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Inflation Target Zones as a
Commitment Mechanism

Felipe Schwartzman

M
uch of the analysis of monetary policy has centered on cen-
tral banks’alleged inability to commit to an optimal, time-
consistent policy. Commitment is important whenever the

private sector makes decisions according to what it expects the pol-
icymakers to do in the future. By committing to future actions, the
central bank can better influence the decisions of the private sector and
can generate better policy outcomes.

The literature on monetary policy has identified two types of biases
that emerge from lack of commitment. The first is inflation bias, as in
Kydland and Prescott (1977) and Barro and Gordon (1983) analyses.
In that case, equilibrium inflation ends up being, on average, higher
than optimal. More recently, the literature has identified a second
type of bias, called stabilization bias, in which the central bank reacts
too much to changes in the state of the economy, leading to excessive
volatility in inflation and the output gap as in (Clarida et al. (1999)).

This article aims to analyze the effects of a widely used framework
that has been adopted by many central banks seeking to provide a
greater degree of predictability in monetary policy– that is, the use
of an inflation target zone.1 Such zones specify a range within which
the central bank promises to keep inflation. I interpret these zones as
providing constraints on central bank behavior– so that it has to com-
mit to not letting inflation leave that zone– while allowing the central
bank to follow, a discretionary policy otherwise. The numerical com-
putations reported in this article indicate that the use of an inflation

The original version of this paper was written in 2005 at Princeton. Thanks to
Antonio Luis Licha, Lars Svensson, Carlos Viana de Carvalho, Dante Amengual,
Paul Ho, Reiko Laski, Pierre-Daniel Sarte, Nico Trachter, Elaine Wissuchek, and
John Weinberg for helpful comments and suggestions in different stages of this work.

1 As Erceg (2002) points out, the definition of a target zone, as opposed to a point
target, seems to be adopted by most inflation-targeting countries.
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target zone allows for elimination of the inflation bias and, in some
cases, substantial correction of the stability bias to a point that will be
made explicit shortly. This is because the inflation target zone affects
expected inflation even when it is not binding. Furthermore, the ex-
istence of a credible target zone dampens the effect of current shocks
on expectations because the private agents know that if further shocks
occur, the central bank will only react to them so long as the zone is
respected. This dampening of the sensitivity of inflation to the under-
lying state is similar to what Krugman (1991) called a “honeymoon
effect”in the context of exchange rate target zones.

At the same time, having the central bank commit to a prespecified
inflation rate without any room for variation is hardly optimal either.
The reason is that the inflation target zone is determined before all
relevant information is revealed. In the presence of supply shocks, it is
optimal for a central bank that is not a strict inflation targeter to adjust
inflation somewhat in the direction of the shock so that output does
not vary too much. This suggests that there is in general a nontrivial
optimal width for the inflation target zone. The paper also presents
calculations of the optimal zone under different parameter constella-
tions.

Prior literature has concerned itself with the trade-off between
greater commitment and discretion to react to incoming information.
A classic proposal, Rogoff (1985), to reduce the inflation bias problem is
that the central banker should give less weight to output gap variation
than society at large, i.e., it should be relatively “weight” conserva-
tive. Svensson (1997) proposes that the inflation-targeting framework
reduces inflation by forcing central bankers to pursue a lower average
rate of inflation than what would be socially optimal, thus compensat-
ing for the bias, i.e., he proposes that the central bank should be “in-
flation target”conservative. The numerical calculations in this article
show that the use of a target zone can effectively implement Svensson’s
suggestion by setting the center of the zone low enough.

Also, as emphasized by Clarida et al. (1999), Rogoff’s proposal is
also able to, at least in part, correct the stability bias by implementing
an optimal linear policy rule. There is no way such corrections can
implement the first-best policy arrangement, for this is history depen-
dent. The same is true for the target zone arrangement. What the
numerical calculations show is that while the target zone mechanism
falls short of providing the same gains as assigning a suitable “weight”
conservative central banker, at least for some parameter values, it is
able to generate very close outcomes.

