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Idiosyncratic Sectoral
Growth, Balanced Growth,
and Sectoral Linkages

Andrew Foerster, Eric LaRose, and Pierre-Daniel Sarte

I
n general, there is substantial heterogeneity in value added, gross
output, and production patterns across sectors within the US econ-
omy. There is also considerable asymmetry in intermediate goods

linkages; that is, some sectors are much larger suppliers of intermediate
goods to different sectors, on average, than others. Such heterogeneity
suggests that there may be significant differences in the extent to which
shocks to individual sectors not only affect aggregate output, but also
transmit to other sectors.1

In this paper, in contrast to previous literature focusing on shorter-
run variations in economic activity, we explore how longer-run growth
in different sectors affects other sectors and overall aggregate growth.
We consider a neoclassical multisector growth model with sector-specific
capital and linkages between sectors in intermediate goods. In partic-
ular, we investigate the properties of a balanced growth path where
total factor productivity (TFP) growth is sector-specific. We derive a
relatively simple formula that simultaneously captures all relationships
between value-added growth and TFP growth across sectors. We then
study the effect of changes in TFP growth in one sector on value-added
growth in every other sector. In addition, we can use the Divisia index
for aggregate value-added growth to calculate the effect of a change in
TFP growth in a given sector on aggregate GDP growth. Finally, using
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data on value-added growth for each sector over the period 1948-2014,
we recover each sector’s model-implied mean TFP growth over this pe-
riod and examine how sectoral changes in TFP growth in practice carry
over to other sectors.

In all three of the above exercises, we also consider a special case of
our model without capital. This case collapses to the model considered
by Hulten (1978), or Acemoglu et al. (2012). In that model, absent
capital, the impact of a level change in sectoral TFP on GDP is entirely
captured by that sector’s share in GDP.2 We show that a version of
this result also holds in growth rates along the balanced growth path.
In that special case, other microeconomic details of the environment
become irrelevant as long as we can observe the distribution of value-
added shares across sectors.

More generally, in the benchmark model, value-added growth and
the effects of changes in TFP growth in a given sector on GDP growth
depend on that sector’s capital intensity, its share of value added in
gross output, and the degree to which its goods are used as interme-
diates by other sectors. In this regard, in a multisector model with
capital, it becomes important to have information pertaining to the
underlying microeconomic structure of the economy beyond what is
captured in shares. Fortunately, the model delivers a simple expression
of relevant parameters that can easily be constructed from sectoral-level
data provided by government agencies.

Using such data, we can quantify the effects of changes in sectoral
TFP growth and compare these results to the special case of our model
where a version of Hulten (1978) holds in growth rates. In the seven
sectors we consider in this paper, sectors vary widely in their shares
of capital in value added and value added in total output, and some
sectors are considerably more important suppliers of intermediate goods
than others. Overall, we find that adding capital to the model creates
substantial spillovers across sectors resulting from TFP growth changes
that, for every sector, substantially increase the responsiveness of GDP
growth to such changes. These spillover effects are larger for sectors
more integral to sectoral linkages in intermediates, a finding consistent
with the literature we discuss below.

2 Pasten, Schoenle, and Weber (2018) and Baqaee and Farhi (2018) show that, even
in a model without capital, this result may not hold due to factors such as heterogeneous
price rigidity and nonlinearities in production.
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1. RELATED LITERATURE

The modern literature on multisector growth models started with the
real business cycle model presented in Long and Plosser (1983). In
their model, a representative agent chooses labor inputs and commod-
ity inputs to n sectors, with linkages between sectors in inputs and
uncorrelated exogenous shocks to each sector. Taking the model to
the data with six sectors, they found substantial comovement in out-
put across sectors; furthermore, shocks to individual sectors generally
led to large aggregate fluctuations, particularly for sectors that heavily
served as inputs in production.

For many years, there existed a sense that at more disaggregated
levels than that of Long and Plosser (1983), idiosyncratic sectoral
shocks should fail to affect aggregate volatility. Lucas (1981), in par-
ticular, argued that in an economy with disaggregated sectors, many
sector-specific shocks would occur within a given period and roughly
cancel each other out in a way consistent with the Law of Large Num-
bers. Dupor (1999) helped formalize the conditions under which the
intuition in Lucas (1981) would apply. He considered an n-sector econ-
omy with linkages between firms in intermediates as well as full depreci-
ation of capital. Assuming all sectors sold nonzero amounts to all other
sectors, and that every row total in the matrix of linkages was the same
(i.e., every sector is equally important as an input supplier to all other
sectors), Dupor found that aggregate volatility converged toward zero
at a rate of

