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Nonparametric Estimation
of the Diamond-Dybvig
Banking Model

Bruno Sultanum

T
he Diamond and Dybvig (1983) model has been extensively
used to explain episodes of runs against financial institutions.
In the model, depositors face uncertainty about whether they

would prefer to consume in an early or late period. Because there are
costs associated with an early liquidation of investments, depositors
can benefit from an insurance contract with respect to their preference
shock. The optimal insurance will transfer resources from those de-
positors who prefer to consume in the late period, and therefore get
a better return in their investments, to those who prefer to consume
in the early period. Such transfers, however, cannot be contingent on
the depositor preference because these are not observed– the contract
must be incentive compatible so they reveal their true preferences in
equilibrium. As Diamond and Dybvig (1983) argue, an arrangement
that has this property is a bank contract. The bank promises the ef-
ficient transfer in the early period to any depositor who claims the
resources. In one equilibrium, only those who actually have preference
for early consumption claim early payments. However, there is also an
equilibrium where depositors fear that every other depositor, including
those with preference for later consumption, will claim early payments.
As a result, depositors fear no resources will be left at the bank for
consumption late and all of them have incentives to claim payments in
the early period, generating a self-fulfilling bank run.
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those of the author and should not necessarily be interpreted as those of the Federal
Reserve Bank of Richmond or the Federal Reserve System.
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Even though this argument is intuitive, whether or not the model
generates runs under a well-designed bank contract depends on the
particular specifications of the environment. For example, if there is
no aggregate uncertainty, in the sense that the number of early con-
sumers in the economy is known, a simple suspension scheme is able
to prevent runs from happening. This observation was made by Di-
amond and Dybvig (1983), but they highlight that this is only true
without aggregate uncertainty.1 Later, Wallace (1988) pointed out the
importance of sequential service in order to generate bank runs in the
Diamond-Dybvig model. Sequential service is a constraint that pay-
ments must be done in sequence, as depositors arrive at the bank, so
payments to one depositor cannot be made contingent on future with-
drawal demand. However, as Green and Lin (2000, 2003) later point
out, aggregate uncertainty and sequential service alone are not enough
to generate bank runs in the Diamond-Dybvig model. As they pose it,
the theory as it stood was incomplete. A huge theoretical literature
has followed trying to understand what other ingredients are necessary
for the existence of bank runs.

The approach to address this question and understand whether the
Diamond-Dybvig model actually generates bank runs or not has been to
build examples where bank runs do exist– see, for instance, Peck and
Shell (2003), Ennis and Keister (2009b), and Sultanum (2014). The
examples of bank runs are built with particular distributions of liquid-
ity needs and other primitives, such as preferences. However, for the
model to explain observed runs, we need its primitives to be consistent
with empirical observations. In particular, the distribution of liquidity
needs in the model should be consistent with the empirical one. With-
out this consistency between data and model, the model would still be
“incomplete”as a theory to explain historical run episodes. Hence, de-
veloping tools to estimate the Diamond-Dybvig model is an important
step in understanding how bank runs actually work and how to prevent
them.

Moreover, the advantages of estimating the Diamond-Dybvig model
go beyond the positive aspect of explaining empirical observations.
There are also normative advantages. One way policymakers can use
this tool is to estimate the model for different markets and institutions
(possibly also making it state contingent) and then test for which mar-
kets and institutions a run equilibrium exists. That is, the model can
guide policymakers to when and where runs are a possibility, allowing
timely policy measures to be taken before a run ever happens.

1 As pointed out later by Ennis and Keister (2009a), this result also relies heavily
on the bank’s ability to commit to a suspension scheme.
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In this paper, I construct a structural estimator for the distribution
of liquidity needs in the version of the Diamond-Dybvig model studied
in Sultanum (2014). The data requirement for the estimator is that the
econometrician observes the total amount withdrawn. This assumption
serves two purposes. First, it is a very weak data requirement, which
is always welcome since more detailed data may only be available to
regulators (sometimes not even to them). Second, in the model, a
depositor either withdraws his entire deposit or nothing. In practice,
people can withdraw only part of their money or can withdraw money
from multiple accounts at the same bank. So the “amount withdrawn”
is a clear and well-defined measure both in theory and in the model.
It is not clear how to match the observation of partial withdrawals or
withdrawals from different accounts in the data to the model.