Inflation target zones can be interpreted as contracts, in which the
punishment for the central bank only occurs if inflation exceeds certain
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limits. There are a number of papers that try to assess the effects of
adopting contracts with central bankers. Walsh (2020) shows that one
can use a contract that will fire the central banker if the nominal GDP
growth (or some modified version of it) exceeds a certain value to be
specified. This contract eliminates the inflation bias, thus implementing
what Walsh describes as an optimal policy. However, in Walsh’s model,
there is no persistence in inflation shocks, so that it does not allow for
a discussion of the stability bias in monetary policy.

Another article that addresses the benefits of a target zone is Tetlow
(2000). In his model, the central bank follows a Taylor-rule-type policy,
but with a randomly varying inflation target, which Tetlow models as
following a martingale. The model generates a honeymoon effect, akin
to the one observed in Krugman’s exchange rate target zone model.

The existence of such an effect was also proposed by Gerlach (1994)
and Amano et al. (1997). However, in both cases, the authors retain the
flex-price approach of the Krugman model and keep policy exogenous.
One of the results presented in this article is that by explicitly modeling
the policy, the honeymoon effect can yield an indirect effect on inflation
and output gap variability, which is probably more important than the
direct impact of nonlinearities implied by the honeymoon effect.

Finally, it is worth mentioning two articles that approach the issue
from a different perspective. One is Erceg (2002), who regards the
target range as a confidence-interval-type statement of the variance that
the central bank wishes inflation to have. In this interpretation, the
target range does not have a “hard edge,”in the sense that the central
bank can allow inflation to obtain values out of the zone, but range
should be respected say, 95 percent of the time. However, as Erceg
recognizes, target zones seem to be too narrow in that inflation only
falls within their bounds less than 95 percent of the time. By allowing
the target zone to be more than a simple statement of intentions, the
model presented in this paper presents a rationale for why the optimal
zone may be “too narrow”by Erceg’s criterion.

The other article is by Orphanides and Wieland (2000). Their
problem is to find what would justify a policy in which the central
bank only pays attention to inflation when it is out of the target zone,
otherwise focusing the policy on output gap stabilization. They propose
a quadratic loss function, which is nearly flat within the target zone,
and the possibility of nonlinearities in the Phillips curve so that the
inflation-output trade-off only becomes significant for high levels of
inflation.

The article proceeds as follows. In the next section, I will lay out
the model. Section 2 shows how the existence of the zone affects the
discretionary, intrazone policy. Section 3 discusses how the location of
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target zone approach can be used to change the average inflation, thus
dealing with the inflation bias problem. In Section 4, the effects of
different zone widths on the variances of inflation and the output gap
are considered. Section 5 provides a discussion of some issues involved
in the finding of the optimal target zone as a function of the model
parameters. The last section concludes by summarizing policy impli-
cations, caveats in the analysis, and directions for future development
of the model.

1. THE MODEL

A central bank chooses policy to minimize a quadratic loss function,
taking as given a forward-looking Phillips curve, but with no ability
to precommit. More specifically, the intertemporal loss function of the
central bank is given by

L = Et

{ ∞∑
s=t

(1− δ)δs−t 1
2

[
(πt)

2 + α (xt − x̄)2
]}

, (1)

where, as usual, πt and xt stand for inflation and output gap, respec-
tively, and x̄ stands for the average levels of output gap that the central
bank would like to attain in the long run; α is a parameter determining
the weight that the central bank gives to deviations of output gap from
target relative to inflation; delta is a discount factor; and Et represents
the expectation operator conditional on information available at time
t.2 Higher values of α imply that the central bank is relatively more
concerned with stabilizing output gap close to its target than with sta-
bilizing inflation. The central bank minimizes this loss function subject
to a forward-looking Phillips curve:3

πt = Et [πt+1] + λxt + ut, (2)

where Et [.] is the expectation operator conditional on information
available in time t, and ut is a supply shock, which follows an AR(1)
process:

2 I multiply the loss function by (1−δ) so that it is well-defined in the δ → 1 limit.
3 This Phillips curve is similar to the one derived from a Calvo-style, sticky-price

model as in Calvo (1983). The difference is that the expected future inflation is not
multiplied by the discount rate δ. This simplification is not of great consequence because
in any case, δ would be calibrated to be very close to 1. A substantive consequence of
this calibration is that the Phillips curve becomes vertical in steady state, so that there
is no long-run trade-off between inflation and output gap levels.
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ut = ρut−1 + ηt, (3)

where ρ is a parameter governing the persistence of ut and ηt is an i.i.d.
N
(
0, σ2

)
.