√
n; the underlying structure of the input-output matrix

was irrelevant as long as it satisfied those conditions.
Horvath (1998) countered that Dupor’s irrelevance theorem failed

to hold because, in practice, sectors are not uniformly important as
input suppliers to other sectors. He observed that at high levels of
disaggregation in US data, the matrix of input-output linkages became
quite sparse, with only a few sectors selling widely to others; conse-
quently, sectoral shocks could explain a significant share of aggregate
volatility, which would decline at a rate much slower than

√
n. (Horvath

[2000] showed that his earlier result still held in more general models in-
cluding, among other things, linkages between sectors in investments.)
Acemoglu et al. (2012) expand on Horvath’s idea by analyzing the
network structure of linkages and conclude that it is the asymmetry,
rather than the sparseness, of input-output linkages that determines
the decay rate of aggregate volatility. In a multisector model with link-
ages between sectors in investment as well as intermediates, Foerster,
Sarte, and Watson (2011) find evidence of a high level of asymmetry
in the data, consistent with Acemoglu et al. (2012). They also show
that, starting with the Great Moderation around 1983, roughly half
the variation in aggregate output stems from sectoral shocks.
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As an additional perspective on the failure of sectoral shocks to
average out, Gabaix (2011) also points out that the “averaging out”
argument will not hold when the distribution of firms (or sectors) is
fat-tailed, meaning a few large firms (or sectors) dominate the economy.
In such a case, aggregate volatility decays at rate 1

lnn , and idiosyncratic
movements can cause large variations in output growth.

While it should be clear from this section that the literature on mul-
tisector growth models has mostly focused on the relationship between
aggregate and sectoral volatility, this paper focuses instead on the re-
lationship between aggregate and sectoral growth. The arguments of
Horvath (1998), Acemoglu et al. (2012), and others regarding the na-
ture of input-output linkages still hold relevance for sectoral growth.
In that vein, the analysis herein builds more directly on the work of
Ngai and Pissarides (2007). In that paper, the authors focus on the
effects of different TFP growth rates across sectors on sectoral employ-
ment shares. The model we present extends their work by explicitly
capturing all pairwise linkages in intermediate goods in the economy
while additionally allowing every sector to produce capital.

2. ECONOMIC ENVIRONMENT

We consider an economy with n sectors. For simplicity, we assume that
utility is linear in the final consumption good. Preferences are given
by

E0

∞∑
t=0

βtCt

Ct =
n∏
j=1

(
cj,t
θj

)θj
,

n∑
j=1

θj = 1,

where Ct represents an aggregate consumption bundle taken to be the
numeraire good.

Gross output in a sector j results from combining value added and
materials output according to

yj,t =

(
vj,t
γj

)γj ( mj,t

1− γj

)1−γj
,

where yj,t, vj,t, and mj,t denote gross output, value added, and materi-
als output, respectively, used by sector j at time t. Materials output in
a given sector j results from combining different intermediate materials
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from all other sectors, as described by the production function,

mj,t =
n∏
i=1

(
mij,t

φij

)φij
,

n∑
i=1

φij = 1,

where mij,t denotes the use of materials produced in sector i by sector
j at time t.

Value added in sector j is produced using capital and labor,

vj,t = zj,t

(
kj,t
αj

)αj ( `j,t
1− αj

)1−αj
,

where zj,t denotes a technical shift parameter that scales production of
value added, which we refer to as value-added TFP.

Capital is sector-specific, so that output from only sector j can be
used to produce capital for sector j, and it accumulates according to
the law of motion,

kj,t+1 = xj,t + (1− δ) kj,t,

where xj,t represents investment in sector j at time t and δ denotes the
depreciation rate of capital.

Goods market clearing requires that

cj,t +
n∑
i=1

mji,t + xj,t = yj,t,

while labor market clearing requires that
n∑
j=1

`j,t = 1.

Here, we assume that aggregate labor supply is inelastic and set to
one. We also assume that labor can move freely across sectors so that
workers earn the same wage, wt, in all sectors.

Finally, we assume that TFP growth in sector j, ∆ ln zj,t, follows
an AR(1) process,

∆ ln zj,t = (1− ρ) gj + ρ∆ ln zj,t−1 + ηj,t,

where ρ < 1 and ηj,t ∼ D with mean zero for each j.

3. PLANNER’S PROBLEM

The economy we have just described presents no frictions, so that
decentralized allocations in the competitive equilibrium are optimal.
Thus, we derive these allocations by solving the following planner’s
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problem:

max L =
∞∑
t=0

βt
n∏
j=1

(
cj,t
θj

)θj
(1)

such that ∀ j and t,

cj,t +
n∑
i=1

mji,t + xj,t =

(
vj,t
γj

)γj ( mj,t

1− γj

)1−γj
, (2)

mj,t =
n∏
i=1

(
mij,t

φij

)φij
, (3)

vj,t = zj,t

(
kj,t
αj

)αj ( `j,t
1− αj

)1−αj
, (4)

kj,t+1 = xj,t + (1− δ) kj,t, (5)

and ∀ t,
n∑
j=1

`j,t = 1. (6)

Let pyj,t, p
v
j,t, p

m
j,t, and pxj,t denote the Lagrange multipliers asso-

ciated with, respectively, the resource constraint (2), the production
of value added (4), the production of materials (3), and the capital
accumulation equation (5) in sector j at date t.

