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How Large Are Returns to
Scale in the U.S.? A View
Across the Boundary

Thomas A. Lubik

I
n this article, I investigate the size of the returns to scale in aggre-
gate U.S. production. I do so by estimating the aggregate returns
to scale within a theory-consistent general equilibrium framework

using Bayesian methods. This approach distinguishes this article from
much of the empirical literature in this area, which is largely based
on production-function regressions and limited-information methods.
The production structure within a general equilibrium setting, on the
other hand, is subject to cross-equation restrictions that can aid and
sharpen inference. My investigation proceeds against the background
that increasing returns are at the core of business cycle theories that
rely on equilibrium indeterminacy and sunspot shocks as the sources
of economic fluctuations (e.g., Benhabib and Farmer 1994; Guo and
Lansing 1998; Weder 2000).

Specifically, the theoretical literature has shown that multiple equi-
libria can arise when the degree of returns to scale is large enough.
At the same time, the consensus of a large empirical literature is
that aggregate production exhibits constant returns. However, equi-
librium indeterminacy is a characteristic of a system of equations and
can therefore not be assessed adequately with production function re-
gressions. Instead, empirical researchers should apply full-information,
likelihood-based methods to conduct inference along these lines. as not
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allowing for indeterminacy leaves the empirical model misspecified. I
therefore estimate the returns to scale in a theory-consistent manner
using econometric methods that allow for indeterminate equilibria. I
apply the methodology developed by Lubik and Schorfheide (2004) to
bridge the boundary between determinacy and indeterminacy and es-
timate a theoretical model over the entire parameter space, including
those parameter combinations that imply indeterminacy. This view
across the boundary allows me to detect the possibility that data were
generated under indeterminacy and provides the correct framework for
estimating the returns to scale.

I proceed in three steps. First, I estimate a standard stochastic
growth model with increasing returns to scale in production. In this
benchmark specification, I estimate the model only on that region of the
parameter space that implies a unique, determinate equilibrium to get
an assessment of what a standard approach without taking into account
indeterminacy would result in. The estimated model is based on the
seminal paper of Benhabib and Farmer (1994). The mechanism that
leads to increasing returns is externalities in the production process:
individual firms have production functions with constant returns, but
these are subject to movements in an endogenous productivity com-
ponent that depends on the production decisions by all other firms in
the economy. The key assumption is that individual firms take this
productivity component as given and thereby do not take into account
that increases in individual factor inputs also raise this productivity
component. In the aggregate, the feedback effect from this mechanism
can lead to increasing returns in the economy-wide production function.
Benhabib and Farmer (1994) show analytically that if the strength of
this feedback effect, tied to an externality parameter, is large enough,
the resulting equilibria can be indeterminate in the sense that there are
multiple adjustment paths to the steady state.

In this benchmark model with externalities, I find estimates that
are tightly concentrated around the case of constant returns. Moreover,
I also find that aggregate labor supply is fairly inelastic. This finding
presents a problem for the existence of indeterminate equilibria due to
increasing returns. It can be shown algebraically that the threshold re-
quired for an indeterminate equilibrium to arise depends on how elastic
the labor supply is. Even with only mildly increasing returns, crossing
the boundary into indeterminacy requires a perfectly elastic labor sup-
ply, both of which factors I can rule out from my estimation. Based
on this baseline model with externalities, it would therefore seem un-
likely that equilibrium indeterminacy would arise since the parameter
estimates are far away from their threshold values.
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In the second step, I therefore estimate a modified version of the
benchmark model that allows for variable capacity utilization based
on the influential paper by Wen (1998). He shows that the indeter-
minacy threshold is considerably closer to the constant-returns case
when production is subject to variable capacity utilization, that is,
when firms can vary the intensity with which the capital stock is used.
Given typical parameter values from the literature, the required de-
gree of increasing returns for an indeterminate equilibrium is within
the range of plausible empirical estimates. When I estimate the model
with variable capacity utilization, I find mildly increasing returns, but
the statistical confidence region includes the constant-returns case. As
in the benchmark model, I find an inelastic labor supply. In Wen’s
model, the threshold value of the returns-to-scale parameter is a func-
tion of the labor supply elasticity. The threshold attains a minimum for
a perfectly elastic labor supply but rises sharply when labor becomes
less elastic. Even with mildly increasing returns, these results indicate
that indeterminacy will likely not arise in the framework with variable
capacity utilization on account of the labor supply parameter.

A caveat to this conclusion is that the results are obtained by re-
stricting the estimation to the determinate region of the parameter
space. If the data are generated under parameters that imply inde-
terminacy, the thus-estimated model would be misspecified and the
estimates biased. This potential misspecification would manifest itself
as a piling up of parameter estimates near or at the boundary between
determinacy and indeterminacy (Canova 2009; Morris 2016) or it might
not be detected at all if there is a local mode of the likelihood function
in the determinacy region.

In a third step, I therefore apply the methodology developed by
Lubik and Schorfheide (2004) that takes the possibility of indetermi-
nacy into account and allows a researcher to look across the boundary.1

Reestimating the two models over the entire parameter space leave the
original results virtually unchanged. Using measures of fit, I find that
it is highly unlikely that U.S. data are generated from an indeterminate
equilibrium and are driven by nonfundamental or sunspot shocks. The
combination of at best mildly increasing returns and inelastic labor
supply rule out indeterminacy even after correcting for potential biases
in the estimation algorithm.2

1 This notion is discussed in further detail in Lubik and Schorfheide (2004) and An
and Schorfheide (2007).

2 Conceptually, this article is closest to Farmer and Ohanian (1999). They esti-
mate a model with variable capacity utilization and preferences that are nonseparable
in consumption and leisure. This specification requires only a small degree of increas-
ing returns to generate indeterminacy. Their empirical estimates indicate that returns
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The article is structured as follows. In the next section, I specify
the benchmark model, namely a standard stochastic growth model with
externalities in production, and I discuss how this can imply increasing
returns to scale and equilibrium indeterminacy. Section 2 describes my
empirical approach and discusses the data used in the estimation. In
the third section, I present and discuss results from the estimation of
the benchmark model, while I extend the standard model in Section
4 to allow for variable capacity utilization. I address the issue of an
indeterminate equilibrium as the source of business cycle fluctuations
within this context in Section 5. The final section concludes and dis-
cusses limitations and extensions of the work contained in this article.

1. A FIRST PASS: THE STANDARD RBC MODEL
WITH EXTERNALITIES

The benchmark model for studying returns to scale is the standard
stochastic growth model with an externality in production. I use this
model as a data-generating process from which I derive benchmark
estimates for the returns to scale from aggregate data. Moreover, this
model has been used by Benhabib and Farmer (1994) and Farmer and
Guo (1994) to study the implications of indeterminacy and sunspot-
driven business cycles. It will therefore also serve as a useful benchmark
for capturing the degrees to scale when the data are allowed to cross
the boundary between determinacy and indeterminacy.

