage that the deter-
minacy regions can be characterized largely analytically. Section 2 discusses
issues related to the calibration of this model, while Section 3 derives its deter-
minacy properties, both analytically and numerically. The final section briefly
summarizes and concludes.

1. A CANONICAL DSGE MODEL OF LABOR MARKET
SEARCH AND MATCHING

We develop a simple version of a discrete-time DSGE model with search
and matching frictions in the labor market.2 Key to the search and matching
model is that new employment relationships are the result of time-consuming
searches, both by firms and potential workers. In order to hire workers, firms
first have to advertise open positions; they have to post vacancies, which is
assumed to be costly. Existing matches between workers and firms are subject
to job destruction, which leads to a flow of workers into the unemployment
pool. The behavior of the aggregate economy is governed by the choices of
a representative household, which engages in consumption smoothing. The
household engages in perfect risk-sharing between its employed and unem-
ployed members. The latter enjoy unemployment benefits while searching for
a job. We employ some simplifying assumptions later on that lead to steady-
state and dynamic equations that can be solved analytically. The properties of
the full model are then analyzed numerically.

2 The model is similar to Lubik (2009), to which we refer the reader for additional discussion
and references.
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Time is discrete. One period in the model is assumed to be a quarter. There
is a continuum of identical firms that employ workers, who each inelastically
supply one unit of labor.3 Output, y, of a typical firm is linear in employment,
n:

yt = nt . (1)

The matching process is represented by a constant-returns matching function,
m(ut , vt ) = mu

ξ
t v

1−ξ
t , of unemployment, u, and vacancies, v, with parameters

m > 0 and 0 < ξ < 1. It captures the number of newly formed employment
relationships that arise out of the contacts of unemployed workers and firms
seeking to fill open positions. Unemployment is defined as

ut = 1 − nt , (2)

which is the measure of all potential workers in the economy who are not
employed at the beginning of the period and are thus available for job search
activities.

Inflows to unemployment arise from exogenous job destruction at rate
0 < ρ < 1. Employment therefore evolves according to

nt = (1 − ρ)[nt−1 + m(ut−1, vt−1)]. (3)

Note that newly matching workers who are separated from their job within
the period reenter the matching pool immediately. We can define q(θ t ) as
the probability of filling a vacancy, or the firm-matching rate, where θ t =
vt/ut . We refer to θ as the degree of labor market tightness. In terms of
the matching function, we can write this as q(θ t ) = m(ut , vt )/vt = mθ

−ξ
t .

Similarly, the probability of finding a job, the worker-matching rate, is p(θ t ) =
m(ut , vt )/ut = mθ

1−ξ
t . An individual firm is atomistic in the sense that it takes

the aggregate matching rate, q(θ t ), as given. The employment constraint on
the firm’s decision problem is therefore

nt = (1 − ρ)[nt−1 + vt−1q(θ t−1)], (4)

that is, it is linear in vacancy postings.
Firms maximize profits using the discount factor βt λt

λ0
(to be determined

below):

max
{vt ,nt }∞t=0

∞∑
t=0

βt λt

λ0
[nt − wtnt − κvt ] +

+
∞∑
t=0

βt λt

λ0
μt

[
(1 − ρ)[nt−1 + vt−1q(θ t−1)] − nt

]
. (5)

3 For expositional convenience, we present the problem of a representative firm only, and
abstract from indexing the individual form and aggregation issues.
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Wages paid to the workers are w, while κ > 0 is a firm’s cost of opening a
vacancy. μ is the Lagrange multiplier on the firm’s employment constraint. It
can be interpreted as the marginal value of a filled position. Firms decide how
many vacancies to post (which can be turned into employment relationships)
and how many workers to hire. The first-order conditions are

nt : μt = 1 − wt + β(1 − ρ)
λt+1

λt

μt+1, (6)

vt : κ = β(1 − ρ)
λt+1

λt

μt+1q(θ t ), (7)

which imply a job-creation condition

κ

q(θ t )
= (1 − ρ)β

(
λt+1

λt

) [
1 − wt+1 + κ

q(θ t+1)

]
. (8)

This optimality condition trades off the expected hiring cost (which depends
on the success probability q(θ t )) against the benefits of a productive match
(which consists of the output accruing to the firms net of wage payments and
the future savings on hiring costs when the current match is successful).

