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Abstract 

We consider a monetary growth model in which banks arise to provide liquidity. 
In addition, there is a government that issues not only money, but interest-bearing bonds: 
these bonds compete with capital in private portfolios. When the government fixes a 
constant growth rate for the money stock, we show that there can exist multiple 
nontrivial monetary steady states. One of these steady states is a saddle, while the other 
can be a sink. Paths approaching these steady states can display damped endogenous 
fluctuations, and development trap phenomena are common. Across different steady 
states, low capital stocks are associated with high nominal interest rates; the latter signal 
the comparative inefficiency of the financial system. Also, increase in the steady state 
inflation rate can easily reduce the steady state capital stock. 
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Financial markets perform numerous allocative functions that affect economic 

development by influencing capital accumulation, rates of return on savings, and the level of real 

activity. Many of these functions have been formally analyzed in the context of general 

equilibrium models of growth and capital accumulation. l Yet, until now, the class of models 

that integrates explicit financial market structures into neoclassical growth models has been purely 

real in nature. In particular, these models have abstracted both from the presence of money or 

other government liabilities and from the determination of price levels and nominal rates of 

interest. These are substantive omissions. 

Such omissions, for example, preclude use of these models to analyze how monetary policy 

affects the behavior of financial markets and, through such markets, the development process. 

Thus these models are silent on whether various methods of conducting monetary policy can 

significantly aid or interfere with the financial system’s efficient operation. Moreover, in many 

economies, the banking system is a large-scale investor in capital, while in others - particularly 

developing economies - it largely holds government debt. Why do some financial systems 

(directly or indirectly) hold large quantities of capital in their portfolios while others hold mostly 

government debt? An answer to this question clearly requires the analysis of an economy in which 

government liabilities are present. 

Yet another issue that merits renewed consideration is the effect of inflation on capital 

accumulation and growth. Economists widely believe, and the existing empirical evidence strongly 

suggests, that sustained high rates of inflation interfere with the allocative functions of financial 

’ For early discussions of the importance of financial markets in economic development see Patrick (1966). 
Cameron (1967), Guriey and Shaw (1967). Goldsmith (1969) McKinnon (1973), and Shaw (1973). Early 
theoretical analyses of this topic include Greenwood and Jovanovic (1990) and Bencivenga and Smith (1991); see 
Greenwood and Smith (1993) for a survey of more recent developments. 

There is also a formal empirical literature demonstrating the importance of financial market factors for 
growth and capital accumulation. Prominent examples include Antje and Jovanovic (1993) and King and Levine 
(1993 a,b). 
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markets. 2 Existing models, however, do not permit an analysis of whether and, if so, why this is 

the case. 

Finally, numerous authors [including Keynes (1936)] have argued that financial market 

activity is a source of multiple equilibria and endogenous fluctuations that cannot be observed in 

economies with only primitive financial systems. Again, an investigation of this possibility should 

incorporate monetary considerations since monetary policy might significantly affect the potential 

for both indeterminacies and endogenous fluctuations. Moreover, suppose that the coexistence of 

money and financial markets can result in the existence of multiple monetary steady state 

equilibria. Such a finding would have important implications for economic development because it 

would raise the possibility that an economy might be “stuck” with low fevels of real activity even 

though higher levels of real activity are feasible - and consistent with - a competitive equilibrium 

outcome. Even more significantly, the scope for these kinds of development trap phenomena 

might be influenced by the choice of monetary policy. This possibility further magnifies the 

importance of monetary policy activity. 

To date the existing models that incorporate money into neoclassical growth contexts have 

little to say on these topics. a In particular, such models typically predict that monetary steady 

states are unique and have unique dynamical equilibrium paths approaching them. Along these 

paths, capital stocks, output levels, and other endogenous variables monotonically approach their 

steady state levels. Thus monetary policy cannot influence the number of steady state equilibria, 

and money market activity cannot endogenously induce economic fluctuations or lead to 

development trap phenomena. In addition, monetary growth models typically predict that higher 

steady state rates of money growth - which lead, of course, to higher steady state rates of 

2 See, for instance, Levine and Renelt (1992) or Wynne (1993). 
3 Examples of the monetary growth models we have in mind include Diamond (1965), Sidrauski (1967a.b). 
Shell, Sidrauski, and Stiglitz (1969), Brock (1974, 1975). and Tirole (1985). For attempts to forma& the notion 
of instability in growth models with financial markets see Shell and Stiglitz (1969) or Azariadis and Smith (1993). 
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inflation- are not detrimental to, and may actually enhance, capital formation and real activity. 4 

Such an implication is wildly at variance with observation. 

This paper considers a monetary growth model in the spirit of Diamond (1965) and 

introduces into it a role for banks that provide liquidity in the sense of Diamond and Dybvig 

(1983). 5 In addition, there is a government that issues interest-bearing, but illiquid, bonds and 

noninterest-bearing currency. Policy is conducted by having the government make a once-and-for- 

all choice of the rate of money creation. The results we then obtain are as follows. First, if the 

rate of money growth is sufficiently large, there will be exactly two nontrivial steady state 

equilibria with valued fiat money and positive nominal interest rates. One of these equilibria has a 

high nominal interest rate, which here as elsewhere is a signal of financial market inefficiency. 

This steady state equilibrium has a low per capita capital stock and banks with large holdings of 

government bonds relative to their holdings of capital. This resembles the observed situation in 

economies with poorly developed banking systems. The other steady state equilibrium has a 

relatively low nominal interest rate-signaling the comparatively efftcient operation of its banking 

system-and a relatively high capital stock. Moreover, the real value of government bonds held by 

the banking system is low in comparison to its capital investments. Indeed, the government’s net 

position in bond markets, which is endogenous in the policy regime under consideration, makes it a 

net lender to the banking system. When this occurs, monetary expansions fund lending to the 

financial system, which is conducive to capital formation. On the other hand, when the value of 

outstanding government bonds is positive, which occurs in the high nominal interest rate steady 

state, government bonds “crowd out” capital in investors’ portfolios. When this occurs monetary 

expansions have adverse consequences for capital formation. Thus, in high interest rate steady 

states, an increase in the money growth rate interferes with the financial system’s efficiency. In 

4 Examples of monetary growth models yielding this implication are those of Diamond (1965) and Tirole 
(1985), Mundell(1965), Sidrauski (1967a,b), Shell, S&au&i, and Stiglitz (1969), and Brock (1974, 1975). 
Models yielding different implications include Stockman (1981X. Azariadis and Smith (1993). and Boyd and Smith 
ww. 
5 The formal analysis of banks that provide liquidity in a model explicitly incorporating money draws heavily on 
Champ, Smith, and Williamson (1992). 



this situation, higher rates of money growth lead to lower steady state capital stocks and reduced 

economic development.6 

In addition, we investigate in some detail the properties of dynamical equilibria in the 

economy at hand. Under conditions that we describe, which amount to requiring that the rate of 

money creation not be too large, the steady state equilibrium with a low nominal rate of interest 

(and a high capital stock) is a sink. If production is Cobb-Douglas, the steady state equilibrium 

with a high nominal interest rate (and a low capital stock) is necessarily a saddle. Since our 

economy has only one initial condition (the initial capital stock), there are therefore often many 

dynamical equilibrium paths. Thus not only are financial markets a source of indeterminacy of 

dynamical equilibria, but with multiple steady states, development trap phenomena are ubiquitous. 