What makes this problem diffi cult is that aggregate payments are
observed, but the preferences that define the liquidity needs are not
observed. Therefore, in order to estimate the distribution of liquidity
needs, one must establish a map between payments and preferences.
However, because payments embed an insurance against the preference
shock risk, how much is paid for any given realization of preference
shocks is endogenous. In particular, it depends on the distribution of
liquidity needs.

There is a large literature that studies whether past run episodes
against financial institutions were due to coordination failure, as in
Diamond and Dybvig (1983), or not. This literature focuses on in-
direct tests of theoretical frameworks. That is, it tests some of the
implications of the theory rather than estimates a particular model
and tests whether it generates runs or not. Two recent examples are
Foley-Fisher et al. (2015) and Schmidt et al. (2016). Foley-Fisher et
al. (2015) develop a model to study runs against extendible funding
agreement-backed notes (XFABN) issued by life insurers. Their the-
ory suggests an instrument for the strategic complementarity among
investors that is (plausibly) exogenous to variations in fundamentals.
So, to test whether self-fulling runs played a role in the withdrawals
from XFABN or not, the authors test the correlation between the in-
strument implied by the theory and the observed withdrawals. Schmidt
et al. (2016) study runs against money market mutual funds. The au-
thors develop a model and test its different predictions. For example,
they test whether outflows from sophisticated investors in reaction to
worse fundamentals are greater than from unsophisticated ones, where
sophistication is defined by the quality of the information the investor
has access to.

I see the nonstructural approach that has been used as complemen-
tary to a fully structural one. It sheds light on whether self-fulfilling
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bank runs exist or not. In fact, in my estimation procedure I assume
that the econometrician knows whether past runs were due to coordi-
nation failure or not. However, without the estimation of a structural
model, it is hard to test particular theories– such as Diamond-Dybvig.
Once the theory is tested, then we can use it to make predictions and/or
policy recommendations.

The econometric method I use in this paper builds on those de-
veloped for estimation of auctions. Specifically, it builds on Guerre
et al.’s (2000) idea of using the equilibrium conditions of the model to
map observable to unobservable variables. Since its publication, Guerre
et al. (2000) has spurred a huge empirical and theoretical literature.
Some of the more recent theoretical examples are Campo et al. (2011),
which allows bidders to be risk-averse; Krasnokutskaya (2011), which
considers bidders’unobserved heterogeneity; and Kastl (2011), which
proposes an estimation method for auctions with discrete bids. On the
empirical side we have, for example, Cassola et al. (2013), which uses
the extension in Kastl (2011) to study liquidity demand from European
banks during the 2007 financial crisis; and Hortaçsu and Kastl (2012),
which quantifies the dealers’advantage from observing customers’or-
ders using data on Canadian Treasury auctions.

Even though a lot can be done using, and improving on, the es-
timation procedure I discuss in this paper, as the literature on the
estimation of auctions has shown, the goal of this paper is not to fully
investigate all the properties and possible extensions of a particular
estimator. The goal here is to provide an illustrative framework that
future researchers can build on in order to estimate bank-run models
in different settings. I believe that a full investigation is only worth
it with a particular dataset and institutional framework in mind. For
this reason, a lot of the discussion here is abstract and details on data
and applications are left for future research.

The paper is organized as follows. Section 1 describes the model,
the equilibrium concept, and provides a characterization of the solu-
tion. Section 2 describes the data requirement, discusses identification,
and provides an nonparametric estimator and a numerical example of
the procedure. Section 3 discusses how the model can be used to test
for the existence of bank-run equilibria. Section 4 discusses practical
diffi culties and challenges associated with estimating the model. Sec-
tion 5 concludes.

1. THE MODEL

The model builds on Sultanum (2014), which is an extentision of Peck
and Shell (2003) with a continuum of agents. The advantage of this
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setting is that the optimal bank contract can be easily characterized by
a second-order differential equation, which will be used in the proposed
estimation procedure.