In the model economy, a representative agent is assumed to maxi-
mize the intertemporal utility function:

E0
∞∑
t=0

βt

[
log ct − χt

n1+γt

1 + γ

]
, (1)

subject to sequences of the budget constraint:

ct + kt+1 = Atetk
α
t n

1−α
t + (1− δ)kt, (2)

by choosing sequences of consumption {ct}∞t=0, labor input {nt}
∞
t=0,

and the capital stock {kt+1}∞t=0. The structural parameters satisfy the
restrictions: 0 < β < 1, γ ≥ 0, 0 < α < 1, 0 < δ < 1, whereby β is
the discount factor, γ the inverse of the Frisch labor supply elasticity,
α the capital share, and δ the depreciation rate.

to scale are, in fact, increasing, but that U.S. data are nevertheless better described
by the standard RBC model without sunspot shocks. This paper differs from theirs
in that they estimate the model equation by equation without imposing cross-equation
restrictions. Secondly, they do not formally test whether U.S. time series are better rep-
resented by a specification that allows for sunspot shocks. In this article, I conduct a
formal test that can distinguish between the two variants.
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The externality in the production process, et, is taken paramet-
rically by the agent. Conceptually, this means that when computing
first-order conditions for the agent’s problem, et is taken as fixed. It is
only when equilibrium conditions are imposed ex post that the func-
tional dependence of et on other endogenous variables is realized.3 I
assume that et depends on the average capital stock kt and labor input
nt:

et =
[
k
α
t n

1−α
t

]η−1
, (3)

where the externality parameter η ≥ 0 captures the returns to scale.
When η = 1, production exhibits constant returns, while for η > 1
increasing returns are obtained. In equilibrium, kt = kt and nt = nt.
The social production function is thus given by:

yt = Atk
αη
t n

(1−α)η
t . (4)

The model economy is driven by two exogenous shocks, technol-
ogy At and preference χt, which captures variations in the disutility
of working. I assume that At is a stationary first-order autoregres-
sive process. Specifically, the level of technology is assumed to evolve
according to:

At = (At−1)
ρA eε

A
t , εAt ∼ N

(
0, σ2A

)
, (5)

where 0 ≤ ρA < 1 and mean technology is normalized to one. The shock
εAt is a zero-mean Gaussian innovation with variance σ

2
A. The prefer-

ence process χt is also assumed to follow a stationary AR(1) process:

χt =
(
χt−1

)ρχ eεχt , εχt ∼ N (0, σ2χ) , (6)

where 0 ≤ ρχ < 1. The preference shock alters the marginal rate of
substitution between consumption and leisure.

The first-order conditions for this model form a system of equations
that needs to be solved in order to provide a reduced form representa-
tion that serves as an input into the estimation procedure. This can
be accomplished by approximating the equilibrium conditions in the
neighborhood of the steady state using log-linearization. The resulting
linear rational expectations model can then be solved using standard
methods. I list the linearized equations that are used to estimate the
model in the Appendix.

3 A social planner would recognize this dependence and impose it ex ante, that
is, before taking first-order conditions. It is this asymmetry that leads to lower social
welfare in the benchmark case and creates a channel for welfare-improving tax policy,
for instance. In addition, it creates the underpinning for equilibrium indeterminacy as
Benhabib and Farmer (1994) show.
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In a seminal paper, Benhabib and Farmer (1994) demonstrate that
if the degrees of scale in production are large enough, then the model
exhibits equilibrium indeterminacy. This has two implications for the
behavior of the model. First, there are multiple adjustment paths to
the unique steady state. Second, equilibrium dynamics can change
markedly when compared to the determinate case in that nonfunda-
mental shocks, “sunspots,” can affect equilibrium outcomes and gen-
erate additional volatility. Benhabib and Farmer (1994) derive a simple
analytical threshold condition for indeterminacy to arise in a continuous-
time framework. The corresponding conditions for the discrete-time
case, which are relevant for the model that I take to the data, are con-
siderably more complicated, lengthy, and in parts not very intuitive. I
list and discuss them in the Appendix. In order to develop intuition,
I therefore derive insights based on the well-known Benhabib-Farmer
condition first.

A necessary condition for indeterminacy to arise in Benhabib and
Farmer (1994) is that the returns-to-scale parameter η is above a certain
threshold given by the following:

η >
1 + γ

1− α. (7)

It has to be larger than the ratio between the exponent on the disutility
of labor 1 + γ and the labor share in production. Since the latter is a
value between zero and one and typically found to be around two-thirds,
indeterminacy in this model requires quite high increasing returns. This
high level of a threshold is further exacerbated if the labor supply is
less than perfectly elastic, that is, if γ > 0.

The intuition behind the condition is that if the returns to scale are
large enough, the aggregate labor demand schedule is upward-sloping.
In the standard case, workers are employed until their marginal prod-
uct equals their wage. Hiring an additional worker reduces firm profits
since the competitive wage would be higher than what the worker could
produce at the margin. With production externalities as in (3), how-
ever, an additional feedback effect arises. At the margin, additional
labor input raises economy-wide total factor productivity through its
effect on et, which feeds back on the competitive wage and counters the
declining marginal product of labor. When this effect is large enough,
labor demand starts sloping upward since the externality factor be-
comes dominant. In this scenario, the economy becomes susceptible to
the influence of sunspot shocks that are unrelated to fundamentals such
as productivity disturbances. When firms believe employment is higher
than it should be given the fundamentals, this belief is self-validating
in an indeterminate equilibrium: higher labor input leads to a stronger
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externality, which raises production and, in turn, requires more labor
input.

Since I am interested in taking this model to the data, I employ
a discrete-time model. I list the corresponding analytical determinacy
conditions in the Appendix. Generally speaking, the intuition from the
continuous-time condition (7) carries over to discrete time, specifically
the fact that the labor-demand schedule needs to be upward-sloping. I
now turn to the first empirical exercise, where I estimate the standard
RBC model with externalities to determine the returns to scale in the
aggregate production function for the U.S. economy. I will do so against
the background of the possibility of an indeterminate equilibrium in the
data in case the indeterminacy conditions apply. Whether they do so
is naturally an empirical question.

