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Relative Price Changes and
the Optimal Ination Rate

Alexander L. Wolman

R
elative prices of some goods or sectors have long-run trends:
For example, the price of services relative to goods has been
rising fairly steadily for decades. Other relative prices do not

have long-run trends but sometimes �uctuate dramatically from one
period to the next: For example, the relative price of the energy goods
and services component of personal consumption expenditures fell by
approximately 22 percent from January 2014 to January 2015. Al-
though monetary policy changes can a¤ect relative prices, in most cases
trends in relative prices and dramatic monthly �uctuations in relative
prices seem best viewed as exogenous factors with respect to mone-
tary policy. How should monetary policy behave in the face of these
�uctuations? More precisely, how is the optimal rate of in�ation af-
fected by exogenous relative price �uctuations? The answer, of course,
depends on many factors, not least of which are the sources of mone-
tary non-neutrality. We focus here on costly price adjustment as the
principal source of non-neutrality. We use a two-good macroeconomic
model with costly price adjustment to study the optimal constant in-
�ation rate when there are trends in relative prices. For the purpose of
studying short-run �uctuations in relative prices, we take an informal
empirical approach, using one part of the model to construct hypothet-
ical U.S. in�ation rates that would have minimized the costs of price
adjustment implied by the model. We also consider the potential con-
�ict between minimizing the costs of price adjustment and meeting the
central bank�s announced in�ation target.

The topic of relative price changes and optimal in�ation has re-
ceived much attention from researchers. In the New Keynesian litera-
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ture, Aoki (2001) was an important early paper that made the point
that goods with �exible prices should bear the burden of relative price
adjustment. Aoki provides an argument for stabilizing core in�ation
related to the part of this paper that studies short-run relative price
�uctuations. Bodenstein, Erceg, and Guerrieri (2008) is a related con-
tribution. Neither Aoki nor Bodenstein, Erceg, and Guerrieri consider
the e¤ects of trend changes in relative prices, whereas Wolman (2008)
provides an overview of this issue, and Wolman (2011) goes into more
detail using models with staggered price setting and �xed costs of price
adjustment. None of these previous papers construct historical time
series for optimal in�ation as a function of observable relative price
changes, as we do in Section 5.

Both Aoki and Bodenstein use the Calvo price-adjustment frame-
work, and Wolman (2011) also uses models with infrequent price ad-
justment. In contrast, this paper uses the Rotemberg model. An im-
portant factor in choosing Rotemberg instead of Calvo pricing is my
desire to examine the implications of costly price adjustment, rather
than infrequent price adjustment, for the optimal in�ation rate. Thus,
instead of calibrating the price-adjustment parameter to empirical work
on the frequency of price adjustment, we calibrate it to Levy et al.�s
(1997) estimates of the costs of price adjustment. Both the Calvo and
Rotemberg approaches are reduced-forms, but the Rotemberg frame-
work seems likely to be more appropriate as a stand-in for various
costs of price change than the Calvo framework.1 Additionally, the
Rotemberg model is analytically quite simple, even when we consider
trends in relative prices� nowhere in the paper do we need to rely on
approximations in solving the model. That said, the qualitative re-
sults presented here are likely to hold up in the Calvo model or other
staggered price-setting models.

The paper proceeds as follows. In Section 2 we describe the model
in full detail, while in Section 3 we derive the conditions that character-
ize an equilibrium in which relative prices are diverging at a constant
rate because of trend di¤erences in productivity growth. In Section 4
we show how the optimal steady-state in�ation rate varies with relative
productivity growth and relative price-adjustment costs. In Section 5
we study optimal in�ation on a period-by-period basis in a version of
the model calibrated so that the two sectors represent energy and all
other goods and services. For this exercise we use an ad-hoc static

1 One example of a cost of price change for which the quadratic costs could be
standing in is confusion created on the part of shoppers when nominal prices change.
In the Calvo model, the costs of in�ation are associated not with changes in prices but
with variation in prices across goods at a point in time.
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criterion that takes into account only current price-adjustment costs in
each period. Section 6 concludes.

1. MODEL

In this section we will describe a complete macroeconomic model in
which there are a large number of households, a large number of �rms,
and a monetary authority. The households are all identical; they con-
sume the many goods produced by �rms, which we will group into two
categories called sector 1 and sector 2, and they supply labor that the
�rms use to produce those goods. Firms are monopolistically competi-
tive, each one producing a unique good. Each �rm has monopoly power
for the good it produces, but it faces competition from the many other
goods that are close substitutes according to households�preferences.
Firms produce consumption goods using labor only, and productivity
may be increasing steadily over time, at di¤erent rates for the two sec-
tors. Firms set the dollar price for their goods, and there is a cost
of changing price from one period to the next. The monetary author-
ity chooses the rate of in�ation, that is the change in the price index
for the household�s consumption basket. Unlike much of the quantita-
tive dynamic stochastic general equilibrium literature, for the sake of
simplicity the model does not incorporate any mechanisms to generate
strategic complementarities among price-setting �rms.

Households

The representative household is in�nitely lived, discounts future utility
at rate �; and has preferences over consumption (ct) and labor supply
(ht) of two composite goods (ck;t; k = 1; 2), and labor supply (ht) given
by

1X
t=0

�t (ln ct � �ht) ; (1)

where the consumption basket ct aggregates two sectors or categories
(ck;t; k = 1; 2),

ct = c�1;tc
1��
2;t ;

and each category is itself a composite of a continuum of di¤erentiated
products (ck;t (z)):

ck;t =

�Z 1

0
ck;t (z)

"�1
" dz

� "
"�1

; k = 1; 2: (2)
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According to (2), consumers have a preference for variety� they would
prefer to smooth their consumption of category k goods across all the
goods in that category. There is a competitive labor market in which
the real wage is wt per unit of time. Households own the �rms and
receive a total nominal dividend payment from �rms of �t.

