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1. Introduction

Variations in inventory investment form an integral part of the business cycle. In order

to understand the role these variations play, considerable attention has been focused on

(S; s) inventory policies. Starting with Blinder (1981) and Caplin (1985), a substantial body

of literature has emerged which studies the aggregate implications of exogenously given

(S; s) inventory policies in partial equilibrium settings. Conducting a complete study of

the macroeconomic impact of these policies requires that they be analyzed in a general

equilibrium framework. This, however, has proven to be di¢cult because of the presence of

idiosyncratic risk and its implications for the aggregate distribution of inventory holdings.

In this paper we describe a way to bridge this gap between partial and general equilibrium

analysis.1

We study a dynamic general equilibrium model with aggregate uncertainty which includes

a retail sector. Firms in the retail sector face idiosyncratic demand and use (S; s) inventory

policies because of �xed order costs, as in Scarf (1960). The model builds on and extends

the work of Caplin (1985) and Caballero and Engel (1991) who consider the aggregate

implications of (S; s) inventory policies for a �xed number of sellers who follow potentially

di¤erent, but �xed inventory policies, and who face exogenous sales.2 Although we also

restrict attention to the case of �xed inventory policies, these policies are optimal in our

environment. In addition, we incorporate two general equilibrium feedback e¤ects absent

from the literature. First, the number of retailers ordering depends on the aggregate state

1Previous work on general equilibrium models with inventories uses reduced form representations in
which inventories simply are another input to production. For examples, see Kydland and Prescott (1982)
and Christiano (1988). Exceptions include Christiano and Fitzgerald (1991) and Bental and Eden (1993).

2Other studies along these lines include Blinder (1981) and Lovell (1993).

1



of the economy via entry into the retail sector.3 This contrasts with previous work in which

the number of retailers ordering is a residual derived from sales and the distribution of

inventories. Second, through the price setting behavior of retail �rms there is feedback from

the distribution of inventories to demand and sales.

We evaluate the general equilibrium model by how well it can account for two prominent

stylized facts of inventory investment, namely that orders are more volatile than sales, and

that inventory investment and sales are positively correlated.4 We �nd that the model does

account for these stylized facts; moreover the model also corresponds well to other salient

characteristics of the business cycle. In order to account for the inventory and sales evidence

both the entry and price feedback e¤ects have to be operational. We also �nd that increasing

�xed costs, thereby widening the (S; s) band, ampli�es the responses of aggregate variables

to some exogenous disturbances. To a limited extent propagation e¤ects are present as well.

Finally, we establish existence and uniqueness of a simpli�ed competitive equilibrium version

of our model in which entry is the only general equilibrium feedback. With the exception of

inventory investment being positively correlated with sales, the business cycle implications

of this model are similar to the more general model.

The rest of the paper proceeds as follows. In the next section we describe the inventory

problem for a retailer with �xed ordering costs which we use to construct a simple partial

3This is similar to Benabou (1988) who studies a search economy without aggregate risk where sellers use
(S; s) policies for setting prices and the number of sellers is endogenously determined through a free-entry
condition.

4Blinder and Maccini (1991) document the stylized facts of orders/production, sales and inventory in-
vestment for various sectors of the US economy. Fair (1989) has suggested that these stylized facts are an
artifact of measurement error because production is not directly measured. Direct data on quantities are
available for a limited number of goods producing industries and Fair (1989) and Krane and Braun (1991)
�nd that in many of these industries production is less volatile than sales. Note, that these exceptions apply
to a small number of manufacturing industries, not the trade sector on which we focus here.
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equilibrium model of the retail sector. We discuss the aggregate implications of the optimal

inventory policy for this example and compare them with previous work. In section 3 we

embed the retail sector into a general equilibrium stochastic growth environment. In section

4 we employ the partial equilibrium model as a benchmark to illustrate and quantify the

feedback e¤ects in the general equilibrium model. In the �fth section we conclude.

2. (S; s) Inventory Policies in Partial Equilibrium

The foundation of our analysis is a simple example from Stokey and Lucas (1989, pp. 389-

390) which captures the essential characteristics of (S; s) inventory models studied to date.

In this section we extend the example to incorporate price setting by retailers and use it to

formulate a benchmark partial equilibrium model which facilitates isolating the feedback ef-

fects in the general equilibrium model described in the next section. We exploit discreteness

in the retailer environment as does Caplin (1985), and as in previous partial equilibrium

work orders are a residual derived from sales and the inventory distribution. In the partial

equilibrium model (S; s) inventory policies alone fail to account for the basic inventory facts

and they have limited implications for business cycle analysis. These observations are con-

sistent with previous work on one-sided (S; s) policies in partial equilibrium, for example

Caplin and Spulber (1987).5

5For a one-sided (S; s) policy the state variable monotonically declines without intervention and once the
state variable reaches its lower bound s it is reset to the upper bound S. For a two-sided (S; s) policy the
state variable may increase or decrease and when the state variable reaches its upper or lower bound it is
reset to some interior point, s < s¤ < S. Caplin and Leahy (1991) argue that one-sided and two-sided (S; s)
policies can have very di¤erent implications for aggregate outcomes. For our inventory problem one-sided
(S; s) policies are optimal.
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2.1. The Retailer Problem

Consider a risk-neutral retailer whose inventory stock can only take integer values, x =

0; 1; : : : ; ¹x. We assume that there is a capacity constraint on inventories, that is a retailer

cannot hold more than ¹x units of the good in inventory.6 If a retailer places an order of size

x > 0 she has to pay °0 + °1x, with °0; °1 > 0. In any period a retailer meets at most one

shopper, and the probability of this match is µ. Before a retailer is matched with a shopper

she posts a price for the good, and a matched shopper may accept or reject the o¤er. The

utility a shopper derives from the consumption of the good is random and not observed by

the retailer. A shopper will accept the o¤er at price p and buy one unit of the good, if the

utility from consumption is su¢ciently high.7 The acceptance probability ± is a decreasing

function of the posted price. The probability that a retailer sells a good in any period is

then µ± (p).

Let R > 1 be the gross real interest rate, then it is never optimal for the retailer to

order before the inventory stock is depleted. This is so because postponing the order for one

period does not a¤ect revenue from sales, but reduces the present value cost of the order.

The expected capital value of a retailer with a positive inventory level x is

Vx = max
p

n
µ±(p)

³
p +R¡1Vx¡1

´
+ [1¡ µ±(p)]R¡1Vx

o
6This is not a restriction since we can always choose ¹x so that it does not constrain optimal decisions

on inventory holdings. We introduce a capacity constraint because it simpli�es the discussion of the general
equilibrium environment in the next section.

7In a multistage model of bargaining where a seller makes sequential price o¤ers to a buyer with unknown
demand for the good, Sobel and Takahashi (1983) have shown that a take it or leave it o¤er with a posted
price is optimal, if the seller can commit to a sequence of price o¤ers, and the seller is at least as patient as
the buyer.
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and the optimal order size solves

x¤ = argmax
x·¹x

Vx ¡ °0 ¡ °1x and V0 = Vx¤ ¡ °0 ¡ °1x¤:

Clearly an optimal inventory policy for the retailer is of the (S; s) variety. In particular the

policy is to order nothing if x is positive and to order x¤ units if x = 0.8 There are no

direct costs associated with inventory holdings, therefore Vx is positive and nondecreasing in

x. In Proposition 1 (all propositions are stated and proved in the appendix) we show that

under weak assumptions about demand ±(p), the incremental value of one unit of inventory

Vx ¡ Vx¡1 is declining with higher inventory holdings.9 This property is implied by the

assumption of positive discounting and that an additional unit of inventory cannot be sold

before all preceding inventory units have been sold.

The optimal price choice can be interpreted as a simple static pro�t maximization problem

for a monopolist,

Vx = max
p

n
µ±(p)

h
p¡R¡1 (Vx ¡ Vx¡1)

i
+R¡1Vx

o
; (1)

where the marginal cost of a sale is the discounted present value of the capital loss of having

one less unit of the good in inventory. Because the capital value of a retailer is a �concave�

8In general, (S; s)-inventory policies allow for the possibility that the retailer places an order before all
inventory is sold. In our environment the retailer will not order before she has sold all of her inventory,
because, even though the event of a sale is random, the quantity the retailer can sell is �xed. If the quantity
the retailer can sell is also random, the retailer may want to hold inventories to avoid a stock-out, Kahn
(1987).

9 In section 3 we describe an explicit model of demand and derive the acceptance probability from an en-
vironment where shoppers use reservation price strategies. The properties of demand needed for Proposition
1 then follow from assumptions on the preferences of shoppers.
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function of the stock of inventories, the marginal cost of a sale is declining with higher

inventories and retailers with higher inventories charge lower prices.

2.2. Implications of (S; s) Inventory Policies in Partial Equilibrium

The study of (S; s) inventory models has been partly motivated by the observation that for

these policies orders of a retailer are more volatile than sales. Aggregate orders and sales are,

however, determined by the interaction of inventory policies and the distribution of inventory

holdings. There is then no reason to expect that, in general, the behavior of microeconomic

and aggregate variables is closely related.10

Consider our example from above, assume there is a continuum of identical retailers,

and let the total measure of retailers be �xed at N . Suppose there is no aggregate risk and

demand, that is the event of a sale, is constant and independent across retailers. In this

case, the order and price policy derived above is optimal and it de�nes a Markov process on

the inventory level for each retailer. Let gx;t denote the measure of retailers with inventory

holdings x at the beginning of period t before any orders have been placed, let ĝx;t denote

the measure of retailers who have depleted their inventory stock in the previous period and

order x units at the beginning of period t, and let ¹gx;t = gx;t + ĝx;t denote the total measure

of retailers with inventory holdings x in the market in period t. Note that
P¹x
x=1 ¹gx;t = N .

