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Wealth Effects with
Endogenous Retirement

Borys Grochulski and Yuzhe Zhang

I
n this article, we discuss the so-called wealth effects: the response
of aggregate consumption to exogenous movements in wealth. Wealth
effects are of interest to market participants and policymakers, as

they can be informative about expected GDP growth given observed
movements in asset prices.

Estimated in a standard way, the wealth effect in aggregate data
amounts to about 2.4 cents on the dollar. From the point of view of the
simple permanent income theory, as in Friedman (1957), Bewley (1977),
or Hall (1978), these estimates are surprisingly low. With changes
in asset prices unpredictable, an exogenous increase in wealth of $1
increases the agent’s permanent income by r dollars, where r is the
riskless rate of interest or the agent’s rate of time preference. With the
standard estimate of r = 5 percent, permanent income theory predicts
the wealth effect of 5 cents on the dollar, which is about twice the effect
we observe in the data.1

Poterba (2000) reviews the main explanations of weak wealth ef-
fects that have been proposed in the literature. At the aggregate level,
the response of consumption to wealth changes may be low because
wealth concentration is high and consumption of high net worth house-
holds may be relatively inelastic. Cagetti and De Nardi (2008) and
Saez and Zucman (2016) document a recent further increase in wealth
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1 King and Low (2014) provide estimates of the average world real interest rate
of near 5 percent in the 1980s and 1990s, declining after 2000 and strongly so since
the financial crisis. The sample we use to estimate wealth effects in Section 1 covers
1958-2018, which does include the period of high real rates identified by King and Low
(2014).
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inequality in the US. Using state-level data, Calomiris, Longhofer, and
Miles (2012) find a large variation in wealth effects correlated with the
dispersion of wealth and age distributions across US states.

At the individual level, the response of consumption to changes
in wealth may be weak because wealth is allocated to illiquid assets.
Kaplan and Violante (2014) and Saez and Zucman (2016) document
that about 80 percent of wealth is held in illiquid assets like housing,
retirement accounts, and closely held businesses.

In this article, we discuss another reason why wealth effects may
be weak: an endogenous reaction of labor supply along the extensive
margin, i.e., retirement. When households save for retirement, their
optimal retirement timing decision depends on their wealth. A positive
wealth shock can make a household adjust their planned retirement
date forward, i.e., shorten the remainder of their work career. But a
shorter work career means the present value of all future labor income
goes down, which partially offsets the impact of the positive wealth
shock on consumption.

Zhao (2018) provides direct evidence on the response of the retire-
ment timing decision to wealth shocks. Using data from the Health and
Retirement Study, a panel survey of individuals age fifty and older, he
shows that declines in housing prices are positively correlated with a
drop in retirement probability for homeowners, while no such correla-
tion exists for renters.

To evaluate quantitatively the impact of the endogenous retirement
timing decision on the standard wealth effect, in this article we build
a simple model in which the retirement decision is optimally taken
according to a threshold policy: the agent retires when her financial
wealth, Wt, reaches a particular, optimally chosen target level, W ∗. A
positive wealth shock, specifically, a positive shock to the rate of return
on her financial assets, brings the agent closer to retirement. Corre-
spondingly, the monetary value of her human capital, i.e., the present
value of the labor income she expects to earn in the remainder of her ca-
reer, decreases. The agent’s optimal consumption decision, naturally,
takes into account her total wealth: the sum of her financial wealth
and the monetary value of her human capital. The model captures
the effect of the offsetting movement of the value of human capital on
the response of consumption to financial wealth shocks. Despite a few
strong simplifying assumptions we make to keep the model tractable,
the model is able to generate a weak wealth effect, which helps explain
why the response of consumption to wealth shocks is weak in the data.

We start in Section 1 by presenting a standard estimate of wealth
effects in aggregate consumption and wealth data. Using the quarterly
US data on wealth and consumption from 1958 to 2018, we estimate
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the average wealth effect of 2.4 cents on the dollar. This number is in
line with standard estimates obtained in the literature, as summarized
in Poterba (2000).

In Section 2, we lay out a stylized model of optimal consumption,
saving, and retirement decisions, which essentially is a simplified ver-
sion of Kingston (2000) and Farhi and Panageas (2007). We follow
these studies, in particular, in assuming that the retirement decision is
irreversible.2

In Section 3, as a baseline, we show that when the retirement deci-
sion margin is shut down, our model predicts a wealth effect of r cents
on the dollar, in line with the simple permanent income theory. In the
baseline case, in particular, the agent does not have an active retire-
ment margin because she is already retired. The value of her human
capital is therefore nil and all her wealth is financial. With a logarith-
mic utility function and Brownian motion wealth return shocks, we can
solve the baseline case in closed form.

In Sections 4 and 5, we solve the model with an endogenous re-
tirement decision. We show that if the rate of return on wealth is
suffi ciently high, the agent prefers to retire if and when her wealth
reaches a target level, W ∗. We discuss the Hamilton-Jacobi-Bellman
(HJB) equation for the agent’s lifetime utility value function, along
with a procedure for finding appropriate boundary conditions.

In Section 6, we discuss the dynamics of the monetary value of the
agent’s human capital in the solution to her optimal consumption, sav-
ing, and retirement problem. The main observation there is that, with
the retirement decision taken according to a wealth-threshold policy,
the value of human capital decreases when the agent’s wealth increases.
The key part of the computation of the value of human capital at any
point in time is the expected remaining duration of the agent’s ca-
reer, i.e., the amount of time left until retirement. We present a useful
lemma that allows for computation of this object in our model.