2. EMPIRICAL APPROACH

Bayesian Estimation

My empirical approach to the questions raised in this article is Bayesian
DSGE estimation. This methodology is discussed in detail in An and
Schorfheide (2007). The main object of investigation is the parameter
vector θ, on which inference is conducted by extracting information
from the observed data Y T = {yt}Tt=1, with a sample size of T . The data
are interpreted through the lens of a structural model, which provides
restrictions necessary for parameter identification. A log-linear DSGE
model can be written in terms of a state-space representation for yt:

yt = Ξ (θ) st, Γ0 (θ) st = Γ1 (θ) st−1 + Ψ (θ) εt + Π (θ) ηt, (8)

where the vector st collects the state variables of the theoretical model
and where the coeffi cient matrices are shown as generally dependent
on the structural parameters θ. εt is a vector of fundamental shocks,
and the vector ηt collects the endogenous forecast errors of the ra-
tional expectations formation process in the parlance of Sims (2002).
The model can be solved under determinacy and indeterminacy by the
method described in Lubik and Schorfheide (2003).

Empirical evaluation in this Bayesian framework starts by speci-
fying a probability distribution of the structural shocks {εt}Tt=1, from
which a likelihood function L

(
θ|Y T

)
can be obtained by means of the

Kalman filter. The next step is to specify a prior distribution p(θ) over
the structural parameters. The data Y T are then used to update the
prior through the likelihood function. The main concept in Bayesian
inference is the posterior distribution p(θ|Y T ), which is the distribution
of the parameters conditional on having seen the data. Moments of the
posterior can then be used to characterize the parameter estimates.
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The posterior distribution is computed according to Bayes’Theorem:

p(θ|Y T ) =
L(θ|Y T )p(θ)∫
L(θ|Y T )p(θ)dθ

, (9)

whereby the denominator is the marginal data density, which can serve
as a measure of overall model fit. Finally, the prior and posterior can be
used to directly compare two different models or specifications, H0 and
H1, as to which explains a given data set better. This is done by con-
ducting a posterior odds test, which is similar to computing likelihood
ratios. I apply this test later on to assess whether U.S. data are more
likely to have been generated under determinacy or indeterminacy.

Data and Priors

I estimate all models in this article on quarterly U.S. data from 1954:3
to 2007:4.4 I estimate the benchmark specifications on two data series,
namely output and employment. Aggregate output yt is measured as
(the natural logarithm of) real per capita GDP. Since I assume that
the model is driven by stationary shock processes, I need to remove any
trends. I do so by passing the output series through an HP filter with
smoothing parameter λ = 1600, which is standard for quarterly data.
Employment nt is measured as average weekly hours times employment
from the Household Survey divided by population. I assume that the
employment series is stationary, so that no further transformation is
necessary. In the extended model discussed in Section 4, I also include
a measure of capacity utilization in the data set. This is measured
by the series available from the Board of Governors and reported as
a percentage of industrial production. No further transformation is
applied to these data series.

In a Bayesian DSGE estimation approach, a prior distribution needs
to be specified for the model parameters. I largely choose prior means to
be consistent with values established previously in the literature. The
prior distributions are reported in Table 1. The specific form of the
density is predicated by the type of parameter. A parameter restricted
to lie on the unit interval is assumed to have a beta-distribution, while
parameters on the real line are typically chosen to have gamma distri-
butions, whereas variances are described by inverse gamma densities.
I choose tight priors on the capital share and depreciation, but looser
priors on the labor-supply elasticity and the returns-to-scale parameter.

4 I choose to end my sample period at the onset of the Great Recession. The sharp
decline in GDP would be diffi cult to capture even with HP-filtered data. Moreover, the
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Table 1 Prior Distribution

Name Range Density Mean Std. Deviation

α [0, 1) Beta 0.34 0.020
β [0, 1) Beta 0.99 0.002
γ IR+ Gamma 2.00 0.500
δ [0, 1) Beta 0.025 0.005

η IR+ Gamma 1.00 0.500
ρA [0, 1) Beta 0.20 0.100
ρχ [0, 1) Beta 0.95 0.050
σA IR+ InvGamma N.A. N.A.
σχ IR+ InvGamma N.A. N.A.

Note: The inverse gamma priors are of the form p(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2 ,

where ν = 1 and s equals 0.015. The prior is truncated at the boundary of the
determinacy region.

Specifically, I set a very tight prior for the discount factor β with a
mean of 0.99. The prior on the capital share α has a mean of 0.34 with
a standard deviation of 0.02, while the depreciation rate δ has a mean
of 0.025 with a standard deviation of 0.005. These are standard values
in the calibration literature, but I allow for some flexibility in these
parameters to somewhat adjust to the model environment at hand. I
impose a more agnostic prior on the labor-supply elasticity parameter
γ, where I impose some curvature on the disutility of labor with a mean
of 2.0 and a standard deviation of 0.5. This value is somewhat distant
from the case of a perfectly elastic labor supply with γ = 0. I choose the
higher value since there is considerable evidence, both microeconomic
and macroeconomic, that labor supply is not perfectly elastic and can
be quite inelastic. I allow for some variation in this parameter because
of the uncertainty surrounding this value.

The key parameter in this article is the degree of returns to scale,
η. I center this value at the constant-returns case of 1 but assume a
large standard deviation of 0.5. My underlying motivation is that I
want the data to clearly dominate the posterior estimate. Finally, the
parameters governing the two exogenous shock processes, technology At
and preferences χt, are based on prior experience. The autocorrelation
parameter for the technology process ρA has a mean of 0.95, while the
corresponding value for ρχ is a slightly less persistent 0.9.

apparent shift in the level path of GDP that is visible in the data from 2008 on might
affect parameter estimates.
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3. SOME BASELINE ESTIMATION RESULTS

As my benchmark, I estimate the RBC model with externalities by
letting all parameters vary freely over the admissible range as discussed
in the model section above. Some of the parameter combinations would
imply indeterminacy given the condition (7). As discussed before, the
RBC model with externalities requires both very high labor supply
elasticity (a small γ) and increasing returns for indeterminacy (a high
enough η > 1). In particular, it would require values that are beyond
those usually found in the literature. Studies using production function
data such as Basu and Fernald (1997) typically find at best only mildly
increasing returns at the aggregate level.

In the benchmark specification, I adopt a naive approach to the po-
tential presence of indeterminate equilibria. I let myself be guided by
prior studies that use limited information or single-equation methods
that have nothing to say about indeterminacy since it is a property of
a dynamic general equilibrium system (see the discussion in Lubik and
Schorfheide [2004]). Prior inspection shows that it is highly unlikely
that the returns to scale are large enough to meet the indeterminacy
threshold. For instance, even with perfectly elastic labor supply, the
indeterminacy condition in the continuous case would require a returns-
to-scale parameter of η > 1.5 for α = 1/3. It therefore seems a priori
unlikely that the benchmark model would produce indeterminate out-
comes based on typical parameter values found in the literature.

