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Beveridge Curve Shifts and
Time-Varying Parameter

VARs

Thomas A. Lubik, Christian Matthes, and Andrew Owens

t first glance, many macroeconomic time series exhibit some

form of nonlinearity. For instance, output growth and infla-

tion show less volatility in the 1980s and 1990s than during
the Great Inflation period of the 1970s, an observation that has been
labeled the Great Moderation. Over the business cycle, the unemploy-
ment rate exhibits an asymmetric sawtooth pattern whereby it rises
rapidly during downturns and declines only gradually during a recovery.
Many price variables, such as exchange rates or commodity prices, ap-
pear stable for a long period followed by sudden level shifts. The liter-
ature has studied various specific forms of nonlinearity—such as struc-
tural breaks, time-varying volatility, or business cycle asymmetries—
using sophisticated time-series methods ranging from threshold and
Markov switching to vector-autoregressions (VARs) with time-varying
parameters and stochastic volatility. The result as to whether there is
nonlinearity in the data has been mixed.! A key issue in this
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literature is that tests for nonlinearity tend to have low power against
linear alternatives.

Against this background, time-varying parameter vector-
autoregressions (TVP-VARs) with stochastic volatility have emerged
as a promising framework to analyze a wide range of underlying non-
linearities.? In this class of models, the coefficients of the time-series
representation for economic data are allowed to vary over time. The
idea is that this feature approximates the underlying nonlinearity in
the data-generating process to a satisfactory degree and in a parsimo-
nious manner. For instance, a structural break in a deep parameter, or
a switch in regimes, could be captured by a shock to the innovation in
a random-walk VAR coefficient. Since TVP-VARs offer this flexibility,
that is, since they can be understood as approximations to a wide range
of underlying nonlinear behavior, they have become increasingly popu-
lar in recent years as empirical modeling devices.®> TVP-VARs are esti-
mated almost exclusively using Bayesian methods. This is necessitated
by the fact that, as with any model that features many parameters,
the use of prior information is crucial to deliver sensible estimates. In
TVP-VARs the choice of priors is of special importance because, with
standard sample sizes, they have a substantial impact on how much of
the variation in observables is attributed to stochastic volatility versus
time variation in other coefficients.* At the same time, there is a grow-
ing sense, e.g., Lubik and Matthes (2015), that the conclusions drawn
from the TVP-VAR literature warrant skepticism. More specifically,
TVP-VARs often find not much time variation in the lag coefficients.
Instead, they attribute the variation seen in the data to movements in
volatilities as the right incidence of shocks can in principle capture a
range of time-series patterns.

The purpose of this article is to investigate the extent to which an
inherently nonlinear TVP-VAR with stochastic volatility does, in fact,
pick up nonlinear features in the underlying data. We do so by apply-
ing the TVP-VAR methodology to data generated from a simple (but
nonlinear) search and matching model that is designed to generate
endogenous shifts in parameters. We thus ask whether a TVP-VAR
is capable of detecting the resulting nonlinearity in Beveridge curve
dynamics. We follow standard procedure and prescriptions in the lit-
erature to specify the TVP-VAR and to choose the prior. The results
from these benchmark exercises show that the concerns about proper

% See Lubik and Matthes (2015) for an introduction and survey of TVP-VARs.
3 See Canova, Ferroni, and Matthes (2015) for a discussion of these issues.

! This point is demonstrated by means of a simple example in Lubik and Matthes
(2015).
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Figure 1 The Beveridge Curve over the Great Recession
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attributions of the sources of nonlinearity are warranted. We attempt
to resolve some of these concerns by means of an alternative strategy
in choosing priors with only partial success. While these findings are
largely negative and are also highly conditional on the chosen theoret-
ical model environment, we argue that they serve as a cautionary tale
when conducting and interpreting TVP-VAR studies.

Our chosen framework to analyze these issues is the labor market
regularity captured by the so-called Beveridge curve. It describes the
joint behavior of unemployment and vacancies over the business cy-
cle and is often seen as indicative of the state of the labor market.
The Beveridge curve depicts a negative relationship between these two
variables, whereby movements along this curve reflect expansions and
recessions. The behavior of the curve over the course of the Great
Recession and its aftermath has attracted much interest in the liter-
ature (e.g., Barlevy 2011; Lubik 2013; or Sahin et al. 2014). Figure
1 shows the Beveridge curve for data over the Great Recession pe-
riod. The unemployment-vacancies relationship is often represented
by a scatter plot of the two series against each other, resulting in a
downward-sloping curve. For purposes of illustration, in Figure 1 we
fitted a regression line to data from 2001 up to September 2008, which
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cluster tightly around the Beveridge curve. At the onset of the Great
Recession, the unemployment rate rises rapidly and vacancies fall. In
the graph, the data points start moving off the normal curve and ap-
pear to settle at a location above their normal, or expected, level. In
other words, during the Great Recession, the Beveridge curve appears
to have shifted outward in a discrete manner, which could be indicative
of a structural break in a labor market parameter.

More generally, the Beveridge curve over the last sixty years reveals
a substantial degree of nonlinearity (see Benati and Lubik 2014). There
are discernible inward and outward shifts, tilts, and even the occasional
slope reversal over short periods. This is not necessarily prima facie
evidence of the presence of nonlinearities since these patterns can be ra-
tionalized through the right incidence of various shocks (e.g., Blanchard
and Diamond 1989; Barlevy 2011; or Lubik 2013). It is nevertheless
suggestive of underlying structural changes in the labor market. We
take this observation as a starting point for our investigation into the
practice of TVP-VAR estimation.

