Working Paper Series

Computing Moral-Hazard Problems

Using the Dantzig-Wolfe Decomposition
Algorithm

WP 98-06 | Edward S. Prescott
Federal Reserve Bank of Richmond

)

THE FEDERAL RESERVE BANK OF RICHMOND

RICHMOND = BALTIMORE = CHARLOTTE

This paper can be downloaded without charge from:
http://www.richmondfed.org/publications/

Computing Moral-Hazard Problems Using the Dantzig-Wolfe
Decomposition Algorithm

Edward S. Prescott*
Research Department
Federal Reserve Bank of Richmond

Working Paper 98-6
June 1998

Abstract

Linear programming is an important method for computing solutions to private informa-
tion problems. The method is applicable for arbitrary specifications of the preferences and
technology. Unfortunately, as the cardinality of underlying sets increases the programs quickly
become too large to compute. This paper demonstrates that moral-hazard problems have a
structure that allows them to be computed using the Dantzig-Wolfe decomposition algorithm.
This algorithm breaks the linear program into subproblems, greatly increasing the size of prob-
lems that may be practically computed. Connections to dynamic programming are discussed.
Two examples are computed. Role of lotteries is discussed.

1 Introduction

This paper computes static moral-hazard problems using the Dantzig-Wolfe decomposition al-
gorithm. The method is applicable to single agent problems and some multiple agent problems
where a source of private information is an agent’s action. The technique is demonstrated in the
classic principal-agent moral-hazard problem and variants of it.

I use the revelation principle framework developed in Myerson (1982) and Prescott and
Townsend (1984). In this framework, lotteries are included in the contract space. As a conse-
quence, the choice variable in the constrained maximization program is a probability distribution
over the underlying sets of the relevant variables rather than deterministic functions. When the
cardinality of each underlying set is finite, the program is a linear program.

There are two computational advantages to the linear programming formulation: First, the

theory on computing linear programs is well developed and there are numerous linear programming

*The author would like to thank Jeff Lacker for helpful comments. The views expressed here are solely those of
the author and do not necessarily reflect the views of the Federal Reserve Bank of Richmond or the Federal Reserve
System.

codes available. Second, problems with arbitrary specifications of preferences and the technology
can be computed. Unlike the analytical literature, there is no need to make highly restrictive
assumptions on preferences and technology. The disadvantage to using linear programs is that as
the cardinality of the underlying sets increase, the linear program quickly grows in size, making
computation infeasible, either because of memory or software limitations.

In this paper, I demonstrate that the moral-hazard problem can be effectively computed
using the Dantzig-Wolfe decomposition algorithm. The moral-hazard problems contains blocks of
constraints and variables, one per action, that are only connected by a few constraints. A linear
program with this structure is called block angular and can be computed using the Dantzig-Wolfe
decomposition algorithm. Using this algorithm, I compute a linear program with 315,000 variables
and 7057 constraints.

The decomposition algorithm is closely related to dynamic programming. Each block of con-
straints is computed separately, like the second-stage of a two-stage dynamic program. The results
of these computations are summarized by state variables that are then used in a master program
that includes the connecting constraints. Unlike a dynamic program, however, the algorithm it-
erates between the master program and the subproblems. This iterative process avoids the need
to calculate the entire value function.

Economic reasons for lotteries

The literature does not usually incorporate lotteries into private information problems. One pos-
sible reason for their absence is the literature’s emphasis on analytical results; lotteries complicate
the analysis. Another possible reason is that they are not generally an explicit feature of contracts.

While explicit randomization is not necessarily frequently observed in contracts, neither are
the complicated deterministic contracts that arise in models without lotteries. If a contractual
device is potentially useful it should be included in the contract space unless there is an economic
reason for excluding it. Furthermore, degenerate lotteries are a property of optimal contracts
from some specifications of preferences and technology. For these specifications, any lotteries in
the optimal solution are a result of the discrete grid. For a sufficiently fine grid, the solution will
be a valuable approximation of the continuum case.

Some types of lotteries, however, may represent economy-wide effects rather than specific
contractual devices. Their absence from contracts is less of an objection. For example, consider

an economy with a continuum of ex ante identical agents who face an economy-wide resource

constraint. Each agent’s effort is private information. Mathematically, this problem is identical
to a principal-agent problem where the principal is risk-neutral and his reservation level of utility

1" The difference is in interpretation. Lotteries in this economy represent equilibrium

is zero.
fractions of the population. If in equilibrium, the solution to the moral hazard problem is a
lottery over actions, then the lottery would represent a fraction of the population working each
action. The implementation of the action lotteries need not be by an explicit contractual provision
but could result from an unmodeled market feature.

