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1. Introduction 

Econometric methods based on the first-order conditions of intertemporal 

optimization models have gained increasing popularity in recent years. To a 

large extent, this development stems from the celebrated Lucas critique, 

which argued forcibly that traditional econometric models are not structural 

with respect to changes in the economic environment caused by policy regime 

shifts. The generalized method of moments (GMM) estimation procedure 

developed by Hansen (19821 is a leading example of a large research program 

in estimating parameters of taste and technology that are arguably invariant 

to shifts in policy rules. This estimation procedure has been used by many 

researchers to estimate nonlinear rational expectations models and has had a 

major impact on the practice of macroeconometrics. 

In this paper I set out to examine the finite sample properties of GMM 

estimators using conventional Monte Carlo simulation techniques. This study 

is motivated by the fact that little is known about the performance of the 

GMM estimation in a small sample setting. Most of the desirable properties 

of GMM estimators are based on large sample approximations. There does exist 

some work on similar problems (Tauchen (1986) and Kocherlakota (1988)). The 

current study differs from these previous studies in several important 

aspects. First, the model I use to assess the performance of GMM estimators 

involves not only the saving decision of a representative agent but the 

leisure decision as well. Previous studies have abstracted from the leisure 

decision. The second distinct feature of this paper concerns the way that 

random data are generated. Here, an equilibrium business cycle model was 

utilized to simulate an artificial economy in which the production technology 

and the forcing process are explicitly specified. This model has been widely 

used in the real business cycle literature to calibrate the U.S. economy. 

Our approach is different from the previous studies in which random data were 
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generated from an endowment (barter) economy. 

It is well known that Monte Carlo experiments have serious limitations. 

In particular, the sampling results they generate can only be applied to the 

parameter values that were considered by the experiments because the sampling 

distribution of the estimates may depend in a nontrivial way on the parameter 

values. With this caution in mind, our experiments were carried out along a 

number of dimensions. in order to make the experimental results as robust as 

possible. First, the parameter governing intertemporal substitution or 

relative risk aversion was varied over a relatively wide range of values. 

This parameter has been very difficult to pinpoint in empirical studies (see 

Eichenbaum, Hansen, and Singleton (19831, Hall (19891, and Hansen and 

Singleton (1982, 1983, 1988) 1. Second, the parameter governing the 

persistence of the random shock was also varied in order to understand the 

sensitivity of the sampling distribution of the estimates to shifts in the 

forcing process. Thirdly, the estimation was performed using various sample 

sizes, ranging from SO to SO0 observations. The case of 500 observations 

allows us to see how the asymptotic properties of GMM estimators hold up in 

this seemingly large sample environment. As it turned out, a sample of this 

size may not be large enough for making correct inferences. Finally, the 

estimation was performed using different numbers of lags in forming the 

instrumental vector. As will be seen, the performance of the GMM estimation 

and the associated specification test is fairly sensitive to this parameter. 

These experiments produce a number of results that are quite different 

from those of previous studies. Perhaps the most striking finding is that 

the GMM specification test tends to over-reject the true model even for large 

samples. This is particularly so when relative risk aversion is high and the 

lag lengths used to form instruments are relatively large. For moderate 

sample sizes (say, 300 observations) the rejection rates of the model can be 
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as high as 30% at the significance level of 5%. The poor performance of this 

specification test is mainly due to the asymptotic sampling bias. In fact, 

our experiments show that the disparities between the sampling distribution 

of the test statistic and the asymptotic distribution are fairly substantial. 

The tails of these sampling distributions are much thicker than those of the 

asymptotic distribution. In many instances, the objective function which the 

GMM estimation procedure tries to minimize is also ill behaved. This result 

explains why the specification test tends to over-reject the model. 

Our experiments also indicate that the test results are very sensitive 

to the lag lengths used to form instruments. Specifically, as the number of 

lags used to form instruments decreases, the approximations of the objective 

function and the test statistic are much more accurate, and the performance 

of the test improves by a significant margin. The rejection rates in these 

cases are close to the corresponding significance levels, particularly, for 

large sample sizes. This last result is consistent with that of Tauchen 

(1986) and strongly suggests that whenever possible shorter lag lengths 

should be used to form instruments. 1 

The rest of the paper is organized as follows. The next section briefly 

describes a representative agent model and derives the Euler equations. The 

GMM estimation procedure is reviewed in section 3. In section 4 I discuss 

the data generating process and perform a statistical test on the accuracy of 

the simulated data. The experiment results are discussed in section 5. The 

final section contains a brief summary and conclusions. 

2. The Model 

This section lays out a prototype representative agent model which has 

'My results are somewhat different from those of Tauchen who found that the 
test tends to under-reject the model. 
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received considerable attention in macroeconomics. This model provides the 

basic framework in which the GMM estimator will be assessed in this paper. 

The economy is assumed to be populated by a large number of identical 

and infinitely lived consumers. At each date t the representative consumer 

values service from consumption of a single commodity ct and leisure 1 t- 

Preferences are assumed to be represented by a constant relative risk 

aversion (CRRA) utility function: 

1 

u(ct,lt) = 
l-l/cr Ct I[ 

' 1 (l-e)]l-l'c- l}, if (r > o and (r # 1, t 

8 In ct + (l-0) In It, if (r = 1, 

where 8 E (O,ll. The parameter Q has the interpretation of the intertemporal 

elasticity of substitution with respect to a "composite good" defined as a 

Cobb-Douglas function of ct and It. 2 

At each date t the consumer is endowed with a pre-determined capital kt 

and earns capital income r k t t' where r t is a stochastic one period return (or 

rental rate) in consumption units. The consumer also receives in period t a 

wage income wtnt, where nt represents hours worked and w t is the stochastic 

market-determined wage rate. The total income is divided between consumption 

and investment so that the budget constraint at time t is c 
t + kt+l - (l-6)kt 

5 wtnt + rtkt. It is assumed that capital depreciates at the rate 0 5 6 5 1 

and the agent is endowed with one unit of time each period. 