A central bank that is fully able to commit chooses inflation and
the output gap in each date and given each realization of the supply
shock ut to minimize the discounted losses (1). Given the Phillips
curve (equation 2), the central bank understands that by committing
to lower inflation at any given date, it will achieve a lower output gap
on that same date but will also affect inflation and output gaps on the
previous date.4 Manipulating first-order conditions, one can verify that
the optimal policy with full commitment satisfies:

πt =− α

λ
(xt − δ−1xt−1) if t > 0

πt =− α

λ
xt if t = 0.

However, when a central bank lacks the ability to precommit, it
reoptimizes each period, thus ignoring the effect of its inflation choice
on previous variables. Discretion means in this case that the central
bank reoptimizes every period, so that the t = 0 solution is the only
relevant one.

The inflation-targeting framework is interpreted in this article as
follows: the central bank is assigned a target zone and is given freedom
to act so long as inflation remains within the zone. Therefore, the
further constraint added in this model is that the central bank has to
keep inflation within a certain zone, i.e.:

πt ∈ [π∗ −B;π∗ +B] , (4)

where π∗ denotes the center or the location of the zone, and B denotes
its width. Furthermore, for simplicity, it is assumed that the central
bank can pick inflation and the output gap at each period, subject to
the Phillips curve above, without any error or lags. Therefore, inflation
always falls within the zone.5

4 Put differently, the way in which central banks choose things at any given date has
implications for how private agents form their expectations for what is going to happen
on that date. The commitment problem emerges exactly because once a given date
arrives, the central bank does not have an incentive to take this impact on previously
formed expectations into account.

5 It would be straightforward to relabel variables in the model so that the central
bank controls a component of inflation and commits to keeping that component that it
controls within the zone. I do not do that for simplicity of exposition.
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I derive the optimal decision of a central bank that does not have
the ability to commit to any particular policy rule. To be more spe-
cific, I focus on Markovian decision rules, where the central bank only
conditions its policy on the current exogenous state of the economy
and reoptimizes each period. Under such policy, the way the decision
rule affects expectations about future variables is never a consideration,
since at the beginning of each period, those are no longer relevant.

Under those assumptions, the central bank will take expectations
about future inflation as something it cannot influence within each
period– that is, taking them as given. Since the decisions made by
the central bank in each period do not affect its loss and hence its
action in future periods, the dynamic minimization problem reduces
to a sequence of static minimizations of the period loss functions.6 If
the central bank is allowed to choose output gap and inflation freely,
I have in such a framework the usual result that the desired inflation
and output gap will satisfy:

πdt = −α
λ

(
xdt − x̄

)
, (5)

where πdt and x
d
t stand for inflation and the output gap desired by the

central bank in the absence of the target zone. However, the central
bank is constrained by the target zone, so that in effect:

πt = πdt if π
d
t ∈ [π∗ −B, π∗ +B]

πt = π∗ −B if πdt ≤ π∗ −B
πt = π∗ +B if πdt ≥ π∗ +B. (6)

Substituting (5) into (2) yields

πdt =
α

α+ λ2 [Et [πt+1] + λx̄+ ut] . (7)

In this simple model, the state of the economy is completely sum-
marized by ut, so that I should be able to find πt and πdt as functions
of ut.