In this environment retailers face idiosyncratic risk only, and, assuming a law of large

10This point has been made before, see for example Caballero (1992).
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numbers holds, the distribution of inventory stocks evolves as follows

gx;t+1 = (1¡ µ±x) ¹gx;t + µ±x+1¹gx+1;t

ĝx;t =

8>>><>>>:
µ±1¹g1;t¡1 if x = x¤

0 if x 6= x¤

(2)

where ±x = ± (px) and px is the optimal price with inventory level x. The measure of retailers

with inventory stock x declines because a fraction µ±x of these retailers sell one unit and now

have x¡ 1 units, and increases because a fraction µ±x+1 of retailers with inventory x+1 sell

one unit and now have x units. At the maximal inventory level x¤ there is also the additional

in�ow of retailers who are placing orders. Based on the distribution of inventory stocks we

can de�ne aggregate orders as Yt =
P¹x
x=1 xĝx;t, aggregate sales as Ct = µ

P¹x
x=1 ±x¹gx;t, and

inventory investment as It+1 ¡ It = Yt ¡ Ct.

A simple application of results for the convergence of Markov chains shows that the

distribution of inventory levels after orders have been placed converges to an invariant dis-

tribution11

¹gx =
±¡1xPx¤
i=1 ±

¡1
i

N for 1 · x · x¤ and ĝx =

8>>><>>>:
µ±1¹g1 if x = x¤,

0 if x = 0.
(3)

In general the inventory distribution is not uniform, but weighted towards lower inventory

levels, because retailers with lower inventories charge higher prices and are therefore less likely

to make a sale. In a similar environment in which the sales probabilities are independent

11See Stokey and Lucas (1989), Theorem 11.4.
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of the retailer�s inventory holdings, Caplin (1985) shows that the inventory distribution

converges to a uniform invariant distribution, and that for a �nite number of sellers aggregate

orders are more volatile than aggregate sales. Nevertheless a law of large numbers still holds

and as the number of sellers increases, the variability of average orders and sales converges

to zero: aggregate orders and sales are constant.

We now introduce aggregate risk and develop a partial equilibrium example which will

help us understand the mechanism of the general equilibrium model studied in the remainder

of the paper. Let aggregate demand be random, in particular let the probability of a match

µt be a stationary stochastic process with domain
h
µ;¹µ

i
, 0 < µ < ¹µ < 1. We also assume

that the number of retailers in the economy is �xed, and that other economic variables,

like the acceptance probability as a function of price or the interest rate, remain constant.

In this environment it is still optimal for a retailer not to order before she has sold all of

her inventory, but the order size and pricing policy will in general be state contingent. In

the following sections we describe conditions for which a �xed order size and pricing policy

remain optimal in a more general environment. We may assume that these conditions are

also satis�ed here and that the order size x¤ and the sales probability ±x do not depend

on the state of the economy, in particular the probability of a match µt.12 Our analysis is

partial equilibrium in nature because we assume that aggregate demand is exogenous to the

retail market, and that there are no feedbacks from aggregate demand, sales or inventory

investment to other aggregate economic variables.

We show in Proposition 2 that, for this example the distribution of inventory holdings

12This follows the literature on the aggregation of exogenously given (S; s) policies, see for example Caplin
and Spulber (1987) or Caballero and Engel (1991).
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after orders have been placed still converges to the invariant distribution de�ned in (3). This

result corresponds to the work by Caballero and Engel (1991) on the convergence of the

cross-sectional distribution of a �xed measure of agents who follow one-sided (S; s) policies.

As shown in Proposition 3, after the distribution of inventories has converged, aggregate

variables behave as follows: (i) the variance of orders equals the variance of sales, (ii) in-

ventory investment and sales are negatively correlated; (iii) orders and sales are not more

volatile than demand and the autocorrelations of orders and sales equal the autocorrelation

of demand; and (iv) orders and sales are positively correlated only if demand is positively

autocorrelated.

These �ndings suggest two conclusions. First, (i) and (ii) indicate the aggregate implica-

tions of (S; s) inventory policies are not necessarily consistent with the two key observations

from the inventory literature. Second, (iii) and (iv) suggest that (S; s) inventory policies do

not necessarily propagate or amplify shocks. We have noted above that these conclusions in

large part re�ect previous results on the aggregation of exogenously given one-sided (S; s)

policies in partial equilibrium environments.

In the preceding analysis heterogeneity across retailers represented by the inventory dis-

tribution plays no role at all. In fact, despite the presence of aggregate uncertainty, the

inventory distribution converges to a time invariant distribution. One reason why (S; s)

policies have such a limited e¤ect is that the inventory distribution a¤ects aggregate vari-

ables only through the order decision of retailers who have stocked out in the previous period.

We expect that a general equilibrium analysis of (S; s) inventory policies will yield di¤erent

results than the partial equilibrium analysis, since there are more channels through which

the inventory distribution, as part of the aggregate state of the economy, can a¤ect outcomes
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in the retail sector.

At this point we can identify three channels through which general equilibrium feedbacks

can operate. First, aggregate demand in the retail sector, as represented by the matching

probability µ and the acceptance probability ±, will depend on the state of the economy.

Second, the number of retailers N operating in the economy will depend on the state of

the economy, since the pro�tability of retailers is state contingent. Third, the decisions of a

retailer on price px and order size x¤ will be, in general, state contingent.

3. (S; s) Inventory Policies in a General Equilibrium Model

Here we embed the retail sector described in the previous section into a variant of the

standard stochastic growth model. There is an in�nitely lived representative household

whose utility depends on non-leisure activities and the consumption of goods which are

bought from a large number of retailers. The household has income from the supply of labor

to a manufacturing sector and dividends from ownership of manufacturers and retailers, and

trades in state contingent claims. The manufacturing sector cannot sell its product directly

to the household, but has to sell through the retail sector. Because of trading frictions in

the retail sector the representative household has to search for consumption goods, and each

retailer faces a stochastic demand for her good. A retailer posts a price for her product

which will a¤ect the probability of a sale, and the probability of a sale is consistent with the

optimal search behavior of the household. We model the trading frictions using a matching

type environment, where each retailer is randomly matched with the household.

Without aggregate uncertainty the economy converges to a steady state. Analogous to
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the previous section, in the steady state each retailer faces idiosyncratic uncertainty, but

the aggregate distribution of retailers over inventory holdings is invariant. We introduce

aggregate uncertainty through random shocks to the production of goods and to the time

discount factor. In the remainder of this section we describe the environment in more detail,

and then outline a recursive equilibrium. A tractable example is introduced and discussed

to conclude the section.

3.1. The Environment

The preferences of the representative household are

E0

" 1X
t=0

³
¦t¿=0¯¿

´
ln

Ã
ct ¡ n1+ºt

1 + º

!#
(4)

where ct is an index of consumption goods, and nt · ¹n is time spent in non-leisure activities.

The discount factor ¯t is an exogenous, possibly random, variable with bounded support,

0 < ¯t · ¹̄ < 1. The wage elasticity of non-leisure activities is 1=º and º > 0.13

The consumption index is de�ned as follows. In each period there is a continuum of

retailers of measure Nt. For the household each retailer provides a unique good, and a

household can consume exactly one unit of each retailer�s good in a period. The household

cannot store the good of any retailer. Let ct(i) 2 f0; 1g be the consumption of a good

obtained from retailer i 2 [0; Nt]. The utility derived from the consumption of the i-th

13These preferences are used by Greenwood, Hercowitz and Hu¤man (1988) and others. They imply that
wage changes have no wealth e¤ect (a common implication of empirical labor supply studies). Except for
procyclical average sales, preferences separable in consumption and leisure have the same implications as
these preferences. The current formulation mimics the behavior of an environment with home production
and logarithmically separable preferences, as in Benhabib, Rogerson and Wright (1991), which we studied
in an earlier draft of this paper.
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good, ut(i), is an iid random variable with support U = [u; u], 0 · u < u · 1, and twice

di¤erentiable cumulative density function F . The household is not informed about the

quality of any retailer�s good before it actually meets the retailer. The consumption index

is the integral over all utilities

ct ´
Z Nt

0
ut(i)ct(i)di: (5)

There are frictions in the market for retail goods due to a cost of contacting retailers. To

contact retailers the household must search, which requires that it spend some time shopping,

ns;t. The quantity of search e¤ort produced is

st = ³ns;t; (6)

where ³ > 0 measures the e¢ciency of time spent shopping. Interpret this as the household

splitting up into st sub-units, shoppers for short, who search independently. A shopper is

randomly matched with at most one retailer and for any shopper the probability of a match

with a retailer is !t. The total number of shoppers who contact retailers is then !tst.