We assume that the economy is populated by a representative household.
The household is composed of workers who are either unemployed or em-
ployed. If they are unemployed they are compelled to search for a job, but
they can draw unemployment benefits, b. Employed members of the house-
hold receive pay, w, but share this with the unemployed. They do not suffer
disutility from working and supply a fixed number of hours.4 The household’s
only choice variable is consumption, so that its optimization problem is trivial:

max
{Ct }∞t=0

∞∑
t=0

βt

[
C1−σ

t − 1

1 − σ

]
, (9)

subject to

Ct = Yt , (10)

where C is consumption and Y is income earned from labor and residual profits
from the firms; 0 < β < 1 is the discount factor, and σ−1 is the intertemporal
elasticity of substitution. From the household’s (trivial) first-order condition
we find that λt = C−σ

t , where λ is the multiplier on the household’s budget
constraint. In equilibrium, total income accruing to the household equals net
output in the economy, which is composed of production less real resources
lost in the search process:

Yt = yt − κvt . (11)

4 We thus assume income pooling between employed and unemployed households and abstract
from potential incentive problems concerning labor market search. This allows us to treat the
labor market separate from the consumption choice. See Merz (1995) and Andolfatto (1996) for
discussion of these issues.
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Finally, we need to derive how wages are determined. We assume that
wages are set according to the Nash bargaining solution.5 Firms and workers
maximize the bargaining function

max
wt

(Wt )
η (Jt )

1−η , (12)

with respect to the variable over which the two parties bargain, namely the
wage, wt . This results in the sharing rule:

ηJt = (1 − η)Wt . (13)

Wt denotes the match surplus accruing to the worker, while Jt is the firm’s
surplus, that is, the value of a filled job. The latter can be found from the
firm’s optimization problem. It is equal to the Lagrange multiplier on the
employment constraint, μt , and is the shadow value of a filled position; to wit,
Jt = μt . From the first-order condition with respect to employment we find
that

Jt = 1 − wt + β(1 − ρ)
λt+1

λt

Jt+1. (14)

The expression states that the value of a filled job is its marginal product, 1,
net of wage payments, wt ; but it also has a continuation value Jt+1, which is
discounted at the time preference rate, β, and assuming that the filled job is
still there next period. The latter is captured by the survival rate (1 − ρ).

We can derive the worker’s surplus as follows. The worker receives pay-
ment in the form of the wage, wt . But while he is working, he loses the value
of being unemployed, b. The latter can be interpreted as the money value of
enjoying leisure, engaging in household production, or simply unemployment
benefits. Therefore, the current period net return is wt −b. In the next period,
the worker receives the continuation value Wt+1, which is discounted at rate
β. The worker has to take into account that he might not be employed next
period, which is captured by the survival rate (1−ρ), adjusted for the fact that
a separated worker might not find a job again with probability [1 − p(θ t )].
Putting it all together, we have

Wt = wt − b + β(1 − ρ) [1 − p(θ t )]
λt+1

λt

Wt+1. (15)

The two marginal values can now be substituted into the sharing rule and,
after some algebra using the firm’s first-order conditions, we can find the
Nash-bargained wage:

wt = η (1 + κθ t ) + (1 − η)b. (16)

5 This is a standard assumption in the literature. Shimer (2005) provides further discussion.
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We can now use this wage equation to derive the job-creation condition:

κ

q(θ t )
= (1 − ρ)β

Y σ
t

Y σ
t+1

[
(1 − η) (1 − b) − ηκθ t+1 + κ

q(θ t+1)

]
, (17)

where we have used the first-order conditions of the household to eliminate
the Lagrange multiplier, λ, from the discount factor. The dynamics of the
model are given by the five equations in five unknowns: (2), (3), (11), (17),
and the definition of labor market tightness, θ t .