Environment

There are three periods, zero, one, and two, and a unit measure of
agents called depositors. In period zero, each depositor is endowed
with one unit of wealth, which they can invest to consume in periods
one and two (agents do not consume in period zero). The investment
technology is as follows. Investments in period zero pay gross return
1, if liquidated in period one, and gross return R > 1, if liquidated
in period two. Depositors are identical in period zero. In period one,
each depositor receives a preference shock. The preference shock turns
them into one of two types: patient or impatient. The utility of a type
impatient depositor is u(c1), while that of a type patient depositor
is u(c1 + c2), where (c1, c2) is consumption in periods one and two,
respectively. The utility function u is the constant relative risk-aversion
(CRRA) utility function, u(c) = c1−γ−1

1−γ , and I assume that the risk-
aversion parameter γ is greater than 2.

Let α ∈ [0, 1] denote the fraction of depositors of type impatient.
The value of α is assumed to be a random variable with cumulative dis-
tribution function F and density function f , which satisfies f(α) > 0 for
all α in the support [0, 1]. The density f is also assumed to be continu-
ous and differentiable in the support. Conditional on the realization of
α, the event that a depositor is of type impatient is i.i.d. across agents
and has Bernoulli distribution with parameter α. Throughout the text,
I refer to α as the aggregate liquidity need in the economy.

One can think that the event where more than, say, 90 percent
of depositors are type impatient has probability zero. This could be
formalized by allowing the support for the aggregate liquidity need to
differ from [0, 1]. That is, in general, F could have support [αl, αh]
with 0 ≤ αl < αh ≤ 1. In this case, αl and αh would also have to
be estimated. The approach I describe in this paper can be extended
to address this case, which I believe to be of interest. However, as
previously stated, going through all the details and extensions of the
estimation procedure is beyond the goal of this paper.

Sequence of actions and bank contracts

Depositors face risk in the form of preference shocks (be patient or
impatient). As a result, an insurance arrangement is desirable in or-
der to improve depositors’ex-ante welfare. Following Peck and Shell



266 Federal Reserve Bank of Richmond Economic Quarterly

Figure 1 Sequence of Actions

(2003) and, more closely, Sultanum (2014), I focus on a form bank
contract where resources are deposited in a bank and depositors can
withdraw resources if they want to. That is, in period zero, all re-
sources are deposited in the bank. In the beginning of period one,
each depositor observes his own type (which is private information).
No one observes the realization of α. Then, agents simultaneously de-
cide whether to withdraw resources from the bank or not. The bank
serves the withdrawal requests of the individuals in a random sequence,
which the literature refers to as the sequential service constraint (see
Wallace [1988] for details on sequential service). A depositor’s position
in the queue is uniformly distributed among depositors who decide to
withdraw resources from the bank in period one.2 After all withdrawal
payments are made, what is left in the bank pays a gross return of R
from period one to period two. In period two, the bank distributes the
amount left to those who did not withdraw in period one. Figure 1,
extracted from Sultanum (2014), depicts the sequence of actions.

A bank contract tells how much a depositor who withdraws in pe-
riod one receives as a function of his queue position and how much a
depositor who waits until period two to withdraw receives as a function
of the number of withdrawals in period one. We can formalize it as a
pair of continuous functions, m = (c1, c2), where c1 : [0, 1] → R+, and
c2 : [0, 1] → R+. The function c1(z) gives the payment to a depositor
who withdraws in period one and has position z in the queue. The
function c2(z̄) gives the payment to a depositor who waits until period
two to withdraw when the fraction of people who withdrew in period
one is z̄ ∈ [0, 1]. The continuity on m is without loss of generality with

2 Although depositors arrive at the bank in sequence, the rate of arrivals of depos-
itors at the bank cannot be measured by the bank and, therefore, cannot be used as
a factor to determine payments. This assumption can be rationalized by assuming that
the time interval in which agents arrive varies proportionally to the number of agents
visiting the bank.
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respect to finding the constrained optimal outcome, which we define
later.

Feasibility of a contract requires that payments must not be greater
than the resources available. I impose that the total amount paid
must exactly equal the resources available. This requirement is without
loss of generality because utility functions are strictly increasing. The
feasibility conditions can be written in terms of the functions c1 and c2

as

c2(z̄) =
1−

∫ z̄
0 c1(z)dz

1− z̄ R for all z̄ ∈ (0, 1), and
∫ 1

0
c1(z)dz = 1.