The first-order conditions for optimality yield

θjCt
cj,t

= pyj,t.

This expression also defines an ideal price index,

1 =
n∏
j=1

(
pyj,t

)θj
. (7)

We additionally have that

pvj,tvj,t = γjp
y
j,tyj,t.

Likewise,

pmj,tmj,t =
(
1− γj

)
pyj,tyj,t.

The above two expressions define a price index for gross output,

pyj,t =
(
pvj,t
)γj (pmj,t)1−γj .
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In addition, we have that

pyi,tmij,t = φijp
m
j,tmj,t,

which gives material prices in terms of gross output prices,

pmj,t =
n∏
i=1

(
pyi,t

)φij
,

and

wt`j,t = (1− αj)pvj,tvj,t,
where wt is the Lagrange multiplier associated with the labor market
clearing condition (6).

From the law of motion for capital accumulation, we have that

pxj,t = pyj,t.

Finally, the Euler equation associated with optimal investment dictates

pxj,t = βEt

[
αj
pvj,t+1vj,t+1

kj,t+1
+ pxj,t+1 (1− δ)

]
.

The first-order conditions give rise to natural expressions of the
model parameters as shares that are readily available in the data. In
particular, θj represents the share of sector j in nominal consump-
tion, and γj represents the share of value added in total output in
sector j, while φij represents materials purchased from sector i by sec-
tor j as a share of total materials purchased in sector j. Furthermore,
1 − αj equals the share of total wages in nominal value added in sec-
tor j, and consequently, αj represents capital’s share in nominal value
added. Nominal value added in sector j in this economy is then given
by pvj,tvj,t = γip

y
j,tyj,t, and it follows that GDPt =

∑
j p

v
j,tvj,t.

In the remainder of this paper, we adopt the following notation:
Γd = diag{γj}, αd = diag{αj}, Θ = (θ1, ..., θn), and Φ = {φij}.

Some Benchmark Results in Levels

A special case of the economic environment presented above is one
where αj = 0 ∀j, which, absent any growth in sectoral TFP or shocks,
reduces to the static economies of Hulten (1978) or Acemoglu et al.
(2012). In this case, aggregate value added, or GDP, is given by the
consumption bundle Ct and

∂ lnGDPt
∂ ln zj,t

= svj ∀t,

where svj is sector j’s value-added share in GDP, and we summarize
these shares in a vector, sv = (sv1, ..., s

v
n), given by

sv = Θ(I − (I − Γd)Φ
′)−1Γd. (8)
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As shown in Hulten (1978), in this special case, a sector’s value-added
share entirely captures the effect of a level change in TFP on GDP.
Accordingly, Acemoglu et al. (2012) refer to the object Θ(I − (I −
Γd)Φ

′)−1Γd as the influence vector.
A model with capital is dynamic but, in the long run, converges

to a steady state in levels absent any sectoral TFP growth. With a
discount factor β close to 1, the effect of a level change in sectoral log
TFP on log GDP continues to be given primarily by sectoral shares,
as in equation (8). In other words, Hulten’s (1978) result continues to
hold in an economy with capital in that the variation in the effects of
sectoral TFP changes on GDP is determined by the variation in sectoral
shares. In this case, however, sectoral shares need to be adjusted by a
factor that is constant across sectors and approximately equal to the
inverse of the mean employment share.

With exogenous sectoral TFP growth, the economy no longer achieves
a steady state in levels. Instead, with constant sectoral TFP growth,
the steady state of the economy may be defined in terms of sectoral
growth rates along a balanced growth path. Along this path, the ef-
fects of TFP growth changes on GDP growth involve additional con-
siderations. In particular, sectoral linkages in intermediates mean that
changes in sectoral TFP growth in one sector potentially affect value-
added growth rates in every other sector and, therefore, can impact
overall GDP growth beyond changes in shares. These sectoral linkages
consequently create a multiplier effect that, as we show below, can lead
to a total impact of a TFP growth change in a given sector that is
several times larger than that sector’s share in GDP.

4. SOLVING FOR BALANCED GROWTH

We now allow for each sector to grow at a different rate along a balanced
growth path. In particular, we derive and explore the relationships that
link different sectoral growth rates to each other and study how TFP
growth rates in one sector affect all other sectors and the aggregate
balanced growth path.