6 More precisely, the problem allows one to look for a Markov equilibrium of the
game played between the central bank and its future incarnations, where the actions
taken by the central bank are solely a function of the current state of the economy
summarized by the shock ut. This is not the only possible solution for such a game.
One could very well look for strategies that take past values of ut as part of the state.
This modification would allow for reputational effects analogous to the ones discussed
by Barro and Gordon (1983) or to the implementation of a first-best policy as in Wood-
ford’s (2003) “timeless” commitment.
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One can find a stationary equilibrium πt (ut) using the following
algorithm:

1. Start with a π0 (ut) function that satisfies (4);

2. Calculate πd,1 (ut) by plugging π0 (ut) in the right-hand side of
(7);

3. Use equation (6) to find π1 (ut) ;

4. Iterate until convergence to a fixed point.

As shown in the Appendix, this method is a contraction, so that it
necessarily yields a unique reaction function to the central bank. With
π (ut) at hand, it is straightforward to find E [π (ut+1) |ut] with the use
of (3) and then x (ut) by inverting the Phillips curve (2). With these
functions at hand, one can proceed to find the moments of inflation
and output gap through numerical integration.

Throughout the article, the resulting policy rule shall be compared
with two benchmark cases. One is the optimal policy under discretion
in the absence of the target zone.7 This is a natural benchmark be-
cause it is with respect to this policy that the policy implied by the
target zone should improve. The second benchmark is the optimal lin-
ear policy, derived by Clarida et al. (1999). The latter is a useful
benchmark because it is the optimal discretionary policy for a “con-
servative” central bank, that is, one that has an inflation target and
welfare weights that differ from society at large. These benchmarks are
given, respectively, by:8

πdisc (ut) = αx̄+ ωut = αx̄+
α

1 + α (1− ρ)
ut

and

πopt (ut) = ω∗ut =
αc

1 + αc (1− ρ)
ut,

where

7 For conciseness, this will be referred to hereafter as simply policy “under discre-
tion” or “discretionary policy.”

8 For a derivation, see Clarida et al. (1999). The use of the optimal linear policy
as a benchmark, as opposed to the global optimal policy, is justified by the fact that
the global optimal policy is history-dependent, and there is no hope that the proposed
mechanism can make the central bank adopt such a policy. Also, as seen below, the
optimal linear policy does seem to dominate any policy implementable with the target
zone.
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αc = (1− ρ) δ.

Note that average inflation in the discretionary case is given by:

E
[
πdisc (ut)

]
= αx̄.

Following the optimal linear policy typically requires a degree of
commitment from the central bank, so it is generally not followed. The
only circumstance in which it is attained is if the central bank has
output gap weight given by αc and target output gap x̄ = 0. This
amounts to putting in place decision makers in the central bank who
are more “conservative” than society in the sense of having a lower
output gap weight α and targeting the natural rate of output rather
than some other level for the output gap.9

The model can be normalized to reduce the number of free pa-
rameters without any loss in generality. One normalization is to set
σ =

√
1− ρ2. This sets the unconditional standard deviation of the ut

shocks to 1. The model can be renormalized by multiplying the loss
function by σ2

1−ρ2 and the constraints by
σ√

1−ρ2
. This means that if

the normalized model implies an optimal zone given by (π∗, B), then

the actual optimal zone should be
(

σ√
1−ρ2

π∗, σ√
1−ρ2

B

)
. Likewise, the

resulting variances and squared inflation bias should be all multiplied
by σ2

1−ρ2 .
Another normalization is to note that if one can redefine variables

so that the welfare weight is reset to α̃ = α
λ2
and the pass-through from

output gap to inflation set at λ̃ = 1. Changes in this parameter will
indicate both the effects of having a more conservative central bank
or less costly short-run trade-off between inflation and the output gap.
The required redefinition is that xt be the direct effect of the output
gap on inflation, normally given by λxt.

2. THE EFFECT OF THE ZONE IN INTRAZONE
POLICY

Krugman (1991) identified what he called a “honeymoon effect”in the
context of exchange rate target zones. His insight was that because the

9 As discussed in Svensson (1997), one can also implement the same policy by in-
stead of requiring the central bank to ignore the target output gap x̄, requesting that
the central bank be “inflation conservative” in the sense of desiring a lower inflation
that what is socially optimal.
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exchange rate is a forward-looking variable, by committing to intervene
so that the exchange rate does not get out of certain bounds, the gov-
ernment can in effect make exchange rates less sensitive to underlying
fundamentals, thus reducing the variability of the exchange rate even
around levels where no intervention takes place. Previous literature,
cited above, has already suggested that the framework may be adapted
to discuss inflation target zones.