I thus proceed by estimating the model only over the determinate
region over the parameter space. This procedure establishes a baseline
as to what the parameter estimates that define the threshold between
determinacy and indeterminacy would be if the model were restricted
to a subset of the full admissible parameter space. I implement this
numerically by penalizing the region of the parameter space that would
imply indeterminacy for all possible draws from the joint prior distri-
bution. I do so by throwing out all parameter combinations for which
the solution algorithm of Sims (2002) returns an indeterminate equi-
librium. More precisely, the solution algorithm rejects all draws that
fall outside the determinacy bounds established by the analytical con-
ditions given in the Appendix. This procedure implies that the prior
distribution is restricted to the determinacy region only so that the
search algorithm for the maximum of the likelihood function cannot
venture into the indeterminacy region.

Table 2 reports the estimation results from the RBC model. The
column labeled “Baseline Model”contains those from the baseline spec-
ification described above. The estimates of the capital share α, the
discount factor β, and the depreciation rate δ are consistent with those
commonly used in the calibration literature, respectively, 0.33, 0.99,
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Table 2 Parameter Estimation Results, RBC Model

Baseline Model Restricted Model: Restricted Model:
η = 1 γ = 0

Mean 90% Interval Mean 90% Interval Mean 90% Interval

α 0.331 [0.301, 0.349] 0.335 [0.310, 0.368] 0.329 [0.285, 0.371]
β 0.986 [0.979, 0.995] 0.990 [0.982, 0.994] 0.988 [0.979, 0.995]
γ 2.061 [1.573, 2.671] 2.332 [1.871, 2.904] 0.000 —
δ 0.022 [0.014, 0.030] 0.025 [0.017, 0.031] 0.026 [0.021, 0.030]

η 0.982 [0.894, 1.060] 1.000 — 0.912 [0.796, 0.923]
ρA 0.980 [0.968, 0.998] 0.981 [0.971, 0.998] 0.987 [0.971, 0.999]
ρχ 0.945 [0.901, 0.987] 0.974 [0.921, 0.995] 0.979 [0.960, 0.985]
σA 0.005 [0.003, 0.008] 0.018 [0.009, 0.029] 0.018 [0.014, 0.022]
σχ 0.019 [0.010, 0.025] 0.042 [0.030, 0.051] 0.030 [0.021, 0.040]

Note: The table reports posterior means and 90 percent coverage regions (in
brackets). The posterior summary statistics are calculated from the output of
the posterior simulator.

and 0.02, although the latter is contained in a fairly wide 90 percent
probability interval. Posterior estimates of the autoregressive parame-
ters tend to be high, which is a common observation in small-scale
Bayesian DSGE models. The posterior mean of the scale parameter η
is 0.98 with a 90 percent coverage range of [0.89, 1.06]. The posterior
for this parameter is thus firmly centered on a small region around the
constant-returns-to-scale case, which would rule out any possibility of
indeterminacy. In addition, the labor supply parameter γ has a pos-
terior mean of 2.06. For this value, the minimum required degree of
returns to scale to result in indeterminacy would have to be 4.57.

To be fair, the joint prior distribution over the parameter space put
virtually no probability mass on the indeterminacy region even before
restricting the solution to determinate equilibria, and it was centered
on constant returns. To gauge the sensitivity of the estimation, I exper-
imented with various alternative starting values and priors. The results
proved to be robust to different starting values, as the iterations of the
algorithm quickly approached the benchmark posterior mode, even for
high values of η. There was also no evidence that the algorithm would
pile up at the boundary of the parameter space, that is, the threshold
between determinacy and indeterminacy, which Morris (2016) suggests
is evidence of misspecification. I obtained similar results when varying
the prior distribution, specifically in the direction of a higher mean of η
and a tighter distribution. Posterior mode estimates quickly converged
to the benchmark case. This suggests the conclusion that restricting
the model to the determinacy regions does not bias the findings since
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the indeterminacy regions are far away from plausible parameteriza-
tions consistent with the data.

As a second exercise, I estimate the model under the restriction
η = 1. The results are reported in Table 2 in the column labeled
“Restricted Model: η = 1.” This is the case of the standard RBC
model as in King, Plosser, and Rebelo (1988). It is well-known that
the standard RBC model does not admit indeterminate equilibria, so
that I do not have to restrict the parameter space over which the model
is estimated. The parameter estimates were virtually unchanged with
the exception of the labor parameter γ, which increased to 2.33. As the
benchmark results indicated before, the estimation algorithm settles
quickly and closely on the constant-returns-to-scale case. Therefore,
conditioning on this value, η = 1, should not affect the other parameter
estimates much.

Alternatively, I fix γ = 0 (see Table 2, last column). This speci-
fication corresponds to the benchmark case of Benhabib and Farmer
(1994) with perfectly elastic labor supply. Under this specification, the
required returns to scale for equilibrium indeterminacy are considerably
lower, namely at 1.5 given the standard parameterization of α = 1/3.
This restriction results in a posterior mean of η = 0.91. The algorithm
thus pushed the returns-to-scale parameter in an opposite direction of
what would be needed to cross the indeterminacy threshold. I explored
this specification a bit further by imposing a tight prior on η with a
mean of 1.60 and a standard deviation of 0.05. Even in this case, the
resulting posterior mean is 0.99, as in the unrestricted benchmark case.
It seems clear that the information in the data strongly prefers mildly
decreasing returns to scale in production.5

I can formally compare the different specifications by computing
their marginal data densities (MDD). These can be thought of as com-
parable to maximum likelihood values in that they capture the value
of the posterior with all parameters integrated out. They also form the
basis of posterior odds tests, which allow econometricians to discrimi-
nate between two alternative models in terms of overall fit. Given even
prior probabilities on the two competing models, the model with the
higher MDD can be considered as the better descriptor of the data.
I report the MDDs in Table 3. Clearly, the information in the data
draws the posterior strongly toward decreasing returns. The restricted
model with η = 1 dominates all others, as can be seen in the first row.

5 Arguably, the standard RBC model is misspecified in that it assumes constant
returns to scale. However, the degree of uncertainty around this value is such that it
encompasses constant returns.
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Table 3 Marginal Data Densities and Posterior Odds Tests

Marginal Data Densities

Baseline η = 1 γ = 0 Sunspot
RBC Model 128.75 129.81 88.43 —
Cap. Util. 138.92 130.01 — 120.34

Note: Marginal data densities are approximated by Geweke’s (1999) harmonic
mean estimator.