The household�s budget constraint is as follows, in dollar terms:

Ptct = Ptwtht +�t;

or, in real terms:

ct = wtht +
�t
Pt
; (3)

where Pt is the overall price level.

Optimality Conditions

From the utility function and the budget constraint, the household�s in-
tratemporal �rst-order conditions representing optimal choice of labor
input and consumption are given by

�twt = �; (4)

and

�t = 1=ct; (5)

where �t is the Lagrange multiplier on the budget constraint (3)� it
can also be thought of as the marginal utility of an additional unit of
consumption at time t. In (4), the income from an additional unit of
time devoted to work is equated to the utility cost of that time. And
in (5) the marginal utility of consumption is equated to the value of
those resources in other uses.

Recall that overall consumption ct is composed of consumption from
two sectors, c1;t and c2;t; and sectoral consumption is an aggregate of a
continuum of di¤erentiated goods. Although the consumer�s problem
does not involve subperiods, it can be useful to think of the consumer
as �rst choosing overall consumption (ct), then, given ct, choosing the
optimal split between c1;t and c2;t; and �nally, given those sectoral con-
sumptions, choosing the optimal allocation across di¤erentiated prod-
ucts within each sector (ck;t (z)).

The optimality condition for the level of overall consumption is (5).
The optimal choice of consumption from each sector minimizes the cost
of consuming ct given the sectoral price indices P1;t and P2;t:

Minc1;t;c2;t fP1;tc1;t + P2;tc2;tg (6)

s:t: ct = c�1;tc
1��
2;t : (7)
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The multiplier on the constraint in (6) is the nominal marginal cost
of an additional unit of consumption� the price level. Therefore we
denote the multiplier as Pt, and the �rst-order conditions are as follows:

c1;t
c2;t

= �1=(1��)
�
P1;t
Pt

�1=(��1)
(8)

c1;t
c2;t

= (1� �)�1=�
�
P2;t
Pt

�1=�
: (9)

Analogously, the optimal allocation of consumption within each sector
minimizes the cost of consuming c1;t and c2;t given the prices of the
di¤erentiated products, and the multiplier on the constraint is the sec-
toral price index� the nominal marginal cost of purchasing one unit of
the sectoral composite good:

Minck;t(z)

�Z 1

0
Pk;t (z) ck;t (z) dz

�
(10)

s:t: ck;t =

�Z 1

0
ck;t (z)

"�1
" dz

� "
"�1

; k = 1; 2: (11)

The �rst order conditions are as follows:

ck;t (z)

ck;t
=

�
Pk;t (z)

Pk;t

��"
; k = 1; 2; z 2 (0; 1) : (12)

The Overall Price Level and Category
Price Levels

Above, we derived the optimality conditions describing how households
allocate consumption across sectors and across goods within each sec-
tor. Here we use those optimality conditions to show how prices within
each sector aggregate to sectoral price indices and how the sectoral
price indices aggregate to the overall price level.

From (11) and (12) we have

ck;t =

 Z 1

0

�
Pk;t (z)

Pk;t

�1�"
c
"�1
"
k;t dz

! "
"�1

; k = 1; 2;

which can be manipulated to yield an expression for each sectoral price
index as a function of individual goods prices within the sector:

Pk;t =

�Z 1

0
(Pk;t (z))

1�" dz

� 1
1�"

; k = 1; 2:

This expression for the category price indices plays an important role
in staggered price-setting models, where there is equilibrium dispersion
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in the prices of like goods (varieties). Here however, all prices within a
category will be identical in the equilibria we consider.2

Across sectors, if productivity is not identical then there will be
price di¤erentials. From (8) and (9) we have

(1� �)�1=�
�
P2;t
Pt

�1=�
= �1=(1��)

�
P1;t
Pt

�1=(��1)
; (13)

which can be manipulated to yield an expression for the price level as
a function of the sectoral price indices:

Pt =

�
P1;t
�

�� � P2;t
1� �

�1��
: (14)

Firms

Each �rm z in sector k produces consumption goods with a technology
that is linear in labor:

yk;t (z) = ak;thk;t (z) :

In equilibrium the �rm�s output will be identical to households�con-
sumption of that good (yk;t (z) = ck;t (z)), but for the purposes of this
section we will maintain a distinction between output and consump-
tion. Productivity (ak;t) may vary across time and across sectors, but
it is the same across �rms within a sector. Marginal cost for each �rm
in sector k ( k;t) is given by the ratio of the wage to the marginal
product of labor:

 k;t = wt=ak;t:

Firms face a cost
�
�k;t (z)

�
in terms of labor of changing the nom-

inal price of the good they produce (z). The cost is proportional to
output and is a¤ected by the same productivity shifter as regular goods
production:

�k;t (z) =
�k
2

�
yk;t (z)

ak;t

��
Pk;t (z)

Pk;t�1 (z)
� 1
�2

: (15)

An individual �rm chooses its price each period to maximize the
expected present value of pro�ts, where pro�ts in any single period

2 In principle one could imagine equilibria in which initial dispersion in prices
was sustained over time, but these equilibria have not been the focus of attention in
Rotemberg models.
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are given by revenue minus costs of production minus costs of price
adjustment, plus a per-unit subsidy from the government.3

From (12), the demand curve facing �rm z in sector k is yk;t (z) =
(Pk;t (z) =Pk;t)

�" yk;t; so the pro�t maximization problem for such a �rm
is

max
Pk;t+j(z)

1X
j=0

�j
�
�t+j
�t

�"
(1 + �)

Pk;t+j (z)

Pt+j

�
Pk;t+j (z)

Pk;t+j

��"
yk;t+j

� wt+j
ak;t+j

�
Pk;t+j (z)

Pk;t+j

��"
yk;t+j

� �k
2
wt+j

 �
Pk;t+j (z)

Pk;t+j

��" yk;t+j
ak;t+j

!�
Pk;t+j (z)

Pk;t+j�1 (z)
� 1
�2#

:

The �rst term in the square brackets is the real revenue a �rm earns
charging price Pt+j (z) in period t+j; it sells (Pk;t+j (z) =Pk;t+j)

�" yk;t+j
units of goods for relative price Pt+j (z) =Pt+j ; and it receives a subsidy
of � per unit sold. The second term represents the cost of producing
those goods, and the third term represents the price-adjustment cost.