Consider the case where zj,t is growing at a constant rate along a
nonstochastic steady-state path, that is ηj,t = 0 and ∆ ln zj,t = gj ∀j,
t. Moreover, the resource constraint (2) in each sector requires that
all variables in that equation grow at the same constant rate along a
balanced growth path. Therefore, we normalize the model’s variables
in each sector by a sector-specific factor µj,t. In particular, we define
ỹj,t = yj,t/µj,t, c̃j,t = cj,t/µj,t, m̃ji,t = mji,t/µj,t, and x̃j,t = xj,t/µj,t. We
show that detrending the economy yields a system of equations that is
stationary in the normalized variables along the balanced growth path
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and where the vector µt = (µ1,t, ..., µn,t)
′ can be expressed as a function

of the underlying parameters of the model only.

Detrending the Economy

The capital accumulation equation in sector j can be written under
this normalization as

kj,t+1 = x̃j,tµj,t + (1− δ) kj,t,
so that

k̃j,t+1 = x̃j,t + (1− δ) k̃j,t
(
µj,t−1

µj,t

)
,

where k̃j,t = kj,t/µj,t−1.
Using this last equation, we can write value added in sector j as

vj,t = zj,t

(
k̃j,tµj,t−1

αj

)αj (
`j,t

1− αj

)1−αj
.

The aggregate labor constraint in each period,
∑

j `j,t = 1, implies that

the labor shares, `j,t, are already normalized: ˜̀
j,t = `j,t. Then defining

ṽj,t = vj,t/
(
zj,t
(
µj,t−1

)αj), the expression for value added becomes
ṽj,t =

(
k̃j,t
αj

)αj (
`j,t

1− αj

)1−αj
.

The equation for materials used in sector j can be written in nor-
malized terms as

m̃j,t =

n∏
i=1

(
m̃ij,t

φij

)φij
,

where m̃j,t = mj,t/
∏n
i=1 µ

φij
i,t . It follows that gross output in sector j

becomes, in normalized terms,

ỹj,tµj,t =

(
ṽj,tzj,tµ

αj
j,t

γj

)γj m̃j,t
∏n
i=1 µ

φij
i,t

1− γj

1−γj

,

which may be rewritten as

ỹj,t =

(
ṽj,t
γj

)γj ( m̃j,t

1− γj

)1−γj
[
z
γj
j,tµ

γjαj
j,t−1

µj,t

n∏
i=1

µ
(1−γj)φij
i,t

]
. (9)

Observe that for the detrended variables to be constant along a
balanced growth path, it must be the case that the expression in square
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brackets is also constant along that path. Thus, we can use equation
(9) to solve for µj,t as a function of the model parameters. In particular,
we can rewrite the term in square brackets as

z
γj
j,tµ

γjαj
j,t−1µ

γjαj−1

j,t

µ
γjαj
j,t

n∏
i=1

µ
(1−γj)φij
i,t ,

where we aim for the growth rate of µj,t to be constant. Thus, without
loss of generality, we choose µj,t such that

z
γj
j,tµ

γjαj−1

j,t

n∏
i=1

µ
(1−γj)φij
i,t = 1,

which in logs gives

γj ln zj,t +
(
γjαj − 1

)
lnuj,t +

n∑
i=1

(
1− γj

)
φij lnµi,t = 0. (10)

In matrix form, with zt = (z1,t, ..., zn,t)
′, equation (10) becomes

Γd ln zt + (Γdαd − I) lnµt + (I − Γd) Φ′ lnµt = 0.

It follows that along a balanced growth path,

∆ lnµt =
(
I − Γdαd − (I − Γd) Φ′

)−1
Γdgz, (11)

where gz = (g1, ..., gn)′.

Sectoral Value Added and GDP along a
Balanced Growth Path

Having derived expressions in terms of the normalizing factors for µj,t,
we now derive the normalizing factors for value added in each sector.
By construction, these factors in turn will grow at the same rate as
value added in each sector. As given above, the normalizing factor for
value added in sector j, denoted as µvj,t, is zj,tµ

αj
j,t−1. In vector form,

this becomes

∆ lnµvt = ∆ ln zt + αd
(
I − Γdαd − (I − Γd) Φ′

)−1
Γd∆ ln zt−1,

so that along a balanced growth path,

∆ lnµvt =
[
I + αd

(
I − Γdαd − (I − Γd) Φ′

)−1
Γd

]
gz. (12)

In other words, in this economy, TFP growth in each sector potentially
affects value-added growth in every other sector through a matrix that
summarizes all linkages in the economy,[
I + αd (I − Γdαd − (I − Γd) Φ′)−1 Γd

]
.Moreover, these effects may be
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summarized analytically by

∂∆ lnµvt
∂gz

=
[
I + αd

(
I − Γdαd − (I − Γd) Φ′

)−1
Γd

]
, (13)

where the element in row i and column j of this matrix represents the
effect of an increase in TFP growth in sector j on value-added growth
rates in sector i:

∂∆ lnµvi,t
∂gj

= 1 + αiγjξij if i = j,

where (I − Γdαd − (I − Γd) Φ′)−1 = {ξij}, or
∂∆ lnµvi,t
∂gj

= αiγjξij if i 6= j.