Macroeconomic papers by Hansen (1985) and Rogerson (1988) use lotteries in a model with a
continuum of agents in order to model the discrete nature of work. Prescott and Townsend (1996)
and Lehnert (1997) interpret private-information models in similar frameworks. Lehnert (1997)
finds that in a Solow growth model with moral hazard, leaving out lotteries substantially changes
the growth and distribution effects in the economy. A final, practical, advantage of lotteries is that
important sets are convex, allowing for some private information problems to be decentralized as
competitive equilibria. See, for example, Prescott and Townsend (1984).

Why compute?

The literature has emphasized analytical properties of private information models and as a conse-
quence, it has restricted itself to narrow assumptions on technology. In particular, the literature
usually assumes that preferences are separable in consumption and effort and that the technology
satisfies the monotone likelihood ratio property and the cumulative distribution function condi-
tion, assumptions sufficient to use the first-order approach. These assumptions are very restrictive
and do not necessarily describe data. For economies without these assumptions, computing can
help ascertain the qualitative properties of contracts. Prescott and Townsend (1997) contains
several such examples.

Computing, however, is probably most important for using private information models to
answer quantitative questions. Boyd and Smith (1994) is an excellent example of this. They
examined the value of stochastic versus deterministic auditing, in the context of the costly state
verification model. This model dates back to Townsend (1979) and has been extensively used in
the auditing, corporate finance, banking, and macro literatures. It has received a lot of atten-
tion because when verification is restricted to deterministic strategies, debt contracts are optimal.

This appealing prediction has led many, particularly in macroeconomics, to use this model. Un-

T will present an example with these features later in the paper.

fortunately, a well-known analytical result is that stochastic verification dominates deterministic
verification.?

To answer the question of how much better stochastic verification is than deterministic ver-
ification, Boyd and Smith (1994) calibrated a costly verification model using bankruptcy data.
They calculated that the gains from stochastic verification are only on the order of 0.0003-0.03%
of a firm’s value. Assuming that the cost of implementing stochastic auditing is non-trivial, as
they do, then the commonly observed debt contracts would be optimal. The question they asked
was a quantitative one, and they needed to compute solutions in order to answer it.

The Computational Experiment

I evaluate the algorithm by the size of the programs and the time needed to compute them.
There is a question of whether lotteries over grids are a good approximation to lotteries over
continuum. I do not address this issue because the answer to this question depends the economic
application. Furthermore, discrete grids are sometimes the most natural economic specification.
The methods developed in this paper, however, do allow problems with finer grids to be computed
than previously possible. As a consequence, some problems that once were inadequately addressed
due to grid limitations are now manageable.

The paper proceeds by developing notation for the moral hazard problem. This notation is
used to write the moral hazard problem as a linear program. Often, I will refer to this program
as the global problem. Next, the Dantzig-Wolfe decomposition algorithm is developed. In my
description, I emphasize the connections to dynamic programming and discuss the role of action
lotteries. Afterwards, two examples that do not satisfy the usual assumptions made in the liter-
ature are computed. Solutions and computational results are reported. Finally, extensions of the

technique to more complicated models are discussed.

2 The Moral-Hazard Problem

There are several stages to the moral hazard problem, once the principal and the agent have

agreed to a contract.
1. The principal recommends an action;

2. The agent takes a hidden action;

ZSee for example Townsend (1979, 1987) and Mookherjee and Png (1989).

3. The publicly observed output is realized; and
4. Consumption is distributed to the agent.

Let C, Q, and A be the sets of consumptions, outputs, and actions, respectively. Denote
elements of these sets as c € C', ¢ € @, and a € A. The set of feasible points is P C C' x @ x A.
(Often, P = C' xQ x A.) The agent’s preferences are defined over P by the utility function u(c, a).
The principal consumes the surplus, receiving utility w(g — ¢). The action taken by the agent
affects the probability distribution of output according to the function p(g|a).

Program without lotteries

In the standard formulation of the principal-agent problem, lotteries are not allowed. The principal
deterministically recommends an action and the compensation schedule ¢(g) is also deterministic.
The problem is written, under the assumption that ¢ contains a finite number of elements, as

max > plgla)w(q —)

a,cl

s.t. Zp(q|a)u(c(q),a) > U and,
a solves m?XZp(qﬁ)u(c(q), a).