The consumer chooses a sequence of consumption and labor supply, taking 

prices as given, so as to maximize expected lifetime utility subject to a set 

of intertemporal budget constraints. Formally, the consumer's problem is 

2 The CRRA utility.function has been widely used in the real business cycle 
literature (see, for example, King, Plosser, and Rebel0 (19881 and Kydland 
and Prescott (198311. Because of its popularity, many empirical studies have 
attempted to estimate the parameters of this utility function. Note that the 
inverse of (r is a measure of relative risk aversion. 
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max E. Bt u(ct. it) ]s O<@<L 
{c t,kt+l, ItBy) 

subject to 

Ct + kt+l - (l-6)kt 5 rtkt + wtnt, for all t, 

It + nt = 1, for all t, 

where p is the time preference discount factor. The information set at time 

t over which expectations are taken is assumed to contain current and past 

values of all decision variables and prices. Consumers, however, do not know 

future wage rates and rental rates. 

The Euler equations that characterize the consumer's equilibrium are 

ul(ct'lt)/uc(ct.lt) = Wt, 

Uc(Ctplt) = P Et ~~(c~+~,l~+~l (1 - 6 + rt+l) 1 , 
(1) 

(21 

where u and u 
C 1 represent the marginal utility of consumption and leisure, 

respectively. These two equations have the usual interpretations. Equation 

(1) states that the rate of substitution between consumption and leisure in a 

given period must equal the cost of leisure, which is the real wage rate. 

Equation (2) implies that in equilibrium the consumer is indifferent between 

consuming one extra unit of goods today and investing it in the form of 

capital and consuming tomorrow. 

Given the assumed CRRA utility function, (1) and (2) imply the following 

relation: 

(1 - 6 + rt+l) (w~+~/w~) 
Cl-e)(lh-1) _ 1 1 = o (3) 

This expression is obtained by solving leisure from (1) and substituting into 

(2). It states that the expectation of the Euler equation residual ct+l 

(i.e., the term defined in the bracket) is zero, conditional on information 

at time t. That is, any variables contained in the information set It should 

5 



be uncorrelated with E~+~. These restrictions are commonly referred to by 

economists as the orthogonality conditions. 

The moments restrictions implied by equations like (31 are the building 

blocks for constructing a large class of instrumental variables estimators of 

the underlying parameters of the utility function. Many of these estimation 

procedures, such as the maximum likelihood or two stage least squares (2SLS), 

require additional distributional assumptions which may not be true. 3 The 

generalized method of moments procedure proposed by Hansen (1982) does not 

require such ad hoc restrictions and has gained increasing popularity for 

estimating nonlinear rational expectations models. 

3. The GMM Estimation Procedure 

In this section I describe the GMM estimation using the above model as 

an example. The discussion follows closely that of Hansen and Singleton 

(1982). The main purpose here is to fix notation, so the discussion will be 

brief. A rigorous treatment of this subject can be found in Hansen (1982). 

Suppose an econometrician who observes time series data {x,;t = l;..,T) 

on consumption c t' the rate of return on capital (1 - 6 + rt), and the real 

wage rate w t, wishes to estimate the parameter vector ;r = [/3 c 9l'.4 It is 

assumed that the joint process of (5,) is stationary. Let ct+l = h(xt+l,Z) 

be the residual defined in (31 and Z+ a (qxl) vector of variables contained 

in the information set I t.' with q being greater than or equal to the number 

3 For example, Hansen and Singleton (1983) estimated an asset pricing model 
using a maximum likelihood procedure. The same model was estimated by Hall 
(1989) using a 2SLS procedure. These studies assumed that the logarithm of 
consumption growth and asset returns follow a joint Gaussian process. As 
pointed out by Hansen and Singleton (19821, the maximum likelihood estimator 
is biased and inconsistent if this assumption is false. The finite sample 
properties of 2SLS estimators were studied by Mao (19891. 
4 For simplicity, both consumers and the econometrician are assumed to observe 
the gross rate of return on investment so that the depreciation rate 6 needs 
not be estimated. 
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of parameters to be estimated. As discussed before, the Euler equation (3) 

implies a set of q population orthogonality conditions: 

E[g(xt+l,“t,Zg)l = E[h(xt+po) ztl = 0. (4) 

where E is the unconditional expectation operator and z, is a vector of the 

true parameter values. The Q used to form the product in equation (4) are 

the instruments for the estimation. In the context of our example, the 

vector z -t usually includes a constant term and current and lagged values of 

the rate of growth in consumption, asset returns, and the rate of change in 

the real wage rate. 

Condition (4) is the basis for constructing the GMM estimator of 1,. It 

is obtained by choosing the value of z that makes the sample counterpart of 

the population orthogonality conditions "close" to zero. Specifically, let 

the sample average of the function g be given by 

i,(z) = (l/T) ; g(~t+l,ztsgl. 
t=1 

where the subscript T indicates that the value of the function depends on the 

sample size. Note that g,(z) is a method of moments estimator of E[g(xt+l, 

Zy zll. Since ET(z) + E[g(xt+l,Zt,~)l almost surely in z, and from (4) 

Ek("t+l+n x0) 1 = 0, the value of the function gT(z), evaluated at ;r = z,, 

should be close to zero for a sufficiently large sample size T. Using this 
A 

fact, the GMM estimator z of ;ro can be obtained by minimizing the quadratic 

form JT given by 

J.&g) = gT(pWTiT(LL (51 

where W T is a q x q symmetric, positive definite matrix that satisfies UT + 

W almost surely, and W is a symmetric and nonsingular constant matrix. The 

choice of the weighting matrix W T' which can depend on sample information, 
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defines a metric that makes ET close to zero. 

Hansen (19821 showed that under regularity conditions the estimator ;r 

constructed in this way is a consistent estimator of z. with an asymptotic 

variance-covariance matrix that depends on the choice of the weighting matrix 

wT' Hansen also showed that it is possible to select "optimally" a weighting 

matrix that minimizes (in the matrix sense) the limiting covariance matrix of 
A 
;r. This smallest asymptotic variance-covariance matrix is given by5 

&+l'Zo) zt 'W* E $~t+l,~ol gt 1 L 
-1 

, (6) 

where W* = (E[g(x -1 
-t+1 ,Zt,Lo)g(Xt+l’Zt.Zo)‘l) , which is the inverse of the 

variance-covariance matrix of the random variable g("t+l,zt,To). Since both 

W* and .X* depend on the unknown parameters, they must be estimated. 