In particular, economies with very similar-or even identical-initial capital stocks may, depending 

on their (endogenous) initial nominal interest rates, follow the saddle path to the low capital stock 

steady state or one of the many paths approaching the high capital stock steady state. Economies 

that have high initial nominal interest rates will suffer the former fate, while economies that have 

low initial nominal interest rates will avoid it. 

Finally, dynamical equilibria approaching the steady state with a high nominal interest rate 

display monotonic approaches to this steady state. For a wide variety of parameter values, this is 

not the case for the steady state equilibrium with a low nominal rate of interest. Indeed, we 

examine a variety of numerical examples, all of which have the feature that, if this steady state is a 

sink, paths approaching it display damped endogenous fluctuations as they do so. Thus not only 

are monetary and financial market factors a source of multiple equilibria here, but they are also a 

source of enhanced economic volatility that cannot be observed in versions of our model that, like 

Diamond (1965) and Tirole (1985), lack a role for banks. 

Finally, we note that while our model is, like Diamond’s and Tirole’s, an overlapping 

generations model, it also has a kind of spatial separation that generates a transactions role for 

6 This result is in the spirit of AzarMis and Smith (1993). which shows how an increase in the rate of money 
creation can exacerbate incentive problems in credit markets, thereby reducing the eff$ziency of the financial 
system and interfering with capital accumulation. 
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money and liquidity-providing banks .’ Thus none of our results depend on money lacking a 

transactions function. 

The remainder of the paper proceeds as follows. Section I describes the economic 

environment we consider, while section II discusses the nature of trading and the role for banks in 

the model. In Section III we examine the existence and number of steady state equilibria and 

analyze the comparative static consequences of monetary policy activities. Section IV takes up 

dynamical issues and discusses development traps and endogenous fluctuations, while Section V 

concludes. 

We consider an economy consisting of an initial old generation and an infinite sequence of 

two-period-lived overlapping generations. At each date t = 0, 1, . . . , young agents are assigned to 

one of two locations, with locations indexed by j = 1.2. Each location contains a continuum of 

young agents with unit mass, and our assumptions will imply that locations are always symmetric. 

All young agents are identical ex ante. They are endowed with one unit of labor when 

young, which they supply inelastically, and are retired when old. Young agents have no other 

endowments of goods or assets at any date. 

At each date in each location there is a single final good that is produced using capital and 

labor as inputs. Agents care only about old-age consumption, which we denote simply by c, and 

their lifetime utility is given by In(c).* 

Production in each location occurs according to the commonly available, constant returns to 

scale technology F(K,L), where K and L denote capital and labor inputs respectively. Let 

f(k) =F(k, 1) denote the intensive production function, where k = KhC is the capital-labor ratio. We 

assume that f’(k) > 0 > $)I (k) Vk, that f(O) = 0 holds, and that f satisfies the usual Inada 

conditions. 

7 
* 

In these respects our model resembles Townsend (1987) and Champ, Smith, and Williamson (1992). 
Schreft and Smith (1994) consider more general preferences. 
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There are three assets in this economy: money, government bonds, and capital. The per 

capita supplies of money and bonds in each location at date t are given by M, and B, , which are 

nominally denominated. We let p, denote the time t price level, and M, -= M, / p, and b, = B, / p, 

denote the per capita supplies of money and bonds at time r, respectively, in real terms. Obviously 

k, is the time t per capita capital stock. All bonds are of one-period maturity, and one dollar held 

in bonds at c constitutes a sure claim to 1, dollars at t + 1. Thus I, is the gross nominal rate of 

interest. 

Capital is produced as follows. One unit of current consumption foregone at c becomes one 

unit of capital at I -t- 1 with probability q E (0, 11. With probability 1 - 4 no capital is received, 

and the investment becomes worthless. The capital obtained can be used in production, and for 

simplicity we assume that it depreciates completely in the production process. 

The nature of interlocation interaction is as follows. At the beginning of each period, 

agents cannot move between or communicate across locations. Goods can never be transported 

between locations. Thus goods, labor, and asset market transactions occur autarkically within each 

location at the beginning of each period. After this trade is concluded at t, some randomly selected 

fraction it E (0,l) of young agents is chosen to be moved to the other location. We assume that 

currency is the only asset that can be transported between locations and that limited communication 

prevents the cross-location exchange of privately issued liabilities.9 Therefore relocated agents 

will seek to liquidate their holdings of bonds and capital to obtain currency. Relocation thus plays 

the role of a “liquidity preference shock” in the Diamond-Dybvig (1983) model, and it is natural to 

assume that banks arise to insure agents against these shocks. Our timing assumptions are depicted 

in figure 1. We assume that n is constant across periods and known by all agents. In addition, the 

probability of being relocated is iid across young agents. Thus there is no aggregate uncertainty 

here. 

g These assumptions follow Townsend (1987), Mitsui and Watanabe (1989). Hornstein and Krusell(1993), and 
most specifically, Champ, Smith, and Williamson (1992). The notion that bonds cannot be used in interlocation 
exchange could be motivated by the assumption that they are issued in large denominations. 
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The initial old agents at each location are endowed with the initial per capita capital stock, 

k, > 0, and the initial per capita money supply, M-, > 0. II-, = 0 and A4, > 0 also are given as 

initial conditions; thereafter the money supply evolves according to 

(1) w+, =aM, ; rro, 

with CT > 0 exogenously given. The sequence {B,}:, is endogenous. 

II. Trade 

A. Factor 

Factor market trade at each date occurs autarkically within each location. We assume that 

factor markets are perfectly competitive; therefore factors of production are paid their marginal 

product in each period. Let r, denote the time t rental rate for capital, and let w( denote the time t 

real wage rate. Then 

(2) q = f’(k,) ; tzo, 

(3) w, = f(k,)-k,f’(k,)= w(k,) ; t20. 

Note that w’(k) > 0, Vk. 

An additional assumption on technology will prove convenient. Specifically, defme 

t&k) = k/qw(k). 

We then assume that, Vk 2 0, 

(a.1) Q’(k) > 0. 



It is straightforward to verify that the assumption (a. 1) is equivalent to 

(a.1’) kw’(k)/w(k)<l;k>O. 

Assumption (a. 1) [or (a. 1 ‘)] holds, for instance, iffis any CES production function with elasticity 

of substitution no less than one. 

As noted previously, the possibility of stochastic relocation for us plays the same role as a 

“liquidity preference shock” in the Diamond-Dybvig (1983) model. Thinking of banks as arising 

to insure against the random liquidity needs associated with relocation is therefore natural. As in 

Diamond-Dybvig, if banks exist all savings will be intermediated. Thus each young agent simply 

deposits his entire savings, here w, at t , in a bank. 