In Section 7, we analyze a special case of our model in which the
expected growth rate of financial wealth is equal to the agent’s rate of
time preference, r. We use this special case to show clearly the intuition
for our main result: the value of human capital responds negatively to
wealth shocks, making the response of consumption weaker. In the
special case, in particular, the endogenous response of the value of
human capital perfectly offsets all shocks to financial wealth prior to
retirement, making the agent’s total wealth and consumption constant
up until the retirement date. With constant consumption, clearly, the

2 In Section 9, we comment on how our results would change if our model allowed
for unretirement.
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Table 1 Sample Properties of Aggregate Real Consumption
and Net Wealth

Average
growth rate

St. dev. of
growth rate

Consumption 2.9% 2.4%
Net Wealth 3.4% 4.4%

offsetting response of the value of human capital is strong enough to
make the wealth effect nil at all times during the agent’s work career.

Our main results are presented in Section 8, where we calibrate
the model to match the wealth effect of 2.4 cents on the dollar, as in
the data. The model is capable of generating realistic wealth effects
under a reasonable parametrization. The untargeted wealth threshold
W ∗ associated with the desired wealth effect is close to sixteen times
annual income. We discuss the key intuition of our model showing that
the endogenous response of human capital dampens the response of
consumption to wealth shocks in the model.

Section 9 concludes with a discussion of the robustness of our results
to several of our simplifying assumptions. There, also, we discuss some
further related literature.

1. MEASUREMENT

In this section, we present briefly the data and conduct a simple esti-
mation of the average wealth effect, similar to Iacoviello (2011). Our
point estimate is 2.4 cents on the dollar.

The data consist of the series of quarterly aggregate net wealth and
quarterly aggregate consumption expenditure. Net wealth data come
from the Flow of Funds. Our sample covers the period of 1952:Q1
though 2018:Q3.

The two variables used in the estimation of wealth effects are as
follows:
NWt = Households and Nonprofit Organizations total assets less total
liabilities, constant 2005 dollars (CPI deflated).
Ct = Personal Consumption Expenditure, constant 2005 dollars (CPI
deflated).

Figure 1 plots these two series in levels (millions of constant 2005
dollars) and in year-over-year growth rates. In levels, the ratio of sam-
ple average net wealth to consumption is 6.1. The summary statistics
for the growth rates are in Table 1.
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Figure 1 Aggregate Real Consumption and Net Wealth

Notes: Top panel: millions of 2005 dollars. Bottom panel: annualized growth
rates.

Following Iacoviello (2011), we obtain the average wealth effect by
estimating the following regression equation:

4ln(Ct) = .0060
(.0005)

+ .1475
(.0286)

4ln(NWt−1),

where 4 denotes the first difference operator. With the average net
wealth to consumption ratio of 6.1, the estimated elasticity of consump-
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tion to net wealth of 0.1475 gives the wealth effect of 2.4 cents on the
dollar.3

Several other ways of measuring wealth effects have been considered
in the literature. In a sample that ends in 2008:Q4, Iacoviello (2011)
estimates a similar wealth effects regression after splitting net wealth
into unencumbered housing wealth and net financial wealth. In that
regression, he finds overall wealth effects of similar total magnitude,
with the effects of changes in the unencumbered housing wealth com-
ponent being stronger than those estimated for net nonhousing wealth.
Piazzesi and Schneider (2016) provide additional discussion of the ef-
fects of housing price changes on consumption. The studies reviewed in
Poterba (2000) suggest that a $1 increase in stock market equity values
raises consumption in the next quarter by 2 cents, while an analogous
increase in non-stock-market wealth raises next-quarter consumption
by 1.4 cents.4

In our analysis, we will take the average wealth effect of 2.4 cents on
the dollar as our target. Using a simple model of optimal consumption,
saving, and retirement decisions, we will show how an endogenous re-
sponse of labor supply along the extensive margin can bring the wealth
effect from the baseline level of 5 cents on the dollar down to the esti-
mated value of 2.4 cents.

2. MODEL

Consider the following optimal consumption and saving problem. The
retirement decision will be added in Section 3. The agent has initial
financial wealth W0. For simplicity, we will abstract from the agent’s
portfolio decision of allocating her wealth between different asset classes
and instead treat financial wealth as a single, aggregated asset to which

3 Following Iacoviello (2011), we calculate the average dollar-over-dollar wealth effect
from the average elasticity of consumption with respect to net wealth and the average
ratio of net wealth to consumption:

4C
4NW

=

4C
C

4NW
NW

C

NW
=
4 ln(C)
4 ln(NW )

÷ NW

C
.

4 See, however, Lettau and Ludvigson (2004), who argue that net worth changes
have a significant transitory component, which makes identification of wealth effects not
straightforward.
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all wealth is allocated.5 We will refer to this asset simply as financial
wealth and denote the amount held by the agent at date t by Wt.6

We assume that the expected growth rate and volatility of financial
wealth are constant and denote them, respectively, by µ and σ. That
is, absent any new investments or withdrawals, the agent’s financial
wealth follows geometric Brownian motion

dWt = µWtdt+ σWtdZt, (1)

where Zt is a cumulative growth rate shock process modeled as standard
Brownian motion on a probability space (Ω,F , P ).

