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Time-Varying Parameter
Vector Autoregressions:
Specification, Estimation,
and an Application

Thomas A. Lubik and Christian Matthes

T
ime-varying parameter vector autoregressions (TVP-VARs) have
become an increasingly popular tool for analyzing the behav-
ior of macroeconomic time series. TVP-VARs differ from more

standard fixed-coeffi cient VARs in that they allow for coeffi cients in
an otherwise linear VAR model to vary over time following a specified
law of motion. In addition, TVP-VARs often include stochastic volatil-
ity (SV), which allows for time variation in the variances of the error
processes that affect the VAR.

The attractiveness of TVP-VARs is based on the recognition that
many, if not most, macroeconomic time series exhibit some form of
nonlinearity. For instance, the unemployment rate tends to rise much
faster at the start of a recession than it declines at the onset of a recov-
ery. Stock market indices exhibit occasional episodes where volatility,
as measured by the variance of stock price movements, rises consider-
ably. As a third example, many aggregate series show a distinct change
in behavior in terms of their persistence and their volatility around
the early 1980s when the Great Inflation of the 1970s turned into the
Great Moderation, behavior that is akin to a structural shift in certain
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moments of interest. All these examples of nonlinearity in macroeco-
nomic time series have potentially distinct underlying structural causes.
But they can all potentially be captured by means of the flexible frame-
work that is a TVP-VAR with SV.

A VAR is a simple time series model that explains the joint evolu-
tion of economic variables through their own lags. A TVP-VAR pre-
serves this structure but in addition models the coeffi cients as stochastic
processes. In the most common application, the maintained assumption
is that the coeffi cients follow random walks, specifically the intercepts,
the lag coeffi cients as well as the variance and covariances of the error
terms in the regression. Conditional on the parameters, a TVP-VAR is
still a linear VAR, but the overall model is highly nonlinear. While the
assumption of random walk behavior may seem restrictive, it provides
for a flexible functional form to capture various forms of nonlinearity.

The main challenge in applying TVP-VAR models is how to con-
duct inference. In this article, we therefore discuss the Bayesian ap-
proach to estimating a TVP-VAR with SV.1 Bayesian inference in this
class of models relies on the Gibbs sampler, which is designed to easily
compute multivariate densities. The key insight is to break up a com-
putationally intractable problem into sequences of feasible steps. We
will discuss these steps in detail and show how they can be applied to
TVP-VARs.

The article is structured as follows. We begin with a discussion of
the specification of TVP-VARs and how they are developed from fixed-
coeffi cient VARs. We show how to introduce stochastic volatility in the
covariance matrix of the errors and present an argument for why time
variation in the lag coeffi cients needs to be modeled jointly with sto-
chastic volatility. The main body of the article presents the Gibbs sam-
pling approach to conducting inference in Bayesian TVP-VARs, which
we preamble with a short discussion of the thinking behind Bayesian
methods. Finally, we illustrate the method by means of a simple ap-
plication to data on inflation, unemployment, and the nominal interest
rate for the United States.

1. SPECIFICATION

VARs are arguably the most important empirical tool for applied macro-
economists. They were introduced to the economics literature by Sims
(1980) as a response to the then-prevailing large-scale macroecono-
metric modeling approach. What Sims memorably criticized were the

1 Nakajima (2011) and Doh and Connolly (2012) provide similar overviews of the
TVP-VAR methodology.
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incredible identification assumptions imposed in these models that
stemmed largely from a lack of sound theoretical economic underpin-
nings and that hampered structural interpretation of their findings.
In contrast, VARs are deceptively simple in that they are designed
to simply capture the joint dynamics of economic time series without
imposing ad-hoc identification restrictions.

More specifically, a VAR describes the evolution of a vector of n
economic variables yt at time t as a linear function of its own lags up
to order L and a vector et of unforecastable disturbances:

yt = ct +
L∑
j=1

Ajyt−j + et. (1)

It is convenient to assume that the error term et is Gaussian with mean
0 and covariance matrix Ωe. ct is a vector of deterministic components,
possibly including time trends, while the Aj are conformable matrices
that capture lag dynamics.

VAR models along the lines of (1) have proven to be remarkably
popular for studying, for instance, the effects and implementation of
monetary policy (see Christiano, Eichenbaum, and Evans 1999, for
a comprehensive survey). However, VARs of this kind can only de-
scribe economic behavior that is approximately linear and does not
exhibit substantial variation over time. The linear VAR in (1) con-
tains a built-in notion of time invariance: conditional forecasts as of
time t, such as Etyt+1, only depend on the last L values of the vector
of observables but are otherwise independent of time. More strongly,
the conditional one-step-ahead variance is fully independent of time:
Et[(yt+1 − Etyt+1)(yt+1 − Etyt+1)′] = Ωe.

Yet, in contrast, a long line of research documents that conditional
higher moments can vary over time, starting with the seminal ARCH
model of Engle (1982). Moreover, research in macroeconomics, such as
Lubik and Schorfheide (2004), has shown that monetary policy rules
can change over time and can therefore introduce nonlinearities, such
as breaks or shifts, into aggregate economic time series.2 The first
observation has motivated Uhlig (1997) to introduce time variation in
Ωe. The second observation stimulated the work by Cogley and Sargent
(2002) to introduce time variation in Aj and c in addition to stochastic
volatility.

2 This feature would make a linear model less suited to capture the true dynamics of
the economy. Whether and to what extent linear approximations can be used to analyze
environments with time-varying parameters has been studied by Canova, Ferroni, and
Matthes (2015).
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We will now describe how to model time variation in each of these
sets of parameters separately. In the next step, we will discuss why
researchers should model changes in both sets of parameters jointly. We
then present the Gibbs sampling algorithm that is used for Bayesian
inference in this class of models and which allows for easy combination
of the approaches because of its modular nature.

A VAR with Random-Walk Time Variation
in the Coefficients

Suppose a researcher wants to capture time variation in the data by
using a parsimonious yet flexible model as in the VAR (1). The key
question is how to model this time variation in the coeffi cients Aj and
c. One possibility is to impose a priori break points at specific dates.
Alternatively, break points can be chosen endogenously as part of the
estimation algorithm. Threshold VARs or VARs with Markov switch-
ing in the parameters (e.g., Sims and Zha 2006) are examples of this
type of model, which is often useful in environments where the eco-
nomic modeler may have some a priori information or beliefs about
the underlying source of time variation, such as discrete changes in
the behavior of the monetary authority. In general, however, a flexi-
ble framework with random time variation seems preferable for a wide
range of nonlinear behavior in the data. Following Cogley and Sargent
(2002), a substantial part of the literature has consequently opted for a
flexible specification that can accommodate a large number of patterns
of time variation.