Banks use deposits to acquire primary assets: money, bonds, and capital. In addition, 

banks promise to pay agents who are (are not) relocated, that is, “movers” (“nonmovers”), a gross 

real return of d,m (d,“) per unit on their deposits. We assume that there is free entry into banking 

and that banks are competitive in the sense that they take the real return on assets as given. On the 

deposit side we assume that intermediaries are Nash competitors; that is, banks announce deposit 

return schedules (d,m, d,“), taking the announced return schedules of other banks as given. Of 

course, announced return schedules must satisfy a set of balance sheet constraints, which we now 

describe. 

As already noted, at time t a young depositor will deposit his entire savings, w,, with a 

bank. The bank acquires an amount rn, of real balances and an amount b, of real bond holdings, 

and it makes an investment in capital of i, per depositor. Thus the bank’s balance sheet requires 

that 

(4) m,+b,+i, SW,; t20. 



Announced deposit returns must satisfy the following constraints. First, relocated agents 

(of whom there are 71 per depositor) must be given currency, since this is the only asset that can be 

transported between locations. This is accomplished using the bank’s holdings of real balances. In 

addition, each unit of real balances paid to a “mover” at f returns p, / p,+, between I and t + 1 

(that is, while the mover holds it). Thus 

(5) xd,“w, I m, (p, 1 p,,]) ; t 10 

must hold. 

If 1, > 1, then the bank will never choose to carry real balances between t and t + 1. r o 

“Nonmovers” (of whom there are 1-z per depositor) therefore will be repaid from the return on 

the bank’s bond holdings and capital investments. Bonds earn the gross real return R, = I,p, / p,+, 

between t and t + 1. In addition, we assume that the bank can diversify its capital investments, 

thereby guaranteeing itself q units of capital at c + 1 per unit invested at t. Since capital rents for 

q+, at t + 1 (and then depreciates completely), capital investments return qr,,, . Thus d,” must 

satisfy (if I, 7 1) 

(6) (1-x)d:w, IR,b, +qr,+,i,; t 20. 

We focus throughout on equilibria satisfying I, 7 1 V? . 

It will prove convenient to transform these constraints as follows. Let y , = m, / w, be the 

currency-deposit ratio of the bank at time 2, and let p, = b, / w, be the ratio of bonds to deposits. 

This implies that 1 - y , - p, is the ratio of capital investments to deposits. Constraints (5) and (6) 

can now be rewritten as 

lo Rather than do so, the bank could repiace its real balances with bonds. which dominate money in rate of 
return. 
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(5’) d,” ly ,(p, /pol)hi t 2 0, 

(6’) d,f’ I IR, P, + qr,+,(l - y, - &)I / (1-N ; 12 0. 

In addition, currency holdings and capital holdings are constrained to be nonnegative; thus yt 2 0 

and y, + p, S 1 must hold, V t 2 0. We do not similarly constrain bond holdings; we thus in 

effect allow for the possibility that banks might borrow from the government (that is, that the 

government might operate a discount window or other loan program). 

Competition among banks for depositors will, in equilibrium, force banks to choose return 

schedules and portfolio allocations to maximize the expected utility of a representative depositor, 

subject to the constraints we have described. Thus banks choose - in equilibrium - values for d,m, 

d,“, yt, and p, to solve the problem 

max n In(d,mw,)+(l -n)ln(d:w,) 

subject to (59, (69, y,2 0, and yt + a I 1. The solution to this problem sets 

(7) yt = 7t ; t 2 0. 

In addition, an absence of arbitrage opportunities in an economy with positive capital investment 

requires that 

(8) R, = q’r+,; t 1 0. 

In equilibrium, of course, all primary asset holdings are intermediated. Thus the money market 

clears if the demand by banks for cash reserves equals the supply of money at each date. This, in turn, 

requires that 
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(9) m,=xw, = xw(k,); t 2 0. 

Similarly, the time t+ 1 per capita capital stock, k,,, , must equal qi, . This requires that 

(10) k,+, = q[w(k,)-m, -b,] ; t 2 0. 

Finally, from (2) and (8), an equilibrium with a nonzero capital stock at all dates must have 

(11) 4 = 4P, / P,+l =qf’(k,+,); t 20. 

c. The 

We assume that the government has no direct (that is, noninterest) expenditures and that it 

levies no direct taxes at any date. Thus, satisfaction of the government budget constraint requires that 

(12) R,-, b,-, =(M,-M,-,)/p,+b, ; t20. 

Equations (9) - (12) constitute the complete set of equilibrium conditions for this economy. 

*. . III. Steadv 

A. N 

We begin by analyzing the steady state equilibria of this economy with Z > 1. First, note that, 

by definition, p, / p,+, = Cm,,, /m,)(M / M,+J = m,+, /om, for all ? 2 0. Hence, in a steady state 

equilibrium, p, / P,+~ = l/a. Using this fact in (11) gives a relationship between the steady state 

nominal interest rate and the steady state capital stock: 

(13) Z = aqf’(k). 
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Evidently, equation (13) defines a downward-sloping locus in figure 2. Since our interest is in 

equilibria with Z > 1, we focus only on capital stocks satisfying oqf’ (k) > 1. 

For t 2 1, equation (12) can be rewritten as 

(14) 4f’(W,-, = b, +[(o -l)/D]m,. 

Thus, in a steady state equilibrium, 

b=(o-l)m/o[qf’(k)-l]=(o-l)m/(Z-o). 

It follows that m -t- b = [(Z-1)/(1- a)]m in a steady state. Using this fact, along with the steady 

state relation m = xw (k) [see equation (9)] in (lo), gives a second steady state equilibrium 

condition: 

(15) k/qw(k)d(k)=l-x[(l-1)/(1-a)]. 

To characterize the locus described by (15) in figure 2, we define the following two values 

of the capital-labor ratio. Let k’ satisfy R(k’) = 1 --x , and let k be given by n(k) = 1. 

Assumption (a. 1) implies that, if k’ and k exist, they are unique. In addition, values k’ and k 

exist, under our assumptions, iff 

(a.2) qw’(O)>l/(l-Tt), 

an assumption we henceforth maintain. 

Evidently, the locus defmed by (15) passes through the point ( k , 1). In addition, along 

(15). 
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;\r Q(k)=l-x. 

Hence, as k + k ‘, Z + 00. Finally, straightforward differentiation establishes that the slope of the 

locus defined by (15) is given by 

dI/dkl,, = (Z-o)2R’(k)/x(o -1). 

Hence (15) is positively (negatively) sloped if cr > ( < )1 . 

Regarding the configuration of (15) in figure 2 there are two possibilities. 

Case cr I 1. In this case Z > 1 implies Z > cr, and hence k > k’ must hold for all finite values 

of I. Moreover, (15) is negatively sloped and therefore has the configuration depicted in figure 2a. 

If o&(k) > 1, then there exists a nontrivial steady state equilibrium with Z > 1. l l This 

equilibrium may or may not be unique. 

Case CT > 1. In this case the locus (or loci) defined by (15) are positively sloped. Moreover, 

the vector ( k , 1) satisfies (15), and for all Z E( 1, cr), (15) yields a unique value of k > i. As 

I ? cr , it is easy to show that R(k), and hence k, must go to infinity to satisfy (15). 