2. STEADY STATE AND CALIBRATION

We first compute the deterministic steady state of the model. We then linearize
the dynamic system around the steady state and analyze the local determinacy
properties of the economy. The equations describing the steady state are

u = 1 − n, (18)

θ = v

u
, (19)

n = 1 − ρ

ρ
mv1−ξuξ , (20)

Y = n − κv, (21)

(1 − η)(1 − b) = 1 − β(1 − ρ)

β(1 − ρ)

κ

m
θξ + cηθ. (22)

(20) is the employment accumulation equation. It stipulates that inflows and
outflows of the unemployment pool have to be equal. In a steady-state equilib-
rium, the number of separated workers, ρn, has to equal newly hired workers.
Equation (22) is the job-creation condition, while the other equations are
definitions.

There are five endogenous variables (u, n, v, θ , y) and seven structural
parameters (ρ, m, ξ , κ , β, η, b). Because of the nonlinearity in the last
equation, there is no analytical solution to this system. Given values for the
parameters, however, we can compute a numerical solution. Using a nonlinear
equation solver we determine θ from equation (22).6 From equation (20) we

can find u =
(

1 + 1−ρ

ρ
mθ1−ξ

)−1
, and the solution for the other variables

follows immediately.
We find it more convenient, however, to calibrate the model by fixing

the steady-state unemployment rate, u = u. This implies that one parameter
has to be determined endogenously. Additionally, we can fix the endogenous

6 Since the function in θ is monotonically increasing for nonnegative θ , there is a unique
solution to this equation as long as 0 ≤ b < 1. This reflects the fact that the outside option of
the worker, namely staying unemployed, cannot be larger than the worker’s marginal product, i.e.,
the maximum rent that the worker can extract from the firm.



M. U. Krause and T. A. Lubik: Indeterminacy and Search and Matching 265

matching rate, q = mθ−ξ , by using evidence on the rates at which firms fill
vacancies. Hence, another parameter has to be determined endogenously.
Using n = 1 − u in (20), we find that the match efficiency parameter is

m =
(

ρ

1−ρ
1−u
u

)ξ

q1−ξ and labor market tightness is θ =
(

m
q

)1/ξ

. From (22)

we can then also compute 1−b
κ

= η

1−η
θ + 1

1−η

1−β(1−ρ)

β(1−ρ)
θξ

m
. Note, however, that

this condition does not pin down b and κ independently, nor does any other
restriction in the model. Equation (21) helps only insofar as it restricts κ such
that y remains positive. We chose to fix the vacancy cost parameter, κ , and let
the benefit parameter, b, be determined endogenously.

For our calibration exercise we set the discount factor as β = 0.99. We
chose a separation rate of ρ = 0.1. This is consistent with the evidence
reported in Shimer (2005) and Lubik (2010), who use various econometric
methods to estimate this parameter from U.S. labor market data. We agnosti-
cally set the bargaining parameter as η = 0.5 and follow most of the literature
in this respect. Similarly, the match elasticity is ξ = 0.5, which is on the
low end of estimates in the literature. Note that this benchmark calibration
implements the Hosios condition, under which the market allocation in the
model is socially efficient. The value for the match elasticity is at the low end
of the plausible range as reported in the empirical study by Petrongolo and
Pissarides (2001). We set the intertemporal substitution elasticity as σ = 1.

Finally, the two steady-state values are chosen as follows. We fix the
unemployment rate, u, at 12 percent. Our idea is to capture both measured
unemployment in terms of recipients of unemployment benefits and potential
job searchers that are only marginally attached to the labor force, but are open
to job search. Since we do not model labor force participation decisions, this
is a shortcut to capturing effective labor market search. This approach has
been taken by Cooley and Quadrini (1999) and Trigari (2009). In choosing
the steady-state job-matching rate, we follow den Haan, Ramey, and Watson
(2000) who set q = 0.7. In the numerical determinacy analysis below we
conduct robustness checks for selected parameters and the calibrated steady-
state values by varying them over their admissible range.

3. INDETERMINACY AND NONEXISTENCE

We now proceed by linearizing the dynamic equilibrium conditions around the
steady state. It is a well-known feature of linear rational expectations models
that they can have multiple equilibria, or that the solution may not even exist.
We show that both scenarios are possible outcomes in the standard search
and matching model, but they are associated with regions at the fringes of the
parameter space. The linearized system is as follows (where x̂t = log xt−log x
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denotes the percentage deviation of the variable xt from its steady state x):

u ût = −n n̂t , (23)

θ̂ t = v̂t − ût , (24)

n̂t+1 = (1 − ρ)̂nt + ρ(1 − ξ )̂vt + ρξût , (25)

Ŷt = n

y
n̂t − κv

y
v̂t , (26)

ξ θ̂ t − σ Ŷt =
(

κξ

m
θξ − ηκθ

)
X−1̂θ t+1 − σ Ŷt+1, (27)

where X = 1
β(1−ρ)

κ
m
θξ .