Shopping is one of the two non-leisure activities the household pursues. The other activity

is working in the manufacturing sector, ny;t. Total non-leisure activities are

nt = ny;t + ns;t: (7)

Labor is the only input to production in the manufacturing sector,

yt = ztn
®
y;t (8)
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with 0 < ® · 1 and productivity zt is an exogenous, possibly random, variable with bounded

support, 0 < zt · ¹z.14 The goods produced in the manufacturing sector are distributed to

the retail sector, which resembles the one described in section 2. Before orders are placed

there is a measure gx;t of retailers with inventory holdings x. An order of size x uses up

°0 + °1x units of the manufactured good. Unlike the previous section, we assume there is

free entry to the retail sector. We also assume there are no explicit costs to entry besides

the cost of making an order.15 Let ĝx;t denote the measure of retailers who order x units of

the market good, then the resource constraint for the good produced in the manufacturing

sector is
¹xX

x=1

ĝx;t (°0 + °1x) · yt; (9)

and ¹gx;t = gx;t + ĝx;t is the measure of retailers with inventory holdings x after orders have

been placed.16 The total number of retailers in the market is Nt =
P¹x
x=1 ¹gx;t.

The presence of search costs implies that shoppers cannot pick retailers at will. Instead

they are randomly matched with retailers. In any period a retailer (shopper) is matched with

at most one shopper (retailer). If there is a total measure of Nt retailers and St shoppers,

then the number of matches is given by

Mt = min
n
'S¹t N

1¡¹
t ; Nt; St

o
(10)

14Decreasing returns to labor may be due to a �xed factor of production, for example capital, which we
do not model.

15Note that this means there is no di¤erence between existing retailers who have sold all of their inventory
and are now restocking, and new retailers coming into the market.

16Here we make use of the fact that in equilibrium retailers with positive inventory holdings do not place
any orders.
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with 0 < ¹ < 1 and ' denotes the e¢ciency of matching. The probability that a shopper

(retailer) meets a retailer (shopper) is !t = Mt=St (µt = Mt=Nt). Retailers and shoppers

take these probabilities as exogenous parameters.

The environment is subject to aggregate uncertainty since preferences and technologies

are subject to exogenous stochastic shocks, zt. In what follows we focus on two cases, either

the time discount factor is random, zt = ¯t and zt = z, or the productivity level is random,

zt = zt and ¯t = ¯. We assume that the exogenous state follows a �rst order Markov process

with transition probabilities ©(zt+1jzt). A complete description of the environment in each

period also includes the beginning of period distribution of inventory holdings before orders

have been placed, gt = (g1;t; g2;t; : : : ; g¹x;t). This endogenous state variable can change because

of di¤erential changes in the probability of a sale for retailers with di¤erent inventories, or

because of changes in the rate at which new retailers enter, equivalently the rate at which

inventories are restocked. This concludes the description of the environment.

3.2. A Recursive Equilibrium

In this sub-section we describe an equilibrium in which consumers and producers of manu-

facturing goods behave competitively, and retailers behave as described in section 2.1. We

are interested in a recursive equilibrium where prices and the decisions of agents are time

invariant functions of the aggregate state of the economy. We assume that agents can write

contracts which are contingent on the state of the economy, and that there is a complete set

of markets in these state contingent claims.

The description of the household�s problem proceeds in two steps. First we discuss the

optimal search for consumption goods, and then describe the full dynamic optimization

14



problem.17 Recall from section 2.1 that a retailer with inventory x posts a price px for her

product before any shopper arrives. Since posted prices depend on inventory holdings, which

di¤er across retailers, not all retailers post the same price. Thus, if a shopper is matched with

the i-th retailer, he will face a price px with probability ¹gx=N , the normalized distribution

over inventory holdings after orders have been placed. The shopper then inspects the good,

that is observes u(i), and decides whether to purchase the good or not. Note that his decision

cannot depend on the choices of other shoppers since shoppers do not communicate with

each other. Also shoppers will not purchase more than one good since the household cannot

store goods.

Under these circumstances the shopper will use a reservation utility policy, that is he

will purchase the good if his utility is above some reservation utility rx, which may depend

on the posted price. For such a reservation utility policy the expected utility value from a

match is

q =
¹xX
x=1

Z
u¸rx

uF (du)(¹gx=N); (11)

where 0 · q · E[u], and the expected expenditure for a match is

e =
¹xX

x=1

px [1¡ F (rx)] (¹gx=N ): (12)

The consumption good index implied by this policy is c = q!s.

The budget constraint of the representative agent depends on the wage rate w, non-labor

income ¼, the price distribution for goods fpx; ¹gxg¹xx=1, the match probability of a shopper !,

17 In the following we will drop time subscripts and let a prime denote next period�s value of a variable.
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the prices Q for state contingent claims a, and wealth. In a recursive equilibrium all prices

are time invariant functions of the aggregate state, and the distribution of inventory holdings

evolves according to a time invariant law of motion. We denote the time invariant equilibrium

function of an aggregate variable with the corresponding capital letter of the variable, for

example w = W (g; z), and the law of motion for the inventory holding distribution is

g0 = G (g; z).

Without loss of generality we assume that the only intertemporal trades are in state

contingent claims. Let Q(g0; z0jg; z) be the price of a state contingent claim a(g0; z0jg; z)

which pays one unit of the manufacturing good if next period�s aggregate state is (g0; z0),

conditional on the current aggregate state (g; z). The risk free rate of return is then R (g;z) =

1=
R
Q (G (g; z) ; z0jg; z) dz0. Let ~a denote the number of state contingent claims which pay

o¤ in the current period. The state of the household is then given by the vector (~a; g; z).

We are now in a position to describe the optimization problem of the representative

household,

U (~a; g;z) = max fU (c; n) + ¯E [U (a [g0; z0jg;z] ; g0; z0) jg; z]g

s.t. c = ³ns!q;

³ns!e+
R
Q(g0;z0jg; z)a(g0; z0jg; z)dz0 = ~a+ wny + ¼;

n = ns + ny, and

g0 = G (g; z) ; ! = (g; z) ; px = Px (g; z) ;

w = W (g; z) ; ¼ = ¦(g; z) ;

(13)

where U is the period utility function. The household�s static decision problem regarding
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the acquisition of consumption goods can be separated into the following two stage decision

problem. First, for any desired average quality resulting from a match the agent chooses a

reservation utility policy which minimizes the cost associated with that quality. The implied

cost function, e (q), represents a price index for average quality. Let ¸ be the marginal cost

of quality for this policy. It is straightforward to show that the �rst order conditions for

reservation utilities are su¢cient to characterize the optimal reservation utility policy. Next,

the agent chooses the optimal mix of shopping time and desired average quality. At this

stage the objective function is not necessarily concave with respect to the choice variables ns

and q. In Proposition 4 we show that the problem can be transformed to a concave problem,

and that the solution to this problem is unique.

Assuming an interior solution exists to the static decision problem regarding the acqui-

sition of consumption goods and the choice of non-leisure time, an optimal decision has to

satisfy the following �rst order conditions

Ucrx = ·px

Uc³!q ¡ Un = ·³!e

Un = ·w

(14)

where Uc = @U=@c, Un = ¡@U=@n, and the Lagrange multiplier · is the marginal utility

of income. The �rst and third equations of (14) combined state that the marginal rate of

substitution between non-leisure time and the marginal accepted consumption good is equal
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to the price of the marginal accepted consumption good,

r(p)Uc
Un

=
p

w
for r (p) 2 (u; u) :

This suggests that we rewrite the reservation utility policy as follows

r (p) =
p

¸
with ¸ = w

Uc
Un

and p 2 (¸u; ¸u) : (15)

We can now modify the retailer�s problem from section 2.1 for a recursive equilibrium

with aggregate uncertainty. Since shoppers follow reservation price strategies the probability

that a shopper will accept the o¤er at price p is ±(p=¸) = 1¡F (p=¸). This probability is also

the demand function which a retailer faces, and it is a nonincreasing function of the posted

price. Next period�s returns are discounted using the state contingent prices Q. From the

optimal intertemporal decision of the household we have that the normalized marginal rate

of substitution between present and future non-leisure time is equalized to the contingent

claim price

Q (g0; z0jg; z) = ~Q (g0; z0; g; z) ©(z0jz) and ~Q (g0; z0; g; z) = ¯
Un (c0; n0) =W (g0; z0)
Un (c; n) =W (g; z)

. (16)

The capital value of a retailer which has x units of inventory and who does not reorder
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before the inventory is depleted is

Vx(g; z) = maxp
n
µ±(p=¸)

³
p¡E

h
~Q (g0; z0jg; z)Vx¡1 (g0; z0) j g; z

i´
+ [1¡ µ±(p=¸)]E

h
~Q (g0; z0jg; z)Vx (g0;z0) j g;z

io
;

where g0 = G (g;z) , µ = £(g; z) and ¸ = ¤(g; z) :

(17)

Given free entry, it is not optimal to reorder before all inventories are depleted if Vx de�ned

in (17) is �concave�. To see this, consider a retailer with current inventory x and an order of

size ¢x. If the retailer adds the order to the current inventory, the capital value is Vx+¢x.

Alternatively, because of our free entry assumption the retailer could simply open up another

store, in which case her capital value would be Vx+V¢x. Since V is concave the second option

gives a higher capital value. We do not have a proof that Vx (g; z) is a concave function in

x, but in our computational experiments below we verify it is always concave.