The agent draws utility from two sources: consumption of a sin-
gle consumption good and leisure that the agent enjoys in retirement.
The agent’s flow of utility from consumption is u(ct), where u is her
utility function. To facilitate analytical solutions, we will often assume
logarithmic utility: u = ln. The agent’s flow utility from leisure in re-
tirement is denoted by ψ > 0. If not retired, the agent does not receive
ψ but earns labor income y > 0, which, again for simplicity, we will
take to be constant.7 The agent discounts future payoffs at a constant
rate of time preference r > 0.

Our simplifying assumption of a single financial asset will force the
agent to take on risk as she saves. In particular, our model does not
allow the agent to save by investing in a riskless asset. To ensure that
this feature of the model does not drive our results, we will assume that
the expected growth rate of financial wealth is suffi ciently positive.

Assumption 1 µ− r > 1
2σ

2.

3. WEALTH EFFECTS WITHOUT SAVING FOR
RETIREMENT

In this section, we use our model of optimal consumption and saving
decisions to derive optimal wealth effects in the absence of an endoge-
nous retirement decision. In particular, for simplicity and also as a
building block for the foregoing analysis, we assume in this section
that the agent is already retired.

5 See Kingston (2000) and Farhi and Panageas (2007) for related models with a
portfolio choice.

6 Alternatively, we can interpret Wt as physical capital that can be converted to
and from consumption without any transaction costs, so the price of capital in terms
of current consumption is always 1.

7 This assumption is not essential for the main mechanism of our model to work.
We discuss this point briefly in the concluding Section 9.
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In retirement, as the agent does not earn any labor income, her
financial wealth Wt evolves according to

dWt = (µWt − ct)dt+ σWtdZt, (2)

where ct is the agent’s consumption flow at date t. The agent also
receives the flow of leisure utility ψ.

Let us denote by V (W ) the maximal value that the agent can attain
in retirement given that her current financial wealth is W . That is, the
value function V is defined as

V (W ) := max
{ct;t≥0}

E{
[∫ ∞
0

e−rt(u(ct) + ψ)dt

]
s.t. (2) and W0 = W,

where expectation is taken over the realizations of the financial return
shock Zt. Note that the expression for the agent’s total discounted ex-
pected utility takes into account the flow of leisure utility in retirement
ψ.

In the remainder of this section, we will characterize the agent’s
optimal consumption plan and compute the wealth effect, which shows
how the agent’s consumption responds to changes in wealth.

HJB equation for the value of retirement

To find the agent’s optimal consumption policy, we will use dynamic
programming.8 The intuition behind this approach is as follows. If the
agent optimally chooses her consumption, then the flow of value she
receives out of financial wealth Wt consists of the current utility flow
from consumption and leisure plus the increase in the value she expects
going forward. This intuition is succinctly expressed in the following
equation:

rV (Wt)dt = max
c
{(u(c) + ψ) dt+ E[dV (Wt)]} [dV (Wt)]} . (3)

Equivalently, we can divide both sides by V (Wt) and note that this
condition implies that the rate of return the agent earns in value terms
is equal to her rate of time preference rdt. The agent’s rate of return
consists of the “dividend yield”component (u(c)+ψ)dt/V (Wt) and the
expected “capital gain”component E [dV (Wt)] /V (Wt).

Assuming that V is twice continuously differentiable, we can use
Ito’s lemma (see, e.g., Karatzas and Shreve 1998) to compute the ex-
pected time change in the value V , given that financial wealth follows

8 For a standard textbook exposition of dynamic programming and Bellman equa-
tions, see Dixit (1990) or Kamien and Schwartz (1991). For additional details on the
derivation of HJB equations in a related setting, see Grochulski and Zhang (2013).
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(2) and the agent consumes at rate c dt:

E[dV (Wt)] =

(
(µWt − c)V ′(Wt) +

1

2
σ2W 2

t V
′′(Wt)

)
dt. (4)

Clearly, a higher consumption rate, c dt, implies lower wealth tomorrow,
which, given that the agent’s value function is increasing in financial
wealth, V ′ > 0, implies a lower change in the agent’s value going for-
ward. On the other hand, as we see in (3), the agent’s current utility
flow is higher when c is higher. This trade-off is captured by the HJB
equation for the value function V , which we obtain by substituting (4)
into (3):

rV (Wt) = max
c

{
u(c) + ψ + (µWt − c)V ′(Wt) +

1

2
σ2W 2

t V
′′(Wt)

}
.

(5)
We will use this equation to find the value function V next.

Solution to the optimal consumption
problem in retirement

With logarithmic utility of consumption, we can solve the retirement
value problem in closed form.

Proposition 1 Suppose u(c) = ln(c), then the retirement value func-
tion V is given by

rV (Wt) = ln(rWt) + ψ + r−1
(
µ− r − 1

2
σ2
)
. (6)

To verify the solution in (6), we compute its first and second deriv-
ative as

V ′(Wt) =
1

rWt
and V ′′(Wt) =

−1

rW 2
t

. (7)

We then use u = ln and take the first-order condition with respect to
c in (5):

1

c
= V ′(Wt), (8)

which implies u(c) = − ln(V ′(Wt)). We can then write (5) as

rV (Wt) = − ln(V ′(Wt)) + ψ + µWtV
′(Wt)− 1 +

1

2
σ2W 2

t V
′′(Wt).

When we substitute the derivatives in (7) to the right-hand side of the
above equation, we verify (6).