In order to obtain consistent estimates of the weighting matrix W* and 

the covariance matrix X*, Hansen and Singleton (1982) implemented a two-step 

procedure which will be followed in this paper. Initially, a 2SLS weighting 

matrix (X~;z,l -1 is employed to obtain the first step estimates of z,. These 

estimates are used to construct a consistent estimate of W*, 6 which is then 

used in the second step to obtain final estimates of z, and Z*. 

The GMM estimation provides a convenient test of the overidentifying 

restrictions implied by the model. In particular, Hansen (1982) showed that 

5 The expression (6) is the smallest asymptotic variance-covariance matrix of 
the GMM estimators among all possible choices of weighting matrices, holding 
constant the sequence of instruments. This expression, therefore, depends on 
the choice of instruments. Hansen (1985) developed a method to calculate the 
greatest lower bound of this covariance matrix as the instruments vary over 
an admissible set. This method can be used to select instruments that yield 
the (asymptotically) smallest covariance matrix. Tauchen (1986) studied the 
properties of the GMM estimator using this optimal procedure. This technique 
is not considered in this paper. 
6 The weighting matrix can be estimated by the inverse of the sample variance 
covariance matrix of the random variable g evaluated at the initial estimates 
of the parameter vector. This estimate may be modified to account for the 
autocorrelation of the disturbance term (see Hansen and Singleton (1982)). My 
estimation procedure sets the order of the moving average term to zero. 
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the statistic TJT(i)' which is the sample size times the minimized value of 

the objective function, is distributed asymptotically as a chi-squared random 

variable with degrees of freedom equal to the dimension of g(x -t+ls z,, ;r) less 

the number of parameters being estimated. This statistic has been used in 

many studies to test the overall specification of the underlying economic 

model. One of the objectives of this paper is to understand the behavior of 

this statistic and to evaluate the consequences of this specification test in 

a finite sample environment. 

4. The Data Generating Process 

The model I used to generate artificial data is a standard real business 

cycle model which has received considerable attention in the literature. In 

this section I briefly outline this model and describe a numerical method to 

obtain equilibrium solutions. 

Consider the following optimization problem of a central planner: 

max E. ," Pt u(ct. ItI ]s o<p<1, 
{c k ts t+l.lt,nt) = 

subject to 

Ct + kt+l - il-6)kt s AtF(kt,nt), for all t, 

It + nt = 1, for all t, 

where F(kt,nt) is a constant returns to scale technology and ht is a positive 

random shock. This model is identical to the consumer's problem except that 

income is generated from an endogenous production process. Solutions of this 

optimization problem will be used below to generate time series data for the 

sampling experiments. Note that in equilibrium the rental rate and the wage 

rate equal the marginal product of capital and labor, which can be used to 

generate data on prices once the model is solved. 

As in King, Plosser, and Rebel0 (19881, I assume that the technology is 
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a l-a 
given by a Cobb-Douglas production function, i.e., AtF(kt,nt) = Atkt nt , 

where a e (0, 1). Also, the technology shock is assumed to follow a discrete 

stationary Markov process with a transition matrix that is structured in such 

a way to yield a first-order autoregressive representation of the process, 

i.e., In $+l = p In ht + u~+~, where p E (0, 1) and u~+~ is an i.i.d. random 

disturbance. Using a technique proposed by Rebel0 and Rouwenhorst (1989). I 

employed a five-state Markov chain to approximate this AR(l) process. 7 

A discrete dynamic programming algorithm will be used to solve the above 

maximization problem. This method has recently been applied to solve a large 

class of dynamic models where equilibria are optimal (e.g., Christian0 (1989) 

and Rebel0 and Rouwenhorst (198911. Details of this method can be found in 

Bertsekas (1976) and will not be presented here. Basically, this numerical 

method approximates the policy functions for capital and labor on a finite 

number of grid points over the state space. Starting from an initial guess, 

the numerical procedure iterates on the value function of the problem using 

the conventional successive approximation algorithm (see Bertsekas (1976)). 

The equilibrium solutions for capital and labor are obtained when the value 

function converges to a fixed point. Once the capital stock and labor hours 

are solved, other quantities and prices can be derived. These solutions can 

then be used to generate pseudodata for the sampling experiments. 

The values of parameters used in solving the model are a = 0.3, 8 = 0.1, 

s = 0.96 and 8 = 0.3. These parameters will be held constant throughout the 

experiment. Two parameters that are of special interest are p and (r, which 

will be varied in solving the model. The benchmark value for p is set to 0.9 

7 It should be pointed out that the number of states used for the shock is not 
important for the results of this paper. I assume that the technology shock 
lies on five distinct points over a bounded interval. The mean and variance 
of the log of the shock are 0 and 0.001, respectively. The benchmark value 
for p is set to 0.9. These figures are well within the values used in the 
real business cycle literature. 
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and later changed to 0.0. The parameter d will take four different values, 

i.e., (r = 0.1, 0.5, 1.0, and 2.5. 

It is essential that the artificial data constructed in this fashion are 

reasonably accurate. To ensure this accuracy, I adopted 2500 grid points for 

the capital stock. These grids were defined over the ergodic set of capital 

in order to improve accuracy. 8 In addition, a statistical test suggested by 

Den Haan and Marcet (1989) was performed to test whether the simulated data 

satisfy the orthogonality conditions implied by the Euler equation (31.' For 

each case under consideration a sample path containing 3000 observations were 

generated from the model and the statistic calculated. The results of this 

experiment are given in Table 1 where the probability value (i.e., the tail 

area) of the test statistic is indicated in the parenthesis. It is clear 

form this table that the values of the chi-squared statistic are small and 

statistically insignificant, indicating that the orthogonality conditions are 

satisfied by the solutions. These results justify use of the simulated data 

in the GMM estimation, which is based on the same set of restrictions tested 

by the above statistical procedure. 