We develop a simple search and matching model of the labor mar-
ket, where we allow for endogenous threshold switching in a key para-
meter, namely in the efficiency of a match between employer and job
seeker. This match efficiency is captured by a level parameter in the
matching function and summarizes the efficacy of the labor market.
We assume that it can take on two values, which indicate different but
parallel locations of the Beveridge curve. A high level of match effi-
ciency translates into a location of the Beveridge curve closer to the
origin, whereby a lower level shifts it outward. Under high efficiency,
employers need to open fewer vacancies for the same number of job
seekers to fill a desired number of positions. The economy switches be-
tween the two efficiency parameters when a threshold embedded in the
model is crossed endogenously. We assume that this threshold is given
by a low level of output that we associate with a weak labor market
performance. This threshold can be reached with a sequence of bad
and persistent productivity draws; that is, in this case, the labor mar-
ket exhibits damage to the extent that the Beveridge curve shifts only
when a recession is deep and drawn out. In terms of the behavior of
the model, this threshold switch implies nonlinearity in the dynamics
of the economic variables.

In order to study the implications of this specific form of nonlin-
earity for empirical modeling, we solve the full nonlinear model and
simulate data on unemployment and vacancies. We then estimate a
Bayesian TVP-VAR with stochastic volatility on these data and assess
how well the nonlinear atheoretical time-series model captures the un-
derlying nonlinearity in the model. Given a standard initialization and
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choice of priors, the evidence suggests that the TVP-VAR attributes al-
most all of the changes in the simulated data to changes in the reduced-
form innovation variances. We argue that this raises doubts as to the
validity of TVP-VAR models with standard priors in detecting shifts.
In order to address this shortcoming, we suggest an approach that tries
to elicit priors for the TVP-VAR, but it is only moderately successful.
In order to better capture the time variation in parameters, researchers
will need to adapt the priors to the question at hand in more sophis-
ticated ways. One possibility that delivers better performance is to
estimate the hyperparameters associated with the parameters govern-
ing the amount of time variation in the model (Amir-Ahmadi, Matthes,
and Wang 2017).

The contribution of this article is twofold. First, using simulated
data, we study to what extent a generic TVP-VAR with stochastic
volatility deals with a specific form of nonlinearity in these underlying
data. Our results suggest that some findings of this literature should be
regarded with skepticism since they attribute too much of this nonlin-
earity to time variation in the shocks rather than to structural breaks
in the underlying model parameters. Second, and of independent in-
terest, we demonstrate how Beveridge curve shifts can be explained
conceptually via an endogenous mechanism that moves the economy
between a high-performing and a low-performing labor market. This
mechanism can thus be used to address issues like hysteresis, where
temporary shocks, such as business cycle shocks, can have permanent
effects.

The article is structured as follows. In the next section, we lay out
our simple modeling framework of the standard search and matching
model and describe how we introduce the threshold-switching mech-
anism that leads to nonlinearity in the model. The second section
describes how we calibrate the model. In this section, we also describe
simulation results from the model and discuss the TVP-VAR that we
use to estimate the simulated data. Section 3 presents the estimation
results and details the shortcomings of the TVP-VAR approach in this
environment, while Section 4 introduces an alternative method to elicit
priors for the TVP-VAR. The final section concludes.

1. A STRUCTURAL MODEL OF BEVERIDGE
CURVE SHIFTS

We now describe the simple structural labor market framework that we
use to model the Beveridge curve. We hereby draw heavily from the
existing literature, most prominently Shimer (2005). The specification
of the model follows Lubik (2013). Our working assumption is that
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the Beveridge curve has experienced a structural shift, as seen by the
evolution of unemployment and vacancies in Figure 1. We model the
structural break in terms of a threshold-switching process: when a tar-
get variable, aggregate output in our case, hits a threshold in terms of
deviations from its long-run level, it triggers a shift in a structural labor
market parameter. The idea is to capture the observation that Bev-
eridge curve shifts appear to occur during strong and deep recessions
and expansions (see Benati and Lubik 2014).

We assume that in our model economy time is discrete and the time
period is a quarter. The labor market in this economy is characterized
by search and matching frictions, which help rationalize the existence
of equilibrium unemployment. Specifically, a job, that is, a relationship
between a worker and a firm for the purpose of engaging in production,
is the outcome of a matching process. New jobs M are generated by
combining unemployed job seekers U with job openings (vacancies)
V. This process can be represented by a constant returns matching
function, M; = m(st)Uthl*f, where 0 < £ < 1 is the match elasticity.
m(s¢) > 0 is the match efficiency that captures the ease with which the
unemployed are transformed into workers.

We assume that match efficiency is subject to structural shifts.
Specifically, the level parameter in the matching function m(s;) can
switch between two values, s; € {sg, sr}, with m(sy) < m(sg). In our
framework, the switch is generated endogenously by a trigger mecha-
nism, in contrast to the exogenous regime changes in Markov-switching
models. We implement this trigger by tying it to the severity of the
business cycles. Whenever GDP deviates too much from its current
target level, the labor market experiences a structural shift in terms
of a change in the matching efficiency. As Lubik (2013) argues, Bev-
eridge curve shifts are most parsimoniously and plausibly modeled by
a change in this one parameter. More specifically, one can show that
declines in match efficiency are associated with outward shifts of the
curve.

For the purposes of capturing Beveridge curve dynamics, we assume
that the threshold mechanism is attached to aggregate output. More
specifically, we assume that match efficiency m; = m(s;) follows a
threshold process:

mt:{m@m ifY; > Y

m(s) it v; < y o Vhere mlsm) >m(sp). (1)

Y; is aggregate output and Y is the threshold at which the labor mar-
ket experiences a structural shift. In the simple search and matching
framework, we assume linear production so that Y; is given by:

Y, = ANy, (2)
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where N; is the stock of employed workers, and A; is an aggregate
productivity process that obeys the law of motion:

log Ay = (l—pA)logZ—l—pAlogAt_l+€A,t, (3)

where 0 < py < 1 and €4+ ~ N (0,0%). We normalize the mean of the
process A to a value of unity without loss of generality.

The dynamics of the model are such that sequences of low and
persistent productivity draws—in other words, a recession—will occa-
sionally move aggregate output below the threshold Y. This damages
the labor market in the sense that match efficiency declines and the
Beveridge curve shifts outward. This shift is persistent because of the
persistence in the productivity process and the inherent persistence of
employment in the search and matching framework. Once the reces-
sion abates, the labor market recovers in terms of a switch back to a
“normal” level of match efficiency. In that sense, our framework shares
similarities with the “plucking” model of recessions, where the economy
is plucked away occasionally from its normal evolution due to a deep
recession but then transitions back over time.