The optimal order policy maximizes the gains from entry, and because of free entry the

rate at which retailers restock their inventory will adjust such that these gains are zero in

equilibrium,

Vx(g;z) · °0 + °1x and Vx(g; z) = °0 + °1x if ĝx (g; z) > 0: (18)

The law of motion for the inventory distribution G is then de�ned by

¹gx = gx + ĝx and g0x = [1¡ µ± (px=¸)] ¹gx + µ± (px+1=¸) ¹gx+1

for x = 1; : : : ; ¹x and ¹g¹x+1 = 0:

(19)
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Production of the manufacturing good is competitive so that manufacturers solve,

max zn®y ¡W (g; z)ny: (20)

Here we have normalized the price of the manufactured good at one. The solution to this

problem determines the real wage.

The following de�nition of the recursive equilibrium summarizes this section.18

De�nition 1. A recursive equilibrium is a collection of functions f¤;£;;¦;G; Ĝx; A;S;Ns;

Ny; Px; Q;W; Vx; Y g of the state (g; z) such that

(i) given G, , Px, W , ¦, and Q, the decision rules A; Ns, Ny, ¤ solve the household�s

problem (13);

(ii) given W , the decision rules Ny and Y solve the manufacturer�s problem (20);

(iii) given G, £, ¤, and Q, the decision rule Px and the value function Vx solve the retailer�s

problem (17);

(iv) the entry rule Ĝx and Vx satisfy the free entry condition (18), and Vx is �concave�;

(v) given Ĝx, Px, ¤, and £, the law of motion G is consistent with (19);

(vi) given S and N =
P
x

³
gx + Ĝx

´
, the matching probabilities  and £ are consistent

with (10);

18Note that we do not explicitly include trading of ownership claims to retailers or the manufacturing �rm
in our de�nition of an equilibrium. These claims are included implicitly in that (i) retailers maximize their
asset value using a set of complete state contingent claims, and (ii) non-labor income includes pro�ts from
the manufacturing sector and existing retailers minus investment in new retailers.
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(vii) given Y and Ĝx the market for manufacturing goods clears, (9) is satis�ed with equality.

(viii) non-labor income is ¦ = £
Px
x=1 Px± (Px=¤)

³
gx + Ĝx

´
¡ ®zN®

y , and state contingent

claims, A, are in zero net supply.

3.3. A Tractable Example

The law of motion for the endogenous aggregate state of the economy, that is the inventory

distribution, depends on the behavior of aggregate demand, entry of retailers, and the optimal

order and pricing policies of retailers. These elements represent the three channels described

in section 2.2 through which general equilibrium feedbacks in the retail sector operate. The

last of these three elements can make it very di¢cult to compute an equilibrium. In order to

facilitate the numerical analysis in the next section, we eliminate the third element and focus

on aggregate demand and entry. In the following we introduce two additional conditions such

that order and pricing policies are independent of the aggregate state.

The �rst condition simpli�es the optimal pricing policy much as discrete inventories e¤ect

the order policy. It is designed to ensure the optimal price depends only to a limited extent

on the aggregate state. We assume that the idiosyncratic utility shock for a retailer�s good

has �nite support. In particular, we consider a two point support U with a symmetric

uniform distribution,

u =

8>>><>>>:
ul = 1¡ ´; with probability 1=2,

uh = 1 + ´; with probability 1=2,
(21)
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and 0 < ´ < 1. In Proposition 5 we show that the reservation utility policy of shoppers

�accept if ¸uj ¸ px with j = l; h and ; ¹x = 1; : : : ; ¹x; � (22)

and the pricing policy of retailers

�px = ¸uj with j = h if x · x0 and j = l if x > x0,� (23)

are consistent in an equilibrium. For this equilibrium retailers post at most two di¤erent

prices, and if two prices are posted, then retailers with inventories higher than the critical

inventory level x0 will post the lower price. Below we refer to this as an x0 pricing scheme.19

The second condition contributes to keeping both the order size and the pricing scheme

aggregate state independent. In the economy without aggregate uncertainty the order size

and pricing scheme in a steady state are unique. With a small amount of variation in the

aggregate shocks, there is no incentive to deviate from the steady state policies. Hence, the

second condition is to assume that aggregate uncertainty is not �too large� so that the steady

state order size and pricing scheme remain optimal. We check that the steady state policies

are optimal for our simulations.

The simpli�ed model we have now introduced is a general equilibrium extension of the

partial equilibrium model described in section 2.2. This model allows us to focus on the

remaining two channels through which general equilibrium e¤ects operate, aggregate demand

and entry. Aggregate demand for current consumption goods, as re�ected by the probability

19The case where only one price is o¤ered in a given period corresponds to x0 = 0 in this notation.
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that a retailer is matched with a shopper, is in part determined by the search e¤ort of the

consumer. This search e¤ort will depend, in part, on the average price a consumer has to

pay for goods purchased. For the case that retailers charge di¤erent prices, this expected

price depends on the relative number of retailers who hold low (high) inventories and charge

a high (low) price. Thus when there are changes in the distribution of inventories incentives

to shop also vary. We call this feedback the price channel due to the key role played by the

price setting of retailers. Since our example explicitly rules out variations in the order size,

entry is the only channel in the model for changing the aggregate supply of current and future

consumption goods. In our tractable example, entry, equivalently the order volume, depends

in a non-trivial way on the inventory distribution. We refer to this particular feedback from

the inventory distribution to order volume as the entry channel.20

4. Implications of (S; s) Inventory Policies in General Equilibrium

In this section we investigate how general equilibrium feedback e¤ects in�uence the relation

between (S; s) inventory policies and aggregate variables. We do so by examining various

parameterizations of the tractable example described in section 3.3. Equilibrium in the

example is characterized by a system of functional equations. An analytical solution to this

system is not available, but it can be solved using standard numerical methods as described

in Fisher and Hornstein (1996).21

20Another interpretation of the free entry condition views variations in entry as variations in the ordering
frequency. Suppose that there is an in�nite supply of retailers, then at any point in time only a �nite measure
of these retailers has decided to order and is in the market selling goods. We can think of a retailer who has
just sold the last good in inventory as deciding whether to reorder now or wait and order some time later.

21We can show existence and uniqueness of an equilibrium for a simpli�ed version of the environment, see
subsection 4.4 below.
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We arrive at the following main conclusions. (1) The general equilibrium model is con-

sistent with evidence that orders are more volatile than sales, that inventory investment is

positively correlated with sales, and, for some parameterizations, that average sales are pro-

cyclical. (2) The entry channel is su¢cient to make orders more volatile than sales, but the

price channel is necessary to make inventory investment positively correlated with sales and

to make average sales procyclical. (3) The model predicts that the width of the (S; s) band

is associated with ampli�ed responses of aggregate variables to some exogenous impulses.

(4) There exists a competitive version of the general equilibrium model in which all market

participants take prices as given. For this version orders remain more volatile than sales,

but inventory investment is no longer positively correlated with sales. The business cycle

characteristics of this model are similar to the more general model.

4.1. Parameter Values and the Steady State

To implement our model we need to specify the following parameters

Preferences: ¯; ´; º;

Retail Technology: ³; '; ¹; °0; °1;

Manufacturing Technology: ®; z;

Aggregate Uncertainty: ½; ¾:

This list includes two parameters determining the nature of aggregate uncertainty to be

explained below. We choose parameters to highlight the impact of the inventory and price

policies and to achieve a degree of empirical plausibility. The examples analyzed below

accordingly are based on �ve baseline choices for the parameters, summarized in table 1,
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which we now discuss.

The baseline parameter sets are chosen to ensure that in steady state, and in a region

of the state space local to steady state, �ve particular combinations of order policy x¤

and pricing scheme x0, one for each parameter set, are optimal from the perspective of a

representative retailer. These combinations are (x¤; x0) = (1; 0), (2; 0), (2; 1), (4; 0), and

(4; 2). We calibrate ´ to �x x0.22 The �xed cost parameter °0 determines x¤. We do check

the optimality of the price and order strategies in our simulations.23

The intratemporal elasticity of labor supply with respect to the real wage is approximately

equal to 1=º. One feature we would like the model to have is that hours worked and shopping

time are procyclical. In order for this to be the case, we work with º = 0:2, which implies

a relatively large labor supply elasticity when compared to elasticities reported in empirical

labor supply studies.24 We calibrate ³, which controls the e¢ciency of search e¤ort, to �x

the steady state cross sectional variance of sales for retailers.25 Notice that the matching

probability for µ determines this variance. Except for values of µ close to unity the variance

of sales relative to its mean is very large. For this reason we calibrate ³ so that in steady

state µ = 0:85. This choice also isolates the propagation e¤ects of (S; s) inventory policies in

our model, since it weakens a channel of persistence in the model that is unrelated to (S; s)

inventory policies per se.26

22Fisher and Hornstein (1996) derive a formula for ´ such that a particular x0 pricing scheme is optimal if
there is no aggregate uncertainty. We use this formula to select values for ´.

23The procedure for doing this is described in Fisher and Hornstein (1996).
24Similar results can be attained in a model with home production in which home and market goods are

relatively easy to substitute, see for example Benhabib, Rogerson and Wright (1991).
25We are unable to calibrate ³ to match evidence on time devoted to shopping activities because once º

is selected the endogenous expected surplus from shopping �xes ns.
26Lower values of µ correspond to longer mean time between sales. An exogenous impulse that increases

the number of retailers has a longer lasting impact on the economy the longer the mean time between sales
because the stock of inventories takes longer to return to its steady state level.
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In keeping with related work in the real business cycle literature we set labor�s share

of income ® to 0:64. The steady state time discount factor ¯ is set to 1:05¡1=12, so that a

period in the model is a month and the real interest rate in steady state is 5% at an annual

rate. The constant term ' in the matching function is set to 0:85. This implies that in

steady state the number of shoppers and retailers are identical, N = S, and the probability

of a match from the perspective of a shopper is the same as for a retailer, ! = µ. We

�x z = 1 and °1 = 1:175. These are normalizations which have no major consequence for

the analysis. We do not have any direct evidence on the matching function elasticity, ¹.