8 Intuitively, the ergodic set of capital is a set of numbers {k 1 k 5 k 5 k> 
such that its complement has probability zero. This means that once capital 
falls into this set, it stays there forever and never moves out. Restricting 
capital over this smaller set avoids wasting grid points and thereby improves 
accuracy. In my numerical procedure the ergodic set is approximated by first 
solving the problem over the feasible set using coarse grids. The implied 
ergodic set is then used in the second run to define a new range for capital. 
The process continues until the number of grids contained in the ergodic set 
exceeds 90 percent of grids being used. For more discussion on the concept 
of ergodicity, see Brock and Mirman (19721 and Sargent (1980). 
9 The Den Haan-Marcet statistic for testing the orthogonality condition (4) is 

m = i’ IXz;gzl [~zi~ztct~l l-‘[Tgt~zl~, where i is a vector of OLS estimates in a 
. regression of E~+~ on the instruments z -t* This statistic has an asymptotic 

chi-squared distribution with degrees of freedom equal to the dimension of 

ft. The value of this statistic should be "small" if the orthogonality 

conditions are satisfied. 
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5. Simulation Results 

The pseudodata generated from the artificial economy are used in this 

section to estimate the parameter 1 of the utility function, using the GMM 

procedure described in section 3. 10 These experiments were carried out along 

several dimensions in order to assess the robustness of the sampling results. 

The following are some pertinent features of the experimental design. 

The experiments were organized along two types of perturbations. The 

first perturbation concerns variations of those parameters that are important 

for generating pseudodata that have different stochastic properties. These 

parameters include p, which controls the persistence of the random shock, and 

c, which controls relative risk aversion or intertemporal substitution of 

consumption and leisure. For these two parameters the following setups were 

considered: p = 0, 0.9, and Q = 0.1, 0.5, 1.0, and 2.5. 

The second perturbation concerns two aspects of estimation that directly 

affect the finite sample properties of GMM estimators. These parameters are 

the sample size, T, and the number of lags used to form instruments, NLAG. 

Throughout the experiment the instrumental vector zt is selected to include a 

constant and the lagged values of consumption growth c t+l'ct' the return on 

investment (l-6+r t++ and the rate of change in the real wage rate w t+l'wt. 

The following cases were considered: NLAG = 1 and 2. and T = 50, 150. 300, 

and 500. For each of these experiments, 400 repetitions were carried out and 

sampling statistics calculated. Within each experiment the same set of data 

were used for different sample sizes and different lag lengths in order to 

reduce variability among experiments. This variance reduction technique was 

frequently used in Monte Carlo study to control intra-experiment variations 

10 The numerical routine I used to carry out the estimation is a GAUSS program 
written by David Runkel and Gregory Leonard. In order to verify its accuracy 
I checked this program against a GMM subroutine provided in the RATS package. 
These two numerical routines yield virtually identical results. 
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(see Hendry (1984)). 

General Characteristics of the Sampling Distribution of 7 

Table 2 displays the estimated mean, the standard deviation (SD), and 

the median of the GMM estimates of 8, (r, and 8. As previously mentioned, the 

values for the two parameters p and 8 are fixed throughout the experiments, 

which are 0.96 and 0.'3, respectively. The four control parameters are p, (r, 

T, and NLAG. 

In panel A I report the results of the first set of experiments which 

involve a highly persistent shock (p = 0.9). The number of lags used to form 

instruments in these experiments was 2 so that there are 7 variables included 

in the instrumental vector gt (i.e., a constant plus two lagged values of 

consumption growth, asset returns, and wage growth). It is clear from this 
A 

table that the estimate 8 performs extremely well regardless of the Q values 

or the sample sizes used. The estimated mean and median are almost identical 

to the pseudo value of (3. The standard deviation is very small, indicating 
,. 

that the sampling distribution of 8 is tightly concentrated around the true 

value. This result, which is also true for the other experiments displayed 

in panels B and C, indicates that the parameter 8 can be reliably estimated 

using the GMM procedure. 
A A 

The performance of (r and 8 is less clear. Except for cases where (r is 

small (i.e., (r = 0.11, the GMM procedure tends to underestimate (r. Both the 
A 

mean and median of v are below the pseudo value that was used to generate the 

data. However, as the sample size increases these central measures converge 

to the true value, which is to be expected. For most cases the true value of 

(r is within one standard deviation of o‘ about its mean. This result suggests 

that the magnitudes of the bias might not be quantitatively important. This, 

however, is not true for the estimate of 8. As the Table shows, the estimate 
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0 is severely biased, particularly, for cases where 0‘ is close to one. This 

is not surprising because when (r = 1 the parameter e is not identifiable and, 

therefore, cannot be estimated with any precision. " The Table shows that the 

dispersion of 8 when (r = 1 is very large, and both mean and median are skewed 

toward negative values, which is meaningless. To some extent, this result 
A 

applies also to the case of (r = 0.5. As the Table shows, the estimate 8 

perform relatively better as c moves away from one. In fact, when r.r is small 
8% 

(i.e., (r = 0.1) the estimate 8 converges from below to the true value as the 

sample size increases, and when (r is large (i.e., C = 2.5) it converges from 

above to the true value as the sample size increases. Note that for small 
A 

samples 8 is still severely biased regardless of the (r values. 

Panel B displays the sampling results for cases where the random shocks 

are purely temporary (p = 0). The number of lags used to form instruments is 

the same as before. For these experiments, only the cases of (r = 0.5 and 2.5 

were considered. As can be seen, the chief difference here is that the 

estimate of the curvature parameter Q is upward biased, which is in contrast 

to the results displayed in panel A. Although it seems apparent that this 

difference is due to the forcing process that was used to generate the data, 

it is not easy to identify the specific sources that cause these biases. For 

example, the estimated correlation coefficient between consumption growth and 

asset returns when (r = 0.5 is higher in the case of p = 0 than in the case of 

P = 0.9. However, when c = 2.5 this correlation becomes smaller for p = 0. 