It is straightforward to substitute out ût , v̂t , and Ŷt , so that we are left with[
θ̂ t+1

n̂t+1

]
=

[
ξ+σ κv

y

α1
+ ρ(1 − ξ)α2

α1
−α2

α1

ρ

u

ρ(1 − ξ)
u−ρ

u

] [
θ̂ t

n̂t

]
, (28)

where α1 = β(1 − ρ)(ξ − ηmθ1−ξ ) + σ κv
y

and α2 = σ n
y
(1 + κθ). This

reduced form is expressed in terms of the state (or predetermined) variable,
n̂t , and the jump variable, θ̂ t , which is a function of vacancy postings, v̂t . The
stability properties of the solution depend on the eigenvalues of the coefficient
matrix. A unique solution requires that one root be inside the unit circle and
the other root outside. Indeterminacy arises when both roots are inside the
unit circle, while nonexistence occurs with both roots being explosive. In the
former case, both equations are dynamically stable and an infinite number
of paths (starting from arbitrary initial conditions) toward the unique steady
state exist. In the latter case, both equations are explosive, which implies that,
from any arbitrary initial condition, employment and vacancies would grow
without bounds. This violates transversality or boundary conditions and can
therefore not be an equilibrium.

The coefficient matrix is sufficiently complicated to prevent simple an-
alytical derivations of the equilibrium regions. For illustrative purposes and
for gaining intuition, we therefore make the simplifying assumption that the
representative household is risk neutral, σ = 0. Later on, we discuss the
general case using simulation results. Under risk neutrality, the coefficient
matrix reduces to [ ξ

β(1−ρ)(ξ−ηp)
0

ρ(1 − ξ)
u−ρ

u

]
. (29)

Since the coefficient matrix is triangular, the eigenvalues can be read off the
principal diagonal. Recall that the worker matching rate is p = mθ1−ξ ,
which is equal to ρ

1−ρ
1−u
u

. Since we are treating the unemployment rate as a
parameter to be calibrated, the determinacy conditions therefore only depend
on structural parameters.

We establish the determinacy properties in the following proposition.
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Proposition 1

1. The model solution is indeterminate if and only if

(a) 0 < ρ < 2u,

(b) 0 < ξ <
β(1−ρ)

1+β(1−ρ)
ηp.

2. The model solution is nonexistent if and only if

(a) ρ > 2u > 0,

(b) β(1−ρ)

1+β(1−ρ)
ηp < ξ < 1.

3. The model solution is unique if and only if either

(a) 0 < ρ < 2u,

(b) β(1−ρ)

1+β(1−ρ)
ηp < ξ < 1,

or

(c) ρ > 2u > 0,

(d) 0 < ξ <
β(1−ρ)

1+β(1−ρ)
ηp.

Proof. Indeterminacy requires both roots inside the unit circle. Call λ2 =
u−ρ

u
. It is straightforward to verify that |λ2| < 1 over the permissible range iff

0 < ρ < 2u. Call the other root λ1 = ξ

β(1−ρ)(ξ−ηp)
. We have to distinguish two

cases: if ξ > ηp, no parameter combination can be found such that |λ1| < 1.
If ξ < ηp, we can write −β(1−ρ)(ξ −ηp) > ξ > β(1−ρ)(ξ −ηp). Simple
algebra in combination with ξ > 0 then yields 1(b). Nonexistence requires
that both roots be outside the unit circle. This is just the opposite scenario
discussed before. Part 2 of the proposition follows immediately. Uniqueness
requires one stable and one unstable eigenvalue. The parameter regions are
consequently implied by those not considered in part 1 and 2.