As mentioned above, growth rates in every sector depend on TFP
growth rates in every sector because of the linkages between sectors
in intermediate goods. The matrix (I − Γdαd − (I − Γd) Φ′)−1 Γd sug-
gests that, all else equal, TFP growth changes in sectors that are more
capital intensive (i.e., where αj is higher) and have higher shares of
value added in gross output (i.e., where γj is higher) will tend to have
larger effects on other sectors. Additionally, more capital-intensive sec-
tors will tend to have larger responses to TFP growth changes in other
sectors.

The expression for GDP gives us

GDPt =
n∑
j=1

pvj,tvj,t.

Using a standard Divisia index, we can express aggregate GDP growth
as a weighted average of sectoral growth rates in real value added,

∆ lnGDPt =
n∑
j=1

svj,t∆ ln vj,t, (14)

where svj,t is the share of sector j in nominal value added,
3

svj,t =
pvj,tvj,t∑n
j=1 p

v
j,tvj,t

.

Define ∆ ln vt = ∆ lnµvt along the balanced growth path. We may
then substitute our expression for lnµvt in terms of TFP to obtain the

3 These shares also hold in normalized form, so that svj,t =
p̃vj,tṽj,t∑n
j=1 p̃

v
j,tṽj,t

, and are

constant along the balanced growth path. Here we take the shares as exogenous pa-
rameters given in the data, but they can alternatively be solved as part of the steady
state in normalized variables.
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balanced growth rate of real aggregate GDP in terms of TFP growth:

∆ lnGDPt = sv
[
I + αd

(
I − Γdαd − (I − Γd) Φ′

)−1
Γd

]
gz.

This last expression implies that, with constant shares,

∂∆ lnGDPt
∂gz

= sv
[
I + αd

(
I − Γdαd − (I − Γd) Φ′

)−1
Γd

]
, (15)

with the effect of a change in TFP growth in sector j on GDP growth
then given by the jth element,

∂∆ lnGDPt
∂gj

=

(
svj +

n∑
i=1

sviαiγjξij

)
.

The above equation shows that TFP changes in sectors with higher
shares of value added in gross output, and whose intermediates are
more heavily used by other sectors, will have larger effects on changes
in GDP growth.

Balanced Growth with No Capital

Consider the special case of our model with no capital accumulation,
αj = 0 ∀j. Then the formula for value added in sector j becomes

vj,t = zj,t`j,t.

Since labor supply, `j,t, is already normalized as implied by the labor
supply constraint, the normalizing factor for value added in sector j at
time t, µvj,t, is simply µ

v
j,t = zj,t, so that along a balanced growth path

∆ lnµvt = gz. Then we have

∂∆ lnµvt
∂gz

= I, (16)

so a change in TFP growth in sector j changes value-added growth in
sector j by the same amount and has no impact on value-added growth
in other sectors, even though sector j is linked to other sectors through
intermediate goods. From equation (16), in the model without capital,
we then have along a balanced growth path

∂∆ lnGDPt
∂gz

= sv, (17)

which has jth element svj . Put another way, a change in TFP growth
in sector j increases the growth rate of real aggregate GDP by that
sector’s share of value added in GDP. To a first order, the intermediate
goods matrix Φ and other details are irrelevant as long as we know the
value-added distribution of sectors.
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In the rest of this paper, we match this model to the data with n = 7
sectors in order to quantify equations (13) and (15), and we also invert[
I + αd (I − Γdαd − (I − Γd) Φ′)−1 Γd

]
in equation (11) to obtain the

implied TFP growth rates in each sector. We also use equations (16)
and (17) to compare our quantitative benchmark results to those in the
case without capital.

5. DATA

As described above, the natural expressions of several model parame-
ters as shares make it easy to match this model to available data. All
of the model parameters, consisting of the Φ matrix, the γj’s, and the
αj’s, can be obtained through the Bureau of Economic Analysis (BEA),
which provides data at various levels of industry aggregation going back
to 1947.

The highest level of aggregation reported by the BEA is the fifteen-
industry level. We drop one industry corresponding to Government,
and then we consolidate the fourteen remaining industries into seven
broader sectors: Agriculture, Forestry, Fishing, and Hunting; Min-
ing and Utilities; Construction; Manufacturing; Wholesale and Retail
Trade; Transportation and Warehousing; and Services. The seven-
sector level is a high enough level of aggregation to give us a broad
overview of the economy, and these constructed sectors closely match
the six sectors examined by Long and Plosser (1983).