Moreover, comparison of the MDDs allows us to reject the specification
with a perfectly elastic labor supply by a wide margin.6

In order to get a sense of the driving forces behind the data as
interpreted through this specific model, I also compute variance de-
compositions. The results are broadly similar across different model
specifications. Therefore, I only report those for the baseline model in
Table 4. Technology shocks determine about 80 percent of fluctuations
in output, the remainder are made up by shocks to preferences, namely
the disutility of working. In contrast, these labor supply shocks are the
main determinants of labor input in the amount of roughly two-thirds
of the overall variability.

I can draw some preliminary conclusions at this point. Overall, I
do not find any evidence of increasing returns in aggregate U.S. data
under the assumption that the standard RBC model with production
externalities is the data-generating process. The results show that the
estimates are tightly clustered around the constant-returns case with
more probability mass on decreasing returns. Even if we are willing to
allow for increasing returns in contrast to what the data say, estimates
for η are not at the level required for indeterminacy in an environment
with perfectly elastic labor supply. In addition, the estimated aggregate
labor supply elasticity is far too low to generate indeterminacy at any
remotely plausible level of increasing returns.7 ,8

6 The difference between the two values of the MDDs is almost 50 on a log scale.
With even prior odds, that is equal prior probability on each model being the data-
generating process, this amounts to a probability one acceptance of the constant-returns-
to-scale model with inelastic labor supply.

7 To the best of my knowledge, no empirical study has found increasing returns of
that magnitude. Baxter and King (1991) come closest with η = 1.6.

8 The main caveat for this conclusion is that the model is estimated under the
restriction that the equilibrium is determinate. By doing so, I rule out any possibility
of finding considerable returns to scale a priori. In effect, the model is misspecified along
this dimension. The robustness checks that I performed show, however, that this is not
the case. In that sense, the additional restriction to the space of determinate equilibria
is not much of a restriction at all. This may be different for other models.
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Table 4 Variance Decompositions

Technology Preference Sunspot/
Measurement

90% 90% 90%
Mean Interval Mean Interval Mean Interval

Standard RBC
Output 0.81 [0.74, 0.90] 0.19 [0.08, 0.29]
Labor 0.36 [0.30, 0.51] 0.64 [0.58, 0.71]

Variable Capacity Utilization
Output 0.94 [0.89, 0.98] 0.06 [0.02, 0.11]
Labor 0.13 [0.09, 0.19] 0.87 [0.81, 0.89]

Variable Capacity Utilization with Sunspots
Output 0.81 [0.74, 0.86] 0.04 [0.01, 0.06] 0.15 [0.12, 0.23]
Labor 0.08 [0.04, 0.12] 0.21 [0.15, 0.29] 0.71 [0.60, 0.82]

Variable Capacity Utilization with Utilization Data
Output 0.92 [0.88, 0.95] 0.02 [0.00, 0.04] 0.06 [0.01, 0.12]
Labor 0.01 [0.00, 0.02] 0.67 [0.58, 0.76] 0.32 [0.22, 0.42]
Utilization 0.32 [0.24, 0.39] 0.06 [0.02, 0.09] 0.62 [0.52, 0.74]

4. VARIABLE CAPACITY UTILIZATION AND
INCREASING RETURNS

The main conclusion from my empirical analysis of the Benhabib and
Farmer (1994) model is that the degree of returns to scale necessary
for indeterminacy to arise is implausibly large. This has been noted in
the literature, which evolved toward developing frameworks that lead
to a lower threshold value. A key paper following up on this issue is
Wen (1998), who introduces variable capacity utilization into an oth-
erwise standard Benhabib-Farmer model.9 He is able to show that the
degree of increasing returns required for indeterminacy is considerably
less than in the standard model. I now use his framework to reassess
the conclusion drawn in the previous section. I proceed as before in
that I first estimate the model by restricting the parameter space to
the determinacy region. This establishes a baseline to assess whether
disregarding the possibility of indeterminacy has an effect on parameter
estimates. This issue is addressed in the subsequent section.

9 It has long been recognized that variable capacity utilization is an important com-
ponent of business cycle analysis. In a key paper, Burnside and Eichenbaum (1996)
demonstrate that variable capital utilization can significantly reduce the volatility of
technology shocks required to replicate observed business cycles in otherwise standard
models. Moreover, Basu and Fernald (1997) point out that production function regres-
sions need to allow for variable capacity utilization in order to be able to remove en-
dogenous components from total factor productivity and to get unbiased estimates of
the returns to scale.
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I assume that a representative agent maximizes the intertemporal
utility function (1) as before. The budget constraint is modified by
introducing variable capacity utilization ut:

ct + kt+1 = Atet (utkt)
α (nt)

1−α + (1− δt)kt. (10)

ut ∈ (0, 1) is the rate of capacity utilization. Given the capital stock
kt, which is predetermined in the current period, changes in utilization
affect production and present an additional margin of adjustment. This
captures the idea that the capital stock is sometimes left idle and that
in general the utilization rate of machinery varies over time, depending
on demand conditions, shift work, the work week, and other factors.
Varying productive capacity gives firms a margin along which profits
can be optimized by preemptively hoarding capital in anticipation of
future demand conditions. However, changes in utilization come at a
cost since capacity variation affects the depreciation rate. The more
intensely the capital stock is utilized, the faster it depreciates. As in
Wen (1998), I assume for simplicity a monotonic relationship between
ut and the depreciation rate δt:

δt =
1

θ
uθt , (11)

where θ is a parameter. I can find the first-order conditions by max-
imizing the utility function (1) subject to the budget constraint and
the definition of the depreciation rate by choosing sequences of con-
sumption {ct}∞t=0, labor input {nt}

∞
t=0, capacity utilization {ut}

∞
t=0, and

capital stock {kt+1}∞t=0.
As in the standard RBC model, I assume that et captures the ex-

ternality in the production process and is taken parametrically by the
agent. Under this specification, et depends on the average capital stock
kt, labor input nt, and capacity utilization ut:

et =
[(
utkt

)α
(nt)

1−α
]η−1

, (12)

where the externality parameter η ≥ 0 captures the returns to scale. As
before, production exhibits constant returns when η = 1 and returns
to scale are increasing for η > 1. The determinacy conditions for this
model are listed in the Appendix.

I estimate the model using Bayesian methods as discussed above.
For comparison purposes, I estimate the model on the same two data
series, output and labor input, and for the same two shocks, technol-
ogy and labor disutility. In a robustness check, I further utilize data
on capacity utilization and allow for the presence of sunspot shocks
and measurement error. A convenient feature of the choice of the de-
preciation cost function is that it implies the same number of inde-
pendent parameters to be estimated. The existence of a steady state
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imposes a parametric restriction between θ and the depreciation rate:
θ = 1−β(1−δ)

βδ . That is, the depreciation cost elasticity is not an inde-
pendent parameter, but is determined by the steady-state depreciation
rate and vice versa. I can therefore choose to treat steady-state de-
preciation parametrically. Consequently, I impose the same prior on δ
and on the other parameters in the model. This implies a prior mean
of θ = 1.40. The empirical difference between the benchmark and the
extended model only lies in the different dynamics via the introduction
of capacity utilization and endogenous depreciation but not in different
priors.