Computational experiments show that a high value for ¹ can result in saw-tooth responses

to exogenous shocks for some aggregate variables. Since we do not view these response

patterns as empirically plausible, we select a relatively low value, ¹ = 0:25, for our baseline

parameterizations.27

With these parameters we can compute a non-stochastic steady state. At this point it is

worth considering the implications of our parameter selections for the values of key variables

in steady state. This helps to evaluate the extent to which our selections can be considered

reasonable. Two variables are useful for this purpose: the steady state aggregate inventory-

sales ratio and the steady state expected time between orders for a typical retailer. These

variables are shown in table 2 for the �ve di¤erent baseline parameterizations.

The aggregate inventory-sales ratio (consistent with the analysis in section 2.2, we de�ne

inventories to be the total stock of inventories at the end of a period) varies from a low of

0:18 in the (1; 0) model to a high of 2:80 in the (4;2) model and is positively related to both

x¤ and x0. Over the period 1967-1991 the average of the ratio of total retail inventories to

27For more on saw-tooth response patterns see footnote 34.
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total retail sales at the monthly frequency in U.S. data is 1:47.28

The expected time between ordering, not surprisingly, is also positively related to x¤ and

x0. It ranges from a low of 1:17 months in the (1; 0) model to a high of 7:04 months in the

(4; 2) model. This variable is important for our analysis because it has a substantial impact

on the degree of persistence implied by the model. Aguirregabiria (1994) �nds that the mean

time between ordering of all goods sold by a Spanish supermarket chain is about 1:3 months.

The range of his estimates includes a low of less than a month, to a high of over 10 months.

We are not aware of any other empirical studies that provide independent evidence on the

mean time between ordering.

As described previously, we allow for the possibility of technology and discount rate

shocks. We only include one shock in the model at a time, but use a common form for the

forcing process,

ln zt = (1¡ ½) ln z+ ½ ln zt¡1 + ²t, with ²t » N(0; ¾2), 8 t, j½j < 1,

for (zt; z) = (zt; z) or (¯t; ¯). Since the period length in the model is a month we adopt the

view that the disturbances are best modeled as persistent. In our baseline experiments, then,

we �x ½ = 0:9. To ensure that time invariant price and inventory strategies are optimal for

our parameterizations we assume the standard deviation of innovations, ¾, is small enough.

In all our experiments we use ¾ = 0:01. Consider the forcing process an approximation since

the random variable it describes is not bounded. This approximation performs well since

28This number is based on the ratio of retail inventories to retail sales as given by the variables IVRR and
RTRR, respectively, from the Citibase databank.

27



innovations are small.

4.2. Illustrating the General Equilibrium E¤ects

In this section we illustrate the model�s general equilibrium feedback e¤ects and clarify the

di¤erences between the general equilibrium model and partial equilibrium model studied in

section 2.2. To do this we examine the dynamic responses of various endogenous variables to

technology and discount rate shocks. The impulse response functions we are interested in are

shown in �gures 1 to 5 for the di¤erent (x¤; x0) combinations and alternative speci�cations

of aggregate uncertainty. After describing the layout of the �gures and some details about

measurement, we discuss the one-price examples followed by the two-price examples.

The �rst column of each �gure displays dynamic responses for aggregate sales, aggregate

orders, the number of shoppers, and the average sale price of consumption goods relative to

manufactured goods. The second column shows dynamic responses for inventory investment,

average sales per retailer, net entry in the retail sector, and the proportion of retailers

in the inventory distribution that have inventories greater than x0. With two exceptions

all the responses are per cent deviations from the �stochastic steady state� value of the

variable in question computed by assuming the aggregate shock equals its mean forever and

the inventory distribution has converged to its corresponding invariant distribution.29 The

exceptions are inventory investment and net entry, which are shown as absolute deviations

from their stochastic steady state values. All the responses are displayed as a proportion of

the standard deviation of the innovation to the aggregate shock. They are based on a one

29These stochastic steady state values are not quite the same as the corresponding non-stochastic steady
state values. This is because they are based on the solution to the model incorporating aggregate uncertainty.
In practice, the di¤erence is very small.
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standard deviation positive innovation to the aggregate shock in question which occurs in

period 3 in the �gures.

We measure sales, orders and inventory investment according to the de�nitions given in

section 2.2. Manufactured goods are the numeraire and we use nonstochastic steady state

base period prices to value sales and the stock of inventories in any date. To be precise, the

average retail price is used to value retail sales and we value the stock of inventories in terms

of the average replacement cost. In the �gures �average retail price� is the marginal utility

of the consumption index. Finally, net entry is de�ned in the �gures as total entry in the

period less the number of retailers that stock out at the end of the previous period.

One-price examples

As displayed in �gure 1, a persistent, positive technology shock generates a persistent

boom in retail sales, inventory investment, orders, the number of shoppers, and net-entry into

the retail sector. These responses all follow from the fact that because of persistently higher

wages households demand more current and future consumption for standard permanent

income hypothesis reasons. This raises the demand for retail goods, and in particular the

average retail price.30 Notice that the magnitude of the retail price response is inversely

related to the degree of net-entry. This illustrates the e¤ect of the entry channel on the

supply of current consumption goods. Entry tends to drive the retail price down and partially

o¤sets the increase in the average retail price brought on by higher demand for retail goods.31

30Higher real wages increase the household�s willingness to pay for current consumption. See equation
(15).

31Despite higher retail prices the zero pro�t condition is maintained in these examples because interest
rates (not shown) also respond positively to the technology shock.
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In contrast to the partial equilibrium case, the responses of sales, orders, and inventory

investment in the general equilibrium model replicate the qualitative features of a boom.

The only response inconsistent with a boom is average sales (in the one-price models, µ),

which always drops.32 The behavior of the distribution of inventories across retailers gives

some indication that average sales in a two-price model will behave di¤erently. Describing

why this is so helps to illustrate the price channel. In the lower right hand corner of �gure

1 the response of the proportion of retailers that hold inventories higher than x0 = 1 for the

(2; 0) model, and higher than x0 = 2 for the (4; 0) model, are shown. Given the positive

net-entry response, the proportion of �rms toward the high end of the inventory distribution

rises for both parameterizations. Below we show that this kind of response carries over to the

two-price examples, so that in these cases a higher proportion of retail �rms will charge the

lower price in response to a positive z-shock. This increases the marginal return to shopping,

encourages a stronger response of shoppers, and reverses the response of average sales. The

behavior of the other main aggregates is not e¤ected.

At this point it is interesting to study the ampli�cation and propagation e¤ects of (S; s)

policies. Regarding ampli�cation, notice that although the size of the response of inventory

investment increases with the order size, the responses for sales and orders decline with the

order size. This is due to a wealth e¤ect. The �xed order cost is larger in higher x¤ economies,

so the marginal labor cost of additional consumption is greater as well. Moreover, part of

the consumption bene�ts of additional labor e¤ort accrue later in time. It follows that for

32With positive net entry and a larger number of shoppers the response of the matching probability appears
ambiguous. However, it is straightforward to show, using equations (14), that in the one-price models the
proportion of retailers actually being matched with shoppers, µ, must fall, if an exogenous impulse leads to
positive net entry. This fact underlies the fall in average sales per retail �rm.
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the same size shock the consumption response should be smaller in economies with higher

order sizes.

To consider propagation, it is helpful to examine, along with �gure 1, the case of purely

temporary z-shocks, ½ = 0, displayed in �gure 2. Notice that the persistence of the response

of sales is positively related to x¤, regardless of the value of ½ assumed. This is because,

other things equal, a larger order size means a given positive change in orders increases the

supply of consumption goods for a longer period of time. It seems to suggest that (S; s)

inventory policies do in fact have the potential to contribute to the persistence of aggregate

�uctuations. The humped responses of output (that is orders) and the behavior of inventory

investment in �gure 1 o¤er more indications of persistence. Yet, as �gure 2 shows, much of

the persistence in the model is due to the persistence of the exogenous shock.

The one-price response functions with discount rate shocks (¯-shocks) are similar to the

z-shock cases in terms of business cycle dynamics and persistence. The ½ = 0:9 functions

are shown in �gure 3 (for other results, here and below, see Hornstein and Fisher, 1996).

These responses are qualitatively very close to �gure 1, except that here the average retail

price falls, the response of the number of shoppers is not always positive, and the response

of sales is much more delayed.

The main di¤erence with the z-shock examples evident from �gure 3 is that the inventory

policy has a large ampli�cation e¤ect. In particular, a wider (S; s) band is associated with

ampli�ed sales and orders responses, although the ampli�cation e¤ect of a wider (S; s) band

is mitigated as ½ is reduced (not shown). Ampli�cation is a direct result of the entry channel.