To assemble the Φ matrix for our benchmark year, 2014, we rely on
data from the BEA’s Make-Use Tables, which at the fifteen-industry
level provide a fifteen-by-fifteen matrix showing all pairwise combina-
tions of intermediate goods purchases by one industry from another.
From here, we sum intermediate goods purchases across all industries
in a sector and then calculate shares of nominal intermediates from
sector i in sector j’s total nominal intermediates accordingly (dropping
intermediate purchases from the Government sector from the total).
In addition to calculating the Φ matrix for 2014, we also calculate it
for 1948, the earliest year for which data on value-added growth are
available. Later on, we will be interested in comparing our results when
using the Φ matrix for 1948 to those using the Φ matrix for 2014 to
see how changes in intermediate purchases patterns across sectors have
affected growth and TFP throughout the economy. The BEA provides
the pairwise intermediates purchases at a higher level of disaggregation
in 1948, with forty-six industries. Since every industry at the fifteen-
industry level is a grouping of industries at the forty-six-industry level,
we can sum intermediate goods purchases across industries in a sector
as before.
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We also use the BEA’s Make-Use Tables to calculate each sector’s
share of nominal value added in nominal gross output, γj , for 2014
by summing total value added and total gross output across industries
in a sector and dividing accordingly. To calculate shares of capital in
nominal value added, αj , we use the BEA’s data on GDP by industry,
which breaks down value added within an industry into the sum of
wages paid to employees, a gross operating surplus, and taxes minus
subsidies. We sum the first two components across industries in a
sector, ignoring taxes and subsidies, and calculate αj as sector j’s gross
operating surplus divided by the sum of its gross operating surplus and
wages.

Finally, the BEA’s GDP data include the total nominal value added
for each industry at the fifteen-industry level for each year going back
to 1947. We use the BEA’s chain-type price indexes for value added
in each industry to calculate these numbers in real terms, then sum
across industries in a sector to obtain real value added for each sector.
From here, we can easily calculate the real value-added growth rates for
each sector for each year from 1948 through 2014 and take an average
for each sector over this period to get mean value-added growth rates.
Additionally, we can calculate a sector’s share in nominal value added
for each year (excluding value added from the Government sector in
total value added) and average across years to obtain each sector’s
mean share in nominal value added.

Table 1 displays the share of nominal value added in nominal gross
output, γj , and the share of capital in nominal value added, αj , for
each sector. Some of these results are fairly intuitive; for instance,
Construction and Wholesale and Retail Trade have the lowest (highest)
shares of capital (labor) in value added, while Agriculture, Forestry,
Fishing, and Hunting, and Mining and Utilities are the most capital-
intensive. There is somewhat less variation in the shares of nominal
value added in nominal gross output, with Manufacturing having the
lowest share and Mining and Utilities having the highest.

Table 2 displays the matrix summarizing intermediate goods link-
ages, Φ, calculated for 2014, where the element in row i and column j
represents the percentage of all intermediate goods purchased by sec-
tor j that come from sector i. First, it is not surprising that most
sectors purchase a large share of intermediate goods from within their
own sector: five of seven sectors have φjj values above 20 percent, with
the Services sector purchasing over 75 percent of its intermediates from
itself. It is also important to note that, in general, the Φ matrix dis-
plays substantial asymmetry. The average sector buys approximately
35 percent and 29 percent of its intermediates from Services and Man-
ufacturing, respectively. If we exclude the diagonal entries of Φ, these
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Table 1 Parameter Values for Each Sector

Sector Sector Number γj αj

Agriculture, Forestry, Fishing, and Hunting (1) 0.4139 0.7493
Mining and Utilities (2) 0.6845 0.7337
Construction (3) 0.5419 0.3659
Manufacturing (4) 0.3462 0.5205
Wholesale and Retail Trade (5) 0.6558 0.3680
Transportation and Warehousing (6) 0.4795 0.3865
Services (7) 0.6123 0.4556

Table 2 Φ in 2014, with All Numbers Expressed as
Percentages

Sector Number (1) (2) (3) (4) (5) (6) (7)

(1) 39.72 0.04 0.27 7.20 0.31 0.02 0.19
(2) 2.88 32.76 2.47 15.70 1.66 1.84 2.65
(3) 0.96 3.86 0.03 0.36 0.41 1.01 2.64
(4) 29.16 21.40 52.72 50.37 9.12 31.90 12.98
(5) 10.30 4.10 24.00 8.03 7.26 9.23 3.31
(6) 5.58 9.27 3.85 4.11 12.53 23.85 2.73
(7) 11.39 28.57 16.65 14.24 68.70 32.15 75.51

numbers are still 29 percent and 26 percent. On the other hand, Agri-
culture, Forestry, Fishing, and Hunting, and Construction stand out as
relatively unimportant suppliers of intermediate goods to other sectors.