(2.1)
A bank contract m and the sequence of actions induce a Bayesian

game where each player has only two types, either patient or impatient,
and two actions, either withdraw in period one or period two. A strat-
egy profile is a function s that maps types θ ∈ {patient, impatient}
into probability measures over the periods of withdrawal, {period one,
period two}. I consider only symmetric Bayesian Nash equilibria of
this game, where symmetric means that players of the same type use
the same strategy.

It is important to note that the game is simultaneous. That is,
when a depositor is deciding whether to withdraw or not, he does not
observe the withdrawal decisions of other depositors. One could think
that, in practice, people have at least some idea (or signal) of other
depositors’actions. For instance, one could see whether or not there is
a line in front of the bank, as beautifully illustrated in the Frank Capra
movie It’s a Wonderful Life. Of course, whether this signal is available
or not depends on the setting. These days, when many withdrawal
decisions are done online or by phone, such as in mutual funds and
other shadow banks, it seems reasonable to assume that depositors do
not have much information on other depositors’actions prior to their
withdrawal decision. For simplicity, I do not allow depositors to observe
any other depositors’actions or obtain any signal that is informative
of such actions.

The optimal bank contract

The bank problem is to design a contract m = (c1, c2) that maximizes
ex-ante welfare of depositors. This assumption can be justified by an
extension of the model where a competitive bank sector has banks com-
peting to attract depositors from other banks. To keep the exposition
simple, however, I follow the literature and directly assume that the
goal of the bank is to maximize depositors’welfare.
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The outcome that maximizes ex-ante welfare of depositors must be
such that only impatient depositors consume in period one, while all
the patient depositors consume in period two. This is the case because
the return from period one to period two, R, is strictly greater than 1.
Therefore, I am interested in bank contracts that have an equilibrium
in which only impatient depositors withdraw in period one. I call such
equilibrium a no-run equilibrium, and, when a bank contract has a
no-run equilibrium, I call it an incentive-compatible bank contract.

When a depositor observes his type, he uses Bayes’rule to update
his belief over the distribution of α. Let fp(α) = (1− α)f(α)/

∫ 1
0 (1− z)f(z)dz

be the density of α conditional on the depositor being of type patient.
Note that impatient depositors withdraw in period one because they
derive no utility from period-two consumption. Therefore, in order to
verify that a contract is incentive-compatible, we just need to verify
that a patient depositor is better off withdrawing in period two when
the other patient depositors are withdrawing in period two.

A feasible bank contract m = (c1, c2) is incentive compatible if, and
only if, it satisfies∫ 1

0

∫ α

0

u(c1(z))

α
dzfp(α)dα ≤

∫ 1

0
u (c2(α)) fp(α)dα. (2.2)

The left-hand side of the above inequality is the expected utility of a
patient depositor if he withdraws in period one, and the right-hand
side of the inequality is his expected utility if he withdraws in period
two– all conditional on the other depositors withdrawing in period one
only if they are impatient types.

When depositors are playing the no-run equilibrium, the ex-ante
welfare associated with a bank contract m = (c1, c2) is

W (m) =

∫ 1

0

[∫ α

0
u(c1(z))dz + (1− α)u (c2(α))

]
f(α)dα. (2.3)

A bank contract is said to be optimal if it achieves the maximum of
W (m) among all feasible and incentive compatible bank contracts m =
(c1, c2).

Let us assume for a moment that the incentive-compatibility con-
straint does not bind in this problem. Then, using the same approach
as in Sultanum (2014), we can show that an optimal bank contract
m = (c1, c2) always exists and w(α) =

∫ α
0 c1(z)dz is the unique solu-

tion to the second-order differential equation

w′′(α)u′′(w′(α)) = h(α)

[
u′(w′(α))−Ru′

(
1− w(α)

1− α R

)]
(2.4)
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with boundary conditions w(0) = 0 and w(1) = 1, where h(α) =
f(α)

1−F (α) .
3 Therefore, to solve the model it suffi ces to first solve the

differential equation (2.4), then recover c1 and c2 using that c1(α) =

w′(α) and c2(α) = 1−w(α)
1−α R.