The standard model of time variation in the coeffi cients starts with
the VAR (1). In contrast to the fixed-coeffi cient version, the parameters
of the intercept and of the lag coeffi cient matrix are allowed to vary
over time in a prescribed manner. We thus specify the TVP-VAR:

yt = ct +
L∑
j=1

Aj,t yt−j + et. (2)

It is convenient to collect the values of the lagged variables in a matrix
and define X ′t ≡ I ⊗ (1, y′t−1..., y

′
t−L), where ‘⊗’denotes the Kronecker

product. We also define θt to collect the VAR’s time-varying coeffi cients
in vectorized form, that is, θt ≡ vec([ct A1,t A2,t ... AL,t]′). This allows
us to rewrite (2) in the following form:

yt = X ′tθt + et. (3)

The commonly assumed law of motion for θt is a random walk:

θt = θt−1 + ut, (4)
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where ut ∼ N (0, Q) and is assumed to be independent of et. A random-
walk specification is parsimonious in that it can capture a large number
of patterns without introducing additional parameters that need to be
estimated.3 This assumption is mainly one of convenience for reasons of
parsimony and flexibility as (4) is rarely interpreted as the underlying
data-generating process for the question at hand, but it can approxi-
mate it arbitrarily well (see Canova, Ferroni, and Matthes 2015).

Introducing Stochastic Volatility

A second source of time variation in time series can stem from variation
in second or higher moments of the error terms. Stochastic volatility,
or, specifically, time variation in variances and covariances, can be in-
troduced into a model in a number of ways. Much of the recent liter-
ature on stochastic volatility in macroeconomics has chosen to follow
the work of Kim, Shephard, and Chib (1998). It is built on a flexible
model for volatility that uses an unobserved components approach.4

We start from the observation that we can always decompose a
covariance matrix Ωe as follows:

Ωe = Λ−1ΣΣ′
(
Λ−1

)′
. (5)

Λ is a lower triangular matrix with ones on the main diagonal, while
Σ is a diagonal matrix. Intuitively, the diagonal matrix ΣΣ′ collects
the independent innovation variances, while the triangular matrix Λ−1

collects the loadings of the innovations onto the VAR error term e,
and thereby the covariation among the shocks. It has proven to be
convenient to parameterize time variation in Ωe directly by making the
free elements of Λ and Σ vary over time. While this decomposition
is general, once priors on the elements of Σ and Λ are imposed, the
ordering of variables in the VAR matters for the estimation of the
reduced-form parameters, which stands in contrast to the standard
time-invariant VAR model (see Primiceri 2005).

We now define the element of Λt in row i and column j as λijt and
a representative free element j of the time-varying coeffi cient matrix
Σt as σ

j
t . It has become the convention in the literature to model the

3 Different specifications for the time-varying lag coeffi cients are entirely plausible.
For instance, a stationary VAR(1) representation, such as θt = θ+Bθt−1+ut, can easily
be accommodated using the estimation algorithms described in this article.

4 The approach to modeling stochastic volatility outlined here is the most com-
mon in the literature on TVP-VARs, but there are alternatives such as Rondina (2013).
Moreover, stochastic volatility models of the form used here are more flexible than
ARCH models in that they do not directly link the estimated level of the volatility
to realizations of the error process that is being captured.
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coeffi cients σjt as geometric random walks:

log σjt = log σjt−1 + ηjt . (6)

For future reference, we collect the σjt in a vector σt =
[
σ1
t , ..., σ

n
t

]′
and the ηjt in ηt =

[
η1
t , ..., η

n
t

]
, with ηnt ∼ N (0,W ) and W diagonal.

Similarly, we assume that the nonzero and nonunity elements of the

matrix Λt, which we collect in the vector λt =
[
λ21
t , ..., λ

n,n−1
t

]
, evolve

as random walks:

λt = λt−1 + ζt, (7)

where ζt ∼ N (0, S) and S block-diagonal.
The error term et in the TVP-VAR representation (3) can thus be

decomposed into:

et = Λ−1
t Σtεt, (8)

which implicitly defines εt. It is convenient to normalize the variance
of εt to unity. It is thus assumed that the error terms in each of the
equations of the model are independent. In more compact form, we
can write:

V = V ar

 εt
ζt
ηt

 =

 I 0 0
0 S 0
0 0 W

 . (9)

The TVP-VAR literature tends to impose a block-diagonal struc-
ture for V , mainly for reasons of parsimony since the TVP-VAR is
already quite heavily parameterized. Allowing for a fully generic cor-
relation structure among different sources of uncertainty would also
preclude any structural interpretation of the innovations. Following
Primiceri (2005), the literature has therefore adopted a block-diagonal
structure for S, which implies that the nonzero and non-one elements of
Λt that belong to different rows evolve independently. Moreover, this
assumption simplifies inference substantially since it allows Kalman
smoothing on the nonzero and non-one elements of Λt equation by
equation, as we will discuss further below.

Why We Want to Model Time Variation in
Volatilities and Parameters

A TVP-VAR with stochastic volatility is a heavily parameterized ob-
ject. While it offers flexibility to capture a wide range of time variation
and nonlinear features of the data, it also makes estimation and infer-
ence quite complicated. In practice, modelers restrict the covariance
matrix of the innovations to the laws of motion for the time-varying
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coeffi cients in order to sharpen inference. Moreover, Bayesian priors
are often used to aid inference. Given a need to impose some structure
to aid inference, this naturally raises the question whether a TVP-VAR
with stochastic volatility is not overparameterized.

One answer to this question relies on the idea that a TVP-VAR can
be regarded as the reduced-form representation of an underlying Dy-
namic Stochastic General Equilibrium (DSGE) model, in which there
is time variation. This time variation in the underlying data-generating
process (DGP) carries over to its reduced form, which might be, or is
approximated by, a TVP-VAR.5 More specifically, changes, discrete or
continuous, in structural parameters carry over to changes in lagged
reduced-form coeffi cients and parameters of the covariance matrix.6

Hence, a TVP-VAR specification should a priori include stochastic
volatility to be able to represent an underlying DSGE model.

A second response is essentially a corollary to the previous point.
Sims (2002) argues that a model with only time variation in parameters
could mistakenly result in a substantial amount of time variation even
though the true DGP only features stochastic volatility. This insight
can be illustrated by means of the following simple example, which
also shows that the reverse can hold: a modeler could mistakenly esti-
mate stochastic volatility even though the true DGP only features time
variation in coeffi cients.

Consider a univariate AR(1)-process with stochastic volatility:

zt = ρzt−1 + σtεt, (10)

where |ρ| < 1, εt ∼ N (0, 1), and σt is a generic stochastic volatility
term, such as the one described above. Suppose an econometrician
has access to a sample of data from this DGP, but does not know
the true form of the underlying model. In order to investigate the
time variation in the data, he proposes a model with only time-varying
coeffi cients instead of stochastic volatility. As a simple rewriting of
equation (10) suggests, he could indeed find evidence for time variation
in the parameters:

zt = ρtzt−1 + σ̃εt, (11)

5 It is well-known that in some cases a linear VAR is an exact representation of
the reduced form of a DSGE model (see Fernandez-Villaverde et. al. 2007). It is less
well-known to what extent this is true for TVP-VARs. For instance, Cogley, Sbordone,
and Matthes (2015) show that DSGE models with learning have a TVP-VAR as reduced
form.