There does not appear to exist a clear pattern in the correlation structure 

of the simulated data that helps explain or identify the bias. It is 
,. ,. 

interesting to note that the sampling distribution of (r (and f3) gets tighter 

11 Note that the utility function becomes additively separable when (r = 1. In 
this case, the marginal utility of consumption does not depend on the leisure 
decision, which implies that the wage term will not appear in equation (3). 
As a result, the parameter 8 cannot be identified. 
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as the shock becomes less persistent. 

Panel C gives the sampling results where the number of lags used to form 

instruments was decreased from 2 to 1. The value of the parameter p is still 
A ,. 

0.9. Examination of the results indicate that both (r and 8 appear to perform 

better than the first set of experiments in terms of the central measures. 

The mean as well as the median of these two estimates are closer to the true 

values. Although the dispersion (i.e., standard deviation) of the sampling 

distribution tends to rise as NLAG decreases from 2 to 1, the magnitudes do 

not seem unusually large. This last result, which will be made more clear 

below, is somewhat different from that of Tauchen (1986) who found that there 

is a strong bias/variance trade-off as NLAG increases. 

h n 

Bias and Root Mean Squared Error (RMSE) of (r and 8 

Table 3 contains some specific statistics regarding the performance of cr 
A 

and 8. Two conventional measures were computed. The first measure, bias, is 

the sample average of the estimates less the true parameter value, and the 

second measure, RMSE, is the root mean squared error about the true parameter 

value. For the purpose of comparison, these two measures were divided by the 

estimated standard deviation of the estimates, and the results were given in 

the brackets in the Table. 12 Notice that the standardized RMSE should have a 

value that is close to but greater than one. 

Several conclusions regarding the accuracy of i seem apparent from Table 

3. First, the estimate i is in general biased, but the magnitudes are not 

very large. This result is consistent with the material presented in Table 

2. Except for a few cases the bias is about half of the estimated standard 

deviation. The normalized RMSE is more or less around the anticipated value 

12 Because the estimated standard deviation is itself a random variable, this 
division introduces some noises in the standardized measures. 
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of one. Note thatCor shorter lag lengths (see panel Cl the bias as well as 

the normalized RMSE are smaller than those displayed in panel A. This result 

indicates that the slightly higher standard deviation that is associated with 

NLAG = 1 is dominated by the improvement in performance in terms of the bias. 

The above findings, which are also true for the 8 estimates, suggest that the 

smaller standard deviation that might be obtained by using longer lag lengths 

may be outweighed by the larger bias. Later we will see that statistical 

inferences based on longer lag lengths usually yield misleading conclusions. 
A 

The results of Table 3 also show that the performance of (r and 8 depends 

on the values of u and p in a nontrivial way (comparing panels A and B). For 

example, when d‘ is small (i.e., Q = 0.51, the accuracy of these two estimates 

deteriorates as p gets smaller. But when (r is large (i.e., (r = 2.51, their 

performance improves as p becomes smaller. This conclusion, however, is not 
1 ,. 

unambiguous because, as mentioned before, the standard deviations of c and 8 

decrease with the value of p. Thus, in terms of the normalized measures of 

bias and RMSE, the performance of these two estimates (especially, for 

smaller sample sizes) becomes worse as the value of p gets smaller. Because 

of the inherent nonlinearity of the model and the GMM estimation procedure, 

it is difficult to identify the sources that cause these disparities. 

Testing the Overidentifying Restrictions 

As discussed in section 3, the GMM estimation provides a general test of 

the specification of the model. In particular, the restrictions that the 

Euler equation residual should be uncorrelated with variables contained in 

the information set constitute a set of overidentifying restrictions that can 

be tested. The statistic used to perform this test is the sample size times 

the minimized value of the objective function. This statistic is distributed 

asymptotically as a chi-squared random variable with degrees of freedom equal 
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to the number of overidentifying restrictions. 13 This subsection summarizes 

the results of this specification test. 

Table 4 reports the proportion of time that the model was rejected out 

of the 400 repetitions. The rejection rates were calculated at the nominal 

significance levels of 5% and 10%. The degrees of freedom of these tests are 

also indicated in the Table. Since the model is correctly specified in all 

experiments, the rejection rates (i.e., type I errors) should be close to the 

corresponding significance level, in particular, for large sample sizes. As 

the Table clearly demonstrates, the model restrictions were rejected much 

more frequently than expected, particularly, for cases where p = 0.9 and NLAG 

= 2. Looking at panel A, it is striking that even for a relatively large 

sample (i.e., T = 5001, the rejection rates are more than 10% in most cases 

and can be as high as 29% for CT = 0.1. 14 As should be expected, the rejection 

rates increase as the sample size decreases. For a small sample such as T = 

50, these rejection rates are in the range of 30% to 55%, depending on the 

values of (r. Note that the model is rejected more frequently as (r becomes 

smaller. These results are sharply different from those of Tauchen (1986) 

who found that, in a somewhat different context, the rejection rates of the 

model were more or less in line with the significance levels. 

Table 4 also shows that the specification test is very sensitive to the 

number of lags used to form instruments. As shown in panel C (NLAG = 11, the 

rejections rates are much lower than those associated with NLAG = 2. As the 

sample size increases, these rejection rates converge to the nominal rates. 

13 In our example, the number of overidentifying restrictions is equal to the 
dimension of the instrumental vector less the number of parameters being 
estimated (i.e., q-3). 
14 An experiment using 1000 observations was performed for the case of Q = 0.1. 
The performance of the test did not improve very much. The rejection rate 
dropped from 29% to 26% at 5% significance level. This finding suggests that 
the sampling bias is quite substantial for small 6 values. This point will 
be addressed in more detail later on. 
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These findings clearly suggest that the risk of making incorrect inferences 

increases with the lag lengths. To check this conclusion more carefully, I 

increased NLAG to 4 for some experiments and found that the performance of 

the test worsen dramatically and the rejection rates appear to depend more on 

NLAG than on the sample size. 15 

In addition to the results reported here, some further experiments were 

conducted in order to see the sensitivity of the test with respect to certain 

aspects of the estimation procedure. 16 Specifically, instead of using the 

two-step procedure suggested by Hansen and Singleton (19821, the number of 

iterations was increased until the minimized values of the objective function 

differ by less than 1 percent over consecutive iterations. These experiments 

indicate that the estimation usually converges in 4 to 6 steps and the final 

value of the objective function 

steps procedure. Consequently, 

those reported in Table 4. 17 

is not very different from that using the two 

the test results are virtually identical to 

Behavior of the Test Statistic and the Objective Function 

The results reported so far strongly suggest that rejection of the model 

is likely due to the asymptotic sampling bias. This subsection provides some 

pertinent information concerning the behavior of the test statistic as well 

as the objective function. 