The dynamics of employment are governed by the following rela-
tionship:

Ne = (1= xp) [Nt +m(s-)US VS (4)

This is a stock-flow identity that relates the stock of employed workers
N to the flow of new hires, M = mUSV1~¢, into employment. The
timing assumption is such that variations in match efficiency do not
affect employment contemporaneously. Unemployment is defined as:

Utzl_Nt7 (5)

where the labor force is normalized to 1. Inflows to unemployment
arise from exogenous job destruction at rate 0 < xy < 1. We assume
that the separation rate y follows the process:

log x; = (1= p,) log X + py log x;—1 + €.t (6)

where 0 < p, <1 and g,y ~ N (0,0%).
The matching function can be used to define the job-matching rate,
i.e., the probability that a firm is matched with a worker:

M, _
q(0:) = 7t =m0, %, (7)
t
where 6, = V; /U, is labor market tightness. From the perspective of an
individual firm, the aggregate match probability ¢(6;) is exogenous, and
hence new hires are linear in number of vacancies posted for individual

firms: M;; = q(0;) V.
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A firm chooses the optimal number of vacancies V; to be posted
and its employment level N; by maximizing the intertemporal profit
function:’

oo

EO Zﬁt [AtNt — ’LUtNt — KW] s (8)
t=0

subject to the employment accumulation equation (4). Profits are dis-
counted at rate 0 < 8 < 1. Wages paid to the workers are w, while
k > 0 is a firm’s fixed cost of opening a vacancy. The first order
conditions are:

Ny py = Ay —wi + BEL(1 — Xpq1) e g1 9)
Vi o k= Q(et)ﬁEt(l - Xt+1)#t+1a (10)

where p, is the multiplier on the employment equation. Combining
these two first-order conditions results in the job-creation condition:

K K
0 " BE: {(1 = Xtt1) <At+1 — Wil + q(¢9t+1))] ; (11)
which captures the trade-off faced by the firm. The marginal, effective
cost of posting a vacancy, ﬁ, that is, the per-vacancy cost k ad-
justed for the probability that the position is filled, is weighed against
the discounted benefit from the match. The latter consists of the sur-
plus generated by the production process net of wage payments to the
workers plus the benefit of not having to post a vacancy again in the
next period.

Wages are determined based on the Nash bargaining solution: sur-
pluses accruing to the matched parties are split according to a rule
that maximizes the weighted average of the respective surpluses. We
relegate the full discussion of the derivation to the Appendix (see also,
Lubik 2013). The resulting wage equation is:

wy =1 (A + K0) + (1 —n)b. (12)

Wage payments are a weighted average of the worker’s marginal prod-
uct A, of which the worker can appropriate a fraction 7, and the out-
side option b, of which the firm obtains the portion (1 — 7). Moreover,
the presence of fixed vacancy posting costs leads to a hold-up problem
where the worker extracts an additional nx6; from the firm.

® For ease of exposition and notation, we will drop the firm-specific subscripts and
discuss the problem of a representative optimizing firm with the understanding that
firms are ex-ante heterogeneous in this framework.
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We can substitute the wage equation and the job-matching rate
into the job-creation condition to obtain:

0; = BE; [(1 = Xe41) {(1 —n) (A1 — b) — nrbiyr + Hefﬂ}] :
mi+1
(13)
Firms are more willing to post vacancies if productivity shocks increase
the wedge to the outside option of the worker; they are less willing if
there are expected separations as this will reduce the present value of
a hired worker.

In our simulation and empirical analysis, we make use of the sim-
ple structure of the model. The dynamics can be fully described by
two equations, the employment accumulation equation (4) and the
job-creation condition (13), after convenient substitutions. Intuition
for why an outward shift of the Beveridge curve is generated by a fall
in match efficiency can be gleaned from equation (4) and the logic of
the matching function. At any given unemployment rate, firms would
need to post more vacancies to achieve a target hiring quota since the
matching process is now less efficient.® However, there is also a coun-
tervailing effect, namely through the influence of match efficiency on
firms’ vacancy posting decisions. A fall in m raises effective vacancy
posting costs as captured by the left-hand side of the job-creation condi-
tion (13). This implies that vacancies are increasing in match efficiency.
The overall effect of a change in m therefore depends on the interaction
of these two margins. As Lubik (2013) shows, the stock-flow identity of
the law of motion has to hold in equilibrium, so that the first effect via
the matching function dominates and shifts the Beveridge curve out-
ward for a smaller m, whereas the effect via the job-creation margin
generates movements along this equilibrium relationship. We now turn
to a discussion of our solution and simulation approach.

K
my

2. SIMULATION AND ESTIMATION
Calibration

We calibrate our model to representative parameter values in the lit-
erature. Our benchmark calibration rests on the parameter estimates

6 Formally, this can also be seen from the steady-state representation of the em-
ployment equation (4), which describes an equilibrium locus of combinations of U and
V such that inflows and outflows to (un)employment are balanced:

1 1
1 — — —
V:( X )15(1 U)l sU
m1l—x U
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Table 1 Calibration

Parameter Value Source

Separation Rate X 0.036 Shimer (2005); Monthly JOLTS Data

Match Elasticity & 0.49 Beveridge Curve Estimation: Lubik (2013)

Match Efficiency mu 0.90 Beveridge Curve Estimation: Lubik (2013)

Match Efficiency mp 0.70 Beveridge Curve Estimation: Lubik (2013)

Benefit b 0.90 Hagedorn and Manovskii (2008)

Bargaining 7 0.49 Hosios-Condition: n = ¢

Job Creation Cost 0.18 Iirlputed from Sjeady—State Sample Means
V =2.6% and U = 5.2%.