The first constraint guarantees the agent U utils. It is called a participation constraint or some-
times a reservation utility constraint. The second constraint is the incentive compatibility con-
straint. It can also be written 3, p(qla)u(c(q),a) > 3, plqla)u(c(q), @), Va € A. When A is a
continuum there is an uncountable number of these constraints. As a consequence, there is a
substantial literature concerned with conditions under which it is valid to replace the incentive
compatibility constraints with the much simpler first-order condition to the agent’s maximization
problem. See, for example, Rogerson (1985).

Program with lotteries®

Before introducing lotteries, I assume that the sets C, @, and A each contain a finite number of
elements. This assumption is only necessary for computation, not to use lotteries. Furthermore,

I assume that p(gla) > 0, Va, g, that is, each output has non-empty support. This assumption is

not necessary for the techniques used in this paper but it simplifies the notation.

3See Myerson (1982), Prescott and Townsend (1984), and Townsend (1993) for other derivations of the linear
prograrn.

When lotteries are allowed into the contract space, the principal chooses probability dis-
tributions over recommended actions and compensation schedules. The principal’s probability
distribution over the set of recommended actions A is described by m(a). Because it is possible for
different recommended actions to be recommended, the compensation schedule is now conditioned
by the recommended action as well as the output. The compensation schedule is the conditional
probability density function 7(c|g,a). It should be noted that deterministic contracts are still
feasible in this contract space. They are simply degenerate probability distributions.

The two sources of randomization provide different benefits. Randomization in compensation
may improve welfare if utility functions have convex portions. It may also weaken incentive
constraints if preferences are non-separable. For example, if the action affects risk-aversion then
randomization in compensation may be an effective way to implement actions. Randomization in
the recommended action may also improve welfare, though not in the same way. Later, when the
dynamic program is introduced, I will demonstrate how action lotteries improve welfare.

Placing 7(a) and 7(c|q, a) directly into the previous program does not create a linear program.
With some algebraic manipulations, however, it can be turned into a linear program where the
joint distribution 7(c, ¢, a) is the choice variable. The joint distribution is related to the principal’s

choice variables by the identity

7(c,q,a) = m(clg, a)p(qla)m(a). (1)
Technology constraints
The principal chooses 7(a) and 7(c|q,a), not 7(c,q,a). With the addition of several constraints,
however, the choice of 7(c, g, a) is equivalent to only choosing the marginal and conditional density
functions. These constraints are

vg,a, Y w(c,q,a)=p(la)y_ m(c,q,a). (2)

c c,q

If a m(c, q,a) that satisfies (2) is chosen, the principal has implicitly chosen w(a) and 7(c|q, a) but
not the exogenous p(g|a).

Incentive constraints

By the revelation principle, the recommended action a needs to be a solution to the agent’s decision
problem. For any action recommended with positive probability, m(a) > 0, @ must satisfy

> _m(clg, a)p(gla)ulc,a) = D w(cla, a)p(gla)ule, a), Ya € A. (3)

C’q

6

On the right-hand side of (3), the deviating action a enters into utility and the technology. It
does not enter into the compensation schedule because the recommended action, not the action
actually chosen by the agent, is the input into the compensation schedule.

To make these constraints linear in m(c,q,a), first substitute 7(c,gla) = 7(c|q, a)p(qla) into

the incentive constraints to obtain

plala) o
%;w(c,qm)u(c, a) > gw(c,qm)p(qm)u(qa), Va € A.

p(qla)
p(qla)

a was recommended but the agent instead takes action 4. The second step in making these

The term 7(c, gla) is the joint probability that the agent receives the pair (c,q) given that

constraints linear is to multiply both sides of the equation by m(a). The incentive constraints are

then

plgla) . . :
%;W(c,q,a)u(c,a) > ngﬂ(c,q,a)p(qm)u(c, a), Va,(a#a)e AxA. (4)

Because m(a) = 0 for actions that are never recommended, these constraints are trivially satisfied
by actions that are recommended with zero probability. Finally, because the cardinality of A is
finite, there is a finite number of incentive constraints.
Probability constraints
The following set of constraints ensures that w(c, g,a) is a probability measure.
Z m(e,q,a) =1, and Ve, q,a, w(c,q,a) > 0. (5)
epha
The principal-agent problem, with lotteries, is

Program 1: Participation Constraint Problem

max Z (e, q,a)w(q — c)

c?qia’

s.t. Z 7(c,q,a)u(c,a) > U, (6)

C7q7a

(2), (4), and (5).

Equation (6) is the participation constraint. Furthermore, this program is a linear program.

There is a finite number of linear constraints, and there is a linear objective function.