A permanent increase in ¯ increases the value of an order and encourages entry into the retail

sector. In addition, the incentive to enter the retail sector is more interest rate sensitive the

31



larger is the optimal order size.33 With respect to �gure 3 these considerations explain (i)

the positive and ampli�ed responses of net-entry, sales, orders and inventory investment, and

(ii) the negative and ampli�ed response of the average retail price. Implication (ii) follows

since entry tends to lower retail prices due to a pure supply e¤ect.

Two-price examples

We now consider brie�y impulse responses implied by the two-price models. To conserve

space we consider the case of ½ = 0:9 only. The relevant response functions are displayed

in �gures 4 and 5 for the z-shock and ¯-shock, respectively. We have included in these

�gures the responses for the (1; 0) model to illustrate the overall impact of the price and

entry channels as well as changes in the inventory policy on the responses of the endogenous

variables.

We see from the �gures that the responses of the main aggregates to both kinds of shock

are qualitatively very similar to the one-price responses, with the exception of average sales

and shopping time. Through the price channel, higher net-entry makes the price distribution

more attractive for the household, which increases shopping time and thereby average sales.

This in turn means that total sales respond faster, especially for time discount shocks. For the

z-shock, notice that the optimal price and ordering policies of individual retailers have only

a minor impact on the behavior of aggregate orders. For ¯-shocks, notice the ampli�cation

e¤ect of a wider (S; s) band indicated in �gures 3 is evident here also.

33To see this, consider a retailer which faces a constant discount factor ¯ and that can make a sale with
probability one at a price equal to unity in every period. In this case the expected value of an order of size
x¤ is Vx¤ = (1 ¡ ¯x¤

)=(1 ¡ ¯). The elasticity of Vx¤ with respect to ¯ is increasing in x¤. This implies the
increased interest rate sensitivity of entry. Note that in this example temporary changes in ¯ should have a
smaller impact on the value of an order relative to permanent changes.
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Although the qualitative features of the one-price and two-price examples are very similar,

this does not mean that the price channel is unimportant and that entry is the main channel

through which aggregate variables are in�uenced by the inventory distribution. As we now

show, the faster response of sales to shocks in the two-price example is necessary to account

for the positive correlation of inventory investment with sales and the procyclicality of average

sales.34

4.3. Quantifying the General Equilibrium E¤ects

To quantify the general equilibrium e¤ects we analyze summary statistics based on simu-

lating the model under the baseline parameterizations. Table 3 reports statistics related to

sales (C), orders (Y ), inventory investment (¢I), and average sales (C=N) based on monthly

data.35 The notation ¾x denotes the standard deviation of the variable x = C; Y;¢I rel-

ative to the standard deviation of the exogenous shock. The notation ½(C; x) denotes the

correlation coe¢cient for variables C and x = Y;¢I; C=N . Finally, except for ¢I, we log all

variables before computing statistics.

34The price channel also has a signi�cant impact on the behavior of aggregate variables for other parame-
terizations of the model. For example, recall our discussion of parameter selection where mention was made
of how saw-tooth impulse responses can emerge from the model when ¹ is �large�. Three factors explain
this. First, the elasticity of µ with respect to N and S is increasing in ¹. Second, the price channel gives
rise to a shopping time decision rule that depends positively on the number of retailers with x > x0 and
negatively on the number of retailers with x · x0. Third, the price channel ampli�es the response of the
number of shoppers to an exogenous disturbance. To see how the saw-tooth patterns emerge, consider the
case of a positive innovation to z in an otherwise baseline (2;1) version of the model with ½ = 0:9 and, say,
¹ = 0:5. The innovation tends to increase the number of shoppers more than the number of retailers, which,
because of the relatively high value of ¹, leads to a large positive response of the matching probability µ.
The high value of µ shifts the price distribution down enough so that in the following period shopping time
drops to induce a signi�cantly lower µ. With still positive net entry, the price distribution shifts back in
favor of encouraging the substitution of time toward shopping and a cyclical pattern emerges. This pattern
is reminiscent of the oscillations which emerge from traditional inventory-accelerator models (see Metzler
1941). However the stable high frequency dynamics implied by some parameterizations are derived from an
equilibrium model and not from mechanical equations, as is the case in the traditional models.

35 In results not reported here we �nd the qualitative conclusions drawn from these monthly statistics
translate to quarterly data.
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The relationship between statistics and model parameterizations for each of the two

sources of aggregate uncertainty are in many respects quite similar. First, in contrast to the

partial equilibrium model, orders are more volatile than sales and inventory investment is

positively correlated with sales in the two-price examples. The excess volatility of orders

over sales is positively related to both x¤ and x0. This phenomenon seems to be due to a

combination of sales volatility being dampened while �uctuations in inventory investment

are ampli�ed, as we change parameters so that x¤ and x0 are increased. The price channel is

important for generating a positive unconditional correlation of inventory investment with

sales. In the absence of the price channel, inventories and sales are essentially uncorrelated

for technology shocks and negatively correlated for discount rate shocks. For the two-price

model with an active price channel, inventories and sales are positively correlated because

as discussed above sales respond faster due to the stronger decline in prices.

Second, orders are uniformly positively correlated with sales and this correlation is gener-

ally inversely related in equilibrium to x¤ and x0. The correlation of average sales with sales

is never positive. However, this correlation becomes less negative when the price channel

is operational and the (S; s) band is widened and it is positive if, in addition, ½ is small

enough (for example, ½ = 0). These observations suggest both feedback e¤ects contribute to

procyclical average sales.36

Third, a wider (S; s) band has a mixed e¤ect on generating persistence. It tends to

increase the persistence of sales and inventory investment �uctuations, but it has little impact

36Some empirical evidence supporting the view that average sales are procyclical is that the per dealer
average unit sales of new US made cars is procyclical for the sample 1962-1988. The dealership data is
from Ward�s Automotive Annual (various issues) and total unit sales of domestic new cars is Citibase
variable RCARD. We calculate the contemporaneous correlation between Hodrick-Prescott �ltered real GDP
(Citibase variable GDPQF) and average sales per dealer to be 0.59.
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on the persistence of orders �uctuations.

One feature of the discount rate shock cases does stand out, namely the strong associ-

ation of larger values for x¤ and x0 with increased volatility in sales, orders and inventory

investment. In the (x¤; x0) = (1; 0) model ¾C = 0:19, ¾Y = 0:19, and ¾¢I = 0:01. In the

(4; 0) version of the model the volatility of sales and orders increases by a factor of seven,

and inventory investment increases by a factor of thirty. In the (4; 2) version of the model

the volatility statistics increase again so that ¾C = 1:66, ¾Y = 1:87, and ¾¢I = 0:35.

4.4. Isolating Entry: The Competitive Equilibrium as a Special Case

We now examine a special case in which we abstract from trading frictions and focus on

the entry channel. This example demonstrates that inventory holdings due to �xed ordering

costs can be incorporated into a competitive equilibrium model. This is useful because the

competitive equilibrium is Pareto-optimal and we can use the social planning problem to

show existence of an equilibrium and characterize its properties. A quantitative analysis

shows that for the competitive equilibrium example, orders remain more volatile than sales,

but that inventory investment is no longer positively correlated with sales.

In the absence of trading frictions retailers behave competitively, that is they take demand

and prices as given. Consider the limiting case of our model in which the representative

household is a very e¢cient shopper, that is 1=³ = 0. In an equilibrium for this economy,

the household sends out shoppers to visit all retailers, that is µ = 1, and buys only from

retailers with the lowest price. A typical retailer takes the price of the consumption good as

given: she has no incentive to raise her price since the probability of a sale would be zero,

and she has no incentive to lower the price since she already sells the good for sure. In terms
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of our discussion of x0 pricing schemes, the competitive equilibrium is a one-price equilibrium

(x0 = 0) in which the matching probability for retailers is one.

In Proposition 6 we show the competitive equilibrium exists and is unique. The version

of this model without aggregate uncertainty illustrates an important general equilibrium

characteristic. In the partial equilibrium of section 2.2 the inventory distribution does not

converge to the invariant distribution if there is no risk, µ = ± = 1. This absence of con-

vergence is associated with �uctuations in orders, production and wages. In the comparable

general equilibrium setting, convergence to the invariant distribution takes place because

agents want to smooth non-leisure activities over time, and wage changes induce conver-

gence.

We follow the same strategy as before to analyze the stochastic equilibrium, but do

not display the results. With the exception of °0, ³ and ´, the parameterizations of the

competitive economy are exactly the same as in table 1.37 The competitive economy has

predictions for all the same variables as the costly search model, except that average sales

are constant and the number of shoppers is indeterminate. With z-shocks, the impulse

response functions for the comparable variables are essentially the same as in the similarly

parameterized one-price costly search model. With one quali�cation the same can be said

for the responses to a ¯-shock. The responses to this shock in the competitive model are

somewhat less persistent than in the costly search model.38 Simulations of the competitive

economy also imply qualitatively similar values for the comparable statistics reported for the

37The values of the �xed cost parameter for the x¤ = 1, 2 and 4 versions of the competitive model are
°0 = 0, 0:008 and 0:035, respectively. The competitive case is de�ned by 1=³ = 0. Finally, we choose the
normalization ´ = 0:

38This is mostly due to the fact that the expected time between ordering for a typical retailer is lower in
the competitive cases relative to their comparable costly search cases.
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one-price costly search model in table 3. We �nd that with x¤ > 1 orders are more volatile

than sales, but that for all x¤ values considered and for all ½ ¸ 0 the dynamics of inventory

investment and sales are such that these variables are essentially uncorrelated or negatively

correlated unconditionally.