If we suppose that financial wealth is a safe asset with the riskless
growth rate equal to the agent’s rate of time preference, i.e., if µ = r
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and σ = 0, then, due to the desire for consumption smoothing, the
agent’s optimal consumption policy would be to consume a constant
amount at all dates in retirement. With wealth W , the maximal con-
stant consumption the agent can afford is c = rW , which keeps the
agent’s wealth constant. The value the agent would attain in these
conditions thus satisfies rV (W ) = ln(rW ) + ψ.

Comparing this value with (6), we see that the constant r−1(µ −
r − 1

2σ
2) represents the impact that the excess expected return µ − r

and volatility σ have on the value the agent attains when the growth
rate of wealth is risky, as in (2). Assumption 1 ensures that, despite
the risk in the growth rate of the only asset available to the agent in
retirement, she is able to attain a higher value than she would with a
riskless asset. This attenuates the concern that our results are driven
by our simplifying assumption of no riskless asset in the model.

Wealth effects in retirement

We can now use the closed-form solution for V to compute the agent’s
optimal consumption and the associated wealth effect in retirement.
Using the first-order condition in (8) and the marginal value of wealth
in (7), we obtain that the agent’s optimal consumption satisfies

ct = rWt. (9)

That is, the agent consumes a constant fraction of her wealth at all
times. While this policy is the same as the one the agent would choose
if the growth rate of wealth was riskless, the value the agent attains,
of course, is lower due to risk.

With the agent’s consumption function given in closed form in (9),
we immediately obtain the wealth effect, or the marginal propensity to
consume out of wealth, given as

dct
dWt

= r.

In a typical calibration, we would have r = 0.05, which implies a wealth
effect of 5 cents on the dollar. This number is about twice what we
estimated in Section 1. In the remainder of this article, we will argue
that this number is made lower, and thus closer to the wealth effects
observed in the data, when an endogenous labor supply decision is
taken into account. In particular, we focus on the extensive margin of
labor supply, i.e., work versus retirement.
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4. WORKING FOREVER

Before we consider, in the next section, the wealth effects while the
agent saves for retirement, in this section we discuss the option of
never retiring, i.e., working forever. We argue that the plan to never
retire is not optimal for the agent. In particular, we show that when the
agent’s wealth is high enough, being permanently retired is preferable to
permanently working. This means that the agent’s optimal retirement
plan is a threshold policy, where the agent retires as soon as her wealth
reaches a certain level, which we analyze in the next section.

While working, the agent earns labor income y, assumed here to be
constant, and decides at each point in time how much to consume out
of y and out of her stock of financial wealth Wt. The law of motion for
the agent’s financial wealth Wt is as follows

dWt = (µWt + y − ct)dt+ σWtdZt. (10)

If, for example, the agent were to consume exactly her labor income at
all times, i.e., if ct = y, then her financial wealth would follow simply
geometric Brownian motion (1).

Denote by F (W ) the maximal value that the agent whose wealth
is W can obtain by never retiring, i.e., working and earning the flow of
income y forever, while saving and consuming optimally. That is

F (W ) := max
(ct;t≥0)

E
[∫ ∞
0

e−rtu(ct)dt

]
s.t. (10) and W0 = W .

The main result of this section is the following

Proposition 2 There exists W̄ such that F (W ) < V (W ) for all W ≥
W̄ .

In words, when financial wealth is suffi ciently high, the agent would
rather be permanently retired than permanently working.

We argue this result by making use of an auxiliary result. Let us
define and denote by V0 the value of being retired but without the
utility flow of leisure:

V0(W ) := max
(ct;t≥0)

E
[∫ ∞
0

e−rtu(ct)dt

]
s.t. (2) and W0 = W .

Because this function is a special case of the retirement value function
V , one in which ψ = 0, we know that V0(W ) = V (W )− ψ

r . Note that
this means that V ′0(W ) = 1

rW , which is the same as V
′(W ) because the

flow utility of leisure ψ enters V additively.
Our auxiliary result is as follows:

Lemma 1 limW→∞ F (W ) = V0(W ).
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The following sketch of the formal argument for why this is true
captures the intuition. Directly from the definition of function F and
the function V0, we see that these two values come out of maximizing
the same objective subject to two different laws of motion for financial
wealth. In the case of F , the law of motion includes labor income y.
Like we did earlier for V , we can write an HJB equation for F as follows

rF (Wt) = max
c

{
u(c) + F ′(Wt)(µWt + y − c) +

1

2
σ2W 2

t F
′′(Wt)

}
.

We can see that the contribution of y to F is F ′(W )y, where F ′(W )
represents the marginal valuation of y at wealth W . Next, we observe
that this marginal valuation must be smaller than V ′0(W ), which is how
income y would be valued by an agent who does not have it. Therefore,
we must have F ′(W )y < V ′0(W )y = y

rW , which goes to zero as W goes
to infinity. Thus, the difference between F and V0 must go to zero as
wealth approaches infinity, which proves the lemma. Intuitively, when
the stock of her financial wealth becomes larger and larger, whether or
not the agent earns some constant labor income y matters less and less
and becomes immaterial when financial wealth is suffi ciently large.

Lemma 1 implies Proposition 2 because

V0(W ) +
ψ

r
= V (W ).

Clearly, since F (W ) coverages to V0(W ) as W becomes large, F (W )

must fall below V0(W ) + ψ
r at some point. This point is represented by

W̄ in the statement of Proposition 2.
In sum, we have argued in this section that when the agent’s fi-

nancial wealth is high enough, she prefers being permanently retired
to working forever. In the next section, we will use this fact when we
define and solve the agent’s problem of optimal saving for retirement.