Equation (2.4) differs from the one in Sultanum (2014) because the
Lagrange multiplier of the incentive-compatibility constraint shows up
in their characterization, but it does not show up here. In the present
setting, because the utility of the patient types is the same as the im-
patient, the incentive-compatibility constraint of agents does not bind.
There are two steps to show this result. The first one is to note that, in
any solution of equation (2.4), we must have c1(α) = w′(α) ≤ c2(α) =
1−w(α)

1−α R for all α. Otherwise, the boundary condition would not be sat-
isfied. The second step is to show that this inequality in consumption
implies that the period-two distribution of consumption stochastically
dominates the period-one distribution of consumption when other pa-
tient types withdraw only in period two. That is, patient depositors
are better off choosing period-two consumption when they believe that
other patient depositors are also waiting to consume in period two.
Therefore, we can conclude that the bank contract is incentive com-
patible.

2. ESTIMATION

The primitives of this economy are given by the risk-aversion parame-
ter, γ, the return, R, and the distribution of the liquidity needs, F .
In this section, we establish an estimator for the distribution of the
liquidity needs under the assumption that we know γ and R or that
they can be identified separately.

The assumption that the return, R, is known seems natural since
one can observe market returns from bank balance sheets. The

3 It is easier to solve the differential equation (2.4) in terms of a system of differen-
tial equations, where the marginal utility of period-one consumption, m1(α) = u′(w′(α)),

and period-two consumption, c2(α) =
1−w(α)
1−α R, are the main variables. That is,

m′1(α) = h(α)[m′1(α)−Rc2(α)−γ ]

c′2(α) =
1

1− α
[c2(α)−Rm1(α)−1/γ ]

with boundary conditions c2(0) = R and c2(1) = R/m1(1)1/γ . By picking the initial
c1(0), one can target the final condition c2(1) = R/m1(1)1/γ . That is, combining the
fact that the solution is continuous in the initial condition and that the solutions cannot
cross, one can use the intermediate value theorem to argue that an initial c1(0) such
that the boundary condition is satisfied must exist. Moreover, one can show that in
such a solution c1(1) = c2(1) = 0.
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assumption that risk-aversion is known, however, deserves justification.
This assumption is made for tractability since identifying risk-aversion
and distributions together is challenging in this, and also other, set-
tings. For example, Campo et al. (2011) establish that the risk-aversion
parameter cannot be identified in first-price auctions together with the
distribution of valuations. One could impose additional parametric as-
sumptions in order to identify both the risk-aversion parameter and
the distribution of liquidity needs. I consider such analysis interesting
but leave it for future research.

There are also two structural assumptions that are necessary for
our estimation procedure. Namely, that the bank contract is optimal,
as described in the previous section, and that depositors play the no-
run equilibrium, where only impatient types withdraw in period one.
Alternatively, we could have assumed that we can separately identify
the periods in which the no-run equilibrium is played. This is equivalent
to saying that, at least ex post, we know whether a bank run happened
or not.

In terms of observed data, we assume we have N independent in-
stances of our economy, and in each one we observe only how many total
early payments were made as a fraction of the total resources. That is,
we can observe a sequence of realizations {wn}n that are independent
of each other. The sample can be interpreted either as a sample over
time of the same bank or a sample with N identical banks. In either
case, it is important that wn = w(αn), where {αn}n are independent
and identically distributed according to F , and w(α) solves (2.4). In
the next subsection I show that these data contain enough information
to identify F .

I would like to emphasize that this is a very weak data requirement.
Only total outflows from the financial institution being studied are
necessary. One could try to improve upon the estimation procedure I
discuss here by having additional data available, for example, by having
microdata on individual depositors. Additional data would also allow
for extensions of the model where more primitives of the economy could
be identified. But, as I show, just data on outflows already provide a
lot of information, allowing us to identify the distribution of liquidity
needs.

Identification

A crucial problem in structural estimation is whether the observed data
are enough to identify the primitives of the model. In the context of
our model, the assumption is that we observe total withdrawals. Let
the distribution of total withdrawals be denoted by G. So the question
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is whether we can identify the distribution of liquidity needs, F , from
the distribution of total withdrawals, G.