Note that the price chosen in any period shows up only in two
periods of the in�nite sum. Thus, the part of the objective function
relevant for the choice of a price in period t is

(1 + �)
Pk;t (z)

Pt

�
Pk;t (z)

Pk;t

��"
yk;t �

wt
ak;t

�
Pk;t (z)

Pk;t

��"
yk;t

��k
2
wt

 
(Pk;t (z) =Pk;t)

�" yk;t
ak;t

!�
Pk;t (z)

Pk;t�1 (z)
� 1
�2

��t+1
�t

��k
2
wt+1

 
(Pk;t+1 (z) =Pk;t+1)

�" yk;t+1
ak;t+1

!�
Pk;t+1 (z)

Pk;t (z)
� 1
�2

:

3 The purpose of including the subsidy is to allow us to focus attention mainly on
the direct costs of price adjustment, rather than secondary e¤ects through changes in
markups.
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The �rst-order condition is:

0 =
(1 + �) (1� ")

Pt

�
Pk;t (z)

Pk;t

��"
yk;t +

"wt
ak;tPk;t

�
Pk;t (z)

Pk;t

��"�1
yk;t

��kwt

 
(Pk;t (z) =Pk;t)

�" yk;t
ak;t

!�
Pk;t (z)

Pk;t�1 (z)
� 1
�

1

Pk;t�1 (z)

+
"�k
2
wt

�
1

ak;t

�
1

Pk;t

�
Pk;t (z)

Pk;t

��"�1
yk;t

�
Pk;t (z)

Pk;t�1 (z)
� 1
�2

+
�t+1
�t

��kwt+1
yk;t+1
ak;t+1

�
Pk;t+j (z)

Pk;t+j

��"�Pk;t+1 (z)
Pk;t (z)

� 1
�
Pk;t+1 (z)

(Pk;t (z))
2 :

Absent price-adjustment costs (if �k were zero) the �rm would choose
price in order to balance the marginal revenue and marginal cost of fur-
ther price adjustment, yielding a constant markup over marginal cost:
Pk;t (z) = ("= (("� 1) (1 + �))) (wt=ak;t)Pt:With price-adjustment costs,
the same principle applies, but marginal cost is now more complicated,
because price adjustment also a¤ects (marginal) price-adjustment costs
in the current and subsequent periods. There is no closed form solution
for the optimal price, although we will see below that in a symmetric
equilibrium the expression simpli�es dramatically.

Monetary Authority

In reality, the monetary authority controls instrument variables, like the
size of its balance sheet or some administered interest rates. In�ation
is then an equilibrium outcome. In the model we assume that the
monetary authority directly controls the in�ation rate: �t = Pt=Pt�1:
How central banks determine the in�ation rate, and how precisely they
can control the in�ation rate, are interesting and important questions,
but they are beyond the scope of this paper.

Equilibrium Conditions

We consider a symmetric equilibrium where all �rms in the same sector
charge the same price and hence produce the same quantity. Thus we
have

Pk;t (z) = Pk;t
yk;t (z) = yk;t

�
; k = 1; 2: (16)

And because goods are produced for consumption only, in a symmetric
equilibrium with all �rms in sector k producing the same quantity, the
goods market-clearing condition for each sector is

yk;t = ck;t: (17)
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The labor market-clearing condition states that labor supplied by house-
holds (ht) must be equal to the sum of labor used in production and
labor used in price adjustment. Because of symmetry, we can just refer
to the sectoral aggregates instead of individual �rm inputs:

ht = h1;t + h2;t + �1;t + �2;t:

Using the price-adjustment cost function (15) and the technology for
goods production, and imposing (16), we have

ht =
y1;t
a1;t

�
�
1 +

�1
2
(�1;t � 1)2

�
+
y2;t
a2;t

�
�
1 +

�2
2
(�2;t � 1)2

�
; (18)

where �k;t denotes the gross rate of sectoral price change (�k;t =
Pk;t=Pk;t�1).

Imposing symmetry on the �rms��rst-order condition yields the
following expression, which we will refer to as the sectoral Phillips
curve:

0 = (1 + �) (1� ") pk;tyk;t + "wt
yk;t
ak;t

��kwt
�
yk;t
ak;t

�
(�k;t � 1)�k;t

+
"�k
2
wt

�
yk;t
ak;t

�
(�k;t � 1)2

+
�t+1
�t

��kwt+1

�
yk;t+1
ak;t+1

�
(�k;t+1 � 1) (�k;t+1) ;

where we use pk;t to denote the relative price of the sector k good:
pk;t � Pk;t=Pt: The other equilibrium conditions are the household�s
�rst-order conditions (4), (5), (8), and (9) and the price level equation
(14), which can also be written as a restriction on relative prices:

1 =
�p1;t
�

�� � p2;t
1� �

�1��
; (19)

an increase in the relative price of one good implies a decrease in the
relative price of the other good.