Discount Factor S 0.99 Annual Real Interest Rate

Productivity A 1.00 Normalized

Threshold Value Y 0.91 Cumulative Decline in U.S. GDP 2008-10

AR(1) Coefficient p, 0.95 Standard Value

AR(1) Coeflicient p, 0.95 Standard Value

StD Productivity o4 0.01 Standard Value

StD Separation Rate o 0.01 Standard Value

in Lubik (2013) for the period 2000-08, after which a potential shift
in the Beveridge curve appears evident from the data (see Figure 1).
The calibrated parameters are reported in Table 1. We set the mean of
the separation rate to a value of 0.036. This follows the value reported
in Shimer (2005) for monthly data. We choose the match efficiency in
the high state my = 0.90 and in the low state my = 0.70 based on
the estimate in Lubik (2013). The match elasticity is set to & = 0.49.
These values broadly determine the slope and the location of the Bev-
eridge curve in a scatter plot of vacancies and unemployment. We set
the discount factor 8 = 0.99 and choose the bargaining parameter by
imposing the Hosios-condition for social efficiency, n = £ = 0.49. As
mentioned before, we normalize the mean of the level of productivity
to A = 1. Next, we assume that the outside option of the worker makes
up 90 percent of the productivity level, b/A = 0.9. The calibration is
therefore close to that of Hagedorn and Manovskii (2008), who argue
that a high outside option for the worker is needed to match the cycli-
cal properties of the data. The job-creation condition can then be used
to back out the cost parameter k for a given level of unemployment
and vacancies. We compute these from the sample averages for the
period 2000-08, V = 2.6 percent and U = 5.2 percent. This implies
k = 0.18. Finally, we set the threshold value for ¥ = 0.91 to approxi-
mate the cumulative decline in U.S. GDP over the course of the Great
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Figure 2 Policy Functions
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Recession of 2007-09. We set the persistence parameter of the technol-
ogy process and the separation rate to 0.95 and the standard deviations
of the respective innovations to 0.01.

Model Simulation and Discussion

We solve the search and matching model with threshold switching in
match efficiency fully nonlinearly by means of the monotone mapping
algorithm. The algorithm computes an approximation of the firm’s de-
cision rule, which determines the number of vacancy postings given the
economy’s state variables: employment Ny, the exogenous productivity
shock Ay, and the separation rate process x;. The algorithm is detailed
in the Appendix.

In order to understand the underlying dynamics of the model before
we turn to the estimation exercise, we compute the policy functions un-
der the baseline calibration for given realizations of the shocks. The key
driving force behind the shifts in the Beveridge curve are movements



208 Federal Reserve Bank of Richmond Economic Quarterly

in productivity. An adverse enough realization of productivity A; can
drive output below the threshold value, which then generates a switch
to a lower match efficiency. However, equilibrium outcomes across the
threshold and within the distinct regions depend on the subtle interplay
between the state variables. To give a sense of the nonlinearities present
in our model, we plot the policy function for vacancies in Figure 2. For
the purposes of this exercise, we hold the productivity shock fixed at its
unconditional mean A = 1. Vacancies are graphed against the model’s
sole endogenous state variable, namely the level of employment. We
plot this relationship for different realizations of the separation rate .

Figure 2 shows the key aspect of the model. The policy function
has two distinct regions that coincide with the two distinct states of
the labor market. For given productivity, the policy function is discon-
tinuous at the implied threshold level, N = Y = 0.91. To the right
of the threshold, the labor market is in its normal state with match
efficiency m(sg), and to the left, it has suffered from a deterioration of
the latter. We also note that vacancies are decreasing in employment.
When employment is high (and unemployment low), few vacancies are
being posted because the vacancy-unemployment ratio 6 is high and
the labor market is tight. That is, the firm’s probability of finding a
worker is low relative to the costs of hiring him. When employment
is low, the labor market is awash with job seekers, so firms can more
easily recoup the implicit hiring costs. We also note that the vacancy
policy function is increasing in the productivity shock.

The policy function for the high match efficiency case tends to lie to
the right and above the respective function in the low efficiency regime.
Other things being equal, a lower match efficiency reduces the firm’s
hiring probability and thereby the incentive to post vacancies relative
to the high efficiency scenario. An interesting pattern emerges when we
additionally vary the policy function across separation rates. We find
that the higher the separation rate, the higher the vacancy postings
for given productivity and employment. More separations mean higher
churn, so for given employment, more vacancies need to be posted. The
differences between the policy functions, however, are quantitatively
small for the low efficiency case and almost nonexistent under high
efficiency.” What is interesting is that the relationship between the
separation rate and levels of match efficiency appears nonlinear in its
effect on vacancy postings.

" This is consistent with the empirical finding in Lubik (2009) and the assumption
and interpretation in Shimer (2005) that movements in the separation rate are not key
drivers of labor market fluctuations.
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Table 2 Selected Moments

a(V) o(U) o(V/U) p(V,U)
Sample 1 0.53 1.88 0.32 -0.35
Sample 2 0.49 2.10 0.39 -0.51
Sample 3 0.43 1.22 0.41 -0.47
Sample 4 0.39 0.57 0.41 -0.43
Sample 5 0.35 1.09 0.66 -0.69

We now simulate the model for 590 periods under the benchmark
calibration. We discard the first 450 periods as burn-in. We are thus
left with a sample of size 140, of which we will use the first forty obser-
vations as a training sample in the estimation of the VAR. This leaves
us with 100 periods, or twenty-five years, of data for the actual esti-
mation. Table 2 reports moments for five representative samples. We
present this as a first pass for whether our regime-switching framework
can potentially capture salient labor market facts. The last column
shows the correlation between unemployment and vacancies, which is
considerably negative and ranges from -0.35 to -0.69 but is below the
correlation found in U.S. data. Nevertheless, the model can replicate
to some extent the strongly negative comovement between these two
labor market variables.