I now compare the policy constrained by the zone with the policy
adopted under full discretion. This is done in Figure 1. The blue
lines represent the policy with the target zone, whereas the red lines
represent the policy when there is no such zone. The parameter values
used to plot the figures are α = 3 and x̄ = 0. The latter equality implies
absence of inflation bias in the discretionary policy. The figures in the
left column (1a and 1c) represent inflation as a function of the supply
shock ut, and the figures in the right column its first derivative. For
the upper figures (1a and 1b), the shocks were calibrated to be fairly
persistent, at ρ = 0.8.10

What immediately stands out in figure 1a is that apart from flat-
tening out the reaction of inflation to the shock in the points where
inflation is forced against the edges of the zones, the behavior of infla-
tion within the zone is changed. The π (ut) schedule is both translated
to the right and rotated downwards. This means that for a given shock,
the zone implies a lower inflation level, and for a given change in the
shock, the zone implies a weaker reaction.

To gain intuition on the way in which the target bands affect in-
flation, note that choice of inflation inside the band given by equation
(7) does not depend directly on the target band. The only way in
which the target band can affect inflation inside the band is, therefore,
through its effect on future expected inflation. As the supply shock
ut increases, the probability that the band binds in the next period
increases, thus further truncating the right tail of the distribution of
inflation outcomes. It follows that future expected inflation increases
more slowly with the supply shock than would be the case in the ab-
sence of the target band. The narrower the width of the band, the more
future inflation is truncated for any current value of ut. At the same
time, the choice of location of the target band affects average inflation
by truncating the distribution of future inflation more in one direction
than the other.

Figures 1c and 1d are equivalent to 1a and 1b above, but with i.i.d.
shocks (ρ = 0). By eliminating any source of persistence, the slope

10 This calibration will be used often in the article, and it corresponds to a half
life of approximately three years for the shocks.
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Figure 1 Inflation as a Function of the Supply Shock for
Different Levels of Persistence

Note: Other parameters are set to α = 3, λ =1, and x̄ =0.

of the inflation schedule does not change with the introduction of the
zone, and the nonlinearities within the zone disappear. This is because
with ρ = 0, inflation expectations do not depend on the current state.
It follows that the intrazone policy is described by:

πdt =
α

α+ λ2 [E [πt+1] + λx̄+ ut] . (8)

With ut i.i.d., expected future inflation is given by its unconditional
expectation and does not depend on current values of ut. The slope of
the intrazone policy rule is given by α

α+λ2
, which is identically equal

to ω when ρ = 0. The honeymoon effect disappears. However, the
zone may still have an effect on the intercept of the policy by shifting
E [πt+1] around and thus correcting for eventual inflation biases. In
effect, the translation caused by the shifted π∗ is, if anything, greater
than before.
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In the following two sections, it will be shown how the choice of π∗

and B can be used to affect the outcome in terms of average inflation
and the variances of both inflation and the output gap.

3. USING THE TARGET ZONE TO CHANGE
AVERAGE INFLATION

The original articles on dynamic inconsistency of monetary policy (Kyd-
land and Prescott (1977); Barro and Gordon (1983)) were mainly con-
cerned with the issue of inflation bias. The theory states that the
central banks may fall prey to inflation biases because the natural rate
of output is above what would be the optimal one. For this reason,
central banks would desire to have the output gap permanently at a
level above its natural rate, thus pushing steady-state inflation above
what would be optimal and, because of the long-term neutrality of the
Phillips curve assumed in these models, not achieving their desired goal
in terms of the output gap or unemployment.11

As noted above, in the absence of an inflation target zone, the model
in this paper also implies the existence of such a bias if αx̄ 6= 0. In
particular, I introduce inflation bias in the exercises shown in figures 2a
and 2b by setting x̄ = 1 (the other parameter values are α = 3, δ → 1,
and ρ = 0.8). When plotting these figures, I set the width of the zone
to B = 2.12 While the bias under discretion is different for α = 1 and
α = 3 (and given the parameterization, is in fact equal to α), the point
that minimizes the loss functions and that sets the bias equal to 0 is
close to π∗ = −2 in both cases, so that the upper boundary of the band
is close to zero, the optimal inflation. In figure 2b, variation in α affects
how quickly inflation increases with π∗, with higher α corresponding
to a steeper slope.