2. A STEADY STATE WITH TRENDING
RELATIVE PRICES

Thus far, we have not speci�ed the processes for sectoral productiv-
ity ak;t; which, along with the in�ation rate, are the model�s driving
variables� that is, the exogenous variables that determine the nature
of equilibrium outcomes. In this section we impose constant growth
rates for productivity and derive the equilibrium values of the model�s



254 Federal Reserve Bank of Richmond Economic Quarterly

endogenous variables as functions of parameters and the rates of pro-
ductivity growth and in�ation. Then we compute some examples for
particular parameter values. We will only consider an equilibrium in
which all growth rates are constant and where labor input is constant
in both sectors.4

The System of Equations

Assume that productivity grows at constant gross rate �k in sector k;
and make the normalizing assumption that in period zero the level of
productivity in both sectors was 1. Then we have

ak;t = �tk:

If we also assume that the in�ation rate is constant, equal to �; then we
can write the steady-state Phillips curve equations as follows (at this
point we are leaving t subscripts on all variables, because it is not yet
obvious which variables will be constant in a steady state with growth
and how to normalize all variables in that steady state):

0 = (1 + �) (1� ") pk;tyk;t + "
wt
�tk
yk;t (20)

��kwt
�
yk;t
�tk

��
pk;t
pk;t�1

� � 1
�

pk;t
pk;t�1

�

+
"�k
2
wt

�
1

�tk

�
yk;t

�
pk;t
pk;t�1

� � 1
�2

+
�t+1
�t

��kwt+1

 
yk;t+1

�t+1k

!�
pk;t+1
pk;t

� � 1
��

pk;t+1
pk;t

�

�
; k = 1; 2:

From the household�s �rst-order conditions, (4), (5), (8), and (9), the
de�nition of the consumption index (7), and the goods market clearing
condition (17), we can express output in the two sectors as a function
of the wage and relative prices:

y1;t =
�

�

wt
p1;t

; (21)

y2;t =
1� �
�

wt
p2;t

: (22)

4 We have not proved that the equilbrium we study is unique, though we suspect
that it is.
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Finally, we use these last two equations to eliminate sectoral outputs
in the Phillps curve. After simplifying, we have

0 = (1 + �) (1� ") + " wt
�t1p1;t

��1
�
wt
�t1

��
p1;t
p1;t�1

� � 1
�

�

p1;t�1

+
"�1
2

wt
�t1p1;t

�
p1;t
p1;t�1

� � 1
�2

+��1

�
wt+1

�t+11 p1;t+1

��
p1;t+1
p1;t

� � 1
��

p1;t+1
p1;t

�

�
:

Analogously, for sector 2 the Phillips curve is as follows:

0 = (1 + �) (1� ") + " wt
�t2p2;t

��2
�
wt
�t2

��
p2;t
p2;t�1

� � 1
�

�

p2;t�1

+
"�2
2

wt
�t2p2;t

�
p2;t
p2;t�1

� � 1
�2

+��2

�
wt+1

�t+12 p2;t+1

��
p2;t+1
p2;t

� � 1
��

p2;t+1
p2;t

�

�
:

Together with the restriction on relative prices implied by the price
index (19), these two Phillips curve equations represent a system of
three equations in the three endogenous variables wt; p1;t; and p2;t: In
order to make further progress however, we need to use the constant
productivity growth assumption to �nd the growth rates of wages and
relative prices.

Productivity Growth Determines Growth
Rates of Wages and Relative Prices

From the household�s optimality conditions, (4) and (5), we know that
wt = �ct; so the real wage must grow at the same rate as consumption.
What do we know about the growth rate of c? Let ck be the gross
growth rate of ck: Then, if we denote the growth rate of consumption
as c; we have c = �c1

1��
c2 :

ct|{z}
c

=

0B@ c1;t|{z}
c1

1CA
�0B@ c2;t|{z}

c2

1CA
1��

;
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Now consider the growth rates of c1 and c2:With labor input constant
in the two sectors, output grows at the rate of productivity, so we know
the growth rates of c1; c2; c; and w :

c1 = �1
c2 = �2

c = ��1�
1��
2

w = ��1�
1��
2 :

To determine the growth rates of relative prices we use this same rea-
soning on (21) and (22):

� wt|{z}
��1�

1��
2

= � p1;t|{z}
p1

c1;t|{z}
�1

(1� �) wt|{z}
��1�

1��
2

= � p2;t|{z}
p2

c2;t|{z}
�2

:

That is

p1 = (�1=�2)
��1 (23)

p2 = (�1=�2)
� : (24)

Note that the growth rates of relative prices must cancel out when
aggregated according to the price index (19), and the growth rates we
just derived indeed have this property.

The Time Paths of Wages and
Relative Prices

We have now determined the growth rates of wages and relative prices,
but we need to use the price index and Phillips curve equations to
determine the levels of those variables. To that end, we plug into the
Phillips curves and the price index expressions for wages and relative
prices that use the trends we just derived together with unknown initial
levels:

wt = w0 �
�
��1�

1��
2

�t
p1;t = p1;0 � (�1=�2)(��1)t

p2;t = p2;0 � (�1=�2)�t :

The equations will then be used to determine the initial levels w0; p1;0;
and p2;0: Once we have simpli�ed the Phillips curves and collected
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terms, we have
p1;0
w0

=
"

("� 1) (1 + �)� (25)(
1� �1

 �
�1
�2

���1
� � 1

!
�"�

1� �
"

��
�1
�2

���1
� � 1

2

 �
�1
�2

���1
� � 1

!#)
(26)

and analogously for good 2,
p2;0
w0

=
"

("� 1) (1 + �)� (27)(
1� �2

 �
�1
�2

���
� � 1

!
�"�

1� �
"

��
�1
�2

���
� � 1

2

 �
�1
�2

���
� � 1

!#)
: (28)

And the price index equation is

1 =
�p1;0
�

�� � p2;0
1� �

�1��
: (29)

So we have three equations in p1;0; p2;0; and w0: For any values of the
parameters ("; �; �; �j ; �j ;) and the in�ation rate (�) it is straightfor-
ward to calculate the values of all the endogenous variables. First,
p1;0; p2;0; and w come from solving the last three equations. The other
important variables, c and h; can easily be calculated from (21), (22),
and (18). Detailed derivations are contained in the Appendix.