5. SAVING FOR RETIREMENT

In this section, we define the consumption and saving problem with
endogenous retirement and describe the method for solving it. Since
retirement is irreversible in our model, the choice of the optimal timing
of retirement is a real-option exercise problem similar to the exercise
problems studied in the investment literature.9

Let us define and denote by J(W ) the maximum lifetime utility an
agent with financial wealth W can attain by working and retiring at

9 See, for example, Pindyck (1991).



Grochulski & Zhang: Wealth Effects with Endogenous Retirement 185

some point in the future. That is,

J(W ) := max
(ct;t≥0),τ

E
[∫ τ

0
e−rtu(ct)dt+ e−rτV (Wτ )

]
s.t. (10) and W0 = W,

where τ is the agent’s preferred retirement time, V (Wt) is the value of
retiring with wealth Wt, and the expectation E is taken over the real-
izations of the wealth growth shock process Zt. As we see, the agent’s
utility flow before retirement does not include the value of leisure, ψ,
and the law of motion for financial wealth accounts for the agent’s labor
income y.

As we did for V and F , we can use dynamic programing to obtain
the following HJB equation for J

rJ(Wt) = max
c

{
u(c) + J ′(Wt)(µWt + y − c) +

1

2
σ2W 2

t J
′′(Wt)

}
.

(11)
Since HJB equations only account for the local flows of utility and
changes in wealth, the HJB equations F and J are the same. The
difference between the optimal value functions F and J comes from
their boundary conditions, which we discuss next.

Boundary conditions and existence of
optimal solution

At Wt = 0, the HJB equation simplifies to rJ(0) = maxc
{u(c) + J ′(0)(y − c)}. The first-order condition for consumption with
u = ln gives us, as before, c = 1/J ′(0) and u(c) = − ln(J ′(0)). Substi-
tuting to the HJB, we obtain a boundary condition for J :

rJ(0) = − ln(J ′(0)) + J ′(0)y − 1. (12)

Since we do not allow negative financial wealth, drift of Wt cannot be
negative when Wt = 0. That is, the agent must be saving a part of her
labor income when Wt = 0, i.e., we must have c ≤ y, which gives us a
restriction on the slope of J at zero: J ′(0) = 1

c ≥
1
y .
10

Using the boundary condition (12), we can solve the HJB equation
forward from the boundary point W = 0.11 This gives us a unidimen-
sional family of solution curves J(W ), indexed by J ′(0) ≥ 1

y .

10 As a side note, we also know that rJ(0) ≥ u(y) because the agent with zero
financial wealth has the option to consume c = y and work forever.

11 Because volatility of financial wealth is zero when wealth itself is zero, advanc-
ing the solution out of W = 0 presents a challenge for numerical ODE solvers. This
challenge can be quite easily overcome by using local or global numerical approximation
methods.
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The analysis of the value of working forever, discussed in the previ-
ous section, implies here that solution curves J(W ) that remain strictly
above the curve V (W ) for all W can be classified as inadmissible. In-
deed, since V represents the value of being retired, if a solution curve
J such that J(W ) > V (W ) for all W were to represent the maximum
utility value the agent could obtain, then it would be optimal for the
agent to never retire, i.e., to set τ = ∞. But we know from the pre-
vious section that the value of working forever, denoted by F (W ), is
not above V (W ) for all W , which gives us a contradiction. Thus, ad-
missible solutions J are those that satisfy the boundary condition (12)
at W = 0 and satisfy J(W ) = V (W ) for some W . The highest of the
admissible solutions is the optimal one.

It can be shown that the maximum admissible J exists, that it
satisfies J(W ) ≥ V (W ) for all W , and that the set of W on which
J(W ) = V (W ) consists of just a single point. Intuitively, if there is
more than one point in this set, we can shift the curve J up to obtain a
better admissible solution. We can continue this process until a single
point remains in the set on which J overlaps with V . That point, which
we will denote by W ∗, is when the agent optimally chooses to retire.

The agent’s optimal retirement time τ is thus a stopping time. That
is, the agent works until her financial wealth attains the threshold W ∗

for the first time, and she retires at that time. The retirement date,
thus, satisfies

τ = min{t : Wt = W ∗}.

Geometrically, since W ∗ is the single point on which J and V overlap,
in addition to the values J(W ∗) and V (W ∗) being the same, the first
derivatives must match, J ′∗) = V ′∗), and J must be less concave than
V at W ∗, i.e., J must have a less negative second derivative than V at
the retirement threshold.12

In sum, the procedure for finding the optimal solution J is as fol-
lows. Start with some J ′(0) close to 1/y and use the boundary condi-
tion (12) to determine J(0). Solve the HJB equation forward from zero.
If J ′(0) is close enough to 1/y, this solution will at some W cross the
value of being retired, V . Increase J ′(0) to obtain a new solution curve,
which is everywhere above the one obtained from the initial guess. Re-
peat until the solution J becomes tangent to V . The point of tangency
becomes the optimal wealth retirement threshold W ∗.

12 Our construction of the optimal solution curve J provides a simple example of
how the so-called smooth-pasting optimality conditions arise in many optimal control
problems. For a much more extensive discussion of these conditions, see Dixit (1993).
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6. THE ENDOGENOUS VALUE OF HUMAN
CAPITAL

In this section, we discuss the impact of wealth shocks on the value of
the agent’s human capital when retirement is endogenous.