A useful way to pose our problem is as follows: In order to make correct 

inferences (say, to reject the model about 5% of time at the corresponding 

nominal rate), what is the correct critical value that should be used for the 

15 For example, the rejection rates under p = 0.9 and (r = 0.5 were 46% and 40% 
for T = 50 and 500, respectively. These results are not reported and can be 
obtained from the,author upon request. 
16 The following experiments were suggested to me by Martin Eichenbaum. 
17 It should be cautioned that for these experiments only a limited number of 
cases were considered. 
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test statistic? The last two columns of Table 4 contain relevant statistics 

to answer this question. The first column lists the values of a chi-squared 

random variable at 5% significance level. These numbers, which were used to 

perform the test, represent the theoretical values that should be used if the 

sampling distribution of the test statistic is "close" to a true chi-squared 

distribution. The last column displays the critical values that should have 

been used for making correct inferences. These figures were calculated from 

the approximate distribution of the test statistic. It is clear that the 

sampling values are much higher than the theoretical values, particularly, 

for longer lag lengths. The two values become closer for NLAG = 1 although 

some minor disparities do exist. This simple exercise suggests that the 

tails of the sampling distribution of the test statistic might be thicker 

than the theoretical distribution. 

Figures la and lb plot the "inverted" sampling distribution of the test 

statistic for c = 0.5 and 2.5, respectively. For comparisons, these figures 

were plotted against a theoretical chi-squared distribution. The heights of 

these inverted distributions represent the marginal probabilities of the test 

statistic at the corresponding values shown on the horizontal axis. A dotted 

line is used to mark the 5% significance level. These figures show that the 

asymptotic sampling biases are quite substantial for NLAG = 2. As suggested 

above, the rear ends of the sampling distribution are thicker than those of 

the true distribution. This is the reason why the specification test tends 

to over-reject the model. The sampling distribution appears to converge to 

the true distribution as the sample size increases. However, there still 

exist some significant disparities for T = 500. On the other hand, the case 

of NLAG = 1 performs much better. The two distributions are almost identical 

for T = 500, a result which is consistent with the results of Table 4. 

The reliability of the GMM estimator and the associated test is directly 
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related to the behavior of the objective function. As Hansen (19821 pointed 

out, the values of the objective function evaluated at the true parameter 

values are distributed asymptotically as chi-square statistics with degrees 

of freedom equal to the number of orthogonality conditions. If this minimum 

chi-squared property is violated, one expects a poor performance of the GMM 

estimator and the associated specification test. Figure 2 plots the 

distribution of the objective function for (r = 0.1 and 2.5 using NLAG = 2. 

For comparisons, the true chi-squared distribution is also plotted. As can 

be seen, these figures are very similar to those in figure la and lb. In 

particular, the sampling distribution of the objective function is far away 

from the asymptotic distribution when (r is small. These results explain why 

GMM estimators perform poorly for small o‘ values. Again, the sampling 

distribution converges to the true distribution as the sample size increases. 

6. Conclusions 

In this paper I have examined the performance of the GMM estimation in a 

simple neoclassical model which has received considerable scrutiny in recent 

years. Most empirical studies have found that this model or a similar one 

did not seem consistent with the actual data. The findings of this article 

suggest that rejection of the model might have been caused by an inadequacy 

of the asymptotic approximations. For cases where the curvature parameter of 

the utility function is small or risk aversion is high, these sampling biases 

are fairly substantial and could lead to inappropriately high rejections of 

the true model. In order to make correct inferences, it may require a large 

number of observations which are simply not feasible in practice. One way to 

alleviate this problem is to use shorter lag lengths in forming instruments. 

To some extent, the better performance with shorter lag lengths is due to a 

reduction in the number of restrictions that are being tested. But, more 
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important, it is because the sampling errors are smaller and the estimators 

perform better. 

Another implication suggested by our experiments is that the curvature 

parameter of the utility function can be reasonably estimated using the GMM 

procedure. This result is contrary to the existing belief that it might be 

very difficult to pin down this parameter. This perception is perhaps due to 

the wide range of estimates that exist 

suggest that, if the model is correctly 

curvature parameter accurately may result 

in the literature. Our findings 

specified, failure to uncover this 

from measurement errors that plague 

the data. Such errors are particularly characteristic of consumption data. 

To keep the cost of simulation to its minimum, several important issues 

have not been addressed in this paper. In particular, problems concerning 

the power of the specification test were ignored. .Consequently, very little 

can be said about the power of the test against false specifications. Recent 

studies by Singleton (19851 have shown that it is feasible to discriminate 

among competing economic models within the GMM environment. Such endeavors 

will require much more careful and finer calibrations of the model and are 

left for future studies. 
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Table 1 
The Den Haan-Marcet Statistic for Testing the Orthogonality Conditions 

(Fixed parameters: a = 0.3, 6 = 0.1, /3 = 0.96, 6 = 0.3, p = 0.91 

6 NLAG = 1 NLAG = 2 

0.1 1.20 4.91 
(0.88) (0.671 

0.5 2.14 2.73 
(0.71) (0.91) 

1.0 2.49 3.51 
(0.65) (0.83) 

2.5 2.50 8.44 
(0.65) (0.30) 

Note: 1. The statistic is computed based on a sample of 3000 observations. 
2. The instruments are chosen to include a constant and the lagged ~ 

values of consumption growth, asset returns and wage growth. 
3. NLAG = number of lags used to form instruments. 
4. Test results are similar for smaller sample size and larger 

degrees of freedom, which are not reported. 
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,. A A 
Table 2: Moments of the Sampling Distributions of 8, (r and 8 