In order to answer this question, we use the solution condition of the
model to relate G and F . If the map between these two distributions is
unique, then the model is identified. So let us look at these conditions.
First, the differential equation in (2.4) implies that w is strictly increas-
ing and, therefore, the inverse of w exists. Moreover, because w takes
value in the [0, 1] interval, G has also support [0, 1] and we have that
G(w̃) = P[w(α) ≤ w̃] = F

(
w−1(w̃)

)
. Because w and F are differen-

tiable, we also know that G is differentiable (since it is the composition
of differentiable functions) and it satisfies g(w(α))w′(α) = f(α). We
can now use these conditions to rewrite the differential equation (2.4)
in terms of G. We get that

w′′(α)u′′(w′(α)) = hG(w(α))w′(α)

[
u′(w′(α))−Ru′

(
1− w(α)

1− α R

)]
(3.1)

with boundary conditions w(0) = 0 and w(1) = 1, where hG(w) =
g(w)

1−G(w) .
Since we know u and R, for each G we can solve the differen-

tial equation (3.1) for w. Once we have w, we can recover F using
F (α) = G(w(α)). Note that this procedure identifies F . To see this,
assume that two distributions, F1 and F2, generate the same G. That
is, F1(α) = G(w1(α)) and F2(α) = G(w2(α)), where w1 and w2 are
solutions to the differential equation (2.4) associated with F1 and F2,
respectively. If that is the case, then w1 and w2 would both have to
solve (3.1). But one can show that equation (3.1) admits only one so-
lution, which implies that w1 = w2 and F1 = F2. Therefore, we can
conclude that the distribution of total withdrawals, G, combined with
the first-order condition that characterizes the optimal bank contract,
contains enough information to identify the distribution of aggregate
liquidity needs F .

Estimation steps and numerical example

I propose an indirect nonparametric estimation of F . This estimation
has three steps. First, we estimate the distribution of total withdrawals
G. Call this estimator Ĝ. Then we solve the differential equation
(3.1) where G is replaced with Ĝ. Call the solution to this differential
equation ŵ. Finally, the estimator of the cumulative distribution of
liquidity needs is F̂ (α) = Ĝ(ŵ(α)), and its density estimator is f̂(α) =
ĝ(ŵ(α))ŵ′(α).
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Figure 2 Distributions

The problem of estimating G is a standard nonparametric estima-
tion problem for a continuous distribution over a compact support.
One must chose a bandwidth h > 0 and a Kernel function k : R→ R+,
where

∫
k(u)du = 1. Then we have that

ĝ(w) =
1

Nh

∑
n

k

(
w − wn

h

)
and Ĝ(w) =

∫ w

0
ĝ(w̃)dw̃. (3.2)

There are different ways of choosing the bandwidth h and the Kernel
k. I refer the interested reader to Pagan and Ullah (1999) for a full
discussion.

To illustrate how this estimator works in practice, below I simulate
the model and use our procedure to estimate the underlying distribu-
tion F . I consider a specification of the model with γ = 3.0, R = 1.15,
and F is a normal distribution with mean µ = 0.5, standard deviation
σ = 0.25, and truncated between 0 and 1.

The numerical exercise is performed with the following steps. I
first solve the model for w using equation (2.4). Then I draw 500
observations αn from F and generate the sample {wn}n using wn =
w(αn) for n = 1, . . . , 500. For the nonparametric estimator of G, I
choose the bandwidth h = 1.06σ̂wN

−1/5, where σ̂w is the standard
deviation of the sample {wn}n, and the Kernel function

k(u) = 1(|u| ≤ 1)
35

32
(1− u2)3.
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Figure 3 Bank Contract

After estimating Ĝ, I obtain ŵ using equation (3.1). Then I compute
F̂ and f̂ .

This procedure allows us to estimate two interesting objects. The
first one is the distribution of liquidity needs, which is characterized by
its cumulative distribution F̂ and the associated density f̂ . Another
interesting outcome of this procedure is the estimation of the bank
contract itself. Hence, we can see how the bank contract m = (c1, c2)
compares to the estimated one m̂ = (ĉ1, ĉ2).