It is important to note that in the presence of inflation bias, the
center of the band π∗ does not coincide with average inflation (the set
of points where it does is depicted by the diagonal dashed line in 2b).
The loss-minimizing level of inflation target, in fact, implies inflation to
be persistently above the center of the band. A simple extension of the
model could allow for biases stemming from a preference by the central
bank for lower than optimal inflation. In those cases, one might observe
inflation to be persistently below the center of the inflation target.

11 Whether this characterization of central banks is realistic is open to disagreement,
and at least one insider account, Blinder (1999), disputes this notion.

12 For comparison, the maximal standard deviation that inflation attains in this
class of models (given the normalized variance of the shocks) is the one implied by the
discretionary regime and increases with ω = α

1+α(1−ρ) . For the parameterizations used

here, this is 5/6 for α = 1 and 15/8 for α = 3.
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4. USING THE TARGET ZONE TO CHANGE
INFLATION AND OUTPUT GAP VARIANCES

The monetary policy literature based on new Keynesian type mod-
els, such as the one used here, has recognized that even if there is
not an inflation bias problem, the fact that price-setting behavior is
forward-looking is enough to generate time inconsistency issues in pol-
icy making. This appears typically as inflation that is too variable. In
particular, it can be the case that both output and inflation are more
variable than at the optimum. This behavior is what has been called
the “stabilization bias.” By managing the variances of inflation and
the output gap, the target zone can potentially substantially amelio-
rate this issue.

Figures 2c and 2d show how this is done. For plotting these figures,
the parameter values were set at α = 1, δ → 1, x̄ = 0, and ρ = 0.8.
Also, in all figures, π∗ = 0. A result that is not shown is that under
these conditions, average inflation is not affected by the width of the
zone, but the same would not be true if there were some kind of inflation
bias problem.

Figure 2c shows how the loss function changes as a function of B
and compares it with the loss when there is no zone and when the
optimal linear policy is implemented. The loss attains a minimum at a
point close to B = 0, implying that the chosen parameter values require
a fairly tight but nontrivial target zone to achieve the optimal policy.
It is not generally the case that the optimal zone is positive and finite.
For example, if α = δ and ρ = 0 the optimal zone is to have no zone
at all and to let the central bank pursue a discretionary policy, which
amounts to the same thing as having B →∞.

Another interesting result is that for smaller values of B, the tar-
get bands generate substantial gains relative to the fully discretionary
policy. At the same time, the loss is always larger than the one implied
by the best linear policy, even if at the optimum, it gets very close to
that benchmark.13

The significance of the fact that loss implied by the optimal linear
policy represents a lower bound on the loss function is that, as em-
phasized by Clarida et al. (1999), in the absence of inflation bias, the
optimal linear policy can be interpreted as assigning a central banker
with output gap weight given by (1− ρ) δ. This result implies that the
use of the zone is not a substitute for the appointment of a suitably

13 However, this result could depend critically on the linear-quadratic nature of the
model. For an example of how a departure from such a model can generate target-zone-
type behaviors as optimal policies, see Orphanides and Wieland (2000).
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Figure 2 Effects of Target Bands

Note: Parameters set to α = 1, δ → 1, x̄ = 0, and ρ = 0.8.

“weight conservative”central bank, even though in the example shown
here, it can approximate the outcome to a large extent.

Figure 2d shows how the variances of inflation and output gap
change with the size of the zone. These behave exactly as one would
expect, with inflation variance increasing and output gap variance de-
creasing. However, inflation increases faster than the reduction in the
output gap. This illustrates the fundamental trade-off between infla-
tion and the output gap variability faced in the design of the target
zone.