3. OPTIMAL STEADY-STATE INFLATION

In this section we explore the model�s implications for the optimal
steady-state in�ation rate, focusing on how di¤erential productivity
growth rates and di¤erential price-adjustment costs in the two sectors
a¤ect the optimal in�ation rate. Without that sectoral heterogeneity,
the question would be relatively simple, although there is one subtlety
that we will quickly dispense with. In a one-sector version of the model,
or equivalently a model without heterogeneity in productivity growth,
it would be possible to eliminate all direct, steady-state costs of price
adjustment by maintaining a zero in�ation rate: Prices would never
need to change. However, in the absence of an appropriate subsidy � ;
zero in�ation would not be the welfare-maximizing steady-state in�a-
tion rate because a small amount of in�ation would reduce the average
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markup of price over marginal cost toward its e¢ cient level of zero. For
our purposes, the latter e¤ect is a nuisance� it detracts attention from
the focus of the paper. So in what follows we will set the subsidy � so
that it exactly o¤sets the markup in a steady state with zero in�ation
and identical sectors: � = 1= ("� 1) :

The model is simple enough that we can use the equations above
to derive the level of steady-state welfare as an explicit function of
in�ation. However, the expressions become somewhat complicated,
so we simply reiterate here that in�ation enters the welfare calcula-
tion through two channels. First, there is the direct e¤ect on price-
adjustment costs (see [18]). Second, there is an e¤ect on relative prices
and the real wage, that can be seen in (25)�(29). This is the markup
e¤ect mentioned in the previous paragraph. For any values of the para-
meters and for a range of in�ation rates, it would be possible to choose
the subsidy to eliminate the markup in one sector, and the markup
could be eliminated in both sectors with sector-speci�c subsidies. For
simplicity we �x the subsidy at the level that eliminates the markup in
a zero-in�ation steady state with common productivity growth across
sectors. Later on we will abstract entirely from the markup e¤ects of in-
�ation. However, here our calculations of optimal steady-state welfare
will incorporate both the price-adjustment cost and markup e¤ects.

To help interpret the �gures below, recall that the overall price level
is related to the sectoral price indices as follows,

Pt =

�
P1;t
�

�� � P2;t
1� �

�1��
: (30)

The in�ation rate, then, can be written as a function of the rates of
price change in the two sectors:

�t =
Pt
Pt�1

= ��1;t�
1��
2;t : (31)

Using the log approximation, for moderate rates of price change the
net in�ation rate is approximately equal to the share weighted average
of the two sectoral rates of price change:

�t � ��1;t + (1� �)�1;t: (32)

Parameter Values

To study the e¤ect of relative productivity growth and relative price-
adjustment costs on the optimal in�ation rate, we set the parameters
� and " at standard values in the literature, 0:99 and 10; respectively.
Interpreting a model time period as one quarter, � = 0:99 implies an
annual real interest rate of about 4 percent. With " = 10; the average
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Figure 1 Optimal Ination with v = 0.5

markup is around 11 percent absent the subsidy. As a benchmark we
set the rates of productivity growth in each sector to 1 and the price-
adjustment cost parameter (�j) in each sector to 140. With �1 = �2 =
140; the steady-state price-adjustment costs associated with a 1 percent
quarterly price change amount to 0.7 percent of a �rm�s revenue. This
is the average number estimated by Levy et al. (1997) in their study
of supermarkets.

Relative Price Trends and The Optimal
Ination Rate

Figures 1 and 2 plot the optimal steady-state in�ation rate as a function
of relative price-adjustment costs (Figure 1) and relative productivity
growth (Figure 2) for the case where consumers�expenditure shares are
equal for the two sectors; that is, � = 0:5: In Figure 1, the black line
represents a case with relatively low productivity growth in sector 1
(�1=�2 = 0:95), the red line is constant and equal productivity in both
sectors (�1 = �2 = 1), and the green line is relatively high productivity
growth in sector 1 (�1=�2 = 1:05). Since it is simplest, focus �rst on
the red line. When productivity is constant in both sectors, relative
prices are also constant, and when relative prices are constant there is
no need for any nominal prices to change. Thus, since zero in�ation



260 Federal Reserve Bank of Richmond Economic Quarterly

Figure 2 Optimal Ination with v = 0.5

eliminates the costs of price change, the optimal in�ation rate is zero be-
cause there are price-adjustment costs in sector 2; this holds regardless
of the level of price-adjustment costs in sector 1. When productivity
growth does vary across sectors, relative prices must change in steady
state� speci�cally, the sector with low productivity growth should see
its relative price rise. In order for relative prices to change, at least one
nominal price needs to change. In the case when productivity growth
is lower in sector 1 (black line), the optimal in�ation rate is decreasing
in sector 1�s price-adjustment costs: When sector 1�s adjustment costs
are low ( �1=�2 is low), it is optimal for the required increase in sec-
tor 1 relative prices to occur through an increase in sector 1 nominal
prices because those price increases are not costly. In contrast, when
�1=�2 is high, the increase in sector 1 relative prices optimally occurs
mainly through a decrease in sector 2 nominal prices, because those
price decreases are low cost. The explanation for the case of high sec-
tor 1 productivity growth (green line) essentially involves reversing the
signs relative to the black line.

Figure 2 displays similar relationships, except that relative pro-
ductivity growth varies continuously on the horizontal axis, and the
three lines represent di¤erent levels of relative price-adjustment costs.
The black and green lines represent low and high levels of sector 1
price-adjustment costs (�1), and the red line is the case where �1 = �2:
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Figure 3 Optimal Ination with v = 0.05

A curious feature of Figures 1 and 2 is that when price-adjustment
costs are equal in the two sectors, a small amount of de�ation is opti-
mal. In Figure 1, the point where the black and green lines intersect
exhibits de�ation, and in Figure 2 the red line exhibits de�ation every-
where except when productivity growth is equal in the two sectors. To
understand this result, consider the case where there is positive pro-
ductivity growth in sector 1 and zero productivity growth in sector 2
(i.e., �1 > 1; �2 = 1). Given the quadratic price-adjustment costs, zero
overall in�ation might seem optimal: Prices would be falling somewhat
in sector 1 and rising somewhat in sector 2. The problem with zero in-
�ation is that price-adjustment costs would actually be larger in sector
2 (with rising prices) than in sector 1. Price-adjustment costs can be
reduced by shifting some of the price-adjustment burden toward sec-
tor 1, and this requires slight de�ation. Formally, with � = 0:5; from
(31) zero in�ation implies �1 = 1=�2: Price-adjustment costs are then
proportional to (�1 � 1)2 in sector 1 and proportional to (1=�1 � 1)2
in sector 2. With �1 < 1; adjustment costs would be higher in sector
2.