Figures 2 and 3 depict the estimation outcomes. Figure 2 depicts
the distribution of aggregate liquidity needs. We can see that the esti-
mates, F̂ and f̂ , provide a good approximation of the true cumulative
distribution F and its density f . Figure 3 shows the graph with the
true bank contract m = (c1, c2) and the estimated one m̂ = (ĉ1, ĉ2) for
comparison. The contracts are extremely close.

3. TESTING FOR THE EXISTENCE OF BANK RUNS

A bank-run equilibrium is defined as an equilibrium where depositors
withdraw not because they have liquidity needs but because they be-
lieve all other depositors are withdrawing. When estimating a bank-run
model, an important question the econometrician could have in mind
is whether a bank-run equilibrium exists or not. In this section we
discuss possible econometric tests to address this question.
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Consider a more general formulation of our model where the sup-
port of F is any interval [αl, αh] ⊂ [0, 1]. I focus on this generalization
because, in the previous formulation of the model, a bank-run equilib-
rium always exists if αh = 1, so the question of whether a bank run
exists would be uninteresting. In the context of this generalized model,
the condition for the existence of a bank-run equilibrium is that∫ αh

0
u(c1(α))dα ≥ u(c2(αh)). (4.1)

The left-hand side of the inequality is the expected utility of a patient
depositor if he decides to withdraw in period one, while the right-hand
side of the inequality is his expected utility if he decides to withdraw
in period two– all conditional on every other depositor withdrawing in
the first period.

Define the propensity to run as

P =

∫ αh

0
u(c1(α))dα− u(c2(αh)). (4.2)

For an econometrician who has the prior that the model is capable
of explaining observed bank runs, the null hypothesis is that P ≥ 0.
The advantage of formulating the problem in this way is that this is a
hypothesis that can be empirically tested. That is, define the statistic
P̂ as

P̂ =

∫ α̂h

0
u(ĉ1(α))dα− u(ĉ2(α̂h)). (4.3)

Traditional econometric methods can be applied to derive the distribu-
tion of P̂ , build confidence intervals, and, ultimately, test the hypothe-
sis that P ≥ 0. That is, the properties of P̂ can be used to test whether
the model generates bank runs or not.

The test I propose here is essentially different from what is tested in
most empirical literature on bank runs. While the focus of the existing
empirical literature is to test whether or not past episodes of bank
runs were due to coordination failure by estimating the model, the test
I am proposing can reveal whether bank runs can happen or not in
equilibrium.

Testing for the possibility of a bank run in the model is helpful
in two ways. First, this allows us to test the theory itself. Second,
if the theory is successful in explaining past run episodes, it can be
used to also inform policymakers of which markets and institutions are
vulnerable to runs prior to a run happening, when measures can still
be taken to prevent them.

The model can also extend to be state contingent, so the propensity
to run can be a function P (θ), where θ contains relevant information
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such as economic growth and unemployment. This would allow us to
predict under which conditions runs are more likely to happen.

4. CHALLENGES AND PRACTICAL PROBLEMS

Many assumptions are necessary to use the estimation procedure dis-
cussed above. Below I discuss some of the diffi culties an econometrician
would face when taking the model to a particular dataset.

The data requirement for the estimator is very weak, an econometri-
cian only has to observe the early withdrawals in the Diamond-Dybvig
model. One issue that arises, however, is that it is not clear how to
match early withdrawals in the model with the data. Each applica-
tion requires the econometrician to define what in Diamond-Dybvig is
labeled as early versus late dates. For the XFABN studied by Foley-
Fisher et al. (2015), for example, the answer seems natural. These
notes feature specific dates when investors have the option to extend
their notes. In other settings, however, the answer may be more chal-
lenging.

Before taking the model to the data, an econometrician also has
to decide what exactly is the unit of observation the Diamond-Dybvig
model represents. Does it represent the entire financial sector? Or
does it represent particular financial institutions? If financial institu-
tions have access to a complete set of liquidity contracts, then liquidity
demand that is idiosyncratic to one of them does not matter because
they would insure against using the available liquidity contracts. In this
case, only liquidity demand in the banking sector as a whole matters for
allocations. However, if financial institutions do not have access to a
complete set of liquidity contracts, then each one should be considered
in isolation as a unit of observation.