Among the values of Z that are greater than or equal to cr, only those with Z 2 

(a- x)/(1 - n) > B imply a nonnegative value for the right-hand side of (15). If w’(o) = 00 (as 

would be the case with Cobb-Douglas production), then the vector (0, (a- 7~) / (1 - rr.)) satisfies 

(15). Equation(15)thenyieldsapositivevalueofkforallZ> (cr-rr)/(l -xl, andas kTk’, 

Z + 03. Thus (15) has the configuration depicted in figure 2b. 

If oqf’ (k) > 1, there are then exactly two nontrivial steady state equilibria with 

1 1 While oqf’ (i) > 1 is sufficient for the existence of such an equilibrium with Q I 1, it is not necessary. 
However, if Q is too small, there may be no steady state equilibrium with a positive nominal interest rate. 
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Z > 1. This condition will hold if o is sufficiently large. 

1. A 
Suppose that f(k) = Aka, with a~(0, l), so that production is Cobb-Douglas. Then 

R(k) = k’- /qA(l-a). 

Substituting this expression into (15), solving for Z, and inserting the result into (13) yields the 

following steady state equilibrium condition, which is a function of Z alone: 

(16) (1-x)Z2 -{[a -x(1-a)]/(l-a))Z+acr2 /(l-a)=O. 

Equation (16) has at least one positive solution iff 

that is, iff a is sufficiently large. If o > 1, then a&(k) > 1 holds iff a 2 (1-a) /a in which 

case there are at least two nontrivial steady state equilibria with Z > 1. 

&am,&& Let G = 4, x = 0.5, and a = 0.25. Then the values Z = 8.396 and Z = 1.27 

satisfy (16). 

&am@Q. Let cr = 0.9, a= 0.39, and x = 0.9. Then the values Z = 4.6374 and Z = 

1.1167 satisfy (16). This example illustrates that there can be multiple nontrivial steady state 

equilibria with Z > 1 when Q I 1. 
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2. I)iscussion 

Multiple nontrivial steady state equilibria in which the value of money is positive are 

uncommon in models of money and capital accumulation. ‘2 The possibility of multiple equilibria 

arises here because the government’s net lending position is endogenous. This is most clearly seen 

in the case of CT > 1. If o is sufficiently large there are two nontrivial steady state equilibria: one 

with Z < o and one with Z > 6. The former has b < 0, so that the government becomes a net 

lender in bond markets. Thus the creation of money constitutes a subsidy to capital formation as 

the government effectively lends the money created to banks; this lending aids banks in funding 

their capital investments. The equilibrium with Z > o has b > 0; here government debt competes 

with private capital in banks’ portfolios, crowding out investment and reducing the steady state 

capital stock. 

This argument might seem to suggest that the existence of multiple (steady state) equilibria 

could be avoided by having the government pursue a different kind of policy. It could, for 

example, fuc the ratio of money to bonds via open market operations. When agents have 

logarithmic utility this would indeed prevent the existence of multiple steady state equilibria. 

However, when agents have more general utility functions the possibility of multiple steady state 

equilibria still arises. This situation is considered by Schreft and Smith (1994). 

The preceding discussion suggests that the comparative static effects of an increase in cr 

depend on which steady state equilibrium obtains. This is indeed the case, as we now demonstrate 

formally. 

B. wive St.a& 

Straightforward inspection indicates that an increase in the rate of money growth (from cr 

to 0’) shifts the locus defined by (13) up and to the right and the locus defined by (15) to the left in 

figures 3 and 4. We now consider three cases. 

’ 2 Consider, for example, the monetary growth models of Diamond (1965). Sidrauski (1967a, b), Brcsck (1974, 
1975), or Stockman (1981). 
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Case. cr > 1. Here an increase in CT has differential effects, depending on which steady 

state equilibrium obtains. If there are two steady state equilibria at the initial value of o, there will 

continue to be two such equilibria when o is increased. One will have I > a; in this situation an 

increase in o shifts the steady state equilibrium from point A to point B in figure 3. The other will 

have IE (1 ,cr); here an increase in cr causes the steady state equilibrium position of the economy to 

shift from point C to point D. 

In each case, the nominal rate of interest will rise along with an increase in o. The same 

increase may appear to have ambiguous consequences for the steady state capital stock; but as we 

show below, this is not so. Indeed, for equilibria with I > o, an increase in the rate of money 

growth reduces the steady state capital stock, while when I <o, an increase in o results in an 

increase in the steady state capital stock. 

&&. Suppose that o < 1 (and o’ < 1) hold and that there is a unique steady state 

equilibrium. This situation is depicted in figure 4a. The effect of an increase in CJ is to shift the 

economy’s steady state equilibrium from point A to point B. A higher rate of money growth leads 

to a higher nominal rate of interest and a lower steady state capital stock. Since the capital stock 

falls, the real rate of interest [sf’(R)] rises, so that the nominal rate of interest increases by more 

than the increase in the rate of inflation. 

(3ase. In this case CT < 1 (and o’ < 1) hold, but there are multiple steady state 

equilibria. Here the effect of an increase in o depends even more heavily than in case 1 on which 

equilibrium obtains, as indicated by figure 4b. Comparing points A and C, an increase in the rate 

of money creation leads to an increase in the steady state capital stock and a reducfion in the 

nominal rate of interest. This conclusion is reversed when comparing points B and D, reproducing 

the outcome in figure 4a. 

It remains to demonstrate that an increase in o has unambiguous effects on each of the 

steady state equilibrium capital stocks in case 1. We now state 
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. . w Suppose that o > 1 and o@(i) > 1 hold. Then there are two steady state 

equilibria: one with I E (1 ,o), and one with / > (o- rr)/ (1-7~). The former has dk / da > 0, while 

the latter has dk / da < 0. 

proczf. The existence of the two steady states follows from our earlier discussion. To obtain an 

expression for dk / do differentiate (13) and (15) with respect to D. Some algebra then yields 

(17) (dk/da)(qf”(k)-[(I-~)2R’(k)/~(~-1)]}=(I-a)/o(cr -1). 

Assumption (a. 1) and o > 1 imply that dk /do is opposite in sign to I -CL establishing the 

result. 

A wide variety of money and growth models have the implication that an increase in the 

rate of money creation either increases the steady state capital stock or leaves it n&ranged. 13 

Such an implication is wildly at variance with observation. I4 Expanding the class of models in 

which higher money creation can be detrimental to capital accumulation and real activity is 

therefore of value. 

Adverse consequences of higher money creation for capital accumulation can occur here in 

all three cases. Indeed, they must occur in case 2, and they occur in one of the steady state 

equilibria in cases 1 and 3. Why is it that higher rates of money creation can lead to a reduction in 

the per capita capital stock here? The answer is that, in our formulation, an increase in the money 

growth rate can increase the ratio of outstanding government liabilities to total saving [that is, raise 

1 3 Examples of models where increased money creation raises the steady state equilibrium capital stock include 
Diamond (1965) [see Azariadis (1992) for a discussion], Mundell(1965), Tobm (1965), Sidrauski (1967a), and 
Shell, Sidrauski and Stiglitz (1969). Examples of models where money growth rates have no effect on the steady 
state capital stock include those in the tradition of Sidrauski (1967b). There are some models where increased 
money creation leads to reduced capital formation; prominent examples include Stockman (1981). Azariadis and 
Smith (1993). and Boyd and Smith (1994). 
I4 See Araiadis and Smith (1993) for a discussion. 
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(rn + b) / w(k)]. This crowds out private capital formation. On the other hand, an increase in the 

money growth rate increases the steady state capital stock when b is negative. In this event an 

increase in o raises the government’s seigniorage revenue, which in turn permits the government 

to expand its lending to banks. This allows an increase in the capital stock to occur. Hence, an 

increase in the rate of money creation is conducive to capital fotmation for us only when the 

government is effectively using its seigniorage revenue to finance capital investments (here by the 

private sector). 