6. QUANTIFYING BALANCED GROWTH
RELATIONSHIPS

As derived in equation (13), ∂∆ lnµvt
∂gz

=[
I + αd (I − Γdαd − (I − Γd) Φ′)−1 Γd

]
in the benchmark model. Ta-

ble 3 shows this matrix for our seven sectors. The element in row i and
column j shows the percentage-point increase in value-added growth in
sector i resulting from a 1 percentage point increase in TFP growth in
sector j. Unsurprisingly, increases in TFP growth in sector j have by
far the largest impact on value-added growth rates in that same sector;
all the entries on the diagonal have magnitude greater than 1, with
Mining and Utilities having the largest diagonal value and Construc-
tion having the smallest. However, the off-diagonal entries still indicate
substantial effects of TFP growth changes in one sector on value-added
growth in another. For instance, a 1 percentage point increase in TFP
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Table 3 Effect of 1 Percentage Point Change in TFP Growth
on Value-Added Growth in Percentage Points

Sector Number (1) (2) (3) (4) (5) (6) (7)

(1) 1.7131 0.2099 0.0160 0.2751 0.1512 0.0726 0.4271
(2) 0.0187 2.3645 0.0221 0.1456 0.0615 0.0572 0.3818
(3) 0.0135 0.0692 1.2507 0.1032 0.0669 0.0189 0.1502
(4) 0.0536 0.2371 0.0090 1.4316 0.0801 0.0405 0.2862
(5) 0.0048 0.0295 0.0035 0.0332 1.3409 0.0211 0.2065
(6) 0.0118 0.0653 0.0059 0.0925 0.0454 1.2808 0.2153
(7) 0.0075 0.0500 0.0090 0.0538 0.0252 0.0146 1.7053

growth in the Services sector increases value-added growth in Agricul-
ture, Forestry, Fishing, and Hunting by about 0.43 percentage points.
Overall, increases in TFP growth rates in the Services sector have par-
ticularly strong effects on value-added growth rates in other sectors,
reflecting the generally high usage of intermediate goods from Services
by other sectors. On the other hand, changes in TFP growth in other
sectors have small effects on value-added growth in Services, in part
because Services purchases a small fraction of its intermediates from
other sectors. (These observations apply, to a somewhat lesser extent,
to the Manufacturing sector as well.) Increases in TFP growth rates
in sectors such as Construction and Agriculture, Forestry, Fishing, and
Hunting, whose intermediates are not heavily used by other sectors,
have tiny effects on value-added growth in other sectors. Finally, it is
worth noting that Mining and Utilities and Agriculture, Forestry, Fish-
ing, and Hunting, whose αj values are substantially higher than those
of other sectors, are, on average, the most responsive to sectoral TFP
growth changes.

In the case with no capital, a TFP growth change in sector j changes
value-added growth in sector j by the same amount and has no impact
on value-added growth in other sectors. Since all the diagonal entries

of the matrix
[
I + αd (I − Γdαd − (I − Γd) Φ′)−1 Γd

]
have values above

1, linkages increase the own-sector effect of TFP growth rate increases
on value-added growth rates in every sector.

Given data on shares of each sector in nominal value added, we
can then calculate the effect of changes in TFP growth in each sector
on changes in aggregate GDP in the benchmark model according to
equation (15). As described above, we compile data on sectoral shares
in nominal value added for each year in the period 1948—2014, and then
we take the mean shares in nominal value added for each sector over
this period. Table 4 shows ∂∆ lnGDPt

∂gz
calculated from these mean shares
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Table 4 Effect of 1 Percentage Point Change in TFP
Growth on GDP Growth in Percentage Points

Sector No Capital Benchmark Difference

Agriculture, Forestry, Fishing, Hunting 0.0297 0.0695 0.0398
Mining and Utilities 0.0457 0.2026 0.1569
Construction 0.0502 0.0712 0.0210
Manufacturing 0.2332 0.3868 0.1536
Wholesale and Retail Trade 0.1552 0.2505 0.0953
Transportation and Warehousing 0.0425 0.0794 0.0369
Services 0.4435 0.9020 0.4585

for both cases. The first column shows the case with no capital, where
each entry just equals that sector’s mean share in total nominal value
added. Two of the seven sectors, Services and Manufacturing, account
for over two-thirds of total nominal GDP, on average. The second
column shows the benchmark case, and the difference between the two
cases in the third column can be interpreted as the total multiplier effect
of a change in TFP growth in one sector on other sectors (including
itself).

Figure 1 plots the mean value-added shares against ∂∆ lnGDPt
∂gz

com-
puted in the benchmark. The size of the deviation from the forty-five-
degree line indicates the size of the multiplier effects on other sectors.
In absolute terms, this multiplier effect is by far the largest for the Ser-
vices sector, in part reflecting the fact that the off-diagonal entries of
the matrix (I − Γdαd − (I − Γd) Φ′)−1 Γd are, on average, the highest
for the column corresponding to Services. There are also large in-
creases for Manufacturing, another sector important in the production
of intermediate goods, and Mining and Utilities, which has a multi-
plier effect over three times as large as its share in GDP. This can be
largely explained by the sector’s high share of capital in value added
and its importance as an intermediate goods supplier to itself and to
the second-largest sector, Manufacturing.