Generally, the value of one’s human capital is defined as the ex-
pected present value of all of one’s future labor earnings.13 Following
this definition and denoting the value of the agent’s human capital at
time t by Ht, we have

Ht := Et
[∫ τ

0
e−rsyds

]
,

where τ = min{t : Wt = W ∗} is the agent’s retirement date. Because
income y is constant in our model as long as the agent is working, we
have

Ht =
y

r
Et
[∫ τ

0
re−rsds

]
=
y

r
(1− Et

[
e−rτ

]
) =

y

r
(1−G(Wt)), (13)

where

G(Wt) := Et
[
e−rτ

]
is the expected discount factor from the present until retirement.

Clearly, the value of the agent’s human capital is endogenous with
respect to her retirement decision. When her financial wealth hits
W ∗, the agent retires immediately, which means τ = 0 and G(W ∗) =
Et
[
e0
]

= 1. Thus, Ht = 0 when Wt = W ∗. At the other extreme,
suppose, as we did when we discussed the value function F , that the
agent chooses to never retire, i.e., sets τ =∞. In this case, the value of
the agent’s human capital is constant at all dates and states: Ht = y

r .
As we see, the value of the agent’s human capital depends on how

soon she expects to retire. This time horizon, in turn, depends on the
agent’s saving rate and her current financial wealth. But, since savings
are also determined by the financial wealth position, we can express
the value of human capital as a function of the agent’s financial wealth
alone: Ht = H(Wt). Note that the function H is decreasing: higher
Wt means nearer retirement, i.e., a shorter remaining career, and thus
a lower monetary value of human capital.

As we see in (13), the key part in the computation of H(W ) is the
function G. We have the following

Lemma 2 G satisfies G(W ∗) = 1 and

rG(W ) = (µW + y − c(W ))G′(W ) +
1

2
σ2W 2G′′(W ), (14)

13 See, e.g., the review article by Benzoni and Chyruk (2015).
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where c(W ) is the agent’s optimal consumption policy before retirement.

The differential equation in this lemma accounts for the agent’s re-
maining time before retirement, taking into account the dynamics of
her financial wealth position Wt. In order to capture these dynam-
ics correctly, we need to know the agent’s optimal consumption policy
c(W ), which comes from the value function J characterized in the pre-
vious section. We provide a short formal proof of this lemma in the
Appendix.14

7. SPECIAL CASE WITH NO RISK PREMIUM

In this section, we discuss briefly a special case in which µ = r, i.e.,
the case in which aggregate wealth offers no risk premium. This case
admits a closed-form solution to the problem of optimal consumption
and saving for retirement and provides a clear illustration of our point
that wealth effects are weaker when retirement is endogenous.

However, this special case violates Assumption 1. The results of
this section, therefore, need to be taken with caution. In particular,
the agent’s only vehicle for saving in this section is an asset that offers
zero excess return and positive risk. Such an asset would clearly be
dominated by a riskless asset with the expected rate of return equal
to the agent’s rate of time preference. In practice, even if such a com-
pletely safe asset is not available, close substitutes are. To ensure that,
despite this low risk-adjusted return of the financial asset, the agent
wants to save for retirement, in this section we impose a stronger as-
sumption on the value of leisure in retirement.

Assumption 2 ψ > 1 + σ2

2r .

Under this assumption, as we show next, the agent wants to save
for retirement even though the asset she can use is risky and offers no
excess return.

Proposition 3 Under Assumption 2, if u = ln and µ = r, then J is
linear:

J(Wt) = V (W ∗) + V ′(W ∗)(Wt −W ∗), (15)

where

W ∗ =
y

rψ − 1
2σ

2
.

14 For a textbook treatment of expected hitting times in Brownian models, see
Stokey (2009).
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The agent’s optimal consumption and total wealth are constant at all
times prior to retirement:

ct = rW ∗ and Wt +H(Wt) = W ∗ at all t ≤ τ .

To verify the value function in (15), we can differentiate it and
substitute to the HJB equation (11) using the retirement value function
V given in (6).

The first-order condition for consumption, u′(ct) = 1/ct = J ′(Wt) =
V ′(W ∗) = rW ∗, confirms that the agent consumes a constant amount
prior to retirement. The terms in the expression for W ∗ show how the
agent’s retirement wealth threshold depends on the parameters. As-
sumption 2 implies that the agent saves: ct < y at all dates prior to
retirement. Indeed, ct = rW ∗ = y

ψ−σ2
2r

< y.

Proposition 3 also shows that the value of the agent’s human capital
offsets perfectly any shocks to financial wealth as the agent saves for
retirement, leaving the agent’s total wealth, Wt + H(Wt), constant.
To verify that indeed H(Wt) = W ∗ − Wt at all t, we use Lemma 2
to compute the expected discount factor until retirement, G(W ). In
particular, we can guess and verify by differentiation and substitution
to (14) that

G(W ) = 1− r

y
(W ∗ −W ). (16)

Substituting this expression for G(W ) into (13) yields the result.
This result helps us understand why consumption prior to retire-

ment is constant: the agent’s total wealth is constant. The agent de-
sires to smooth her consumption of the consumption good but not
necessarily her consumption of leisure. For this reason, the shocks to
her financial wealth position are absorbed by her supply of labor, on
the extensive margin, which allows her to keep total wealth constant
and her consumption perfectly smoothed. Clearly, negative shocks to
the return on financial wealth still hurt the agent by making her post-
pone retirement but do not affect her consumption. Likewise, positive
shocks improve the agent’s value, which we see in (15), where the value
function J is strictly increasing in financial wealth.