6 This insight underlies Benati and Surico’s (2009) critique of Sims and Zha’s (2006)
Markov-switching VAR approach to identifying monetary policy shifts and also Lubik
and Surico’s (2010) critique of standard empirical tests of the validity of the Lucas
critique.
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where ρt = ρ+ (σt−σ̃)εt
zt−1

.
If the DGP is instead of the form:

zt = ρtzt−1 + σεt, (12)

and estimates a stochastic volatility model on data generated from this
model, he would erroneously find evidence of stochastic volatility:

zt = ρ̃zt−1 + σtεt, (13)

where σt = σ+ (ρt−ρ̃)zt−1
εt

. Including time variation jointly in coeffi cients
and stochastic volatility therefore allows economists to let the data
speak on which of the two sources are more important.

2. ESTIMATION AND INFERENCE

A TVP-VAR with stochastic volatility is a deceptively simple object
on the surface, as it superficially shares the structure of standard linear
VARs. Estimation and inference in the latter case is well-established
and straightforward. Since a linear VAR is a seemingly unrelated re-
gression (SUR) model, it can be effi ciently estimated equation by equa-
tion using ordinary least squares (OLS). Conducting inference on trans-
formations of the original VAR coeffi cients, such as impulse response
functions, is somewhat more involved yet well-understood in the liter-
ature. Estimation and inference in a TVP-VAR, however, reaches a
different level of complexity since the model is fundamentally nonlin-
ear due to the time variation in the coeffi cients and in the covariance
matrix of the error terms.

We now describe in detail the standard approach to inference in
TVP-VARs. It relies on Bayesian estimation, the basic concepts of
which we introduce briefly in the following. Bayesian estimation and
inference is conducted using the Gibbs sampling approach, which we go
on to discuss at some length. Finally, we discuss how researchers can
report and interpret the results from TVP-VARmodels in a transparent
and effi cient manner.

Why a Bayesian Approach?

The standard approach to estimating and conducting inference in TVP-
VARs uses Bayesian methodology. The key advantage over frequentist
methods is that it allows researchers to use powerful computational
algorithms that are particularly well-adapted to the treatment of time
variation. Moreover, the use of prior information in a Bayesian frame-
work helps researchers to discipline the behavior of the model, which
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is especially relevant in high-dimensional problems such as those dis-
cussed in this article.7

Bayesian and frequentist inference are fundamentally different ap-
proaches to describing and making assessments about data and empiri-
cal models. Bayesian inference starts by postulating a prior distribution
for the parameters of the model. This prior is updated using the in-
formation contained in the data, which is extracted using a likelihood
function. The object of interest in Bayesian estimation is the posterior
distribution, which results from this updating process. Estimators in a
Bayesian context are thus defined as statistics of this distribution such
as the mean or mode.

We can describe these basic principles in a somewhat more compact
and technical form. Suppose that a Bayesian econometrician is inter-
ested in characterizing his beliefs about parameters of interest Θ after
having observed a sample of data yT of length T . The econometrician
holds beliefs prior to observing the data, which can be described by the
prior p(Θ). Moreover, he can summarize the data by computing the
likelihood function p(yT |Θ), which describes how likely the observed
data are for any possible parameter vector Θ. The beliefs held by the
econometrician after seeing the data are summarized by the posterior
distribution p(Θ|yT ). The relationship between those three densities is
given by Bayes’law :

p(Θ|yT ) =
p(yT |Θ)p(Θ)∫
p(yT |Θ)p(Θ)dΘ

, (14)

which describes how to optimally update the beliefs contained in p(Θ)
using data summarized by p(yT |Θ). The posterior p(Θ|yT ) is a dis-
tribution on account of normalization by the marginal data density∫
p(yT |Θ)p(Θ)dΘ, which is the joint distribution of data yT and para-

meters Θ after integrating out Θ. It can serve as a measure of fit in
this Bayesian context.

Bayesian estimation ultimately consists of computing the posterior
distribution. Bayesian inference rests on the moments of this distri-
bution. It does not require any arguments about limiting behavior
as T → ∞, since from a Bayesian perspective yT is fixed and is all
that is needed to conduct inference. On the other hand, the challenges
for Bayesian econometricians are virtually all computational in that:
(i) the likelihood function has to be evaluated; (ii) the joint distribu-
tion of prior and likelihood has to be computed; and (somewhat less

7 This is not to say that frequentist inference does not introduce prior information
by, for instance, imposing bounds on the parameter space. The use of Bayesian priors,
however, makes this more explicit and generally more transparent.
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crucially) (iii) the marginal data density has to be obtained. What
aids in this process is the judicious use of priors and fast and robust
methods for characterizing p(yT |Θ)p(Θ). This can be accomplished in
Bayesian VARs by means of the Gibbs sampler.

Gibbs Sampling of a TVP-VAR

Characterizing a posterior distribution is a daunting task. Except in
special cases, analytical solutions for given prior and likelihood den-
sities are not available. Conducting inference via describing the pos-
terior with its moments is thus not an option. As evidenced by the
seminal textbook of Zellner (1971), much of Bayesian analysis before
the advent of readily available computing power and techniques was
concerned with finding conjugate priors for a large variety of problems.
A conjugate prior is such that when confronted with the likelihood
function, the posterior distribution is of the same family as the prior.
However, as a general matter this path proved not to be a viable option
as many standard Bayesian econometric models do not easily yield to
analytical characterization.

This changed with the development of sampling and simulation
methods that allow researchers to characterize the shape of an unknown
distribution. These methods are built on the idea that when a large
sample from a known density is available, sample moments approximate
population moments very well by the laws of large numbers. Conse-
quently, Bayesian statisticians have developed methods to effi ciently
sample from unknown posterior densities indirectly by sampling from
known densities. Once the thus-generated sample is at hand, sampling
moments can be used to characterize the posterior distribution.8

The basic idea behind the Gibbs sampler is to split the parameters
Θ of a given model into b blocks Θ1,Θ2,...,Θb.9 The Gibbs sampler pro-
poses to generate a sample from p(Θ|yT ) by iteratively sampling from
p(Θj |yT ,Θ−j), ∀j = 1, ..., b, where Θ−j denotes the entire parameter
vector except for the jth block. This approach rests on the idea that
the entire set of conditional distributions fully characterizes the joint
distribution under fairly general conditions. At first glance, nothing

8 The exposition here is intentionally, but unavoidably, superficial. Readers inter-
ested in the technical issues underlying the arguments we make here are referred to some
of the excellent textbooks on Bayesian inference such as Robert and Casella (2004) or
Gelman et al. (2014).