5. DEFINING THE OPTIMAL ZONE

The results shown above demonstrate that, at least for certain para-
meter values, there is, given π∗, an optimal nonzero and finite value for
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Figure 3 Contour Set of a Loss Function

Notes: The figure shows the loss function for different values of B and π∗. Red
dots denote loss-minimizing π∗ for different values of B. The figure was plotted
with ρ = 0.8, α = 1, δ → 1, and x̄ = 1. The loss-minimizing B is close to 0.2.

the width of the zone and for a given value of B, an optimal location for
π∗. It seems natural to think that there will be in general an optimal
combination of B and π∗. The loss associated for different values of B
and π∗ are shown in Figure 3. The figure was plotted with ρ = 0.8,
α = 1, δ → 1, and x̄ = 1. The optimal B is small, close to 0.2. The
red dotted line depicts the optimal π∗ for given values of B. Optimal
policy design also involves a negative π∗, which is nevertheless smaller
in absolute value than the inflation bias.

Also, for small-to-medium values of B, the level curves tend to
slope downward, with higher Bs being associated with more negative
values of π∗. The intuition is straightforward. If, for example, B is
set at, say, 0.5 and π∗ at −1, as is optimal when B is very large, this
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Figure 4 Optimal Band Design Given Different Degrees of
Inflation Bias

Note: Parameters set to α = 1, δ → 1, and ρ = 0.8.

means that inflation will always be lower than its optimal long-term
level, which is equal to zero. It follows that if the width of the target
zone is constrained to be very wide, one may want to set the center of
that zone at a lower level than if the width is fairly tight.

Figures 4a through 4c show how the optimal policy changes with
x̄ given α = 1, δ → 1, and ρ = 0.8. First, note that for x̄ = 0, the
optimal zone is centered at 0, as one might expect. As x̄ increases,
the optimal width of the zone increases slowly at first and then, at
around x̄ = 1.5, it starts to grow faster. This behavior is mirored by
the optimal location of the zone, which at first departs only slowly from
its initial value of π∗ and then, from x̄ = 1.5, it starts to decrease at
roughly one for one with the increase in x̄. More interestingly, at some
value of x̄ close to 4, the optimal zone collapses to include only the point
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π = 0. It is as if the mechanism is able to deal with moderate values
of inflation bias, but after a point, it doesn’t have any option better
than just telling the central bank to stick to zero inflation whatever
happens. Figure 4c shows how in the absence of bias, the probabilities
of inflation reaching either side of the zone are equal and sizable. As
x̄ increases, the probability of inflation reaching the upper part of the
zone increases, and the probability of reaching the lower part decreases.
The optimal zone in the presence of a moderate inflation bias will tend
to be asymmetric not only in the sense that average inflation will exceed
the center of the zone, but also in the sense that it will reach the upper
edge of the zone more often than its lower edge.

6. CONCLUSIONS, CAVEATS, AND DIRECTIONS
FOR FUTURE WORK

Blinder (1999) commented about how economists often behave as in the
joke in which one of them is confronted with some real-world fact and
asks himself or herself about whether it is also true in theory. This is
in some sense exactly what was done in this paper. The use of inflation
target zones is fairly common among inflation-targeting countries. Not
only their location, but also their width varies from country to country,
and the latter is often regarded as being too “tight” in the sense that
inflation hits its edges too often.

The model presented in this paper provides a theoretical rationale
for these real-world facts. The use of inflation target zones is shown
to be able to eliminate the inflation bias (which leads to inflation that
is too high) and, at least in some circumstances, significantly reduce
the stability bias (which leads to inflation that is too volatile). Also,
in this model, the zone’s optimal width and location depend in com-
plicated ways on the underlying parameters of the economy. Finally,
the tightness of the zone emerges endogenously from the optimization
of the policy designer, so that it is to be expected that whenever one
thinks that the zone can be used to deal with the stability bias issue,
one would see inflation reaching its edges fairly often.

The ability of the inflation target band to approximate optimal pol-
icy under commitment is limited because it cannot make policy history
dependent. At the same time, the numerical simulations imply that it
can approximate the best linear, non-history-dependent policy.

In terms of empirical applications, the model implies there is an
inflation bias, and if the zone is being set optimally, inflation should be
on average above the center of the target zone, and one should see it
touch the upper edge of the zone more often than the lower edge. This
would serve as a test both of the adequacy of this model, in case one is
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willing to maintain the hypothesis that the inflation bias exists, and as
a test of the existence of an inflation bias if one is willing to maintain
the hypothesis that the model is a valid description of reality.