The proposition shows that indeterminacy is a potential outcome in this
model. It arises when the job destruction rate is less than twice the (calibrated)
unemployment rate. For instance, at a separation rate of 10 percent, the un-
employment rate would have to be less than 5 percent to definitely rule out
indeterminacy on account of condition 1(a). This value is not implausible,
given historical data for the United States where the average post-war unem-
ployment rate is 4.8 percent. However, it has been argued (e.g., Trigari [2009])
that the proper corresponding concept for model unemployment includes not
only the registered unemployed but also all workers potentially available for
employment, such as discouraged workers or workers loosely attached to the
labor force. Consequently, u should be assigned a much higher value (for
instance, 26 percent as in Trigari [2009]), which raises the possibility of equi-
librium indeterminacy.7

7 Calibrating u to a different value implies that benefits, b, and match efficiency, m, would
have to change, too, since they are computed endogenously from the steady-state conditions. Higher
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Condition 1(b) imposes an upper bound on the match elasticity, ξ . In
the benchmark calibration, this upper bound is 0.147. Since ξ is typically
calibrated to be above 0.5, this would rule out indeterminacy. However, this
observation comes with the caveat that values for the match elasticity below
0.5 have some support in the literature. For instance, Cooley and Quadrini
(1999) argue that a low elasticity in the range of ξ = 0.1 is necessary to match
labor market cyclicality. Using likelihood-based econometric methods, Lubik
(2010) finds that there is, in fact, substantial probability mass on low values
of ξ . We also note that the upper bound is increasing in the Nash bargaining
parameter. But even if η → 1, indeterminacy would not occur for the typical
parameter choices in the literature. Suppose, however, that the unemploy-
ment rate were set to u = 0.06. In this case, the upper bound increases to
0.816, which would imply indeterminacy for typical search elasticity choices.
Clearly, the interpretation of the pool of searchers in the matching model
matters for determinacy questions.

Intuitively, we can think about a sunspot equilibrium in the following way.
Firms are willing to incur vacancy posting costs if they expect to recoup them
through the proceeds from production net of wages and the savings on fu-
ture hiring, as captured by the job-creation condition (17). The equilibrating
mechanism is the behavior of the matching rate, q(θ). An increase in vacancy
posting raises labor market tightness and lowers the probability that an indi-
vidual firm is successful in finding an employee. This, in turn, raises effective
hiring costs, κ/q(θ), which would have to be offset by higher expected returns.
It is this externality, namely the fact that firms do not internalize the effect of
their posting decisions on aggregate match probabilities, that is at the heart of
the determinacy issue.8

Now suppose that a firm believes that future profits will be higher than
is warranted by the fundamentals, such as the level of productivity. Beliefs
of this kind can be triggered by sunspot shocks, as in the interpretation by
Lubik and Schorfheide (2003). This belief would compel the firm to post
more vacancies. If other firms were to do the same, aggregate tightness would
increase and match probability would fall, raising effective hiring cost. What
tends to rule out a sunspot equilibrium is that expected future benefits are not
consistent with the higher posting costs. Consequently, rational firms do not
act on sunspot beliefs. This argument breaks down in an environment where
future benefits rise to accommodate higher current costs. The proposition

steady-state unemployment corresponds to a higher value of b and lower m. This can be interpreted
as an implication of different labor market institutions.

8 This has similar characteristics to the notion of an upward-sloping labor demand schedule
in Farmer and Guo (1994). In their model, production exhibits constant returns to scale at the in-
dividual firm level, but increasing returns in the aggregate. An individual firm hiring more workers
raises the marginal product of workers in the aggregate, thereby stimulating more labor demand.
The job-creation condition can be thought of as a vacancy-demand curve.
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Figure 1 Determinacy Regions

Indeterminacy

Non-Existence

η

ρ

ξ

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Indeterminacy
Non-Existence

u

ξ
0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

Indeterminacy

ξ
0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

Indeterminacy

ξ
0.0 0.2 0.4 0.6 0.8 1.0

q

1.0

0.8

0.6

0.4

0.2

0.0

stipulates that indeterminacy arises when both the separation, ρ, and the match
elasticity, ξ , are too small. When the former applies, the unemployment pool
is small, while the latter makes new matches, and thereby future employment,
highly elastic to vacancy postings. Consequently, the savings on future hiring
costs react more than current effective costs, which helps validate sunspot
beliefs.