9 Generally, there are no restrictions placed on the relative size of the blocks. In
fact, the blocking scheme, that is, its individual size, could be random. However, for
time-varying parameter models, one particular blocking scheme turns out to be especially
useful.
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much has been gained: we have broken up one large inference problem
into a sequence of smaller inference problems, namely characterizing
the conditional distributions p(Θj |yT ,Θ−j) instead of the full distrib-
ution. In the end, there is no guarantee that this makes the inference
problem more tractable.

However, Bayesian statisticians have developed closed forms for
posterior distributions for some special cases. The ingenuity of the
Gibbs sampler is thus to break up a large intractable inference prob-
lem into smaller blocks that can then be evaluated independently and
sequentially. The challenge is to find a blocking scheme, a partition of
the set of parameters, that admits closed-form solutions for the pos-
teriors conditional on all other parameters of the model. In the case
of TVP-VARs, such blocking schemes have been developed by Cogley
and Sargent (2002), Primiceri (2005), and Del Negro and Primiceri
(2015).10

A Motivating Example for the Gibbs Sampler

In order to illustrate the basic idea behind Gibbs sampling, we consider
a simple fixed-coeffi cient AR(1) model:

zt = ρzt−1 + σεt, (15)

where εt ∼ N (0, 1). The parameters of interest are ρ and σ, on which
we want to conduct inference. The first step in deriving the Gibbs sam-
pler is to specify priors for these parameters. We assume the following
priors:

ρ ∼ N (µρ, Vρ), (16)

σ2 ∼ IG(a, b), (17)

where IG denotes the inverse Gamma distribution with scale and lo-
cation parameters a and b, respectively.

The likelihood for this standard AR(1) model is given by L(ρ, σ) =
p(z0)

∏
t=1T p(zt|zt−1), which is written as the product of conditional

distributions p(zt|zt−1) and the likelihood of the initial observation
p(z0). As is common practice, we drop the term p(z0) and instead
work with the likelihood function L(ρ, σ) =

∏T
t=1 p(zt|zt−1). Defin-

ing Y = [z1 z2 z3 . . . zT ]′ and X = [z0 z1 z2 . . . zT−1]′, the likelihood is
given by:

L(ρ, σ) = (2π)−T/2(σ2)−T/2 exp

[
− 1

2σ2
(Y −Xρ)′(Y −Xρ)

]
. (18)

10 Computer code to estimate this class of mod-
els is available from Gary Koop and Dimitris Korobilis at:
http://personal.strath.ac.uk/gary.koop/bayes_matlab_code_by_koop_and_korobilis.html
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Combining this expression with the priors listed above using Bayes’
Law gives the joint posterior of ρ and σ2, conditional on the data:

p (ρ, σ|Y,X) ∝ L(ρ, σ)×

exp

[
−1

2

(
ρ− µρ

)′
V −1
ρ

(
ρ− µρ

)]
×
(
σ2
)−[a+1]

exp

(
− 1

bσ2

)
, (19)

where the first term is the likelihood function, the second is the prior
on the autoregressive coeffi cient ρ, and the third term is the prior on
the innovation variance σ2. Although we can identify and compute
analytically the individual components of the posterior, the posterior
distribution for ρ, σ|Y,X is unknown.

The Gibbs sampler allows us to partition the parameter set into
separate blocks for ρ and σ, for which we can derive the conditional
distributions. After some algebra, we can find the conditional posterior
distributions:

ρ|σ, Y,X ∼ N
[ (

X ′X/σ2 + V −1
ρ

)−1
(X ′Y/σ2 + V −1

ρ µρ),(
X ′X/σ2 + V −1

ρ

)−1

]
, (20)

σ2|ρ, Y,X ∼ IG
[
T/2 + a, b−1 +

1

2
(Y −Xρ)′(Y −Xρ)

]
. (21)

The conditional posteriors for ρ and σ have known distributions, which
can be sampled by using standard software packages. The procedure
would be to start with an initial value for σ2 and then draw from the
conditional distribution ρ|σ, Y,X. Given a draw for ρ, in the next
step we would sample from the conditional distribution σ2|ρ, Y,X. Re-
peated iterative sampling in this manner results in the joint posterior
distribution ρ, σ|Y,X.

The Gibbs sampler can be applied to models with time-varying
parameters in a similar manner, the key step being the application of
a blocking scheme for which the conditional distributions are either
known or from which it is easy to generate samples. The additional
challenge that TVP-VARs present is that the parameters of interest are
not fixed coeffi cients, but are themselves time-series processes that are a
priori unobservable. The general approach to dealing with unobservable
components is the application of the Kalman filter if the model can be
cast in a state-space form. In the following, we discuss how these two
additional techniques can be used to estimate TVP-VARs.

Linear Gaussian State-Space Systems

Bayesian estimation relies on the ability of the researcher to cast a
model in a form such that it is amenable for sampling. The Gibbs
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sampler provides one such technique. A second crucial component of
inference in a TVP-VAR is the state-space representation, which con-
nects variables that are observed, or are in principle observable, to
those that are unobserved. Conceptually, Bayesian estimation pro-
duces a time series and its density for the time-varying components
of the TVP-VAR by means of the Kalman filter as applied to a linear
Gaussian state-space system. This specification has the advantage that
the posterior distribution is known analytically for a Gaussian prior on
the initial state.

Specifically, a state-space system can be defined as follows:

yt = Atxt +Btvt, (22)

xt = Cxt−1 +Dwt, (23)

where yt denotes a vector of observables and xt a vector of possibly
unobserved states. vt and wt are Gaussian innovations, each element
of which is independent of the others with mean 0 and variance 1. At,
Bt, C, and D are known conformable matrices. The standard approach
for deriving the posterior for xt in this system was developed by Carter
and Kohn (1994), which builds on the Kalman filter and which we
discuss in the next section.

Application of the Kalman filter to a state-space system allows the
modeler to construct a sequence of Gaussian distributions for xt|yt, that
is, the distribution of the unobservable state x at time t, conditional
on the observables yt, where a superscript denotes the entire sample up
to that point.11 As it turns out, various blocks of the Gibbs sampler
for a TVP-VAR model take the form of linear Gaussian state-space
systems. The challenge is to find blocks for the parameters in the
TVP-VAR such that each block fits this Gaussian state-space structure.
The fundamental nonlinearity of the TVP-VAR can thus be broken up
into parts that are conditionally linear and from which it can be easily
sampled. As long as each block has a tractable structure conditional
on other blocks of parameters, the Gibbs sampler can handle highly
nonlinear problems.

The Kalman Filter

The Kalman filter is a widely used method for computing the time paths
of unobserved variables from a Gaussian state-space system. We now
briefly review and present the equations used for drawing a sequence
of the unobserved states (conditional on the entire set of observations

11 If the modeler is instead interested in the distributions xt|yT , where T denotes
the sample size, the Carter-Kohn algorithm draws paths of the unobserved state variable
xt for t = 1, ..., T conditional on the entire sample of observables yT .
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y1, ..., yT ). A more detailed discussion and explanation can be found in
Primiceri (2005).