Figures 3 and 4 are analogues to Figures 1 and 2 for the case where
the expenditure share on sector 1 is small, just 5 percent. Note that
the in�ation magnitudes in these �gures are much smaller. With one
sector very small, nominal price changes in that sector pass through
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Figure 4 Optimal Ination with v = 0.05

less to overall in�ation (see [32]), so it is possible to achieve the desired
relative price changes with less overall in�ation (or de�ation).

The �gures above show how optimal in�ation in a two-sector model
varies across a wide range for relative productivity growth, relative
price-adjustment costs, and relative size of the two sectors. Although
the model is highly stylized, one could interpret the �gures as indicating
that the optimal in�ation rate in the United States is actually negative.
This follows from the fact that goods prices seem to be more �exible
than services prices (Bils and Klenow 2004) and the price of goods
relative to services has trended down over time. Optimality of de�ation
is not an uncommon result, but that result is typically associated with
the shoe-leather costs of in�ation (Friedman 1969).

4. SHORT-RUN RELATIVE PRICE CHANGES AND
OPTIMAL INFLATION

The preceding analysis of optimal steady-state in�ation is relevant for
thinking about situations where there are long-run trends in relative
prices across sectors. However, there are even larger short-run �uctu-
ations in relative prices, and these can occur for goods or sectors that
do not experience trend relative price changes. The obvious example is
energy prices, which have �uctuated dramatically in the United States
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recently. In the presence of these large relative price movements, what
is the optimal behavior of in�ation period-by-period? The model laid
out above can provide an answer to that question for any parameter
values and any �uctuations in sectoral productivity growth� which are
the natural drivers of relative prices in the model. In this section we
will study an interesting special case: Sector 1 will be interpreted as en-
ergy goods and services, and sector 2 as all other personal consumption
expenditure goods and services. We will assume that price-adjustment
costs are zero for energy goods and services, whereas for all other goods
those costs are determined by (15) with �2 = 140; as above.5 We will
further assume that there are sector-speci�c and, in the case of sector 2,
time-varying subsidies that make price always equal to marginal cost.
Thus, the in�ation rate a¤ects only the magnitude of price-adjustment
costs, given the exogenous �uctuations in relative prices.6

In the special case just described, optimal policy is trivial. The rela-
tive price of goods across the two sectors must change over time because
of changes in relative productivity. With zero price-adjustment costs in
sector 1, it is optimal for the entire burden of adjustment to be born by
sector 1, and this can be accomplished in every period without any dis-
tortions. That is, the markup will be zero, and zero adjustment costs
will be incurred. Such a policy is related to stabilizing core in�ation,
except that here core in�ation refers to ex-energy in�ation instead of
ex-food and energy. In Section 5 we derive the counterfactual in�a-
tion rate for the United States since 1959 that would have minimized
price-adjustment costs under these assumptions. We then incorporate
the fact that since 2012 the Federal Reserve has had a 2 percent target
for in�ation. We calculate modi�ed counterfactual in�ation rates that
balance a desire to meet the in�ation target with a desire to minimize
price-adjustment costs.

Time Path of Ination Chosen to Minimize
Price-Adjustment Costs

With zero price-adjustment costs in sector 1, the in�ation rate that
minimizes price-adjustment costs (call it �at ) is the in�ation rate that
accommodates all relative price changes with nominal price changes
only for the sector 1 good. That is,

�a1;t
�a2;t

= �a1;t =
p1;t=p1;t�1
p2;t=p2;t�1

5 This approach follows Aoki (2001), who used a model with Calvo price setting.
6 Under the stated assumptions, the ratio of relative prices in the two sectors is

given by the inverse of the ratio of productivities: p2;t=p1;t = a1;t=a2;t:
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Figure 5 Ination Rate to Minimize Price-Adjustment Costs

and,

�at =
�
�a1;t
��
;

which together imply

�at =

�
p1;t=p1;t�1
p2;t=p2;t�1

��
: (33)

With relative price changes viewed as exogenous, and thus equal to
their observed values, we can use (33) to construct a time series for �at :
In constructing �at we deviate from the assumptions above by allowing
� to vary each period, setting it equal to that period�s observed energy
expenditure share.

Figure 5 displays the monthly time series for �at ; the in�ation rate
that would have minimized price-adjustment costs under the stated as-
sumptions. Relative prices for the energy sector are extremely volatile,
and that volatility is optimally allocated entirely to nominal energy
prices. Nominal energy price volatility then passes directly through to
in�ation. However, because the energy expenditure share is relatively
low, the resulting �uctuations in in�ation are much smaller than the
�uctuations in energy prices. Note that since 2000 the volatility of
�at has increased markedly due to an increase in the volatility of the
relative price of energy.
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Figure 6 Ination Rate to Minimize Price-Adjustment Costs,
12-month

Figure 6 also plots �at ; but it displays that in�ation rate over the
preceding 12 months, instead of the monthly values. According to our
simple model, for the most recently available data, adjustment costs
would have been minimized with de�ation of around 1.25 percent.

While Figures 5 and 6 emphasize the time series behavior of �at ; it is
also interesting to look at the entire distribution of �optimal�in�ation
outcomes. Expressed as deviations from their mean, this distribution
may be relevant in thinking about an appropriate band within which
to target in�ation. Figure 7 displays the sample distribution function
of 12-month �at ; in deviations from its mean.