When multiple steady state equilibria exist, understanding the stability properties of the 

various steady states is essential. In this section we investigate dynamical equilibria. To simplify 

the discussion, we consider only the case Q > 1. We begin by deriving the phase diagram 

describing the behavior of dynamical equilibria; after doing so we consider local dynamics in a 

neighborhood of the steady state equilibria. We assume throughout that c@‘(i) > 1 holds, so that 

there are exactly two steady state equilibria of this economy. 

A. -Lawsof- 

Equation (9) can be used to eliminate m, from equations (10) and (14); doing so yields 

(18) k,,, = q(l-x)w(k,)-qb, ; tr0 

(19) b,+, = -[(o -l)h]xw(k,+,)+qf’(k,+,)b, ; t 20. 

Obviously k. > 0 is given, and from the government budget constraint [and (9)], b,, must satisfy 

(20) b. = M, / po -xw(k,). 
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Hence b, is endogenous. 

B. -Phase Diagram 

Equation ( 18) implies that k,+l 2 kt holds iff 

(21) q(l -a )w(k,) - k, r qb, . 

The locus defined by (21) at equality is depicted in figure 5; points below this locus have k,,, > 

k, , while points above it have k, > k,,, . 

Substituting (18) into (19) and rearranging terms yields 

(22) b,,, =qf’[q(l-n)w(k,)-qb,]b, -n[(cr -+]w[q(l-n:)w(k,)-qb,] ; t>O. 

Hence b,,, 2 b, holds iff 

(23 {4f’[q(l-n)w(k,)-qb,]-l)b, ~X[(G -l)/a]w[q(l-x)w(R,)-qb,]. 

To depict the loci defined by (23) at equality in figure 5, we proceed as follows. Define 

the locus (BB) by 

tW qb, =q(l-x)w(k,)-($‘)-‘(l/q). 

Combinations (k,, b,) that lie above the locus (BB) in figure 5 have qf’[q(l -n)w(k,)-qb,] > 1 

and hence yield a positive value for b, in (23) (at equality). Combinations (k, , b,) that lie below 

(BB), on the other hand, yield negative values for b, in (23) (at equality). Notice that the locus 

(BB) intersects the horizontal axis at the unique value k, satisfying q(1 --x )w(k,) = (f’)-’ (1 / q) . 
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We now show that (23) at equality defines at least two loci in figure 5: one that lies 

entirely in the positive orthant and one with b, < 0. Specifically, we state 

. . m . Suppose that k, satisfies q(1 -n)w(k,) > (f’)-‘(1 /q). Then there exist at least two 

values of b, that satisfy (23) at equality. One of these is positive, and one is negative. 

Proposition 2 is proved in the appendix. 

It remains to derive the slopes of the continuous loci defined by (23) at equality. 

Differentiating (23) at equality yields the expression 

(24) (db, /dk,)[qft(.)-1-q2f’c)b, +x(a -l)qw’()/a]= 

x(o -l)w’(.)q(l-x)w’(k,)/o -qb,f ‘(.)q(l-x)w’(k,). 

When b, 2 0, and hence for the branch of (23) in the positive orthant, qf’(.) > 1 holds. Thus 

this branch is unambiguously upward sloping. The branch of (23) with b, < 0 has an ambiguous 

slope in general; however it is possible to show the following. 

. . 
m . At the steady state equilibrium with I E (l,a), and hence with b < 0, db, / dk, as 

given by (24) is positive. 

(Proposition 3 is proved in appendix B.) Finally, equation (23) (at equality) passes through the 

origin. Thus (23) (at equality) has the general configuration depicted in figure 5. 

It is straightforward to verify that, above (BB), (k,, b,) combinations above (below) the 

locus defined by (23) at equality have b,,, > ( < ) b, . Below the locus (BB) the relationship 

between 6, +1 and bt is less transparent; however we can establish the following result. 
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. . 
m . In a neighborhood of the steady state with b, < 0, points above (below) the locus 

defined by (23) at equality have b,+* < ( > ) b, . 

Proposition 4 follows immediately from lemma A. 1 in the appendix. 

We also know that, under the assumptions of this section, there are exactly two steady state 

equilibria: one has I E (1 ,a), b < 0, and a relatively high capital stock; the other has I > 6, 

b > 0, and a relatively low capital stock. The local behavior of the economy near these steady 

state equilibria is depicted in figure 5. 

Figure 5 suggests, and the local analysis below confirms, that the steady state equilibrium 

withI> dandb > Oisasaddle . ‘5 Paths approaching this steady state display monotonic 

increases or decreases in k, and b, over time. Figure 5 also suggests that the steady state 

equilibrium with I E( 1 ,CJ) and b C 0 may be a sink; we establish below conditions under which 

this is the case. In addition, for a broad range of parameter values, nonstationary equilibria 

approaching this steady state display damped oscillation. 

C. Dev-us Flm 

When an economy has two steady state equilibria, with one potentially being asymptotically 

stable and one being a saddle, there is the possibility that two economies with very similar- or 

even identical - initial capital stocks will converge to very different Steady state equilibria. This 

possibility is depicted for a particular initial capital stock in figure 5. Thus, in economies with 

money, capital, and a government allowing its net lending position to be endogenous, development 

traps are ubiquitous whenever the money growth rate is sufflcientiy high. ‘6 

’ 5 If cf > 1 but 0&(i) C 1. then there is only a single steady state equilibrium here. This has I > CT, and 
hence is a saddle. This case of a unique steady state equilibrium that is a saddle, of course, closely resembles the 
situation in the Diamond (1965) model. [See AU&& (1992)]. 
’ 6 This conclusion does not require that the government let the value of its outstanding bonds be endogenous. 
See Schrefi and Smith (1994) for an analysis of policies that fix the money-bond ratio. 
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Additionally, for a very large set of parameter values, dynamical equilibrium paths 

approaching the high-capital-stock steady state display damped oscillation en route. Thus the 

presence of banks, plus an array of government liabilities, is a source of endogenous fluctuations 

that are not possible in the Diamond (1965) model. Economies that are fortunate enough to avoid 

development traps will experience these fluctuations along transition paths to the steady state. 