The estimation results for the extended model are reported in Ta-
ble 5. The first set of results is contained in the left column, labeled
“Baseline Model,”where I allow all parameters to vary freely over the
determinacy regions. That is, I throw out all parameter draws that
would imply an indeterminate equilibrium just as I did in the bench-
mark case for the standard model. The parameter estimate that stands
out is a high γ = 8.46, which implies a very inelastic labor supply and
thereby likely rules out the possibility of indeterminate equilibria on
account of increasing returns. The baseline estimates also show a lower
capital elasticity of α = 0.27 and a higher depreciation rate of δ = 0.05
than in the standard RBC model. These estimates are consistent with
those found in the literature on variable capacity utilization and re-
flect the impact of the latter on adjusting input margins in production
as suggested by Burnside, Eichenbaum, and Rebelo (1995). Moreover,
the implied estimate at the posterior means of the depreciation cost
parameter is θ = 1.20.

As to the question of increasing returns, I estimate the externality
parameter η = 1.09 with a 90 percent coverage region of [0.98, 1.17].
This is higher than in the standard RBC model, although the constant-
returns case is included in this coverage region. Incidentally, this value
is right at the preferred estimate of Laitner and Stolyarov (2004), who
estimate a full set of structural equations derived from a business cycle
model using a methods of moments approach that is independent of
whether the data are generated from a determinate or indeterminate
equilibrium. What is intriguing about this result is that the returns
to scale are at the threshold for indeterminacy in the baseline cali-
bration in Wen (1998). Yet, as I argued in the previous section, the
other critical parameter is the labor supply elasticity. In his benchmark
calibration, Wen (1998) assumes perfectly elastic supply with γ = 0,
whereas the posterior mean in my estimation is considerably higher.
While I cannot rule out mild increasing returns empirically, the other
parameter estimates imply that the equilibrium is not indeterminate.
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Table 5 Parameter Estimation Results, Variable Capacity
Utilization

Baseline Model Restricted Model: Restricted Model:
η = 1 γ = 0

90% 90% 90%
Mean Interval Mean Interval Mean Interval

α 0.274 [0.261, 0.286] 0.254 [0.241, 0.275] 0.201 [0.182, 0.259]
β 0.991 [0.989, 0.994] 0.993 [0.987, 0.996] 0.994 [0.989, 0.999]
γ 8.459 [6.987, 9.801] 12.90 [10.45, 14.86] 0.903 [0.420, 1.681]
δ 0.049 [0.043, 0.055] 0.058 [0.053, 0.064] 0.089 [0.082, 0.099]

η 1.087 [0.975, 1.174] 1.000 — 1.384 [1.121, 1.605]
ρA 0.982 [0.969, 0.996] 0.067 [0.059, 0.072] 0.966 [0.958, 0.980]
ρχ 0.958 [0.949, 0.968] 0.965 [0.944, 0.991] 0.850 [0.791, 0.921]
σA 0.036 [0.030, 0.041] 0.041 [0.036, 0.044] 0.048 [0.042, 0.056]
σχ 0.094 [0.085, 0.099] 0.086 [0.070, 0.110] 0.079 [0.054, 0.097]

σζ 0.163 [0.081, 0.303]

Note: The table reports posterior means and 90 percent probability intervals (in
brackets). The posterior summary statistics are calculated from the output of the
posterior simulator.

As a first robustness check, I estimate a restricted version of the
model where I fix η = 1, which shuts down the externality feedback.
The effects on the parameter estimates are somewhat larger than in the
corresponding exercise for the RBC model. The posterior mean of α
declines to 0.25, while depreciation rate δ increases to 0.06. The labor
supply parameter is now estimated at 12.90. However, as the MDDs
in the second row of Table 3 show, the unrestricted version is much
preferred in terms of overall fit. Interestingly enough, the model with
variable capacity utilization also dominates the standard RBC model
in explaining labor input and GDP. Finally, I also compute the variance
decompositions, which are reported in Table 4. The relative importance
of the two shocks, technology and preference, in explaining the two data
series is unchanged compared to the first model specification.

As a second robustness check, I also estimate the model using the
Federal Reserve’s data on capital utilization.10 Adding a third observ-
able variable to the model requires an additional source of uncertainty
in order to avoid a singular likelihood function. I choose to add a mea-
surement error to the observation equation that links the data series
to its counterpart in the model instead of introducing an additional

10 Available at: https://www.federalreserve.gov/releases/g17/
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shock. I find that the parameter estimates do not change in any signif-
icant manner. The likely reason is that the utilization series mirrors the
output series very closely and thus does not contain enough information
to improve the empirical model.11

Bayesian estimates of a standard RBC model with variable capac-
ity utilization that allows for increasing returns to scale via production
externalities show that the U.S. economy is characterized by mildly
increasing returns. This stands in contrast with the results derived
from the model without capacity utilization, which found constant re-
turns. This leaves open the possibility that the equilibrium in the U.S.
economy may be indeterminate given the mechanism described in this
article. What goes against this argument is that indeterminacy also
requires a low labor supply elasticity. Estimates from both models
show that labor is, in fact, fairly inelastically supplied. However, since
I restricted the estimation to the determinacy region of the parameter
space, I cannot be confident of the soundness of this conclusion. In the
next section, I therefore look across the boundary of the determinacy
region and estimate the model under indeterminacy.

5. ARE U.S. BUSINESS CYCLES DRIVEN BY
SUNSPOT FLUCTUATIONS?

I now follow the implications of the theoretical model to their logical
end and assess whether the observed U.S. data are generated under
indeterminacy. As the discussion above shows, equilibrium indetermi-
nacy requires a high degree of increasing returns (a large enough esti-
mate of η) and a high labor supply elasticity (a low enough estimate
of γ). In all estimated specifications, the labor supply elasticity turned
out to be too low for the equilibrium to be indeterminate even if the ex-
ternalities parameter was within a range that would otherwise have put
the economy across the boundary, namely in the model with variable
capacity utilization. However, these estimates should be understood
against the background that I ruled out indeterminate equilibria a pri-
ori by restricting the prior to that region of the parameter space where
there is a unique equilibrium.12

11 At the same time, the measurement error explains about one-third of the fluc-
tuations in the utilization series (see Table 4), which does suggest the model is not
well-specified to capture movements in utilization that are independent of the output
series.