To see the extent to which changes in the usage of intermediate
goods across sectors, summarized in Φ, have impacted the effect of
TFP growth changes in a sector on changes in the growth rate of GDP,
we also recompute ∂∆ lnGDPt

∂gz
using the Φ matrix in 1948. Figure 2 plots

∂∆ lnGDPt
∂gz

calculated in the benchmark using Φ from 2014 against the
values calculated from 1948. Because we hold the other parameters
constant for each sector, any changes should result from changes in
the relative importance of sectors as intermediate goods suppliers to
other sectors. As noted by Choi and Foerster (2017), there have been
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Figure 1 Derivative of GDP Growth with Respect to Sector
TFP Growth

significant changes in the US economy’s input-output network structure
over this period. In particular, the Services sector is a markedly more
important supplier of intermediate goods in 2014 than it was in 1948,
driven by the increasing centrality of financial services, real estate, and
other industries within this sector. On the other hand, sectors such
as Manufacturing; Agriculture, Forestry, Fishing, and Hunting; and
Mining and Utilities declined in importance over this period.

Consistent with these observations, Services saw the largest ab-
solute increase in ∂∆ lnGDPt

∂gz
over this period, while Manufacturing saw

the largest absolute decrease, and Agriculture, Forestry, Fishing, and
Hunting saw the largest percentage decrease. On the other hand, be-
cause ∂∆ lnGDPt

∂gz
also depends on the shares of each sector in total

nominal value added, a sector may decline in overall importance, as
measured by its row total in Φ, over this period while still having
an increasing value of ∂∆ lnGDPt

∂gz
. For example, Mining and Utilities

declines in overall importance between 1948 and 2014 but it is a much
more important supplier of intermediates for the Manufacturing sector
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Figure 2 Effect of TFP Growth on GDP Growth, 1948 Φ vs.
2014 Φ

in 2014 than in 1948, largely explaining why Mining and Utilities sees
a slight overall increase in ∂∆ lnGDPt

∂gz
.

As a final exercise, given data on value-added growth, we can invert
the matrix I + αd (I − Γdαd − (I − Γd) Φ′)−1 Γd to obtain the implied
TFP growth rates in the benchmark:

gz =
[
I + αd

(
I − Γdαd − (I − Γd) Φ′

)−1
Γd

]−1
∆ lnµvt . (18)

With no capital, this expression simply becomes

gz = ∆ lnµvt . (19)

For each of our seven sectors, we take an average of their real value-
added growth rates over the period 1948-2014 and then calculate the
implied mean TFP growth rates over this period. Figure 3 plots ob-
served mean value-added growth against the model-implied mean TFP
growth in the benchmark case and the case with no capital, where in
the latter case all points lie on the forty-five-degree line. In the bench-
mark, all points lie well to the left this line. The decrease is largest
in absolute terms for Agriculture, Forestry, Fishing, and Hunting and,
consistent with intuition, is generally larger for sectors with larger val-
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Figure 3 Implied Mean TFP Growth, 1948-2014

ues of αj . The implied mean TFP growth for Mining and Utilities is
just 0.08 percent.

Additionally, for the benchmark case, we calculate implied mean
TFP growth rates using the Φ matrix for 1948 and compare the results
to those using the Φ matrix for 2014. As shown in Figure 4, changes
in patterns of intermediate goods usage between 1948 and 2014 have
very little impact on implied mean TFP growth rates.

7. CONCLUSION

Our analysis suggests that linkages between sectors in intermediate
goods, and capital intensities of different sectors, lead to substantial
effects of sector-specific TFP growth changes on value-added growth.
TFP growth changes in sectors such as Manufacturing and Services,
which account for a large share of the intermediate goods shares of
other sectors, have especially large impacts on value-added growth in
other sectors. On the other hand, changes in the input-output structure
of the US economy from 1948 to 2014 have had a modest impact on



Foerster, LaRose, Sarte: Growth and Sectoral Linkages 99

Figure 4 Implied Mean TFP Growth, 1948 Φ vs. 2014 Φ

TFP growth in each sector and on the effect of TFP growth changes
on GDP growth.

It is worth noting that our analysis here relies on a very high level
of aggregation, with only seven sectors, and every sector uses some pos-
itive amount of intermediate goods from every other sector. Horvath
(1998), Foerster, Sarte, and Watson (2011), and others have found
that, at more disaggregated measures of sectors, there is more vari-
ability across sectors and the asymmetry of the matrix summarizing
intermediate goods linkages substantially increases; many rows consist
of mostly zeros, and a few sectors provide most of the economy’s inter-
mediate goods. Thus, our results most likely underestimate the degree
of heterogeneity in the impact of sectoral changes at lower levels of
aggregation.
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