Parameters 

QO T 

0.1 

0.5 

1.0 

2.5 

0.5 

2.5 

0.1 

0.5 

1.0 

2.5 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

Mean SD Median Mean SD Median 

Panel A: p = 0.9, NLAG = 2 

0.960 0.003 0.960 0.125 0.060 0.110 
0.960 0.002 0.960 0.120 0.048 0.110 
0.960 0.001 0.960 0.124 0.058 0.109 
0.960 0.001 0.960 0.117 0.038 0.110 

0.960 0.001 0.960 0.406 0.089 0.387 
0.960 0.001 0.960 0.449 0.119 0.422 
0.960 0.000 0.960 0.474 0.118 0.449 
0.960 0.000 0.960 0.478 0.092 0.461 

0.960 0.001 0.960 0.719 0.212 0.686 
0.960 0.001 0.960 0.850 0.355 0.773 
0.960 0.000 0.960 0.937 0.443 0.841 
0.960 0.000 0.960 0.934 0.216 0.887 

0.960 0.000 0.960 1.433 0.518 1.323 
0.960 0.000 0.960 1.789 0.736 1.614 
0.960 0.000 0.960 2.129 0.913 1.858 
0.960 0.000 0,960 2.233 0.788 2.028 

Panel B: p = 0.0, NLAG = 2 

0.960 0.001 0.960 0.724 0.082 0.732 
0.960 0.000 0.960 0.601 0.073 0.602 
0.960 0.000 0.960 0.554 0.053 0.554 
0.960 0.000 0.960 0.536 0.042 0.535 

0.960 0.001 0.960 3.317 0.469 3.327 
0.960 0.000 0.960 2.837 0.330 2.837 
0.960 0.000 0.960 2.682 0.231 2.688 
0.960 0.000 0.960 2.604 0.190 2.602 

Panel C: p = 0.9, NLAG = 1 

0.084 0.078 0.086 
0.170 0.113 0.150 
0.241 0.172 0.204 
0.251 0.097 0.228 

-0.150 0.420 -0.107 
-0.006 0.176 -0.024 
0.094 0.237 0.076 
0.121 0.745 0.133 

-0.887 2.003 -0.692 
-0.416 4.125 -0.562 
-0.737 4.212 -0.438 
-0.523 5.567 -0.337 

1.996 1.892 1.757 
0.985 0.529 0.685 
0.617 0.297 0.574 
0.502 0.210 0.494 

-0.321 0.442 -0.246 
0.116 0.154 0.138 
0.213 0.085 0.224 
0.245 0.060 0.253 

0.468 0.062 0.483 
0.382 0.074 0.392 
0.348 0.061 0.356 
0.329 0.049 0.335 

0.960 0.004 0.960 
0.960 0.002 0.960 
0.960 0.001 0.960 
0.960 0.001 0.960 

0.093 
0.098 
0.099 
0.098 

0.052 
0.061 
0.066 
0.057 

0.960 0.002 0.960 0.413 
0.960 0.001 0.960 0.468 
0.960 0.000 0.960 0.498 
0.960 0.000 0.960 0.480 

0.086 
0.083 
0.084 
0.084 

0.001 
0.001 
0.001 
0.000 

0.121 
0.183 
0.211 
0.092 

0.385 
0.423 
0.451 
0.456 

0.104 0.168 0.091 
0.197 0.233 0.152 
0.283 0.788 0.192 
0.261 0.235 0.207 

-0.063 
0.079 
0.242 
0.242 

0.386 -0.072 
0.730 0.061 
0.666 0.148 
0.228 0.190 

0.960 
0.960 
0.960 
0.960 

0.960 0.783 0.337 0.702 -0.654 2.479 -0.574 
0.960 0.906 0.368 0.806 -0.640 5.088 -0.301 
0.960 0.977 0.342 0.881 -0.446 5.587 -0.268 
0.960 0.979 0.273 0.920 -0.536 5.404 -0.184 

0.960 0.001 0.960 1.607 0.673 1.439 1.381 2.842 1.164 
0.960 0.000 0.960 2.028 0.970 1.747 0.709 0.512 0.655 
0.960 0.000 0.960 2.353 0.977 2.003 0.468 0.285 0.432 
0.960 0.000 0.960 2.375 0.843 2.140 0.422 0.208 0.407 

Note: Statistics are computed based on 400 Iterations of each experiment. 

/i (8, = 0.96) 
,. 
0‘ 

,. 
8 @O = 0.3) 

Mean SD Median 
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Table 3: Bias and Root ,Mean Squared Error (RMSE) of cr and 8 

Parameters 

"0 
T 

0.1 

0.5 

1.0 

2.5 

0.5 

2.5 

0.1 

0.5 

1.0 

2.5 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 

0.025 1 0.421 0.065 Il. 081 -0.216 l-2.781 
0.020 [ 0.421 0.052 [l. 081 -0.130 i-1.151 
0.024 [ 0.421 0.062 [l. 081 -0.059 r-o. 341 
0.017 t 0.461 0.041 t1.091 -0.049 [-0.501 
-0.094 I-1.061 0.129 Il.461 -0.450 i-1.071 
-0.051 t-o. 431 0.129 Il. 091 -0.306 r-l.731 
-0.026 i-0.221 0.121 Il. 021 -0.206 1-O. 871 
-0.022 I-O.231 0.094 il. 031 -0.179 t -0.241 
-0.280 i-1.331 0.351 il.661 -1.187 1-O. 591 
-0.150 i-O.421 0.385 il. 091 -0.716 t -0.171 
-0.063 L-O.141 0.447 L1.011 -1.037 I-0.241 
-0.066 f-O.301 0.225 L1.041 -0.823 L-O.151 
-1.067 I-2.061 1.185 t2.291 1.696 [ 0.901 
-0.711 I-O.971 1.022 (1.391 0.685 [ 1.301 
-0.371 i-o.411 0.984 il.081 0.317 [ 1.071 
-0.267 r-O.341 0.831 [1.051 0.202 [ 0.961 