5. Conclusion

We have constructed a dynamic general equilibrium model to analyze the aggregate impli-

cations of (S; s) inventory policies and have identi�ed two general equilibrium e¤ects: the

endogenous variation in the order volume and the interaction of the inventory distribution

with di¤erent pricing policies across retailers. We have shown that both general equilibrium

e¤ects are necessary to account for the observations that orders are more volatile than sales

and that inventory investment is positively correlated with sales. Moreover, the model is

consistent with other salient features of the business cycle.

A competitive equilibrium version of the model, in which the entry channel is the only

general equilibrium feedback e¤ect, mimics the costly search economy described in the main

part of the paper, except for the inventory investment-sales correlation and the procyclical-

ity of average sales. The competitive equilibrium has the advantage of being much more

amenable to numerical analysis since it eschews the treatment of idiosyncratic risk for re-

tailers and implications of this risk for optimal price setting. We interpret this result as

providing some justi�cation for abstracting from microeconomic detail in future work on the

relation between lumpy inventory adjustment and the business cycle.39 Another advantage

39The work of Caplin and Leahy (1991) suggests the similarity between the competitive and the search
model may depend on the one-sided nature of the (S; s) policies we study and that with two-sided policies
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of the competitive model is that it is relatively easy to extend. For example it can be used to

study at least two important extensions. First, explicit variation in the intervention points

of the inventory policy over the business cycle, and second incorporating (S; s) inventory

policies into the standard neoclassical growth model with capital accumulation.

Finally, the inventory problem we have studied is just one example of the general problem

of optimal control with �xed adjustment costs. Other examples that have been studied in

the literature include the adjustment of houses, consumer and producer durables, prices,

employment, and cash balances. The basic strategy for analyzing the general equilibrium

e¤ects of (S; s) policies we pursue in this paper is to combine discreteness in the choices of

retailers with a free-entry condition to ensure that aggregate adjustment takes place in the

mass of retailers and not in the decisions of individual retailers for small aggregate shocks.

This technique can be applied in other settings with (S; s)-type polices. For example, in

the price-setting model of Benabou (1988, 1992) adding discreteness to the preferences of

consumers would ensure that prices take on discrete values. With small aggregate shocks we

expect that the free-entry condition in that model would imply that aggregate adjustment

would take place in the mass of �rms and not in the price-setting policies of individual �rms.

idiosyncratic risk may play a more important role.
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Appendix

In this appendix we state and prove the propositions referred to in the main text.

Assumption 1. Let R > 1, and demand is elastic, ª(p) = ¡±0(p)p=±(p) > 1, nonincreasing,
±0 · 0, bounded, 0 · ±(p) · 1, and it attains the upper bound for some positive price pl,
±(pl) = 1. Either (a) the elasticity of demand is constant, or (b) the demand function attains
its lower bound for some �nite price ph.

Remark 1. The representative household�s optimal reservation utility strategy described
in section 3 implies that (a) will be satis�ed if good speci�c utility shocks are distributed
according to a Pareto distribution, and (b) will be satis�ed if the shocks follow a uniform
distribution.

Proposition 1. Assume that ± satis�es Assumption 1. Then the change in the capital value
of a retailer, that is ¢Vx = Vx ¡ Vx¡1, and the optimal price px, are both decreasing in x.

Proof. The �rst order condition for an optimal price implies that marginal cost is less than
or equal to marginal revenue

¢Vx=R · f1(px) =
ª(px)¡ 1
ª(px)

px and (24)

Given that ª(p) > 1, this is also su¢cient for a maximum. From Assumption 1 it follows
that f1 is increasing in px. Thus the optimal price is increasing with the discounted capital
loss associated with the sale of one unit of the good. From the de�nition of Vx it follows that

¢Vx=R = f2(px; Vx¡1) =
µ± (px) px ¡ (1¡R¡1)Vx¡1

µ± (px) +R¡ 1 : (25)

We want to show that for any Vx¡1 there exist unique px and Vx which satisfy equations (24)
and (25).

Suppose that f2(p; V ) · f1(p) for all p, then px = pl and Vx is determined from (25).
Alternatively suppose that there exists a p such that f2(p; V ) > f1(p). The function f2 is
bounded above by

f2(p; V ) · ±(p)p

R¡ 1 ¡ V

R
:

If condition (a) from Assumption 1 applies then for p su¢ciently large f2(p; V ) · f1(p).
Both f1 and f2 are continuous, therefore there exists a px such that f2(px; V ) = f1(px).
Some algebra shows that @f2(px; V )=@p = 0, and since f1 is strictly increasing in p, the price
px is unique. Now suppose that condition (b) of Assumption 1 applies. Thus for p ¸ pl,
f2(p; Vx¡1) · 0, and f1(p) ¸ 0. By the same argument as above there exists a unique px > pl
which solves (24) and (25). Since f2 is decreasing in V , the increment ¢Vx is declining with
x.

Assumption 2. All �rms in the retail industry follow (x¤; 0) inventory policies, x¤ ¸ 1 ,
price strategies such that the probability of a sale is f±x : x = 1; : : : ; x¤g, and µt 2 [µ; µ]; 0 <
µ < µ < 1; for all t ¸ 0:
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Proposition 2. Given Assumption 2, from any initial distribution ¹g0, ¹gt converges to the
invariant distribution (3),

lim
t!1 ¹gx;t =

±¡1xPx¤
~x=1 ±

¡1
~x

N .

Proof. Consider a given realization of fµtg1t=0. Denote the matrix of transition probabilities
at time t;

¦t =

266666664

(1¡ µt±1) µt±2 0 0 ¢ ¢ ¢ 0 0
0 (1¡ µt±2) µt±3 0 ¢ ¢ ¢ 0 0
0 0 (1¡ µt±3) µt±4 ¢ ¢ ¢ 0 0
...

...
...

...
. . .

...
...

µt±1 0 0 0 ¢ ¢ ¢ 0 (1¡ µt±x¤)

377777775 ;

and e¦¿ = ¦¿+(x¤¡1) ¢ ¢ ¢¦¿+1¦¿ , ¿ ¸ 0. It is easy to verify that for any ¿ ¸ 0, e¦¿ is
a positive stochastic matrix. The restriction of µt to a compact strict subset of the unit
interval guarantees that the sum over the minimum elements in each column of e¦¿ is always
greater than some " > 0. Also, for any t ¸ 0, the invariant distribution (3) is a unique �xed
point of the mapping ¹gt+1 = ¦t¹gt. The result can be established now using the proof of
Theorem 11.4 in Stokey and Lucas (1989).

Proposition 3. Normalize the number of �rms in the retail industry to unity. Given As-
sumption 2, if the inventory distribution has converged to its invariant distribution, then

(i) The variance of orders equals the variance of sales.

(ii) Inventory investment and sales are negatively correlated.

(iii) Orders and sales are not more volatile than demand and the autocorrelations of
orders and sales equal the autocorrelation of demand.

(iv) Orders and sales are positively correlated only if demand is positively autocorre-
lated.

Proof. At time t, aggregate sales, Ct, equals the proportion of retailers that make a sale,
that is Ct =

P
x µt±x¹gx = µt

³
x¤=

P
x ±

¡1
x

´
. Aggregate orders, Yt equal the proportion of

retailers with x = 1 at time t ¡ 1 who make a sale times the size of the order. Thus
Yt = µt¡1±1¹g1 = µt¡1

³
x¤=

P
x ±

¡1
x

´
. Aggregate inventories at the beginning of time t+1, It+1,

satis�es the identity It+1 = It+Yt ¡Ct. Thus aggregate inventory investment during period
t, ¢It = It+1 ¡ It, equals (µt¡1 ¡ µt)

³
x¤=

P
x ±

¡1
x

´
. Thus (i), (iii) and (iv) follow trivially.

From the inventory identity

¾2Y = ¾
2
C + ¾

2
¢I + 2 cov(C;¢I) ,

where ¾2z, denotes the unconditional variance of z = Y;C;¢I. Since ¾2Y = ¾
2
C, it follows that

cov(C;¢I) = ¡¾2¢I=2, which establishes (ii).
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Proposition 4. There exists a unique solution to the optimization problem

maxns;q U (c; ns)
s.t. c = ³ns!q;

³ns!e (q) = m;
(26)

Proof. The household has the option of sending out shoppers with di¤erent reservation
utility policies. This means that the household does not choose any particular quality q,
but a signed measure on the set of feasible qualities [0; E[u]]. For simplicity assume that
the household can choose among a �nite set of policies f(qj ; ej) : j = 1; : : : ; Jg, in which ej
is the minimal expenditure when the expected match quality is qj. The household can send
out a measure ³nsj of shoppers all of whom follow the j-th reservation utility policy. The
utility index for market goods from this policy is ³!

P
j qjnsj and the cost from this policy

is ³!
P
j ejnsj. Clearly the household is solving a concave optimization problem. Suppose

that the expenditure function is strictly concave in quality q, that is marginal cost of quality
¸ is increasing in quality, as is the case here. Applying the same arguments as in Hornstein
and Prescott (1993), one can show that for the limiting case of bounded signed measures on
[0; E[u]] the optimal policy will put positive mass on one policy only and this is the solution
to (26). This approach is analogous to the use of lotteries in the context of non-convex
problems, see for example Rogerson (1987) or Hansen (1985).