The system is assumed to take the form (22)-(23). We want to draw
from the distribution p(x1, ..., xT |y1, ..., yT ).12 It can be shown that
p(x1, ..., xT |y1, ..., yT ) = p(xT |yT )

∏T
t=1 p(xt|xt+1, y1, ..., yt). To gener-

ate draws from each of these densities, we first run the Kalman filter
to calculate the mean and variance of the state xt conditional on data
up to time t. We assume a prior for x0 that is Gaussian with mean
x0|0 and variance V0|0. The Kalman filter is then summarized by the
following equations:

xt|t−1 = Cxt−1|t−1 (24)

Vt|t−1 = CVt−1|t−1C
′ +DD′ (25)

Kt = Vt|t−1A
′
t

(
AtVt|t−1A

′
t +BtB

′−1
t

)
(26)

xt|t = xt|t−1 +Kt(yt −Atxt|t−1) (27)

Vt|t = Vt|t−1 −KtAtVt|t−1 (28)

These equations produce xt|t = E(xt|y1, ..., yt) and the associated con-
ditional variance Vt|t. The conditional distributions of the states are
Gaussian.

We can generate a draw for xT |y1, ..., yT by using the conditional
mean and variance for period T . Once we have such a draw, we can
recursively draw the other states (xt+1 denotes a draw of the state for
period t+ 1):

xt|t+1 = xt|t + Vt|tCV
−1
t+1|t(xt+1 − Cxt|t) (29)

Vt|t+1 = Vt|t − Vt|tC ′V −1
t+1|tCVt|t (30)

In the following, we will now discuss each Gibbs sampler step in turn,
which builds on the Kalman filter.

The Choice of Priors

The first step in Bayesian analysis is to choose the priors on the para-
meters of the model. In contrast to a frequentist approach, the model
parameters in a Bayesian setting are random variables. Since a Gibbs
sampler proceeds iteratively, we impose priors on the initial values of
the TVP-VAR parameters. Conceptually, it is therefore useful to dis-
tinguish between two sets of parameters: the parameters associated
with the coeffi cients and innovation terms in the representation (4)

12 We do not explicitly state the dependence of the densities in this section on the
system matrices A, B, Ct, and Dt, but as we show later this can be handled by the
right conditioning and sequencing within the Gibbs sampler.
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and the parameters governing the law of motion of the time-varying
terms. More specifically, we impose priors on (θ0,Λ0, log Σ0) and on
(Q,W,S), respectively.

The initial values of the lag coeffi cient matrices θ0, of the free el-
ements of the loading matrix in the innovation terms Λ0, and of the
independent innovation variances log Σ0 are assumed to have normally
distributed priors:

θ0 ∼ N (θ, κθVθ), (31)

Λ0 ∼ N (Λ, κΛVΛ), (32)

log Σ0 ∼ N (Σ, I), (33)

where θ, Λ, and Σ are the prior means of the respective variables, while
Vθ and VΛ are their prior covariance matrices. The covariance matrix
of the prior on log Σ0 is normalized at unity. κθ and κΛ are scaling
parameters that determine the tightness of the priors.

We also have to choose priors for the covariance matrices of the
innovations in the law of motions for the above-referenced TVP-VAR
parameters. These are, respectively, the innovation variance for the lag
coeffi cient matrices, Q; for the error variance, W ; and for the loading
matrix, S. As is common for covariance matrices in Bayesian analysis,
the priors follow an Inverted Wishart distribution:

Q ∼ IW(κ2
QdfQVQ, dfQ), (34)

W ∼ IW(κ2
WdfWVW , dfW ), (35)

S ∼ IW(κ2
SdfSVS , dfS), (36)

where κ are the scaling factors, df the degrees of freedom, and the
matrices V the respective variances.

A key issue is how to choose the parameters for the priors. Cogley
and Sargent (2005) and Primiceri (2005) propose using a constant-
coeffi cient VAR estimated on a training sample to initialize the prior
means and the matrices V . The coeffi cients

(
θ,Λ,Σ

)
and (Vθ, VΛ) can

then be directly computed from a least-squares regression. Neverthe-
less, this still leaves substantial degrees of freedom as there is no clear
guideline on how to choose the training sample. The scaling parame-
ters κ turn out to be important as they govern the prior amount of
time variation. Primiceri (2005) estimates the κ on a small grid of
values using a time-consuming reversible-jump MCMC algorithm that,
as a preliminary step, requires estimation of the model for each possi-
ble combination of parameters. Following Primiceri, most researchers
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have chosen to use his estimated values regardless of the application at
hand.13

The Ordering of Blocks in a TVP-VAR

Once the priors have been chosen, the next step involves combining
the prior distribution with the likelihood function. In a Bayesian ap-
proach, the resulting posterior distribution contains all information
that is available to the researcher, which includes the prior and the
observed data as encapsulated in the likelihood. Moreover, and in con-
trast to a frequentist approach to inference, Bayesian estimation does
not involve an actual estimation step, where an estimator, that is, a
mapping from data to the object of interest that satisfies some desirable
criteria, is derived. Bayesian estimation simply involves characterizing
the posterior distribution, which can be accomplished in the case of a
TVP-VAR by means of the Gibbs sampler. A Bayesian econometrician
then finds it often convenient to report moments of the posterior as
estimation results.

The Gibbs sampler relies on the idea that it is often much easier to
sequentially sample from conditional distributions, whose probability
laws may be known, than from an unknown distribution. The tricky
and often diffi cult part of this approach is to partition the parameter
space into blocks such that this sampling is feasible and can be ac-
complished effi ciently. To wit, in the full TVP-VAR model with both
time-varying parameters and stochastic volatility, we need to estimate
the following set of parameters: θT , ΣT , ΛT , Q, S, and W , where
the T superscripts indicate that there can be in general sample size T
parameters.

In the following, we describe the Gibbs sampler proposed by Del
Negro and Primiceri (2015), which is based on the original contribution
of Primiceri (2005). As a matter of notation, we also introduce a set of
auxiliary variables sT that are used for the estimation of the stochastic
volatilities. In subsequent sections we discuss the drawing of each of
those blocks in more detail. Even more detailed descriptions can be
found in Primiceri (2005) or Koop and Korobilis (2010).