D. Local Dyna,m& 

In this section we examine the behavior of a linear approximation to the dynamical system 

defined by (18) and (19) in a neighborhood of any steady state equilibrium with I > 1. Thus we 

replace (18) and (19) with 

(25) (k,,, -k b,+, -b)‘=J(k,-k, b,-b)’ ; t20, 

where (k, b) are any steady state values of the capital stock and outstanding government bonds and 

where J is the Jacobian matrix 

From (18) and (19) we have that [evaluated at the steady state (k, b)], 

(26) ak,+, /iTk, =q(l-sc)w’(k)=(l-x)[kw’(k)/ w(k)]/Q(k) 

(27) akr+, / i?b, = -q 

(28) ab,,, /ak, = [qbf”(k)-x(0 -l)w’(k)/+k,+, /iYk, 
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(29) db,+, Mb, =qf’(k)+[bqf”(k)-x(a -l)w’(k)/+%,+, /a&)= 

(I/o)+x[(o -l)/cr][kw’(k)/w(k)] {I+[, /(I-o)]/Q(k))l R(k). 

In addition, we note that a steady state equilibrium has 

(30) Q(k)= k/qw(k)=l-x(l-l)/rl-o)=[(l-n:)l+x -a]/(&o) 

and 

(31) b=(a-l)nw(k)/a[qf-l(k)-l]=(o-l)rrw(k)/(I-o). 

Substituting (30) into (29) gives 

(29’) ab,+, Mb, =(I/a)+n[(a -l)/c$w’(k)/ w(k)]. 

[(1-~~)l+z]/[(l--lr)J+z -c+(k). 

Now let D and Tdenote the deteminan t and the trace, respectively, of J. Straightforward 

algebraic manipulation establishes that 

(32) D = (I/a)(l-x&v’(k)/ w(k)]/R(k) 

(33) T=(I/O)+[kw’(k)/w(k)]Jl-x +n[(cr -l)/o]- 

[(l-n)l+~]/[(l-R)I+x--~~~~~. 

We now consider these expressions evaluated at each of the two steady state equilibria. 
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1. m * 

For steady state equilibria with I E (l,o), conditions implying that such equilibria are sinks 

are easy to state. We begin with the following lemma. 

w. Consider any steady state equilibrium with I ~(1,cr). Then D E (0,l -x) and 

(l/o)-n <T<l+{[o(l-x)-x]/(l-x))D 

hold. 

Lemma 1 is proved in the appendix. 

Because o > 1 and D > 0 hold here, the steady state equilibrium with Z < cr is a sink if 

T < 1 + D holds. From lemma 1, a sufficient condition for T < 1 + D to hold is that 

(34) (T Sl/(l-x). 

Thus, if (34) holds, the steady state equilibrium with I C o is necessarily a sink. Excessively high 

rates of money growth, however, may overturn this result. 

1.a. &&am& 

If f(k) = Ak” , with a E (al), it was shown in section III.A that two steady state equilibria 

with I > 1 exist if o >mm[(l-a)/a,l]. Thus, if l-n < a/(1-a) and l/(1-Ic) 2 o > 

max[cl -a) / a,l] both hold, there necessarily exists a steady state equilibrium with I f (La), 

which is a sink. Of course while these conditions are suffkient for the existence of such an 

equilibrium, they are not necessary for the equilibrium to be asymptotically stable. 
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To make progress with this case, we specialize to the situation of Cobb-Douglas 

production. That is, in this section, we assume that f(k) = Ak” , with a l (0,l). 

Under this assumption, kw’(k) / w(k) = a holds, as does 

(35) Q(k) = k’* /qA(l-a). 

In addition, the steady state equilibrium condition I = oqf’(k) takes the form 

(36) k’-= = oqa,4 / I. 

Notice that (35) and (36) imply that 

(37) R(k) = era / (1 -a)l . 

Finally, for two steady state equilibria to exist with I > 1, <T P mm[(l-a)/a,l] must hold. 

When it does, the steady state equilibrium values of I are given by the two solutions to equation 

(16): the largest of these (the solution with I > a) is 

(38) I =[0 -n(l-a)]/2(1-a)(l-n)+ 

[{[a-n(1-a)]/(l-a))2 -4(1-n)acr2 /(l-u)loJ /2(1-x). 

Substituting (37) and kw (k) / w(k) = a into (32) and (33) yields 

(39) D = (1 -a)(1 -n)(l/oj2 
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(40) T=(I/o)+(l-a)(I/o)/l-n +x[& -1)/o]* 

[(l-n)l+X]/[(1-7t)l+a -0l). 

We now state 

Lemma T> l+D holds when1 > o. 

Lemma 2 is proved in the appendix. It implies that the steady state equilibrium with I > o is a 

saddle [see Azariadis (1992), chapter 6.43. Paths approaching the steady state equilibrium display 

monotonic increases or decreases in k, and b,. 

Each of the examples that follows has f(k) = Ak” . The parameters of the model are then 

A, a, q, x, and Q. 

Table 1 reports features of steady state equilibria for the parameters A = 1, q = 0.3, 

x = 0.5, and o = 1 S. The parameter a is allowed to vary between 0.4 and 0.8. For each set of 

parameter values, table 1 reports the values of the gross nominal interest rate and the per capita 

capital stock at the low capital stock and the high capital stock steady states. Table 1 also reports 

the trace and the determinan t of J, evaluated at the steady state with I E (Lo). As is apparent, 

each entry of this table has T2 < 40. This implies that the eigenvalues of J are complex 

conjugates. Thus entries in the table with D < 1 correspond to steady state equilibria that are 

sinks. Dynamical equilibrium paths approaching these steady states display damped oscillation. 

For entries in table 1 with D > 1, the steady state with I E (la) is a source. Development traps 

do not exist for these combinations of parameter values. 

Table 2 examines steady state equilibria when A = 1, &= 0.5, q = 0.3, o= 1.5, and ‘IC is 

free to vary between 0.1 and 0.9. As before, each entry in the table has T2 < 40 at the steady 

state with I E (Lo). Thus these steady state equilibria corresponding to very low values of rr are 
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sources; for values of IC above 0.2 they are sinks. Dynamical equilibria approaching these steady 

states display damped oscillation. 

Table 3 considers the effects of variations in the money growth rate, ct. For the set of 

parameter values A= 1, a= 0.6, n = 0.5, and q = 0.3, CT is varied from 1.5 to 20. As before, for 

each entry in table 3, T2 < 40 holds. Thus each steady state equilibrium with I E (Jo ) in table 3 

is a sink, and transient paths approaching these equilibria display damped oscillation. 

For a wide variety of parameter values our economy has two steady state equilibria: one is 

a sink; the other, a saddle. For combinations of parameter values producing this outcome, the 

development trap phenomenon depicted in figure 5 arises. In particular, economies with similar - 

or even identical - initial capital stocks may follow dynamical equilibrium paths that approach 

different steady state equilibria. Economies that are unfortunate enough to have high initial 

nominal interest rates will end up with low capital stocks, while economies with relatively low 

initial nominal interest rates will converge to values of the capital stock that are relatively high. 