Another diffi culty the model suggests is that, similar to estimation
of auctions, combined identification of risk aversion and distribution is
challenging. In the estimation procedure I propose here, I assume that
the risk-aversion parameter of depositors’utility is known (or it could
be separately identified). Once the risk-aversion parameter is known,
the econometrician can use the second-order differential equation that
characterizes the optimal contract to pin down the distribution of liq-
uidity needs in the economy from the distribution of total withdrawals.
However, the map between the two is only unique because the risk-
aversion parameter is known. That is, just information on the distrib-
ution of total withdrawals would not be enough for the econometrician
to identify risk aversion and distribution of aggregate liquidity needs.

A problem, similar to the one created by having to identify the
risk-aversion parameter, would also rise if the econometrician has to
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identify the Lagrange multiplier of the incentive-compatibility con-
straint. In the version of the Diamond-Dybvig model I study, the
incentive-compatibility constraint of the patient depositors does not
bind because the utility function of patient and impatient depositors is
the same. In the original Diamond-Dybvig model, however, the utility
of a patient depositor is ρ times the utility of an impatient depositor.
Hence, the preferences I use are a particular case of Diamond and Dy-
bvig (1983) where ρ equals one. Under the general formulation used in
Diamond and Dybvig (1983), the incentive compatibility can bind and
the solution to a second-order differential equation that characterizes
the optimal contract would depend on the Lagrange multiplier associ-
ated with this constraint. Diamond and Dybvig (1983) assume that ρR
is greater than one. If we assume the same in our model, the incentive
compatibility does not bind for the same reason it does not bind when
ρ equals one. However, the econometrician would still have to identify
the preference parameter ρ.

Another crucial assumption I make is that the econometrician can
identify periods when depositors played the run and no-run equilib-
rium. This can be challenging in practice for many reasons. In partic-
ular, there seems to be a lot of disagreement among economists, after
an episode of high demand for liquidity, over whether such episode was
caused by fundamental liquidity demand or by a self-fulfilling run. If
it is the former, the econometrician should keep this observation in the
sample; if it is the latter, he should exclude it. However, if the econo-
metrician eliminates observations with high liquidity demand because
he mistakenly identifies those as runs, he would create a sample selec-
tion problem and bias the estimator. That is because his sample would
be wn = (αn), but the αn would not be drawn from F because he is
excluding with some probability observations of high α.

An econometrician would have a similar problem if depositors are
more likely to run when the realization of the aggregate liquidity de-
mand is high. Imagine a situation where depositors use as a coordina-
tion device a “sunspot”variable x that is correlated with the aggregate
liquidity need α. In this case, if the econometrician excludes obser-
vations where there is a run, his sample would suffer selection issues
and the estimator would be biased. The issue is the same as before,
the αn would not be drawn from F because he is excluding with some
probability observations αn that correlate with the realization of the
sunspot variable that leads depositors to run.
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5. CONCLUSION

Green and Lin (2000) have called for a complete theory of bank runs–
a theory that explains why bank runs happen and also why society is
unable to design mechanisms to prevent such bad outcomes. However,
a scientific theory is only complete once it is consistent with empirical
observations. Thus, particular examples that generate bank runs, as
the literature has provided, are important steps toward a complete
theory of bank runs, but they are not the final step.

In order to move closer to this final goal, in this paper I attempt
to illustrate how the theory can be taken to the data by providing an
approach to estimate the version of the Diamond-Dybvig model pro-
posed by Peck and Shell (2003) and extended by Sultanum (2014). The
estimator builds on the literature that studies the estimation of auc-
tions. In particular, it builds on the indirect nonparametric approach
to estimate first-price auctions proposed by Guerre et al. (2000). I
believe this exercise can provide us with a laboratory to think about
issues relating to the estimation of the model.

The exercise highlights many challenges we have to handle in order
to successfully take this model to the data. However, I believe the main
message of this paper is very positive. Many of these challenges have
been faced by economists in different fields, and we can borrow many
of the tools they have developed.
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