12 I do not find any indication across the various specifications that the posterior es-
timates are clustering near the indeterminacy threshold. As discussed in Canova (2009)
and Morris (2016), this pile-up of probability mass near the boundary could be seen as
evidence that the model is misspecified since indeterminacy is not explicitly accounted
for. Nevertheless, it cannot be ruled out that a posterior mode is well within the indeter-
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I therefore reestimate the two model specifications over the full pa-
rameter space using the methodology developed by Lubik and Schorfheide
(2003, 2004), who show how to write the full set of indeterminate equi-
libria in a reduced form. The estimation algorithm can be used to
reveal which of the many indeterminate equilibria the data reflect. At
the same time, the indeterminate solution allows for the influence of
an additional exogenous disturbance, namely nonfundamental sunspot
shocks, in addition to the two fundamental shocks from before. I use
the same data series for the estimation as in the benchmark case to
ensure comparability across the result. I should note, however, that
allowing for indeterminacy and sunspot shocks gives the estimation
algorithm additional degrees of freedom to fit the data.

In estimating the models under indeterminacy, the first issue I face
is that my chosen benchmark prior puts only small probability mass
on the indeterminacy region. This is particularly problematic in the
standard RBC model where even in the case of γ = 0, the required
threshold value for η equals 1.5. Allowing for a wider dispersion in
these two key parameters does not seem to make much of a difference.
I therefore experimented with shifting the prior means. I found that
a prior mean of η = 2.6 with a standard deviation of 0.1 and almost
perfectly elastic labor supply would be needed to support a posterior
estimate in the indeterminacy region. Since these values are far outside
what can be considered a plausible range, it seems safe to rule out
estimates based on this prior. Consequently, I argue that the Benhabib
and Farmer (1994) model cannot be used to support the notion of
sunspot-driven business cycles since it is simply inconsistent with the
data.

I face a similar issue in the case of the Wen (1998) model. Under
the benchmark prior, there is not much mass in the indeterminacy re-
gion. The limiting factor is again the labor supply elasticity parameter
γ, which needs to be close to zero to be able to support an indetermi-
nate equilibrium. Experimenting with the prior, I find, however, that
a prior mean for η of 1.7 with a standard deviation of 0.2 puts enough
mass beyond the boundary. Using this prior, I reestimate the spec-
ification with variable capacity utilization. The results are reported
in the last column of Table 5. The posterior mean of the elasticity
parameter η = 1.38, which is higher than in the benchmark case. At
the same time, the estimate of γ = 0.90, which guarantees that the
equilibrium is indeterminate. As Table 3 shows, however, the MDDs
indicate that the indeterminacy specification is rejected relative to the

minacy region and can therefore not be detected when the parameter space is restricted
to determinacy.
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benchmark specification even when taking into account the higher de-
grees of freedom afforded by the model solution under indeterminacy.
Table 4 reports the variance decompositions for the indeterminacy spec-
ification. Although I can conclude that the data are unlikely to have
been generated under indeterminacy, it is interesting to determine how
much of an effect sunspot shocks may have on economic fluctuations.
The contribution to output fluctuations is small, around 15 percent,
whereas sunspots drive a substantial fraction of labor input.

Are U.S. business cycles driven by sunspot fluctuations? Not if one
believes that the source of these sunspot fluctuations lies in increas-
ing returns to scale. Based on the results in this section, I can rule
out the standard RBC model with production externalities as in Ben-
habib and Farmer (1994) as the data-generating process for a possible
sunspot equilibrium. The extension of Wen (1998) to include variable
capacity utilization is more promising, but the statistical support for
indeterminacy is quite weak. As the results from the preceding sec-
tions show, aggregate U.S. production likely exhibits constant returns
to scale, which rules out equilibrium indeterminacy a priori.

6. CONCLUSION

This article studies the returns to scale in aggregate U.S. data by esti-
mating various specifications of the standard RBC model. In order to
allow for the possibility of increasing returns in production, so as not
to impose constant returns a priori, I introduce aggregate production
externalities as in the framework of Benhabib and Farmer (1994). The
degree of returns to scale can then be tied to a single parameter that
measures the strength of the externality effect. In a second model spec-
ification, I also introduce variable capacity utilization as in Wen (1998),
who generally reduces the required degree of increasing returns needed
to support indeterminacy. All model specifications present in this pa-
per admit the possibility of equilibrium indeterminacy to the effect that
business cycles could be driven by extraneous, nonfundamental shocks.

I estimate the various specifications using Bayesian DSGE methods.
I find strong evidence for constant returns to scale in aggregate U.S.
data. Specifications that impose increasing returns are rejected based
on standard model selection criteria. I show in a simple robustness
exercise that a substantial degree of increasing returns can only be
supported by imposing implausible priors. Equilibrium indeterminacy
in the modeling frameworks used in this article requires a high enough
degree of increasing returns and a low enough labor supply elasticity.
My estimates show that even if increasing returns were present, we
can rule out indeterminacy on account of an inelastic labor supply.
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Therefore, a theory of sunspot-driven business cycles should not rely
on increasing returns to scale in production.

The empirical results are to some extent model-dependent. My con-
clusion as to the possibility of indeterminate equilibria appears robust
as the framework based on production externalities requires implausible
labor supply elasticities. Nevertheless, alternative model setups may
imply different, less stringent requirements for indeterminacy. Prime
candidates are models with alternative utility functions, such as non-
separability in consumption and leisure (see Bennett and Farmer 2000)
or models with multiple sectors (see Benhabib, Meng, and Nishimura
2000). Finally, if researchers are interested in sunspot shocks as po-
tential driving forces for business cycles, exploring other avenues than
production externalities seems a more promising option. For instance,
Lubik and Schorfheide (2004) show that the Great Inflation of the 1970s
was caused by sunspot shocks since the Federal Reserve pursued mon-
etary policy that was not aggressive enough in fighting inflation. More
recently, Golosov and Menzio (2015) have proposed a novel theoretical
framework that generates sunspot-driven business cycles through idio-
syncratic and firm-specific uncertainty over the quality of their workers.

REFERENCES

An, Sungbae, and Frank Schorfheide. 2007. “Bayesian Analysis of
DSGE Models.”Econometric Reviews 26 (May): 113—72.

Basu, Susanto, and John G. Fernald. 1997. “Returns to Scale in U.S.
Production: Estimates and Implications.”Journal of Political
Economy 105 (April): 249—83.

Baxter, Marianne, and Robert G. King. 1991. “Productive
Externalities and Business Cycles.”Institute for Empirical
Macroeconomics at the Federal Reserve Bank of Minneapolis
Discussion Paper 53 (November).