Approximately 90 percent of the time, the in�ation rate that mini-
mizes price adjustment costs lies between �1 percent and +1 percent,
relative to its mean. This �nding lends some tentative support to the
notion that a reasonable in�ation targeting band would be +/� 1 per-
centage point: If the costs of in�ation are given by quadratic costs of
price adjustment as calibrated here, then historical �uctuations in rel-
ative energy prices imply that it is optimal to keep in�ation within a
+/� 1 percentage point band 90 percent of the time. From 1959 to the
present, in�ation has been substantially more volatile than this hypo-
thetical distribution, with 90 percent of the observations lying between
�2.2 percent and 5.5 percent relative to the mean. Of course, there
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Figure 7 Sample Distribution of Optimal Ination Deviations
From Mean

were large swings in trend in�ation over that period, so it makes more
sense to compare the hypothetical distribution to actual in�ation in the
in�ation targeting period, which o¢ cially starts in January 2012. Over
that period the volatility of 12-month in�ation has actually been close
to the volatility displayed in Figure 7: the 5th and 95th percentiles over
this period are approximately �1.2 percent and 1.1 percent relative to
the sample mean. Note however that these percentiles are based on a
very short sample.

Ination-Targeting Era: Trading O� Ination
Target Misses and Price-Adjustment Costs

The fact that the Federal Reserve�s in�ation target is 2 pecent instead
of zero motivates an alternative notion of optimal in�ation to the one
used above. That alternative weights equally the in�ation rate that
minimizes adjustment costs and the 2 percent in�ation target. The in-
�ation rate that minimizes adjustment costs is close to zero on average,
because there is no appreciable long-run trend in relative energy prices.
Therefore, on average this alternative measure of optimal in�ation will
lie between 2 percent and zero. Figures 8 and 9 plot the implied in�a-
tion rate (measured in monthly and annual terms) over the period for
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Figure 8 Optimal Ination, Trading O� Ination Target and
Price-Adjustment Costs

which the Federal Reserve has had a formal in�ation target. The lines
plotted in these �gures are simply the average of 2 percent and the lines
plotted in Figures 5 and 6. Thus, for the most recent period, instead of
optimal de�ation at around 1.25 percent, there is optimal in�ation at
around 0.4 percent. Actual 12-month in�ation has been between 0.15
percent and 0.35 percent throughout 2015.

Ination-Targeting Era: Trade-o� When
Adjustment Costs are Relative to 2 Percent
Price Increase

The fact that there is little long-run trend in relative energy price means
that the measure of optimal in�ation in Figures 8 and 9 is biased away
from the Fed�s o¢ cial 2 percent in�ation target. One might �nd this
property problematic: Given that the Federal Open Market Committee
has stated its intention to keep in�ation around 2 percent, there are
limits to the immediate practical usefulness of a prescription that the
Fed keep average in�ation below 2 percent. To address that concern,
here we modify the optimal in�ation measure from Figures 8 and 9 by
positing that the costs of price adjustment are incurred relative to a
2 percent change in prices rather than relative to no change in prices.
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Figure 9 Optimal Monthly Ination, Measured Over 12
Months, Trading O� Ination Target and
Price-Adjustment Costs

That is, instead of (15) we use

�k;t (z) =
�k
2

�
yk;t (z)

ak;t

��
Pk;t (z)

Pk;t�1 (z)
� (1:02)1=12

�2
: (34)

With this modi�cation, the in�ation rate that minimizes adjustment
costs will be 2 percent on average unless there is a trend in relative
prices. The assumption behind (34) is not entirely ad hoc. In a world
with expectations anchored at 2 percent in�ation, it seems plausible
that households and �rms would adapt so that there would eventually
be negligible costs associated with prices changing at a 2 percent rate.

Figures 10 and 11 plot the modi�ed-optimal in�ation rate that is a
simple average of 2 percent and the in�ation rate that minimizes sector
2 price-adjustment costs when those costs are incurred relative to a 2
percent trend. Focusing on Figure 11, the 12-month in�ation rate, two
features stand out. First, as expected, the optimal in�ation rate in 2015
rises relative to what the previous �gures showed; it is currently around
1.5 percent, which is well above the actual in�ation rate, indicated by
the red line in the �gure. Second, although the �uctuations have been
small, since 2012 the optimal in�ation rate has been persistently below
2 percent, even though both components of the calculation tie that rate
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Figure 10 Optimal Ination, Trading O� 2 Percent Target and
Price-Adjustment Costs Relative to 2 Percent

to 2 percent over the long run. The obvious explanation is that since
2012 there have been repeated large declines in relative energy prices.

For Figure 12, we plot a second version of optimal in�ation that
is centered around 2 percent. In this case the optimality criterion
puts full weight on minimizing adjustment costs relative to a 2 percent
rate of price change. Because no weight is placed on achieving the
2 percent in�ation target in a given period, optimal in�ation declines
more in early 2015 than when the 2 percent in�ation target receives
equal weight, in Figure 11. It is still the case, however, that the optimal
in�ation rate in Figure 11 has been above actual in�ation in recent
years.

5. CONCLUSION AND CAVEATS

While monetary policy�s goals are typically framed in terms of ag-
gregate in�ation, the aggregate in�ation rate is an outcome of many
individual price changes. Relative prices across goods and sectors un-
dergo long-run trend changes and dramatic monthly �uctuations. How
those factors a¤ect the optimal in�ation rate has been our focus. With
respect to long-run trends, we used a particular model with costly
price adjustment to show how the optimal in�ation rate can vary with
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Figure 11 Optimal Monthly Ination, Measured Over 12
Months, Trading O� 2 Percent Target and
Adjustment Costs Relative to 2 Percent

relative productivity growth across sectors and relative price-adjustment
costs. With respect to short-run �uctuations, we narrowed the analysis
to the behavior of relative energy prices in the United States, tracing
out measures of the in�ation rate over time that would have minimized
price-adjustment costs according to the model. The stark nature of the
model means that the results on steady-state in�ation should be viewed
as suggestive rather than de�nitive. However, the qualitative result
that de�ation (in�ation) is optimal when price stickiness is relatively
high in sectors that have relatively low (high) productivity growth is
somewhat general, having also been shown to hold in models of stag-
gered price setting and �xed costs of price adjustment (Wolman 2011).
The results on period-by-period in�ation may be of more practical use
because they do not rely on the entire model and they emphasize the
relative price behavior of the most volatile component of the consump-
tion price index, energy goods and services. In line with Aoki (2001),
we found that the dramatic decline in energy prices in 2015 was associ-
ated with a marked decline in the optimal in�ation rate, even when the
optimality criterion put a weight of one-half on meeting the 2 percent
in�ation target.
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Figure 12 Optimal Monthly Ination, Measured Over 12
Months, Adjustment Costs Relative to 2 Percent