For the parameter values that we examine, economies approaching the higher-steady-state capital 

stock will experience endogenous fluctuations in their capital stocks, output levels, real and 

nominal rates of interest, and inflation rates as they do so. 

v. Conclusions 

We have examined an economy where monetary and financial market factors determine the 

level of capital accumulation and real development. In this economy, sufftciently high rates of 

money growth necessarily lead to the existence of multiple, nontrivial steady state equilibria with 

valued fiat money and positive nominal interest rates. One of these has a relatively high nominal 

rate of interest and a relatively low capital stock. In this equilibrium, government bonds compete 
. 

with productive capital in the portfolios of banks. As a result, banks hold relatively little capital, 

and increases in the rate of money growth will induce them to hold even less. The other steady 
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state equilibrium has a relatively low nominal interest rate and a relatively high capital stock. This 

equilibrium has the feature that the government actually contributes to the financing of capital 

investment by the banking system and, when this is the case, increases in the rate of money 

creation are conducive to enhanced capital formation. 

Under conditions that are easily satisfied, the first of these equilibria is a saddle and the 

second is a sink. As a result development trap phenomena are observed. In addition, economies 

can readily display damped endogenous fluctuations in all endogenous variables as they approach 

the high-capital-stock steady state . 

These results, admittedly, have been obtained under some special assumptions. We have, 

for example, confined our attention to the case where agents have logarithmic utility. We also 

have considered only the situation where monetary authorities fix the rate of money growth. Both 

assumptions are relaxed by Schreft and Smith (1994), which examines a monetary authority that 

manipulates the ratio of money to government bonds and allows agents to have general CRRA 

utility functions. (The former assumption is arguably a more plausible description of monetary 

policy activity than a constant rate of money growth, at least for more-developed economies. ) We 

show there that some version of all of our results carries over if agents are sufficiently risk averse. 

The formulation of that paper also allows us to analyze how open market operations by a central 

bank affect real activity and rates of inflation. The second issue is not one that we can address in 

an interesting way here. 

We also have examined a government that engages in no fiscal activity (has no expenditures 

and engages in no direct taxation) and that imposes no regulations on financial market participants. 

The analysis of a government that has a deficit to finance and that can regulate its financial system 

is left as a topic for future investigation. Indeed, the fact that development trap phenomena are 

associated with (unnecessarily) high nominal interest rates is suggestive that a government might be 

tempted to impose ceilings on interest rates offered by banks to prevent falling into a development 

trap, even in the absence of a government deficit. Whether or not such a policy can be effective is 

an interesting question since financial market regulation can lead to some activity taking place 
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outside the regulated sector. Such regulation is common in developing countries; interest rate 

controls are a prominent example. Issues related to regulatory policies also would be interesting to 

analyze. 
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ADDendix 
. . 

A. Proof 

To establish the existence of a positive solution to (23) at equality, begin by considering the 

value b, = (1 -n)w(k,) . Then, by construction, the left-hand side of (23) is infinite, while the 

right-hand side of (23) is zero. In contrast, if we set b, = {(I -x)w(k,) - [(f’)-‘(1 / q)]} / q > 0 

(by the hypothesis of the proposition), the left-hand side of (23) is zero (by construction). The 

right-hand side is given by x[(o - 1) /cr ] w[ (f’)-‘(I / q)] > 0. Therefore, since both sides of (23) 

are continuous in b,, the existence of a value b, > 0 satisfying (23) at equality is implied by the 

intermediate value theorem. 

To establish the existence of a solution to (23) at equality with b, < 0, begin by 

considering the value b, = 0. Evidently, when b, = 0, the right-hand side of (23) is positive, 

while the left-hand side of (23) is zero. 

Now rewrite (23), for b, < 0, as 

(A.1) l-~‘[q(1-x)w(k,)-qb,]Ix(cr -1)4q(l-x)w(k,)-qb,]/(-ob,). 

As b, + --oo , the left-hand side of (A. 1) approaches one by the Inada conditions. It is easy to 

show that, as b, + --a~, the right-hand side of (A. 1) approaches 

/iiz -5t(o -l)f[q(l-x)w(k,)-qb,]/ob,. 
I 

Since we are holding k, fmed, we can use L’Hospital’s Rule to show that this limit equals 

/JZ[X(CF -l)/o]qf’[q(Z-n)w(k,)-qb,]=O, 
I 

where again the equality follows from the Inada condition. 
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Thus, as b, + --oo, the left-hand side of (23) exceeds the right-hand side of (23). The 

intermediate value theorem then establishes the existence of a value b, E c-00,0) satisfying (23) at 

equality. 0 

. . B.ProofofPm 

Rearranging terms in (24) gives 

(A.2) db, / dk, = 

q(l-n)w’(k,)Jx(o -l)w’(+a -qb,f”($ 
[&‘c)-l]+q/x(cr -l)w’c)/a -qb,f”(# . 

Below the locus (BB), ~$‘c) < 1 holds. Hence, if we can establish that 

(A-3) ~(0 -l)w’[q(l-~)w(k,)-qb,]<oqb,f”[q(l-x)w(k,)-qb,] 

at the steady state with b < 0, we will have the desired result. We now state 

Lemma At the steady state with 1 E(~,Q), (A.3) holds. 

praaf. Since w’(k) = -w(k) , equation (A.3) is equivalent to 

(A.4) x(a -l)[q(l-n)w(k)-qb]>oqb, 

where k and b denote the appropriate steady state values. 

Now, at this steady state, equation (19) implies that 

(A.5) b=(o-I)xw(k)/a[qf’(k)-l]=(u-l,htw(k)/(I-a). 
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Substituting (A.5) into (A.4) and rearranging terms gives the equivalent condition 

(A.6) r/(I-o)<x(I-1)/(1-o). 

Since, at the relevant steady state, (A.6) is equivalent to I >x(I- l), (A.6) obviously holds. This 

establishes lemma A. 1, and hence proposition 3. 

c* Proof 

a) D E (OJ--7t). From (32) it is apparent that D > 0. Moreover, I < o holds by 

hypothesis, and kw’(k)/ w(k) < 1 holds by (a.1’). Finally, from (30) and I E(~,G), it is clear 

that R(k) > 1. Thus (32) implies that D < 1 - rr . 

b) T>(l/a)-n. Wehavethat 

(d/dl){[(l-x)l+x]/[(l-n)l+x -a]) = -~(l-x)/[(l-x)l+n -01’ <o. 

Thus, since I < 0 , 

(A.7) [(1-x)l+x]/[(l--x)1+x -+[(l--x)cr +x]/[(l--x)o +x -o]= 

[(l-x)cr +7+x+0). 

But equations (A.7) and (33) imply that 

(A.@ T > (I/o)-n[kw’(k)/ w(k)]/Q(k)> (l/a)-x, 
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where the second inequality in (A.8) follows from I > 1 > kw’(k) / w(k) and Q(k) > 1 [at any 

steady state with I E (1,~ )J. 

cl T < 1 + {[cr (1 -x ) -n ] / (1 -n )}D. It follows from our previous observations that 

(A.9) [(1-++~]/[(1--R)I+K -a]<l/(l-CT). 

From (A.9) and (33) it follows that 

(A.lO) T <(1/[3)+[kw’(k)/w(k)][~(l-x)-x]/~~(k). 

Then, from (32) and (A. lo), 

(A.ll) T<(~/(~)+{[~(~-~)--TT]/(I--R)I}D. 