A similar argument applies for the case of nonexistence of equilibrium. In
general, nonexistence problems would arise for unemployment rates that are
too low for given separation rates, in combination with excessively high match
elasticities. In more technical terms, this combination makes the employment
equation explosive. Any disturbance to a steady-state equilibrium would result
in excessive job destruction (due to high separation rates) and matching that
is inconsistent with the job-creation condition.

We now turn to the full model solution with risk-averse households (σ >

0). We compute the determinacy regions numerically for combinations of
the match elasticity, ξ , and various other structural parameters. The results
are presented in Figure 1, where we have plotted determinacy regions for
different subsets of the parameter space. The parameters are calibrated at the
benchmark values discussed above. In each panel we vary two parameters over
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their admissible range while keeping the other parameters at their benchmark
values.

As a general conclusion, determinacy problems tend to arise when the
match elasticity, ξ , is either too small or too big. For small ξ , the equilibrium
is indeterminate when the job destruction rate, ρ, or the unemployment rate, u,
is too small. This is related to the analytical condition found in Proposition 1.
Furthermore, firm-matching rates, q, above 0.2 and a Nash parameter that puts
more weight on workers also lead to multiplicity. No equilibrium exists for
large ξ and either a small unemployment rate or ρ above 0.2. We also analyze
the sensitivity of the regions with respect to σ (not reported). As σ → 0, the
indeterminacy regions expand. In particular, any q implies multiple equilibria
when ξ < 0.2. In the limit the boundaries between regions are given in the
proposition. As the household becomes more risk averse, however, regions of
indeterminacy disappear entirely.

An interesting special case to consider is a calibration with the Hosios
condition, where η = ξ . This can be represented by a 45-degree line in the
lower-right panel of Figure 1. In the absence of outside information on the
value of the bargaining parameter, η, the Hosios calibration is often chosen
in the literature. In this case, indeterminacy and nonexistence are ruled out
and become highly unlikely for other parameter combinations. For instance,
equilibrium nonexistence requires a separation rate of ρ = 0.81. Moreover, if
η = ξ , we can rule out indeterminacy in the case of σ = 0 because condition
1(b) of the proposition never holds. The equilibrium could still be nonexistent,
but this would require very high separation rates. In principle, these could
obtain when the model period is much longer than a quarter since eventually
all workers turn over within a long enough time horizon.9

Interpreting these results in light of standard calibrations used in the lit-
erature, we would argue that indeterminacy and nonexistence do not present
serious problems for the search and matching framework. Hence, it is un-
likely that sunspot equilibria would be helpful in explaining labor market
dynamics (as claimed in Hashimzade and Ortigueira [2005]). This is not to
say that labor search and matching frameworks cannot support indetermi-
nate equilibria. Mildly increasing returns to scale in the matching function
(Giammarioli 2003) lead to widely expanded indeterminacy regions, while a
New Keynesian model with search and matching frictions in the labor market
has broader indeterminacy properties than the standard New Keynesian model
(Zanetti 2006).

9 Incidentally, the continuous-time version of this simple search and matching model always
has a unique solution (see Shimer [2005]), as the separation-relevant time horizon is infinitesimally
small. We are grateful to Andreas Hornstein for pointing this out.
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4. CONCLUSION

We show in this article that for most plausible parameterizations the sim-
ple search and matching model does not suffer from determinacy problems.
Specifically, we argue that it is unlikely that the model has multiple equilibria
so that extraneous uncertainty, i.e., animal spirits, can cause business cycles.
Parameterizations that lead to indeterminacy can be found, but they lie at the
boundaries of the region that the empirical literature would consider plausible.
We identify the match elasticity and the separate rate as crucial parameters in
that respect.

These properties are obviously model specific, but our conclusions are
likely robust to modifications such as endogenous job destruction. While the
boundaries of the determinacy regions are likely to shift, the dynamic mecha-
nism stays unaffected. The main caveat to our study is that our analysis applies
to a local equilibrium in the neighborhood of the steady state. However, the
underlying model is nonlinear and local results may therefore not adequately
describe the global equilibrium properties. Naturally, this is a topic for further
investigation. Moreover, researchers may actually be interested in the busi-
ness cycle implications of indeterminacy that do not depend on policy rules
or externalities. It appears plausible that actual labor market decisions are
characterized to some extent by animal spirits. Further research should shed
some light on this issue.
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