We conclude this section by noting that constant consumption ct =
rW ∗ for any Wt < W ∗ implies the wealth effect is nil:

dct
dWt

= 0.

With no consumption response, the whole financial return risk is ab-
sorbed by the agent’s present value of future utility from leisure. In-
deed, we can substitute (16) and (6) into (15) to express the agent’s
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value function prior to retirement as

rJ(W ) = u(rW ∗) +G(W )

(
ψ − σ2

2r

)
.

This formula shows that the expected present value of the agent’s
consumption, u(rW ∗), does not at all respond to changes in finan-
cial wealth, and J depends on W only through the expected present
value of the utility from leisure in retirement, G(W )ψ, and the penalty
for risky consumption in retirement, −G(W )σ2/2r.

The zero wealth effect result, although too extreme relative to the
wealth effects measured in Section 1, highlights our main point: the
endogenous response of labor supply to realized wealth shocks attenu-
ates the impact of these shocks on consumption. In the next section,
we calibrate our model to obtain realistic wealth effects consistent with
those measured in Section 1.

8. CALIBRATION FOR REALISTIC WEALTH
EFFECTS

In this section, we show that this model can generate realistic wealth
effects of about 2.4 cents on the dollar, as measured in Section 1. We
calibrate the model allowing for positive risk premium µ > r and solve
it numerically. We present optimal value functions, consumption poli-
cies, and wealth effects.

We normalize the labor income flow y = 1 and use the standard
rate of time preference of r = 0.05. In order to pick parameters µ
and σ, we use the average growth rate and the standard deviation of
the growth rate of aggregate net wealth presented in Table 1. We will
not ask this stylized model to also match the aggregate consumption
statistics given in Table 1. Instead, we approximate consumption by
using the simple dynamics our model predicts in retirement. That is,
we approximate consumption as ct = rWt and substitute it to the law of
motion for wealth in retirement (2), which implies the average growth
rate of wealth after consumption of µ− r. We calibrate this to match
the 3.4 percent reported in Table 1, which gives us µ = 0.084. The
volatility parameter for wealth after consumption we calibrate to match
the standard deviation of net wealth reported in Table 1, which gives
us σ = 0.044. Finally, the parameter ψ is chosen to match our target
of the average wealth effects of 2.4 cents on a dollar. The calibrated
value of ψ is 1.28.

Under this parametrization, we solve the model numerically and
obtain the optimal value function J using the procedure described in
Section 5. The solution, along with the retirement value function V
characterized in Proposition 1, is plotted in Figure 2. Clearly, as shown
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Figure 2 Pre- and Postretirement Value Functions

by the vertical difference between J and V , the agent’s labor income
y is most valuable to her when her financial wealth is low. Positive
labor income allows the agent to better insulate her consumption from
the wealth return shocks Zt, consistent with J being everywhere flatter
and less concave than V . The two value functions paste together at
the retirement threshold of W ∗ = 15.8, which means the agent retires
when her financial wealth reaches roughly sixteen times annual income.
This number, which did not target in the calibration, may seem high,
but this is to be expected of our infinitely lived agent model.

The optimal consumption functions prior to and after retirement
are plotted in Figure 3. Consistent with previous observations, con-
sumption is flatter, i.e., less responsive to wealth return shocks, prior
to retirement. This shape of the optimal consumption function implies
lower wealth effects prior to retirement. In retirement, c(W ) has a con-
stant slope equal to r. Prior to retirement, this slope is less positive
and not exactly constant.
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Figure 3 Optimal Consumption

The exact wealth effects, i.e., the slopes of the two consumption
functions, are plotted in Figure 4. While constant in retirement, the
wealth effects are decreasing in financial wealth prior to retirement,
ranging from almost 3 cents on the dollar when wealth is low to a bit
below 2 cents when wealth is high. The average of these effects matches
the number estimated in Section 1 of 2.4 cents on the dollar. When
the agent retires, the wealth effect jumps to 5 cents. This discontinuity
comes from the irreversible switching of the agent’s state from working
to retired as wealth reaches the threshold W ∗.

The intuition for why wealth effects are weaker prior to retirement
than after is similar to that of the special case discussed in the pre-
vious section: when retirement is endogenous, changes in the value of
human capital offset the shocks to the agent’s financial wealth, keeping
her total wealth relatively more stable, which dampens the response
of consumption. In the special case discussed earlier, the offsetting re-
sponse of the value of human capital was one-to-one: total wealth was
constant, the wealth effect for consumption was nil, and the financial
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Figure 4 Wealth Effects

return shocks were fully absorbed by the changes in expected utility
from leisure. Here, the offsetting effect is present but smaller than
one-to-one, which gives rise to wealth effects for consumption that are
positive but smaller than r.

The decreasing pattern of wealth effects prior to retirement, ob-
served in Figure 4, can be understood in terms of the less than one-to-
one response of the value of human capital and the associated change
in the expected present value of leisure in retirement. When the agent’s
financial wealth is low, she plans to work for a long duration, and the
present value of her retirement leisure is low. By adjusting her already
far-off retirement date, the agent can change the value of her human
capital by a little and thus is able to transmit only a small portion of
the financial return risk to the value of her retirement leisure, which
leaves her consumption relatively more exposed and makes wealth ef-
fects relatively strong.