Panel B: p = 0.0, NLAG = 2 
0.224 t 2.741 0.238 Il.911 -0.621 I-1.411 
0.101 [ 1.381 0.124 Il.701 -0.184 I-1.201 
0.054 [ 1.021 0.076 Il.431 -0.087 i-l.021 
0.036 [ 0.871 0.055 Il. 321 -0.055 l-O.911 
0.817 [ 1.741 0.942 12.011 0.168 t 2.701 
0.337 r 1.021 0.472 [l. 431 0.081 [ 1.091 
0.182 [ 0.791 0.293 [l. 271 0.048 [ 0.781 
0.104 [ 0.551 0.216 [l. 141 0.029 [ 0.571 

Panel C: D = 0.9. NLAG = 1 

0.230 12.961 
0.172 Il.521 
0.181 12.311 
0.109 El.121 

0.615 Il.461 
0.353 i2.001 
0.314 l1.321 
0.765 11.031 

2.326 Il.161 
4.182 [l.Oll 
4.368 Il.031 
5.621 (1.011 

2.539 Il.341 
0.865 il.641 
0.434 (1.461 
0.291 t1.391 

0.762 f1.721 
0.240 Il.561 
0.122 t1.431 
0.081 il.351 

0.179 [2.881 
0.110 Il.481 
0.077 (1.271 
0.057 Il.151 

-0.007 I-O.141 
-0.002 L-O.041 
-0.001 I-O.021 
-0.002 1-o. 041 
-0.087 L-0.721 
-0.032 l-O.181 
-0.002 r-o.011 
-0.021 E-O.221 
-0.217 f-0.641 
-0.094 1-O. 261 
-0.023 1-O. 071 
-0.021 t -0.081 

-0.893 I-1.331 
-0.472 t-O.491 
-0.147 1-o. 151 

0.053 f1.011 -0.196 I-l.171 
0.061 [l.OOl -0.103 1-o. 441 
0.066 Il.001 -0.017 [-0.021 
0.057 r1.001 -0.039 f-0.171 

0.149 il. 231 -0.363 i-0.941 
0.186 l1.011 -0.221 l-O.301 
0.211 [l. 001 -0.058 I-0.091 
0.094 Il. 021 -0.058 L-O.251 

0.400 r1.191 -0.954 l-O.381 
0.389 [l. 031 -0.940 1-O. 181 
0.342 [1.001 -0.746 i-O.131 
0.273 t1.001 -0.836 I-0.151 

1.117 El.661 
1.077 il. 111 
0.987 Il.011 

1.081 I 0.381 
0.409 [ 0.801 
0.168 [ 1.361 

0.258 11.541 
0.254 (1.091 
0.787 [l.OOl 
0.238 [l.Ol] 

0.529 Il.371 
0.762 (1.041 
0.668 [I.001 
0.234 il.031 

2.653 il.071 
5.168 Il.021 
5.629 il.011 
5.462 Il.011 

3.038 [1.071 
0.655 Il.281 
0.331 [l. 161 

500 -0.125 I-O.151 0.851 t1.011 0.122 I 0.591 0.241 Il.161 
Note: 1. Statisitics are computed based on 400 iterations of each ex er ment. 

2. Fl ures re orted in the brackets are 
BIi!S / (es!1 

pormalized Bias and RUEE te.g., 
mated standard deviation) . 

6 e 

Bias Norm. RMSE Norm. Bias Norm. 
Bias RMSE Bias 

Panel A: p = 0.9, NLAG = 2 

RMSE Norm. 
RMSE 
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Table 4: Rejection Rate (%I of the Overidentifying Restrictions 

Parameters 

0.1 

0.5 

1.0 

2.5 

0.5 

2.5 

0.1 

0.5 

1.0 

2.5 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 
500 

50 
150 
300 

Degrees Rejection Rate at Critical Value at 
of Significance Level of 5% Significance Level 

Freedom 5% 10 % True Sampling 

4 
4 
4 
4 

4 
4 
4 
4 

4 
4 
4 
4 

4 
4 
4 
4 

4 
4 
4 
4 

4 
4 
4 
4 

1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 

Panel A: p = 0.9, NLAG = 2 

55 65 
43 50 
31 39 
29 38 

40 52 
31 40 
20 28 
12 19 

36 45 
24 32 
18 24 
12 18 

29 41 
25 33 
19 21 
13 26 

Panel B: p = 0.0, NLAG = 2 

25 33 
17 25 
13 17 
11 16 

17 26 
13 17 
9 13 
7 13 

Panel C: p = 0.9, NLAG = 1 

12 18 
12 19 
7 13 
9 15 

16 22 
8 12 
6 11 
6 11 

14 20 
7 12 
6 12 
6 11 

12 18 
7 12 
7 12 

9.49 21.09 
9.49 31.42 
9.49 28.84 
9.49 23.68 

9.49 20.39 
9.49 24.04 
9.49 18.83 
9.49 15.18 

9.49 18.99 
9.49 21.23 
9.49 17.87 
9.49 13.94 

9.49 20.15 
9.49 18.96 
9.49 16.58 
9.49 .14.20 

9.49 15.41 
9.49 14.16 
9.49 13.85 
9.49 12.91 

9.49 13.45 
9.49 13.13 
9.49 10.56 
9.49 10.46 

3.84 6.55 
3.84 6.26 
3.84 4.52 
3.84 5.10 

3.84 9.72 
3.84 5.18 
3.84 4.47 
3.84 3.99 

3.84 8.47 
3.84 4.78 
3.84 4.47 
3.84 3.86 

3.84 
3.84 
3.84 

7.36 
4.66 
4.36 
3.76 500 1 5 11 3.84 

Note: Statistics are computed based on 400 iterations of each experiment. 
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Figure I b: Test Statistic 

1 -sidF(y): Asymptotic vs. Sampling 
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Figure 2: Objective Function 

1 -JidF(y): Asymptotic vs. Sampling 

(parameters: p = 0.9, NLAG = 2) 
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