The model is less successful in terms of volatilities. The first two
columns of Table 2 report the standard deviations of vacancies and un-
employment relative to the standard deviation of (labor) productivity
A = Y;/Ny as in Shimer (2005). Vacancies are roughly half as volatile
as productivity, while unemployment is twice as volatile for samples 1
and 2. The standard deviation drops considerably in sample 4, while
samples 3 and 5 show the volatilities of the driving process and the
endogenous variables as roughly equal. The low volatility of vacancies
is also reflected in that of labor market tightness V/U. Our framework
thus falls prey to the critique espoused in Shimer (2005), namely that
the basic search and matching model has difficulty replicating the ob-
served high volatility of unemployment and vacancies. As Lubik (2009)
shows, this can be remedied by additional shocks to the model such as
the exogenous variations in the separation rate, but this comes at the
price of reducing the correlation between U and V since a shock to
separations moves unemployment and vacancies in the same direction.

Figure 3 shows data plots of the five simulation samples, including
the training sample, in the same order as presented in Table 2. Each
row in the graph represents one simulation. The panels on the left show
time series plots of unemployment (in red) and vacancies (in blue).
The middle column shows the same data as a scatter plot in order to
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Figure 3 Simulated Data

highlight shifts in the Beveridge curve that are potentially induced by
the mechanism in our framework. The last column shows aggregate
output Y; for each simulation along with its threshold value for the
regime switch. The graphs confirm that the simulated model repro-
duces the negative correlation between unemployment and vacancies;
that is, the model generates a Beveridge curve. What is notable vi-
sually from the middle column of Figure 3 is that there are generally
two separate clusters of data (with the exception of the sample in the
fourth row). On the face of it, this lends support to the mechanism in
our framework as it can replicate the shift patterns seen in actual data.
This outcome is not preordained, however, as is evident from sample
4. In this simulation, the threshold is never reached despite values of
output persistently below its mean for extended periods. The model
economy suffers from a recession, but not one that is deep enough to do
damage to the labor market.® Consequently, a stable Beveridge curve

8 This is consistent with the interpretation of Benati and Lubik (2014) that most
shifts of the Beveridge curve during recessions are too small to be plausibly and statis-
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pattern arises over the full simulation period. We also note that this
sample stands out in Table 2 because of the low volatilities of unem-
ployment and vacancies.’

In the other sample paths, output falls below the threshold for
lengthy periods. For instance, in the first row, the initial productivity
draw pushes output below the threshold and keeps it there for fifty pe-
riods. During this period, there are two opposing forces at play. First,
the productivity process is mean-reverting; that is, eventually there will
be enough positive innovations to push productivity above its mean and
thereby drag output back above the threshold.'® The strength of this
effect depends on the degree of persistence in productivity. If it is high
enough, very large negative draws can have staying power to keep the
economy below the threshold. Low persistence, on the other hand,
leads to faster mean reversion. The second, endogenous force works
against this pattern. If the economy is below the threshold, vacancy
postings are lower than they otherwise would be (see Figure 2 and the
discussion above). Consequently, matching with lower match efficiency
reinforces the threshold switch. The observed Beveridge curve shift
would thus be consistent with the hypothesis that prolonged periods
of high unemployment are generated by mismatch in the labor market
(see Sahin et al. 2014).

To summarize, we show that the simple model with an endoge-
nous threshold switch can qualitatively and, with some qualifications,
quantitatively replicate the business cycle patterns of key labor market
variables. More importantly for our purposes, we demonstrate that our
model can generate structural shifts in the Beveridge curve. This raises
two questions. First, are these shifts large enough to be statistically dif-
ferent from a standard adjustment pattern, such as a counterclockwise
loop as discussed in Blanchard and Diamond (1989)7 Using different
methodologies and sample periods, Lubik (2013) and Benati and Lubik
(2014) answered this question in the negative. In this paper, we ask a
second question, namely whether the shifts are even detectable as such
in a flexible time-series framework.

tically judged as structural. They are thus more consistent with the counterclockwise
loop identified by Blanchard and Diamond (1989). Yet, a few recessions, notably the
most recent one, fall outside this pattern.

% What drives this pattern, that is, the lack of a Beveridge curve shift, is the com-
bination of not-large-enough random shocks in the simulation and a lack of adjustment
dynamics to the new (conditional) steady state associated with lower match efficiency.

10 An alternative specification would have productivity also obey a threshold switch,
so that the effect of very bad recessions would be much more protracted. This would
render the model closer to the implications of a Markov-switching model such as Hamil-
ton (1989).
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A TVP-VAR for the Simulated Data

Given the simulated data, we now turn to assessing whether statistical
approaches can uncover the underlying shifts in the Beveridge curve.
For this purpose, we rely on a TVP-VAR with stochastic volatility,
which has proved to be a flexible and useful tool to study nonlinear
behavior in aggregate time series. It has recently been applied to the
question of Beveridge curve shifts by Benati and Lubik (2014). Our
specific time-series model builds on Cogley and Sargent (2005) and
Primiceri (2005). The exposition below follows Lubik and Matthes
(2015), who provide further details on the implementation.

We stack the unemployment rate U; and the vacancy rate V; in a
column vector y;, which we assume is determined by the following law
of motion:

L
Yt = py + Z Ajiyi—j + et (14)
j=1

iy is a drift term that can contain deterministic and stochastic com-
ponents. The A;; are conformable coefficient matrices that contain
time-varying parameters. e; is a vector of residuals. Most of the lit-
erature on TVP-VARs that use quarterly data pick the lag length in
the reduced-form specification as L = 2. We follow this convention
since we use a quarterly calibration for our matching model. We define
X =1®(1,y;_4..,y;,_;) to provide a concise representation of the
dynamics of y:. We thus rewrite equation (14) as:

Yt = X{Gt + €t. (15)

We assume that the law of motion for the time-varying parameters
in the coefficient matrices A;; is given by:

0 = 0i—1 + uy, (16)

where wu; is a zero mean i.i.d. Gaussian process. To characterize sto-
chastic volatility, we assume that the covariance matrix of the one-
step-ahead forecast error e; can be decomposed using two matrices
such that:

e = A;IZtEt, (17)

where the standardized residuals are distributed as e; ~ N(0,1). A; is
a lower triangular matrix with ones on the main diagonal and represen-
tative nonfixed element \!. ¥; is a diagonal matrix with representative
nonfixed element o7. The dynamics of the nonfixed elements of A; and
>4 are given by:
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M= Ao+ G (18)
log o] =logol | +n]. (19)

We assume that all these innovations are normally distributed with
covariance matrix V. In order to provide some structure for the esti-
mation, we restrict the joint behavior of the innovations as follows (see
Primiceri 2005):

I 0 0 O
Uy 0 Q 0 O
V =Var =10 0 S o (20)
¢ 0 0 0 W

S is further restricted to be block diagonal, which simplifies inference.
We use a Gibbs-sampling algorithm to generate draws from the pos-
terior. The implementation of the Gibbs-sampling approach used for
Bayesian inference follows Del Negro and Primiceri (2013).

A key choice for TVP-VAR modeling is how to set the prior. In
order to achieve sharp inference, given the multiple sources of variation
in TVP-VAR models, a researcher needs to impose restrictions on the
relationship between the covariance matrices of the parameters. The
trade-off, however, is that a too restrictive prior may not leave room
for the time variation to appear. In our benchmark, we impose a typ-
ical choice of prior as recommended in, for instance, Primiceri (2005).
Specifically, we assume the following:

Q ~ IW(FLQQ x40« V(0ors), 40), (21)
W~ IW (k3 x2%1,2), (22)
S ~ IW(kg*2xV(Aors),2), (23)

where IW denotes the Inverted Wishart distribution priors for all other
parameters are the same as in Primiceri (2005). For the prior hyper-
parameters kg, kw, and kg, we use the values kg = 0.01, Ky = 0.01,
and kg = 0.1. We will discuss alternative prior choices below.

3. ESTIMATION RESULTS

We report estimation results for our benchmark TVP-VAR on simu-
lated unemployment and vacancies data in Figures 4 and 5. In each
figure, we report posterior mean estimates from the five representative
data samples discussed in the previous section. Since we specify a two-
variable VAR with two lags, we report eight series overall for the lag
coefficients, two series for the variances, and one for the covariance.
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Figure 4 Posterior Means of VAR Coeflicients
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Figure 4 shows the median posterior estimates of the coefficients in the
lagged matrices A;; in (14) for each sample and over the entire sam-
pling horizon. Figure 5 shows additional estimated statistics. The left
column of Figure 5 reports the estimated off-diagonal elements of the
covariance matrix of the one-step-ahead forecast errors, while the mid-
dle column depicts the posterior means of the diagonal elements, that
is, the variances. We also report the implied regression coefficients of a
period-by-period population regression of unemployment on vacancies
for each sample.
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Figure 5 Summary of Benchmark Results: Estimated
Posterior Means
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The results are almost unequivocal. Across all simulations, the
TVP-VAR attributes the shifts in the simulated Beveridge curve to
changes in the forecast error variance only. While both volatilities and
contemporaneous correlations change with shifts in the underlying se-
ries, all lag coefficients are estimated to be unvarying and effectively
constant (see Figure 4). The estimates for the individual samples show
that when there appears to be a shift in the Beveridge curve it is asso-
ciated with a gradual drift in the coefficients of the variance-covariance
matrix. Consider as a baseline case the simulated sample in the fourth
row of Figures 3 and 5. As discussed before, this sample path includes
declines in output that never cross the threshold and therefore do not
lead to Beveridge curve shifts. The TVP-VAR produces essentially
constant variances of the shock innovations and an implied population
regression coefficient (i.e., a Beveridge curve slope) that is fairly con-
stant at -0.4. There is some variation in the covariance, which rises
from -1.2 to -1.0 before retreating again. This seems commensurate
with the increase in unemployment and the fall in vacancy postings as
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the economy enters a downturn in the first half of the simulated sam-
ple. The resulting pattern is that of a movement along the Beveridge
curve but not a shift.

These patterns are noticeably different when we consider sample
paths that include movements of output across the threshold. First,
the population regression coefficients exhibit more variation and are
smaller (in absolute value) over the full sample period compared to
those of a sample path that does include a switch. Along a given Bev-
eridge curve, unemployment and vacancies move in opposite directions.
But in the transition between the two Beveridge curves, unemployment
and vacancies tend to move in the same direction as vacancy postings
rise in order to counteract the lower match efficiency. Shifts in the Bev-
eridge curve are associated with shifts in the elements of the covariance
matrix. In particular, periods of high volatility and positive covariation
are associated with unemployment-vacancy combinations arising from
low match efficiency. As discussed above, because of the constant mean
and the mean-reversion of the productivity process, large and persis-
tent enough negative shocks are required to push output below the
threshold. These shocks also induce high volatility in unemployment
and vacancies. The TVP-VAR then attributes this increased volatil-
ity to time-variation in the innovation covariance matrix. The positive
correlation in the innovations thus mirrors the lower implied regression
coefficient.

To summarize our findings, we posit that an econometrician who
attempts to discover shifts in the Beveridge curve using a standard
TVP-VAR would come to an erroneous conclusion. What appears in
the data as a parallel shift in the curve is interpreted by the TVP-VAR
as the outcome of time-variation in the variance-covariance matrix of
the shocks. Large shocks drive the labor market variables away from
their present location. Given the inherent persistence in the search
and matching model, this would then cluster temporally close data
points in a pattern that indicated a shift.!’ In the logic of the search
and matching model, this outcome would be consistent with a higher
incidence and severity of shocks that primarily affect the matching
process and transitional labor dynamics as captured in equation (4)
(see Barlevy 2011; Lubik 2013).