Benhabib, Jess, and Roger E. A. Farmer. 1994. “Indeterminacy and
Increasing Returns.”Journal of Economic Theory 63 (June):
19—41.

Benhabib, Jess, Qinglai Meng, and Kazuo Nishimura. 2000.
“Indeterminacy under Constant Returns to Scale in Multisector
Economies.”Econometrica 68 (November): 1541—48.



100 Federal Reserve Bank of Richmond Economic Quarterly

Bennett, Rosalind L., and Roger E. A. Farmer. 2000. “Indeterminacy
with Non-separable Utility.”Journal of Economic Theory 93
(July): 118—43.

Burnside, Craig, and Martin Eichenbaum. 1996. “Factor-Hoarding
and the Propagation of Business-Cycle Shocks.”American
Economic Review 86 (December): 1154—74.

Burnside, Craig, Martin Eichenbaum, and Sergio Rebelo. 1995.
“Capital Utilization and Returns to Scale.”In NBER
Macroeconomics Annual 1995, vol. 10, edited by Ben S. Bernanke
and Julio Rotenberg. Cambridge, Mass.: MIT Press, 67—124.

Canova, Fabio. 2009. “What Explains The Great Moderation in the
U.S.? A Structural Analysis.”Journal of the European Economic
Association 7 (June): 697—721.

Farmer, Roger E. A., and Jang-Ting Guo. 1994. “Real Business
Cycles and the Animal Spirits Hypothesis.”Journal of Economic
Theory 63 (June): 42—72.

Farmer, Roger E. A., and Lee Ohanian. 1999. “The Preferences of the
Representative American.”Manuscript.

Geweke, John. 1999. “Using Simulation Methods for Bayesian
Econometric Models: Inference, Development, and
Communications.”Econometric Reviews 18 (February): 1—73.

Golosov, Mikhail, and Guido Menzio. 2015. “Agency Business
Cycles.”National Bureau of Economic Research Working Paper
21743 (November).

Guo, Jang-Ting, and Kevin J. Lansing. 1998. “Indeterminacy and
Stabilization Policy.”Journal of Economic Theory 82 (October):
481—90.

King, Robert G., Charles I. Plosser, and Sergio T. Rebelo. 1988.
“Production, Growth and Business Cycles: I. The Basic
Neoclassical Model.”Journal of Monetary Economics 21
(March—May): 195—232.

Laitner, John, and Dmitriy Stolyarov. 2004. “Aggregate Returns To
Scale and Embodied Technical Change: Theory and Measurement
Using Stock Market Data.”Journal of Monetary Economics 51
(January): 191—233.

Lubik, Thomas A., and Frank Schorfheide. 2003. “Computing Sunspot
Equilibria in Linear Rational Expectations Models.”Journal of
Economic Dynamics and Control 28 (November): 273—85.



Lubik: How Large Are Returns to Scale in the U.S.? 101

Lubik, Thomas A., and Frank Schorfheide. 2004. “Testing for
Indeterminacy: An Application to U.S. Monetary Policy.”
American Economic Review 94 (March): 190—217.

Meng, Qinglai, and Jianpo Xue. 2009. “Indeterminacy and E-stability
in Real Business Cycle Models with Factor-Generated
Externalities.”Manuscript.

Morris, Stephen D. 2016. “DSGE Pileups.”Journal of Economic
Dynamics and Control, forthcoming.

Sims, Christopher A. 2002. “Solving Linear Rational Expectations
Models.”Computational Economics 20 (October): 1—20.

Weder, Mark. 2000. “Animal Spirits, Technology Shocks and the
Business Cycle.”Journal of Economic Dynamics and Control 24
(February): 273—95.

Wen, Yi. 1998. “Capacity Utilization under Increasing Returns to
Scale.”Journal of Economic Theory 81 (July): 7—36.



102 Federal Reserve Bank of Richmond Economic Quarterly

APPENDIX: INDETERMINACY CONDITIONS

Benhabib and Farmer (1994) derive analytical conditions that are nec-
essary for indeterminacy in a continuous-time version of the RBC model
with externalities. As it turns out, the corresponding conditions for the
discrete-time version are considerably more complex. Meng and Xue
(2009) derive these conditions for general forms of utility and produc-
tion with externalities. Under the restriction η ≥ 1 and logarithmic
utility, the necessary and suffi cient conditions for indeterminacy are
(see Meng and Xue [2009], Proposition 4, case (i)):13

Γ2η <
1 + γ

1− α < Γ1η,

where Γ1 =
(2−δ)(1+β(1−δ))− β

α

(
1−β
β
+δ
)2

2
(
2+η 1−β

β
+δ(η−1)

) and Γ2 = (1−β)(1−δ)
η 1−β

β
+δ(η−1)

. The

condition has the familiar form that links a minimum value of the
externalities parameter η to the labor supply elasticity and the capital
share but is harder to interpret than the corresponding continuous-time
restriction. If we just look at the necessary condition, then we have:

η >
1 + γ

1− α
1

β(1− δ) .

Wen (1998) derives necessary and suffi cient conditions for equilibrium
indeterminacy in his model with capacity utilization. The general an-
alytical conditions are more cumbersome than those for the standard
RBC model with externalities. Wen (1998) therefore restricts his analy-
sis to the case such that αη < θ, whereby θ = 1−β(1−δ)

βδ , based on the
steady-state restriction linking the endogenous depreciation rate δ and
the parameter θ. Under this restriction, necessary and suffi cient con-
ditions for indeterminacy are:

η <
1

α
,

η > 1 +
θ (1 + γ − β (1− α))− (1 + γ)α

β (1− α) θ + (1 + γ)α− 1−β
1+β (1 + γ) θ

,

η > 1 +
θ (1 + γ − β (1− α))− (1 + γ)α+ 1−β

1+β (1 + γ)βδ (θ − α) 1−αθ2α

β (1− α) θ + (1 + γ)α− 1−β
1+β (1 + γ)

(
θ − 1

2 (θ − α) (1− β)
) .

13 Meng and Xue (2009) consider two additional cases where indeterminacy arises
when η < 1, that is, when there are decreasing returns to scale. Although I allowed for
these cases in the benchmark specification based on a wide prior centered on η = 1, I
did not encounter indeterminate equilibria in this region when estimating the model.
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The third condition differs from the second by additional terms in the
numerator and the denominator. As Wen (1998) demonstrates, they
are virtually identical for β closest to one. It is fairly straightforward
to show that the threshold value for η, beyond which an indeterminate
equilibrium arises is increasing in γ. That is, the less elastic labor
supply is, the less likely is an indeterminate equilibrium.