Throughout the paper, relative price changes were viewed as exoge-
nous; in the steady-state analysis relative price changes were generated
by exogenous di¤erences in productivity growth across sectors, whereas
in the short-run analysis relative price changes themselves were taken
directly as inputs into the determination of optimal policy. Of course,
any mechanism for monetary nonneutrality will generally lead to rela-
tive price changes being in part endogenous with respect to monetary
policy. Given our ignorance about the details of that endogeneity how-
ever, proceeding under the assumption that relative price changes are
exogenous seems like a reasonable way to proceed, although certainly
not the only reasonable way. For simplicity, and in order to focus atten-
tion on the behavior of energy prices, the model in this paper had only
two sectors, whereas the number of consumption categories measured
by the Bureau of Economic Analysis is in the hundreds. In principle,
one could perform the same kind of analysis in a model with many
more sectors.

Throughout the paper, we assumed that monetary policy could
directly control the in�ation rate. For analyzing long-run trends this
assumption seems appropriate, but in the shorter run it is clearly prob-
lematic. Any discussion of monetary policy and the behavior of in�a-
tion in 2014 and 2015 needs to confront the question of how accurately
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and over what horizon a central bank can control in�ation. Here it
was simply assumed that the central bank has perfect control, and op-
timal in�ation was derived under that assumption. Perfect control is
an important benchmark. With imperfect control, large relative price
shocks will likely lead to greater �uctuations in the optimal in�ation
rate. That perspective suggests that optimal in�ation in 2015 may have
been below the levels in Figures 11 and 12. This is clearly a topic on
which further work is needed.

APPENDIX: STEADY-STATE WELFARE EXPRESSION

In this Appendix we derive the closed-form solution for steady-state
welfare, used to produce Figures 1�4. From (25)�(29), we have

p1;0 =
"

("� 1) (1 + �)w0�1 (�) (35)

p2;0 =
"

("� 1) (1 + �)w0�2 (�) (36)

p2;0
1� � =

�
1� �
�
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p2;0

���
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It follows that
p1;0
p2;0

= �1 (�) =�2 (�) : (38)

We can then solve for p1;0; p2;0; and w0 :

p2;0 (�) = (1� �)
�
1� �
�

�1 (�) =�2 (�)

���
; (39)
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w0 (�) =
("� 1) (1 + �)

"

�
�1 (�)

�

��� ��2 (�)
1� �

���1
; (40)

and

p1;0 (�) = (1� �)
�
1� �
�

���
(�1 (�) =�2 (�))

1�� : (41)

Consumption follows from (4) and (5):

c0 (�) =
("� 1) (1 + �)

"�

�
�1 (�)

�

��� ��2 (�)
1� �

���1
:

The last variable we need in order to compute welfare is labor input.
From (18), we have

h0 =
y1;0
a1;0

�
�
1 +

�1
2
(�1 � 1)2

�
+
y2;0
a2;0

�
�
1 +

�2
2
(�2;0 � 1)2

�
: (42)

This expression requires that we know y1;0 and y2;0: From (21) and
(22), we can easily compute y1;0 and y2;0 using our solutions for the
wage and relative prices:

y1;0 (�) =
�

�

w0 (�)

p1;0 (�)
; (43)

y2;0 (�) =
1� �
�

w0 (�)

p2;0 (�)
: (44)

Then using (42) to compute labor input, we can evaluate welfare as a
function of in�ation:

W (�) =
1X
t=0

�t (ln ct � �h0)

=
1X
t=0

�t
�
ln c0 (�) + t ln

�
��1�

1��
2

�
� �h0 (�)

�
:

REFERENCES

Aoki, Kosuke. 2001. �Optimal Monetary Policy Responses to
Relative-Price Changes.�Journal of Monetary Economics 48
(August): 55�80.

Bils, Mark, and Peter J. Klenow. 2004. �On the Importance of Sticky
Prices.�Journal of Political Economy 112 (October): 947�85.



274 Federal Reserve Bank of Richmond Economic Quarterly

Bodenstein, Martin, Christopher J. Erceg, and Luca Guerrieri. 2008.
�Optimal Monetary Policy with Distinct Core and Headline
In�ation Rates.�Journal of Monetary Economics 55 (October):
S18�S33.

Calvo, Guillermo A. 1983. �Staggered Prices in a Utility-Maximizing
Framework.�Journal of Monetary Economics 12 (September):
383�98.

Friedman, Milton. 1969. �The Optimum Quantity of Money.�In The
Optimum Quantity of Money and Other Essays, edited by Milton
Friedman. Chicago: Aldine Publishing Company, 2�50.

Levy, Daniel, Mark Bergen, Shantanu Dutta, and Robert Venable.
1997. �The Magnitude of Menu Costs: Direct Evidence From
Large U.S. Supermarket Chains.�Quarterly Journal of Economics
112 (August): 791�825.

Rotemberg, Julio J. 1982. �Sticky Prices in the United States.�
Journal of Political Economy 90 (December): 1187�211.

Wolman, Alexander L. 2008. �Nominal Frictions, Relative Price
Adjustment, and the Limits to Monetary Policy.�Federal Reserve
Bank of Richmond Economic Quarterly 94 (Summer): 219�33.

Wolman, Alexander L. 2011. �The Optimal Rate of In�ation with
Trending Relative Prices.�Journal of Money, Credit and Banking
43 (March-April): 355�84.