Conceptually, the two main steps of the Gibbs sampler involve
drawing the covariance matrix of the independent innovations in the
TVP-VAR, ΣT , conditional on the data, the other coeffi cient vectors,

13 In the recent literature, there has been much interest in the role that these scal-
ing parameters play, in particular the hyperparameters for Q, S, and W . As it turns
out, choice of these parameters can affect estimation results along many dimensions. For
a recent application that studies the importance of these hyperparameters in producing
the ‘correct’ inference see Lubik, Matthes, and Owens (2016).
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and the covariance matrices of the processes governing time variation.
In the second step, the remaining parameters are drawn from a distri-
bution conditional on the data and on the draw from the first step ΣT .
Specifically, the procedure is to

1. draw ΣT from p(ΣT |yT , Q, S,W,ΛT , θT , sT )

2. draw ΛT , θT , sT , Q, S, andW from p(Q,S,W,ΛT , θT , sT |yT ,ΣT ).

The second step is implemented as a sequence of intermediate steps.
First, the algorithm draws from p(Q,S,W,ΛT , θT |yT ,ΣT ), while the
auxiliary variables sT are then drawn from p(sT |Q,S,W,ΛT , θT , yT ,ΣT ).
This second step is split up into these two parts since this blocking
scheme allows drawing θT without having to condition on sT . Specifi-
cally, the sequence is to

i) draw ΛT from p(ΛT |yT ,ΣT , Q, S,W, θT )

ii) draw Q, S and W from p(Q,S,W |yT ,ΛT ,ΣT , θT )

iii) draw θT from p(θT |yT , Q, S,W,ΛT ,ΣT )

iv) draw sT from p(sT |yT , θT , Q, S,W,ΛT ,ΣT ).

Drawing ΣT

The first step of the Gibbs sampler involves generating draws of the
elements of covariance matrix ΣT from a distribution that is conditional
on the data yT and the remaining coeffi cient matrices. This conditional
distribution conflates elements of the prior and the likelihood function;
it is, in fact, a marginal density of the posterior. Draws are realizations
of the random variable ΣT and are accordingly recorded. We now
describe how a known conditional probability distribution for ΣT can
be derived under this blocking scheme.

We can rewrite equation (3) under the assumption that et features
stochastic volatility:

Λt
(
yt −X ′tθt

)
= y∗t = Σtεt, (37)

where we have made use of the decomposition of the errors in equation
(8). Given the conditioning set of this block in Step 1 above, y∗t is
known. We can nowcast this representation into a Gaussian state-
space system to draw the elements of ΣT . Squaring each element of
this vector and taking natural logarithms yields for each element i of
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y∗t :
14

log
(
(y∗i,t)

2
)

= y∗∗i,t . (38)

We define σt as the vector of the diagonal elements of Σt.
We then get the state-space system:

y∗∗t = 2 log(σt) + 2 log(εt), (39)

log(σt) = log(σt−1) + ηt. (40)

This is a linear state-space system with y∗∗t being the observable vari-
able, while log(σt) is the unobserved state variable. However, it is not
Gaussian: each element of 2 log(εt) is distributed as logχ2 since it is the
log of the square of a standard-normal random variable. These shocks
can be approximated with a mixture of seven normal variables, as sug-
gested by Kim, Shephard, and Chib (1998). In this step, the auxiliary
variables sT are introduced to provide a record of which of the seven
mixture components is ‘active’for each element of 2 log(εt). Given this
approximation, we have another Gaussian state-space system, which
can now be evaluated using the Kalman filter. The prediction formulas
listed above can be used to generate realizations, that is, draws, of the
unobservable σt over time.

Drawing ΛT

Given the draws for the matrix ΣT , which is a component of the
reduced-form error matrix Ωe,t per equation (8), we can now sample its
other component, namely the loadings ΛT . The first step is to rewrite
equation (3) but utilizing a different blocking:

Λt(yt −X ′tθt) = Λtŷt = Σtεt. (41)

The difference to the previous sampling scheme for ΣT is that we now
condition on ΣT and are interested in sampling the free elements of the
lower-triangular matrix Λt.

We can therefore rewrite the equation above by moving elements
of Λtŷt to the right-hand side. We can write:

ŷt = Ztλt + Σtεt, (42)

where Zt is a selection matrix that contains elements of the vector ŷt.
Together with the set of equations (7), this equation forms a linear
Gaussian state-space system. The fact that Zt depends on elements
of ŷt poses no problem for the sampling step under the assumption

14 In practice, and in order to improve numerical stability, we instead define
log((y∗i,t)

2 + c) = y∗∗i,t, where c is a small ‘offset’ constant.



T.A. Lubik and C. Matthes: TVP-VARs 341

that the innovation covariance matrix for λ, S, is block diagonal. The
Kalman filter can then be used to obtain draws for ΛT .

Drawing Innovation Covariance Matrices

In the next step, we are drawing from the innovation covariance ma-
trices for the processes governing the time variation of the VAR pa-
rameters. As discussed above, each of the matrices Q, S, and W is
assumed to have an inverse-Wishart prior to facilitate the application
of the Kalman filter within a Gaussian state-space system. In combina-
tion with a normally distributed likelihood, this prior forms a conjugate
family since the innovations in the laws of motion for parameters and
volatilities are Gaussian. Consequently, the posterior will also be of the
inverse-Wishart form, which has a closed-form representation.15 It is
then straightforward to sample the innovation covariance matrices by
drawing from the known inverted-Wishart posterior.

Drawing θT

In a penultimate step, we are now ready to sample from the conditional
distribution for the TVP-VAR coeffi cient matrices. Given the prelim-
inary work up this point and the use of the conditioning scheme that
we describe above, this is now straightforward. Since we condition on
draws for the covariance matrix of et, which in the general model with
stochastic volatility will consist of draws for Λt and Σt, equations (3)
and (4) form a Gaussian state-space system. We can sample from the
posterior distribution for θT in the manner described above by using
the Kalman prediction equations to sequentially construct the draws.

Drawing sT

The final step that brings everything together involves the auxiliary
variables sT that we use to track the stochastic volatilities. As we
discuss above, each element of st is drawn from a discrete distribution,
a mixture of normals, with seven possible outcomes. Denote the prior
probability for outcome j as qj . The conditional posterior probability
used to drawing outcome j for each element of sT is then proportional
to

qjfN (y∗∗it , 2 log(σi,t) +mj , v
2
j ), (43)

15 See, for example, Gelman et al. (2014).
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where mj and vj are the given mean and standard deviation of each
element of the Gaussian approximation and fN (x, a, b) is the Gaussian
density with argument x, mean a, and variance b.

Reporting the Results

Estimating a Bayesian TVP-VAR is tantamount to sampling from a
posterior distribution. While the posterior summarizes all information
available in the data and in the prior, it is an unwieldy object in that
it is a multivariate distribution of which only the conditional distrib-
utions are known. The Gibbs sampling algorithm solves this problem
by sequentially building up the joint distribution from the conditional
distributions. Yet, what Bayesian estimation delivers are distributions
and not point estimates. Reporting the results in a manner that is use-
ful for economic interpretation therefore requires some thought. The
Bayesian literature focuses on posterior means or medians as counter-
parts to frequentist point estimates. Instead of standard errors and
confidence intervals, Bayesians report coverage regions that essentially
are regions of the posterior distribution in which a given percentage of
draws fall around a focal point such as the mean or the median.