It would be interesting to evaluate what changes in the model could
allow it to account for the inflation persistently below target observed in
the United States in the past years. Those changes are unlikely to stem
from a central bank that pursues a negative output gap, while economic
distortions such as market power would typically lead the natural rate
of output to be below the first-best. More likely, the model would
suggest inflation may fall persistently below target if central bank staff
has a preference for inflation that is below the one that the Federal
Reserve communicates to the public. For example, to the extent that
the experience of run-away inflation in the 1970s still looms large as a
cautionary tale for the current generation of central bank leadership,
this could lead to a negative inflation bias.

The main caveat to the findings shown here is that the results
came from a very simplified model. Future work should try to evaluate
which of these results are robust to the introduction of a more realistic
utility function that gives weight to other features of the distribution
of inflation and output gap apart from their mean and variance or
nonlinearities in the Phillips curve, along the lines of what has been
done by Orphanides and Wieland (2000). More importantly, there
should be some investigation into how well the target zone fares when
there is persistence not only in the shocks, but in the inflation and
output gap processes as well.
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APPENDIX

Proposition 1 Let the operator T be given by the algorithm presented
in Section 2. Then for λ = 1, T is a contraction with modulus α

α+1 .

I will show that T is a contraction by showing that it satisfies
the Blackwell suffi cient conditions. First, note that there is no loss
in generality in focusing our attention on bounded π (.) as for given
finite B and π∗, π (.) is necessarily bounded. To show that T is a
contraction, one has to show, furthermore, that it satisfies the following
two conditions:

i) T is monotone:

π ≤ π′ ⇒ Tπ ≤ Tπ′.

I have after setting λ = 1 that

πd,n+1 (ut) =
α

α+ 1
(Et [πn (ut+1)] + x̄+ ut) .

By the properties of the expectations operator, if πn′ (ut+1) ≥
πn (ut+1) ∀ut+1, then it must be the case that πd,n+1′ (ut) ≥ πd,n+1 (ut) ∀ut.
As πn+1 (ut) is such that if πd,n+1 (u) ≥ πd,n+1 (u′), then πn+1 (u) ≥
πn+1 (u′). It must therefore be the case that πd,n+1′ (ut) ≥ πd,n+1 (ut) ∀ut,
establishing the result.

ii) Discounting:

∃ δ ∈ (0, 1) s.t. T (π + c) (ut) ≤ T (π) + δc, c ≥ 0

Let πn′ (ut) = πn (ut) + c with c > 0. Then
...

πd,n+1′ (ut) =
α

α+ 1
(Et [πn (ut+1) + c] + x̄+ ut)

= πd,n+1 (ut) +
α

α+ 1
c. (9)

To see that this implies that πn+1′ (ut) ≤ πn+1 (ut) + α
α+1c, note

that
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πn+1 = max
(

min
(
πd,n+1, π∗ +B

)
, π∗ −B

)
πn+1′ = max

(
min

(
πd,n+1′, π∗ +B

)
, π∗ −B

)
.

If 2B < α
α+1c, then we are done. Otherwise, there are five relevant

cases:

1 : πd,n+1′ (ut) < πd,n+1 (ut) ≤ π∗ −B, and
2 : π∗ +B ≤ πd,n+1′ (ut) < πn+1 (ut) .

In these two cases, πn+1 (ut) = πn+1′. The third case is

3 : π∗ −B < πd,n+1′ (ut) < πd,n+1′ (ut) < π∗ +B.

In this case, πn+1 (ut) = πd,n+1 (ut), and πn+1′ (ut) = πd,n+1′ (ut),
so that equation (9) holds. The last two cases are:

4 : πd,n+1′ (ut) ≤ π∗ −B < πd,n+1 (ut) .

5 : πd,n+1′ (ut) ≤ π∗ +B < πd,n+1 (ut) .

In both of these cases, πn+1 (ut)−πn+1′ (ut) ≤ πd,n+1 (ut)−πd,n+1′ (ut),
establishing the result. So with δ = α

α+1 < 1, the discounting property
is established.