1 Incidentally, this reasoning is consistent with the argument in Lubik (2013) that
the degree of estimation, parameter, and model uncertainty in the empirical model is
large enough that it would be difficult to distinguish statistically between competing
hypotheses, especially when compared to the relatively short time span of a Beveridge
curve cycle in the data. On the other hand, Benati and Lubik (2014) impose further
restrictions and utilize longer samples to show that a few Beveridge curve cycles do
allow for sharper inference, including the Great Recession.
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However, and to reiterate this point, the underlying data are gener-
ated from a model where the presence of a structural shift for lengthy
periods of time is quite noticeable. The TVP-VAR thus attributes these
shifts erroneously to changes in volatility. This observation is consistent
with many studies using TVP-VARs that tend not to find substantial
changes in the lag coefficient matrices, but rather apportion excess
volatility and breaks in behavior to stochastic volatility. Our finding is
also reminiscent of the critique by Benati and Surico (2009) of Sims and
Zha’s (2006) argument that the switch from the Great Inflation of the
1970s to the Great Moderation of the 1980s and beyond was not driven
by a break in policy but by a decline in the volatility of the shocks.
By means of a simulation study, Benati and Surico (2009) show that
a regime-switching VAR cannot recover a break in policy coefficients
in the underlying model. Instead, it erroneously attributes the change
in reduced-form behavior to changes in the innovation variance, in a
manner similar to our results.

This naturally leads to the deeper question of why the TVP-VAR
we use is not capable of picking up these shifts seen in the theoretical
model. TVP-VARs are a very flexible modeling framework that, in
theory, can certainly capture substantial shifts in parameters. At the
same time, they also possess many moving parts, and the contribution
of each to the ultimate estimation result is not trivial to disentan-
gle. One important aspect is certainly the length of the sample over
which the model is estimated. It is well-known that inference under
heteroskedasticity (or time variation in the innovation covariance ma-
trix) is quite problematic in short sample (e.g., Toyoda 1974). For that
reason, TVP-VARs generally perform better in longer samples, as in
Amir-Ahmadi, Matthes, and Wang (2016). A second aspect is that in
models with many parameters, the choice of priors can be very impor-
tant. In particular, priors in TVP-VARs encode a particular view of
how much of the variation in the data is due to changes in parameters,
changes in volatilities, or additive shocks. The following section shows
one alternative to the standard practice that could be used to elicit
priors. With standard priors, we would need drastic and sudden shifts
in the data to have the estimated coefficients move substantially. Our
search and matching model can generate those shifts, but they would
arguably not be regarded as realistic for many developed economies.

4. ELICITING PRIORS FOR A TVP-VAR

A key element of TVP-VAR modeling is the choice of the prior on the
time-varying components. In our benchmark specification, we follow
the generally accepted practice in the literature going back to Primiceri
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(2005). However, for data with considerably different properties than
those commonly used in the literature or to which TVP-VAR models
have been applied, our chosen values might not capture a researcher’s
prior view on time variation in the data set at hand. More specifically,
the prior on the lag coefficient matrices A;; may be too tight in our
framework, so the true underlying time variation in the reduced-form
coefficients is instead forced into the covariance matrix. We therefore
consider an alternative that is based on a prior predictive analysis.!?

Our alternative approach proceeds as follows. We first estimate
fixed-coefficient VARs on rolling samples of the same length as our
training sample (forty periods) to get paths for the time-varying coeffi-
cients and volatilities. In a separate exercise, we then simulate paths for
those coefficients based on the benchmark priors described above. The
hyperparameters of the alternative prior are chosen to match a set of
moments from the paths of the time-varying coefficients and volatilities
obtained from the rolling window estimation. We choose the average
volatilities of the three sets of time-varying coefficients and volatili-
ties. For each set of k values that govern the tightness of the prior
distribution on the covariance matrix, we run twenty-five simulations
to generate paths of the same length as the paths from our rolling win-
dow estimation and average over the moments obtained in those sim-
ulations. We then pick the vector of k coefficients that minimizes the
quadratic distance between the moments from the simulations and the
rolling window estimation. The difference in the moments obtained by
simulation and the rolling window estimation is rescaled by their value
obtained in the rolling window estimation. This avoids one set of mo-
ments dominating our calculation since the coefficients have different
scales. We use a grid of values for the k parameters. As lower bounds
for the grid, we impose the values used by Primiceri (2005) since we
are worried about not capturing enough time variation. Upper bounds
are roughly ten times the values chosen by Primiceri (2005).

Figure 6 shows the resulting values for the prior hyperparameters
for our full set of twenty-five simulated samples. The horizontal green
line shows our benchmark values. As it turns out, there are, in fact,
substantial differences between the values chosen by Primiceri (2005)
and the values implied by our approach. In the case of the innovation
variance in the law of motion for the time-varying parameters in the
coefficient matrices A;, equation (16), there are only two samples for
which our prior choice deviates from the one chosen by this approach;

12 An alternative would be to directly estimate the prior hyperparameters with the
rest of the parameters of the model. A Gibbs sampler to do this is described in Amir-
Ahmadi, Matthes, and Wang (2017).
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Figure 6 Eliciting Priors: Values of Prior Hyperparameters
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the deviation is only kg = 0.03 when compared to our benchmark
choice of kg = 0.01. The hyperparameter scaling the variance of the
innovation in the triangular decomposition matrix of the forecast-errors
covariance matrix shows more deviations. They can be larger by a
factor of up to five, but this is not consistent across each simulation.
The largest difference to our benchmark choice can be found for the
innovations on the process of the error variances. As can be seen from
the bottom graph in Figure 6, the hyperparameter sy is larger by an
order of magnitude.

This raises the question of whether this alternative prior choice has
an effect on the implications derived from the TVP-VAR. We therefore
reestimate our model with the much wider priors chosen by the proce-
dure described above. The estimation results are reported in Figure 7,
which can be compared directly with Figure 5. We find that the para-
meter estimates using the alternative prior are almost identical to those
obtained using the benchmark specification. The estimated entries of
the VAR companion form matrix (not reported) are also virtually iden-
tical to the benchmark case. Our conclusion that the Beveridge curve
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Figure 7 Summary of Results: Estimated Posterior Means
from Alternative Choice of Hyperparameters
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shifts in the simulated data are erroneously attributed by the TVP-
VAR to time variation in the covariance matrix of the one-step-ahead
prediction errors therefore remains intact. In order to get substantial
differences in estimated parameters, the prior hyperparameters need
to be increased dramatically (e.g. kg = 1). For our application, the
benchmark values consistent with the existing literature therefore seem
to be a good choice as far as a naive exercise—that is, without knowl-
edge of the underlying dynamics—is concerned.