The results from Bayesian fixed-coeffi cient VARs can be reported in
a similar manner as for frequentist approaches. The reporting problem
is compounded, however, in the case of TVP-VARs, since the distrib-
ution of the VAR parameters potentially changes at every data point,
which is the very definition of time variation. Instead of reporting a
single distribution in the case of a fixed-coeffi cient VAR, the Bayesian
econometrician now faces the challenge of reporting a sequence of dis-
tributions. We describe in the following how to approach this issue for
the case of impulse response functions, which are key objects in the
toolkits of time series econometricians.

Impulse Responses

VARs can be used to study the effects of exogenous shocks, that is,
of unpredictable changes in the economy. For this purpose, the main
tool in VAR analysis is the impulse response function that describes
the behavior of a variable in response to a shock over time. In order to
understand the sources of business cycles or to analyze policy, it is often
desirable to give these shocks a structural interpretation. By doing so,
researchers can link the shocks to economic theories.16 However, the

16 In line with time-invariant VARs, the literature usually focuses on studying the
effects of shocks to observables, not shocks to the parameters that vary over time.
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shocks that are estimated as residuals from a regression of the type
(1) are generally not useful for this purpose as they conflate the effects
of underlying structural disturbances. That is, the estimated residuals
are generally correlated, in which case it is not possible to identify the
effects of an individual disturbance.

More specifically, a researcher may be interested in uncovering un-
correlated disturbances wt that are a linear function of the regression
errors et:

Htwt = et, (44)

where it is assumed that wt is Gaussian with mean zero and a covariance
matrix that is normalized to unity, wt ∼ N (0, I). The conformable ma-
trix Ht is used to transform the errors et into the structural shocks wt.
How to derive and impose restrictions on Ht is one of the key issues
in VAR analysis. For instance, the economic theories used to define
the shocks, e.g., DSGE models, can be used to derive restrictions on
Ht. For the most part, it is common practice in the VAR literature
to focus on imposing few enough restrictions so that the restrictions
do not alter the likelihood function of the model. This has the advan-
tage that the researcher can first estimate a statistical, ‘reduced-form’
model without worrying about the restrictions used to derive structural
shocks. Structural shocks can then be studied after the estimation step
is completed.17

For purposes of exposition we now discuss the most common and
straightforward method for identifying structural shocks. It only as-
sumes restrictions on the within-period-timing of shocks. The specific
idea is that some shocks may be causally prior to other shocks in the
sense that they have an impact on some variables and not on others
within the period. The easiest way to implement this restriction is
to make Ht lower triangular. This can be achieved by calculating the
Cholesky decomposition of the covariance matrix of the forecast errors.

In the context of TVP-VARs, this type of recursive ordering is ap-
pealing because Λ−1

t Σt already has lower triangular form so that the
matrix Ht can be directly calculated from the output of the Gibbs
sampler. Given Ht, the impulse responses can then be calculated
by simulation.18 In contrast to fixed-coeffi cient VARs, it is thus not

17 Using more restrictions so that the likelihood function is altered relative to the
estimation of a reduced-form model means that the restrictions have to be imposed
during estimation, that is, a ‘structural model’ has to be estimated directly. This is
not often carried out, even though algorithms are now available even in the context of
TVP-VARs, for instance in Canova and Perez-Forero (2015).

18 A simpler method to approximate impulse responses is to draw a set of para-
meters from the Gibbs sampler output for each time period t and then compute im-



344 Federal Reserve Bank of Richmond Economic Quarterly

possible to separate the estimation from the identification stage. In this
case, the estimated variance-covariance matrix can be decomposed into
its recursive components after the VAR is estimated. A detailed de-
scription of the algorithm is available in Canova and Gambetti (2009).
We briefly describe the algorithm below.

Conceptually, we can define an impulse response as the difference
between the expected path of the variables in the model when a shock
of a given size hits and the expected path of the same variables when
all shocks are drawn randomly from their distributions. In order to
calculate impulse responses starting at time t, the first step is to draw
a set of parameters from the Gibbs sampling output. Next, paths of
future time-varying parameters and volatilities and a sequence of w
shocks are simulated once the identification matrix Ht is computed.
These objects are then used to calculate one path for the variables of
interest using equation (2). The same exercise is repeated, but with the
value of one structural shock fixed at one point in time, leaving all other
structural shocks at the simulated values. This yields another path for
the variables of interest, so that the difference between the paths is
one realization of the impulse response. This sequence is repeated a
large number of times for different parameter draws from the posterior
and different simulated values of parameter paths and shocks. The
approach produces a distribution of a path for the impulse responses
for each time period in the sample. To report the results, the literature
usually either picks a subset of time periods and then plots the median
response as well as posterior bands for each time period separately or
authors focus on the posterior median responses and plot those over
time and for different horizons in a three-dimensional plot.19

3. APPLICATION: A SIMPLE TVP-VAR MODEL
FOR THE UNITED STATES

We now apply the methods discussed above to three key economic
variables: the inflation rate, the unemployment rate, and a nominal
interest rate. These three variables form the core of many models that
are used to analyze the effects of monetary policy, such as the standard
New Keynesian framework. Moreover, they are staples in most VARs
that are used for the analysis of monetary policy. In his seminal paper,

pulse responses as if those parameters at time t were parameters of a fixed coeffi cient
VAR. This approach is computationally easier but neglects the fact that parameters and
volatilities can change in the future.

19 An example of the former can be found in Benati and Lubik (2014), while the
latter approach is used in Amir-Ahmadi, Matthes, and Wang (2016).
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Primiceri (2005) estimates a TVP-VAR in these three variables to study
the effects of monetary policy in the post-World War II period in the
United States. We base our application on his specification.

We update the data set to include more recent observations. The
full sample ranges from the first quarter of 1953 to the first quarter of
2007, before the onset of the Great Recession. The data are collected
quarterly, whereby percentage changes are computed on a year-over-
year basis. As our measure of inflation, we use the (log-difference of
the) GDP deflator, reported in percentage terms. As our economic
activity variable, we pick the headline unemployment rate, while we
use the three-month Treasury bill rate as the nominal interest rate
variable. The data series are extracted from the FRED database at
the Federal Reserve Bank of St. Louis.

We follow Primiceri (2005) in selecting a lag length of two for the
TVP-VAR. This choice has become common in the TVP-VAR liter-
ature. In fixed-coeffi cient VARs, a higher number of lags is usually
used, but the higher degree of complexity and dimensionality imposes
nontrivial computational constraints. A lag length of two thus seems a
good compromise and also allows for direct comparison of our results
with other key papers in the literature. As discussed above, we need to
provide an initialization for the prior. We follow common practice and
use the first ten years of data for this purpose. The remaining priors
are as in Primiceri (2005).