When the agent’s wealth is close to the retirement threshold, she
plans to work for just a short time, and the present value of her retire-
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Figure 5 Total Wealth

ment leisure is high. By adjusting her retirement date in response to
realized financial return shocks, the agent can change the value of her
human capital drastically and thus is able transmit a lot of the financial
return risk to the value of her retirement leisure, which insulates her
consumption better, yielding a weaker wealth effect. Intuitively, the
value of human capital is “less endogenous”when retirement is far off
and “more endogenous”when retirement is near.

As the agent retires, she loses completely the ability to adjust the
value of her human capital or the present value of her retirement leisure.
This means all the financial return risk must now be absorbed by con-
sumption, leading to a jump in the wealth effects at retirement.

Figure 5 plots the agent’s total wealth, H(Wt)+Wt. In the baseline
example with no risk premium, as we saw in Section 7, the endogenous
adjustment of the value of human capital perfectly offsets the shocks to
financial wealth, so the agent’s total wealth is constant, equal to W ∗,
at all times prior to retirement, and, consequently, the wealth effect is
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nil. In retirement, the value of human capital is fixed at zero forever,
i.e., it cannot respond at all to shocks to financial wealth, and thus
the effect of these shocks on consumption is strong. In the calibrated
model, prior to retirement, we see that the agent’s total wealth is a less
steep function of W than it is in retirement, but it is more steep than
prior to retirement in the baseline case of µ = r. Correspondingly, the
wealth effect in the calibration is not as strong as in retirement but
remains positive.

The same intuition also helps us understand comparative statics
with respect to the retirement leisure utility flow ψ. The comparative
statics result, which we can show numerically, is that higher ψ leads to a
lower average wealth effect. Intuitively, high ψ means a lower threshold
W ∗, faster desired retirement, and thus a “more endogenous”value of
human capital. With the value of human capital reacting to the wealth
shocks more strongly, the agent can stabilize her consumption better,
which explains a weaker average wealth effect of the financial return
shock on consumption.

9. CONCLUSION AND FURTHER READING

In this article, we study a simple model of optimal consumption, saving,
and retirement decisions. We use this model to show that the endoge-
nous response of the agent’s planned career length and the associated
change in the value of her human capital dampen the response of con-
sumption to financial return shocks. In a reasonable parametrization,
the model is able to generate wealth effects of the magnitude observed
in the data.

We make several simplifying assumptions that do not affect our
main result. First, we abstract from portfolio choice, which makes the
consumption-saving-retirement problem very easily tractable. Farhi
and Panageas (2007) study a more general problem with an endogenous
portfolio choice as in Merton (1971) and show that wealth effects are
weakened by the endogeneity of the retirement decision also in their
model. In addition, they show that the portfolio weight of risky assets
is increased by the inclusion of this margin.

Second, we abstract from shocks to labor income and labor sup-
ply decisions on the intensive margin. It is easy to see that exogenous
labor income risk would change the retirement threshold without af-
fecting the result that the endogeneity of the value of human capital
moderates wealth effects. Liu and Neis (2002) and Farhi and Panageas
(2007) discuss the case with endogenous response of labor supply along
the intensive margin. They show that wealth effects are lower than
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in retirement but not necessarily decreasing in wealth, depending on
assumptions.

Third, we follow Kingston (2000) and Farhi and Panageas (2007),
among many others, in modeling retirement as an absorbing state with
zero hours worked, which is a strong assumption. Ruhm (1990) and
Rust and Phelan (1997) show that less than 40 percent of workers re-
tire from full-time career jobs by exiting the labor force completely.
About half of the workers transition from full-time career jobs to part-
time retirement “bridge” jobs. About 25 percent of workers experi-
ence episodes of reemployment after retirement.15 The assumption of
a single transition into full retirement, clearly, helps keep our analy-
sis simple. The intuition that arises out of our model strongly sug-
gests, however, that more flexible retirement would help us generate
low wealth effects. In particular, an option to unretire would make the
value of the agent’s human capital “more endogenous,”allowing it to
better absorb the financial return shocks and thus helping the agent
stabilize her consumption, which would dampen the wealth effects of
the financial return shock on consumption.

Further, we abstract from mortality risk, the bequest motive, and
the possible nonseparability of utility between consumption and leisure.
Dybvig and Liu (2010) include these features and show that the agent’s
consumption and portfolio allocation jump at retirement. Farhi and
Panageas (2007) and Dybvig and Liu (2010) also allow for borrow-
ing, i.e., negative wealth, subject to appropriate borrowing constraints.
Each of these assumptions changes the results quantitatively but not
qualitatively.

In other areas of economics, the endogeneity of the retirement de-
cision has been shown to be important when assessing magnitudes of
various economic forces. For example, Rogerson and Wallenius (2013)
show its importance for measurement of the intertemporal elasticity of
substitution for labor supply. Ndiaye (2018) shows its importance for
calibrating optimal labor income tax rates and Social Security benefits.

15 However, based on evidence from the Panel Study of Income Dynamics and the
Current Population Survey, Rogerson and Wallenius (2013) argue that an abrupt tran-
sition from full time to little or no work approximates well the process of retirement
for male heads of households in the US.
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APPENDIX: PROOF OF LEMMA 2

Define a bounded random variableM :=
∫∞
0 re−rt1t<τdt and a martin-

galeMt := Et [M ]. We haveMt =
∫ t
0 re

−rsds+e−rtt Et[
∫∞
0 re−rs1t<τds] =

1− e−rtG(Wt). The drift of Mt is re−rtG(Wt)− e−rtG′(Wt)(µWt + y−
c(Wt))− 1

2σ
2W 2e−rtG′′(Wt), which must be zero. QED
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