5. CONCLUSION

This article makes a simple point. TVP-VARSs appear to be predisposed
to capture time variation in the underlying data by means of changes
in the innovation terms and not via movements in lag coefficients. We
arrived at this conclusion by means of a simulation study where we
generate a specific form of nonlinearity that would imply time variation
in the data. This conclusion holds for a standard choice of priors as well
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as an alternative set of priors that we obtain from a prior predictive
analysis.

Naturally, the results derived in this article are model dependent
and should therefore be taken with a grain of salt. As our model
analysis shows, the degree of nonlinearity in the policy function or in
the simulated data does not appear to be, heuristically speaking, large.
It thus may very well be that the posterior sampler in the Bayesian es-
timation attributes this type of variation in the data to residual shocks,
just as a fixed-coefficient VAR would. What supports this argument is
that during times of economic upheaval, chiefly the Great Depression
period, TVP-VARs do tend to exhibit considerable time variation in
the lag coefficients (Benati and Lubik 2014; Amir-Ahmadi, Matthes,
and Wang 2016). That said, we argue that the basic point still ap-
plies as to the interpretability of TVP-VAR results. At the very least,
researchers should consider a more careful approach to prior selection.

In addition, and independently of the TVP-VAR angle, we pro-
pose in this article a modeling framework that conceptualizes struc-
tural changes in the labor market and links them to business cycle
movements. The mechanism works via an endogenous regime shift in a
key labor market parameter, whereby the shift is driven by the interac-
tion of shocks and the intrinsic dynamics of the model. In the case of
a simple labor market model, we show that a deep and long recession
that originates in adverse productivity realizations can be prolonged by
deterioration in the labor market matching process. This mechanism
thus offers a convenient setup for studying the behavior of the labor
market over the business cycle.
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APPENDIX: DERIVATION OF THE WAGE SCHEDULE

The wage that firms pay to workers is derived as the outcome of a Nash
bargaining process. Denoting the workers’” weight in the bargaining
process as 1 € [0, 1], this implies the sharing rule:

n

— (A1)
where W, is the asset value of employment, U; is the value of being
unemployed, and J; is, as before, the value of the marginal worker to
the firm. In models with one-worker firms, the net surplus of a firm is
given by J; — Vy, with V; the value of a vacant job. By free entry, V;
is then assumed to be driven to zero. The value of employment to a
worker is described by the following Bellman equation:

Wi = wi + BE(1 — Xy 1) Wit + XUt 1] (A2)

Workers receive the wage w; and transition into unemployment in the
next period with probability s. The value of searching for a job, when
currently unemployed, is:

U = b+ BEx(1 — Xer 1) War1 + (1 = X (1 = Xg 1)) Ui (A3)

An unemployed searcher receives benefits b and transitions into employ-
ment with probability x;(1 — x;;1). It is adjusted for the probability
that a completed match gets dissolved before production begins next
period. Substituting the asset equations into the sharing rule (Al),
results, after some algebra, in the wage equation found in the text:

Wi =n (A + Kk0:) + (1 —n)b. (Ad)

Wy — Uy =
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APPENDIX: MODEL SOLUTION

We solve the simple search and matching model fully nonlinearly by
means of the monotone mapping algorithm. The algorithm computes
an approximation of the decision rule hY (N, Ay, x,), which determines
the number of vacancy postings given the state variables: employ-
ment Vg, the exogenous productivity shock As, and the separation rate
process x;. The algorithm contains the following steps:

1. Specify a threshold switching value Y and discretize the state

space S. Formulate an initial guess for the decision rule: /ﬁg (N, A, x)
V{N, A, x} €S.

2. Compute a residual function R(V;; { Ny, A, x;}) based on the fol-
lowing:

(a) Y; is calculated and m; is given according to the threshold
process (1).
(b) Calculate next period’s employment from (4).

(c) Expected values of next-period values in the firm’s first-order
condition appear as:

(1= ) (AP = b) = il 52) + (i) (5 )¢

1-Nii1 megp1/ \1—=Npiq

E
! Yi

= Xtv

which can be approximated with the truncated distribution:

*

y (I)(Nt+1aAt)

N ¢ O (Nig1, Ar)
X; = g02)—— T2 Y e 4 g:02)—— 22 e
t éf(b( E)‘P(NtJrl’At) Ej*‘d)( E)\D(Nt+1aAt)
where:
q) (Nt+1, At) = (1 — 7]) (AfAeaAt — b) —
nﬂ<hg(Nt+17 AtpAesAt)
1= Ny
?LV N APA EAtL
+(i)(0( t+1, 47 € )§
my 1— Nt ’
L\ (Nt+1, At) == AtpASEAtNtJrl — /{E(‘)/(NtJrl’ AtpABEAt).

Estimate this expression with a trapezoid rule. Linear inter-
polation is used in the implementation of the decision rule.
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(d) Given the expectations, the residual function is:

K

_ - Vi \*
IN.. A =1(1- Y X — —
R(‘/ta{ ts taXt}) ( Xt)ﬁ t my <1 _ Nt)

I

which can be interpreted as the absolute value of the differ-
ence between the right-hand side and left-hand side of the
firm’s first-order condition.

3. This residual function is minimized over V; for every triple
{Ni, Aj,x;.} in S. The decision rule is then updated based on:

h;/(Nla Aj7 Xk) = arg mln{R(‘/ta {va Aj> Xk})} V{?’LZ, Aj7 Xk} €S5.
4. The algorithm is repeated until:

max hl‘cf-i-l(NivAj)Xk) - th(NlaAjan) <e.