The first set of results that we extract from our TVP-VAR is con-
tained in Figure 1. We report the median coeffi cient estimates from
our model in three separate panels. The plots start with the first quar-
ter of 1963 because the first ten years of the sample were used for
the initialization of the prior. The upper panel contains plots of the
time-varying lag coeffi cients Aj,t and the intercept ct from equation
(2). The overriding impression is that there is not much time variation
in the lag coeffi cients. This is a finding that occurs throughout much
of the TVP-VAR literature. However, evidence of some more time
variation is apparent from the middle and lower panels, which report
the time-varying components of the reduced-form innovation variance
Ωe,t = Λ−1

t ΣtΣ
′
t

(
Λ−1
t

)′
.

The middle panel contains the nonzero and nonunity elements of the
lower triangular matrix Λ−1

t . The three off-diagonal elements are thus
related to the correlation pattern in the estimated covariance matrix of
the shocks. The panel shows that the relationship between inflation and
the interest rate errors is consistently negative throughout the sample,
while it is positive between the interest rate and unemployment. This
observation corresponds to the notion, at least in a reduced-form sense,
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Figure 1 Estimated Coefficients

that the interest rate and unemployment move in the same direction
while the interest rate and inflation rate move in the opposite direction.

The coeffi cient λπ,u for the relationship between inflation and un-
employment in the middle panel exhibits more variation. It is positive
from 1976 until 2002 and negative before and after. Despite uncertainty
surrounding this estimate (not reported), it reveals changes in how un-
employment and inflation have interacted over the sample period. This
observation is of particular interest since the relationship between these
two variables is sometimes described as the Phillips curve, which may
embody a trade-off for the conduct of monetary policy. That this trade-
off apparently changed in the late 1970s and again in the early 2000s is
noteworthy. Finally, the lower panel of Figure 1 depicts the series for
the elements of the Σt, which is a diagonal matrix. Movements in these
terms indicate the extent to which volatility of the estimated errors has
changed. The most variation is attributed to the interest rate, followed
by the inflation rate.

Figure 1 summarizes all coeffi cient estimates θt from the TVP-
VAR with stochastic volatility in a comprehensive manner. The lesson
to take away from this is that almost all of the time variation in the
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post-World War II history of the three variables appears to be due to
stochastic volatility and not to changes in the lag coeffi cients. This
observation is thus conceptually in line with the argument presented
in Sims and Zha (2006), who use a Markov-switching VAR and also
attribute changes in the behavior of the U.S. business cycle to regime
changes in the shocks.

However, we want to raise some caveats for this interpretation.
First, the relative importance of variations in the shocks versus changes
in the parameters is a long-standing issue in econometrics, ranging
from test for structural change (Lubik and Surico 2010) to the proper
conditioning of state-space models including unobserved components
(Stock and Watson 2003). Disentangling the relative importance of
time-variation in the shocks and in lag coeffi cients is a challenge that
a Bayesian approach has not overcome, but the judicious use of priors
gives some structure to the issue. Specifically, the choice of an initial
prior is informed by a pre-sample analysis, whereby the data stem from
the same underlying data-generating process as the latter part of the
sample.

Second, there is a concern that TVP-VARs with SV have a ten-
dency to attribute time variation in the data to the stochastic volatility
part of the model and not to the lag coeffi cients. In a simple example
above, we argue that the inclusion of stochastic volatility is necessary
to avoid a pitfall in the opposite direction. Lubik, Matthes, and Owens
(2016) address this aspect in a simulation study based on an underlying
nonlinear model and judge that a TVP-VAR does in fact come to the
right conclusion as to the sources of time variation, but that a judicious
choice of prior is crucial.

The second set of results are reported in Figure 2. These are
the impulse response functions of inflation, unemployment, and the
interest rate itself to a unit, that is, a 1 percentage point, increase in
the three-month nominal rate bond rate. As discussed above, there
are impulse responses functions at every single data point, so reporting
the full set becomes a challenge. We therefore pick three dates from
each decade that are associated with, respectively, the height of a deep
recession, the onset of the Volcker disinflation, and at the early stages
of a long expansion: 1975:Q1, 1981:Q3, and 1996:Q1. For identification
purposes, the variables are in the order: inflation, unemployment, and
the interest rate. This implies that the interest rate has no contem-
poraneous effect on inflation and unemployment, but that it responds
contemporaneously to shocks in these two variables. In discussing the
result, we focus on the effects of monetary policy shocks.

Figure 2 shows that the impulse responses are remarkably similar
across all three time periods. This has already been indicated by the
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Figure 2 Impulse Response Functions

observation from Figure 1 that the estimated lag coeffi cients exhibit
virtually no time variation. Since the impulse responses are functions
of the lag coeffi cients, this clearly carries over. The structural responses
are also functions of the matrix Ht and therefore related to the factors
of the reduced-form error covariance matrix, Λ−1

t and Σt, which show
more variation; yet, this does not carry over to the impulse responses
despite the sign change of the elements of Λ−1

t .
Following a unit innovation, the interest rate returns slowly over

time to its long-run level, which it reaches after five years. The re-
sponse is fairly tightly estimated based on the 90 percent coverage
regions. The interest rate’s own response in the last column of the fig-
ure is very much the same in all periods. On impact, the response of
the unemployment rate to a contractionary interest rate shock is zero
by construction. Afterward, unemployment starts to rise slowly until
hitting a peak around the two-year mark. It returns to its starting
value after five years. The unemployment response is much less pre-
cisely estimated, with zero included in the coverage region for the first
year after impact. Again, the responses across episodes are remarkably
similar. An additional point to note is that the median extent of a 1
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percentage point interest rate rise is a 0.12 percentage point increase in
the unemployment rate. Finally, the interest rate hike reduces inflation
over time with a fairly wide coverage region and very similar responses
in each of the three time periods.

4. CONCLUSION

This article discusses and reviews the concept and the methodology
of time-varying parameter VARs. This class of empirical models has
proved to be a flexible and comprehensive approach to capturing the
dynamics of macroeconomic series. We focus on the specification and
implementation of TVP-VARs in a Bayesian framework since it offers
unique computational challenges. To this effect, we present the Gibbs
sampler as a convenient and adaptable method for inference. We il-
lustrate the approach by means of a simple example that estimates a
small-scale TVP-VAR for the United States.

The TVP-VAR literature is still in its infancy, and there are several
issues we plan to address in further detail in a companion article to the
present one. Identification of structural shocks is a key element of time-
series analysis. The application in the present article uses a simple, yet
widely used, recursive identification scheme that is not without its prob-
lems. Alternative identification schemes, such as long-run restrictions
and sign restrictions, warrant additional consideration although they
present unique challenges in a TVP-VAR with SV context. A second
issue is to what extent TVP-VARs are able to capture a wide variety
of nonlinear behavior in macroeconomic time series, especially when
compared to alternative methods, such as regime-switching VARs.
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