Proposition 5. Let F be as de�ned in (21). An equilibrium satis�es (i) if households use
the reservation price policy (22) then the o¤er price strategy (23) is optimal for a retailer;
and (ii) if retailers use the o¤er price strategy (23) the reservation price policy (22) is optimal
for households.

Proof. (i) The optimal price policy of the retailer is based on the following argument. In
equilibrium no price lower than ¸ul will ever be o¤ered by a retailer because the probability of
acceptance by a shopper is a constant at these prices, and expected revenues are increasing in
the o¤er price for all prices p < ¸ul. For a similar reason, no price in the region ¸ul < p < ¸uh
will ever be o¤ered. Finally, no price higher than ¸uh will ever be o¤ered, unless the retailer
expects revenues in the following period to be exceptionally high. The preceding argument
suggests that by judicious choice of ul and uh at most two prices, ¸ul and ¸uh, will ever be
o¤ered by retailers in any given period. Notice, however, that if the di¤erence between ul
and uh is su¢ciently small, then only one price, ¸ul, will be o¤ered in a given period. This
is because for uh su¢ciently close to ul, the gain in revenues from a sale is more than o¤set
by the lower probability that a sale will actually take place. Households only go shopping if
the activity has a positive net return. This means there will never be a one-price equilibrium
with the price equal to ¸uh because in this case shopping would have a zero net return.

(ii) We show that if the household consumes the good, then the household is indi¤erent
among all mixed strategies of the form �accept if uj > pi=¸ and accept with probability
ai 2 [0; 1] if ui = pi=¸ for i; j = l; h�. This implies that the reservation price policy (22) is
optimal.

Let the retailer�s price strategy be characterized by
³
¹̧; x0

´
. Note that the household

takes ¹̧ = ¸ as given. For the speci�ed mixed strategies the household�s minimal expected
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expenditure per expected match quality is

e = ¹̧
³
q ¡ g´

´
: (27)

with g =
P
x>x0 (¹gx=N). Analogous to the proof of Proposition 4 we can imagine the house-

hold sending out shoppers with di¤erent mixed strategies. For simplicity again assume that
the household has a choice among a �nite set of mixed strategies resulting in expenditure-
quality pairs (ej; qj)

J
j=1. Let ³nsj be the measure of shoppers with the j-th mixed strategy,

then the optimal choice of nsj has to satisfy the following �rst order condition

³!qjUc ¡
µ
³
!

w
ej + 1

¶
Un ¸ 0 for nsj ¸ 0:

Using the de�nition of the expenditure function (27) and the equilibrium condition that
¹̧ = ¸ = wUc=Un, this condition simpli�es to³

g³!¸´=w ¡ 1
´
Un ¸ 0 for nsj ¸ 0.

If the household consumes goods this condition has to be satis�ed for some mixed strategy.
Since this condition is independent of the choice of mixed strategy, it is satis�ed for all
mixed strategies. Therefore the household is indi¤erent between choosing any one of the
mixed strategies.

Remark 2. We restrict attention to pure strategies where a shopper accepts an o¤er even
if he is exactly indi¤erent between accepting and rejecting. Otherwise, if the price must
be strictly less than the reservation utility to be accepted, there is no equilibrium because
retailers would have an incentive to increase o¤er prices.

Proposition 6. When the representative household is very e¢cient, 1=³ = 0, there exists
a competitive equilibrium and it is unique.

Proof. We show that our environment corresponds to that of a standard optimal growth
model when the representative household is a very e¢cient shopper. This environment
satis�es all the usual conditions of the welfare theorems and a solution to the social planning
problem can be decentralized as a competitive equilibrium, as described in section 3. In
the text we only consider equilibria for which retailers with positive beginning-of-period
inventory holdings do not place orders. We do not impose this restriction in the following.

In any period the aggregate state of the economy is given by the measure of retailers
over inventory holdings gt = [gx;t : x = 1; : : : ; ¹x¡ 1] 2 <¹x¡1

+ , and the exogenous state zt. As
noted before ¹x is the capacity constraint, that is retailers cannot hold more than ¹x units of
goods in inventory within a period. The measure of inventory holdings changes because of
order decisions and sales. Let ĝxx0;t be the measure of retailers who start out with x units of
inventory at the beginning of the period and place an order of x0 units, where x = 0; : : : ; ¹x¡
1, and x0 = 1; : : : ; ¹x. Let ĝt = [ĝxx0;t : x = 0; : : : ; ¹x¡ 1, x0 = 1; : : : ; ¹x, and x+ x0 · ¹x] 2
<¹x(¹x+1)=2
+ denote the vector of order measures which satisfy the capacity constraint. Entry

occurs if ĝ0x0;t > 0. The number of retailers who order before they sell all of their inventory
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cannot be larger than the number of retailers with the given initial inventory holding, that
is the following consistency constraint applies for the measure of order decisionsX

x0
ĝxx0;t · gx;t for x ¸ 1: (28)

Given the measure of order decisions the resource constraint for the manufactured good isX
xx0
(°0 + °1x

0) ĝxx0;t · ztn
®
y;t, (29)

and the distribution of inventory holdings after orders have been �lled is

¹gx;t = gx;t ¡
X
x0
ĝxx0;t +

X
x0+x00=x

ĝx0x00;t. (30)

Since each retailer is matched with a shopper, consumption of the representative agent is

ct =
X
x

¹gx;t (31)

and next period�s initial inventory holdings are

gx;t+1 = ¹gx+1;t. (32)

Because the household is very e¢cient at shopping there is no leisure loss associated with
contacting retailers and nt = ny;t and preferences U are as de�ned in (4). The constraints are
summarized in the set ¡ (gt; zt) = f(ct; nt; gt+1): such that there exist ĝt; ¹gt ¸ 0 and ct, nt,
ĝt, ¹gt, gt+1 satisfy (28), (29), (30), (31), and (32)g. The set ¡ is closed and convex, and since
nt and zt are bounded, the set is also compact. Applying standard theorems from Stokey
and Lucas (1989), we can show that the dynamic programming problem for this dynamic
optimization problem

U (g; z) = max
g0
U (c; n) + E [¯U (g0; z0)] s.t. (c; n; g0) 2 ¡ (g; z)

is well de�ned, and since U is strictly concave, the optimal policy is unique.

Remark 3. An extension of the competitive model which includes capital is immediate.
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Table 1. Parameter Values for the Baseline Experiments.
Panel A: Parameters Fixed

Across Experiments
À = 0:2 ® = 0:64 ¯ = 1:05¡1=12

' = 0:85 z = 1 °1 = 1:175
¹ = 0:25 ½ = 0:9 ¾ = 0:01

Panel B: Parameters Which
Vary Across Experiments

(x¤; x0) °0 ´ ³
(1,0) 0 0.135 701.3
(2,0) 0.010 0.135 699.6
(2,1) 0.015 0.303 933.9
(4,0) 0.046 0.135 697.1
(4,2) 0.055 0.538 524.0

Note: The table entries for ´ are in per cent and all other entries are in levels.

Table 2. Steady State Values of Selected Variables for the Baseline Experiments.

(x¤; x0) =
Statistic (1; 0) (2; 0) (2; 1) (4; 0) (4; 2)

Inventories / Sales 0.18 0.76 1.35 1.93 2.79
Expected Time Between Orders 1.17 2.32 3.47 4.71 7.04

Note: Expected time between orders is the mean time between ordering for the typical �rm
in months.

Table 3. Statistics Implied by the Model.

Technology Shocks, (x¤; x0) = Discount Rate Shocks, (x¤; x0) =
Statistic (1; 0) (2; 0) (2; 1) (4; 0) (4; 2) (1; 0) (2;0) (2; 1) (4; 0) (4; 2)

¾C 2.11 2.00 1.93 1.83 1.74 0.19 0.72 1.07 1.41 1.66
¾Y =¾C 1.02 1.03 1.09 1.05 1.14 1.03 1.03 1.08 1.05 1.13
¾¢I 0.10 0.23 0.24 0.34 0.34 0.01 0.09 0.15 0.28 0.35

½(C; Y ) 0.99 0.97 0.97 0.93 0.94 0.99 0.97 0.97 0.92 0.93
½(C;¢I) 0.18 0.02 0.24 -0.04 0.15 0.15 -0.01 0.20 -0.08 0.11
½(C;C=N) -0.99 -0.99 -0.13 -0.99 -0.06 -0.99 -0.97 -0.46 -0.92 -0.34
½(Ct; Ct¡1) 0.93 0.97 0.97 0.99 0.99 0.94 0.98 0.97 0.99 0.99
½(Yt; Yt¡1) 0.90 0.94 0.92 0.95 0.94 0.90 0.95 0.92 0.95 0.95
½(¢It;¢It¡1) 0.14 0.43 0.68 0.69 0.73 0.14 0.44 0.67 0.69 0.73

Note: Volatility statistics are presented as a proportion of the standard deviation of the
exogenous shock.
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Figure 1: One-Price Impulse Responses to Technology Shocks, ½ = 0:9
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Figure 2: One-Price Impulse Responses to Technology Shocks, ½ = 0
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Figure 3: One-Price Impulse Responses to Discount Rate Shocks, ½ = 0:9
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Figure 4: Two-Price Impulse Responses to Technology Shocks, ½ = 0:9
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Figure 5: Two-Price Impulse Responses to Discount Rate Shocks, ½ = 0:9
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