Then 1 <I<a and(A.ll)implythat 

(A.12) T < l+{[~(l--R)-+(I--x))D. 

This completes the proof. 0 

D. Proof nflemma2. 

Suppose to the contrary that 1 + D 2 T holds. From (39) and (40), this condition is 

equivalent to 

(A.13) 1+(1-x)(l-a)(I/a)2 2(1/a)+(l-x)(1-a)(l/a)+ 

(1/a)(l--aLjrc[(n -l)/o][(l-sr)l+x]/[(l-~)l+x -01. 
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Rearranging terms in (A. 13) and using the fact that I > CT , we obtain the equivalent condition 

(A.137 (l-xj)(l-aJ)(1/cT)21+ 

x I(l-a)(0 -l)[(l-lr:)I+x]/o(l-~)[(l-n)~+n -01. 

Moreover it is evident from (38) that 

(A.14) I/O <1/(1-x)(1-a) 

holds. But (A. 13’) and (A. 14) imply that 

(A.15) l>l+x I(l-a)(0 -l)[(l-x)l+x]/a(l-o)[(l-lr)Z+~ -a]. 

However, I > (a --7c ) / (1-n) > d holds (see figure 2b), and therefore the second term on the 

right-hand side of (A. 15) is positive. But this is the desired contradiction. 0 



35 

References 

Antje, Raymond and Boyan Jovanovic, 1992, Stock markets and development, manuscript, New 
York University. 

Azariadis, Costas, 1993, Intertemporal Macroeconomics (Basil Blackwell: Cambridge, MA). 

Azariadis, Costas and Bruce D. Smith, 1993, Private information, money, and growth: 
Indeterminacy, fluctuations, and the Mundell-Tobin Effect, manuscript, Cornell University. 

Bencivenga, Valerie R. and Bruce D. Smith, 1991, Financial intermediation and endogenous 
growth, Review of Economic Studies 58, 195-209. 

Boyd, John H. and Bruce D. Smith, 1994, Capital market imperfections in a monetary growth 
model, manuscript, Federal Reserve Bank of Minneapolis. 

Brock, William, 1974, Money and growth: the case of long-run perfect foresight, Zntemutionaf 
Economic Review 15, 750-77. 

Brock, William, 1975, A simple perfect foresight monetary model, Journal of Monetary 
Economics 1, 133-50. 

Cameron, Rondo, 1967, Banking in the earfy stages of industrialization, (Oxford University Press, 
New York). 

Champ, Bruce, Bruce D. Smith, and Stephen D. Williamson, 1992, Currency elasticity and 
banking panics: Theory and evidence, manuscript, Cornell University. 

Diamond, Douglas and Philip Dybvig, 1983, Bank runs, deposit insurance, and liquidity, Journal 
of Political Economy 85, 191-206. 

Diamond, Peter A. 1965, National debt in a neoclassical growth model, American Economic 
Review 15, 1126-50. 

Goldsmith, Raymond W., 1969, Financial structure and development (Yale University Press: 
New Haven). 

Greenwood, Jeremy and Boyan Jovanovic, 1990, Financial development, growth, and the 
distribution of income, Journal of Political Economy 98, 1076-l 107. 

Greenwood, Jeremy and BNCZ D. Smith, 1993, Financial markets in development and the 
development of financial markets, manuscript, Cornell University. 

Gurley, J. and E. Shaw, 1967, Financial structure and economic development, Economic 
Development and Cultural Change 15, 257-68. 



36 

Hornstein, Andreas and Per Krusell, 1993, Money and insurance in a turnpike environment, 
Economic Theory 3, 19-34. 

King, Robert G. and Ross Levine, 1992, Finance, entrepreneurship, and growth: Theory and 
evidence, manuscript, World Bank. 

King, Robert G. and Ross Levine, 1993, Finance and Growth: Schumpeter might be right, 
Quarterty Joumal of Economics 108,717-38. 

McKinnon, Ronald I., 1973, Money and CapitaZ in Economic Development (Brookings Institute: 
Washington, D.C.). 

Mitsui, T. and S. Watanabe, 1989, Monetary growth in a turnpike environment, Journal of 
Monetary Economics 24, 123-37. 

Mundell, Robert, 1965, Growth, stability, and inflationary finance, Journal of Political Economy 
73,97-109. 

Patrick, Hugh T., 1966, Financial development and economic growth in underdeveloped countries, 
Economic Development and Cultural Change 14, 174-89. 

Schreft, Stacey L. and Bruce D. Smith, 1994, The effects of open market operations in a model of 
intermediation and growth, manuscript. 

Shaw , Edward S., 1973, Financial deepening in economic development (Oxford University Press: 
New York). 

Shell, Karl, Miguel Sidrauski, and Joseph Stiglitz, 1969, Capital gains, income, and saving, 
Review of Economic Studies 36, 15-26. 

Shell, Karl and Joseph Stiglitz, 1969, The allocation of investment in a dynamic economy, 
Quarterly Journul of Economics 81,592-609. 

Sidrauski, Miguel, 1967a, Rational choice and patterns of growth in a monetary economy, 
American Economic Review 57,535-45. 

Sidrauski, Miguel, 1967b, Inflation and economic growth, Journal of Political Economy, 796-810. 

Stockman, Alan, 1981, Anticipated inflation and the capital stock in a cash-in-advance economy, 
Journal of Monetary Economics 8, 387-93. 

Tirole, Jean, 1985, Asset bubbles and overlapping generations, Economerrica 33, 671-84. 

Tobin, James, 1965, Money and economic growth, Econometrica 33, 671-84. 



37 

Townsend, Robert M., 1987, Economic organization with limited communication, American 
Economic Review 77, 954-7 1. 



Table 1 

High Capital Low Capital High Capital 

.6 .0198 1.30 .0006 5.20 .77 .78 

.7 .0073 1.38 .00002 7.62 .98 .63 

.8 .OOlO 1.43 s--w ---we- 1.19 .42 

Parameters: A = 1, q = 03, Ic = 0.5, (r = 1.5 

Table 2 

High Capital Low Capital High Capital 

.5 .0365 1.18 .0035 3.82 .56 .87 

.6 .0374 1.16 .0022 4.84 A4 .65 

.7 .0382 1.15 .0012 6.52 .32 .44 

.8 .0389 1.14 .OOOS 9.86 .21 .23 

.9 .0395 1.13 .OOOl 19.87 .lO .03 

Parameters: A = 1, q = 03, a = 0.5, Q = 1.5 



Table 3 

High Capital Low Capital High Capital 

8.0 .0310 5.78 .0004 33.22 .54 .99 

10.0 .0316 7.17 .0004 41.83 .53 1 .oo 

15.0 .0323 10.66 .0004 63.34 .52 1.01 

20.0 .0327 14.14 .0004 84.86 .51 1.01 

*For Q > 4, steady state values of k vary only in the fifth decimal place 

Parameters: A = 1, a = 0.6, q = 03, IL = 0.5 
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An Increase in the Rate of 
Money Growth (a > 1) 
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Figure 4a 

An Increase in the Rate of 
Money Growth (0 < 1) : 

A Unique Steady State Equilibrium 
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