Program 1 can be used to compute the Pareto frontier by solving the program for each feasible
U. In a linear program, the set of feasible solutions is convex and the objective function is weakly
concave. These two features imply that the space of feasible utilities is also convex. Consequently,
the Pareto frontier can also be computed using the Planner’s problem.* The Planner’s problem
makes the objective function a weighted sum of utilities and removes the participation constraint.

This alternative formulation is important for the algorithms developed in this paper. Fur-
thermore, the Planner’s problem is easier to compute. Consequently, it is sometimes a more
advantageous formulation. For these reasons, I also write out the Planner’s program.

Let A € [0,1] be the agent’s weight. The Planner’s program is

Program 2: Planner’s Problem

max Z w(c,q,a) [Mu(c,a) + (1 — Nw(g — ¢)]

C7q7a

st (2),(4), ().

This program is also a linear program. By solving it for each A € [0, 1] the Pareto frontier can be
calculated.

Finally, it should be noted that there is yet a third method for calculating the Pareto fron-
tier. The remaining method is to switch the principal’s and agent’s utility in the Participation
constraint program and then solve the problem for the feasible range of principal’s utility W.
Later in the paper, I will present an example where this formulation is most appropriate for the
economic problem.

Computation

A linear program in standard form is written

max ex
x>0

s.t. Ax =b,

where e is a (1 x n) vector, x the choice variable is an (n x 1) vector, b is an (m x 1) vector, and

A is an (m X n) matrix, often called the coefficient matrix and not related to the set of actions

4The literature rarely uses the Planner’s formulation. There are two reasons. First, it is not necessarily the
most natural economic specification. Second, without lotteries the incentive constraints do not necessarily define a
convex set. In this latter case, the Planner’s problem will not trace out the entire Pareto frontier.

A. Problems with inequality constraints can be converted into standard form by the use of slack
variables.

The first step to computing a solution is to create the coefficients and the second step is to
solve the resulting linear program. The latter step requires the use of linear programming code.
Many codes, including the one I use in this paper, are based on the simplex algorithm.® Because
one version of the simplex algorithm, the refined simplex algorithm, underlies the Dantzig-Wolfe
decomposition it is necessary to briefly describe this algorithm.5
Refined simplex algorithm
Consider the system of linear equations Ax = b, where there are m equations, and n variables.
For simplicity, assume that m < n and that the rank of A is m. A basis of this system is m
linearly independent columns. The basic variables are the m variables that correspond to these
columns; the remaining variables are called non-basic. The constraint matrix can be partitioned
into coefficients on the basis, B, and coefficients on the rest of the columns D. Because B is
non-singular, there is a solution to the equation x = B~'b. This solution is feasible if x > 0.
A property of this solution is that all non-basic variables are necessarily zero while the basic
variables may or may not be zero. Geometrically, basic solutions are the extreme points of the
set of solutions to Ax = b.

If an optimal solution to a linear program exists, then there is a basic feasible solution that is
optimal. Simplex-based algorithms search among the basic solutions for an optimal feasible one.
Starting with a basic feasible solution, the algorithm determines if entering a non-basic variable
into the basis increases the objective function. If such a variable is found, the algorithm removes
a basic variable from the basis and enters the new variable into the basis. If at some point, no
such non-basic variable is found then the basic feasible solution is optimal. Geometrically, the
algorithm moves through adjacent feasible extreme points until it reaches an optimal one.

Given a feasible basic solution, let eg and ep be the portions of the objective function corre-
sponding to the basic variables and non-basic variables, respectively. The formula that the revised

simplex algorithm uses to determine if the objective function can be increased is ep — egB 1D,

5Recently, there have been important developments in interior point algorithms. Discussion in the literature
implies that for smaller problems simplex methods are faster in practice but for larger problems interior points
method are comparable if not superior.

6See any linear programming textbook for a description of simplex algorithms. Luenberger (1973) is a good
source.

or equivalently,
€p — /'LDv (7)

where 1 = egB™! are the dual variables (or simplex multipliers on the constraints). If any
element of this vector is positive, then introducing the corresponding non-basic variable into the
basis increases the value of the objective function. The algorithm then determines which basic
variable should be replaced in the basis by the non-basic variable. The algorithm repeats this
process until ep — D < 0. The basic variables that satisfy this condition are an optimal solution.
Computation limitations

There are two limitations for computation. The first is the storage required for the problem
and the second is the speed of the code. Needless to say, increasing the size of the problem
increases the storage required and generally increases the time it takes code to solve the problem.

One strategy is to calculate the matrices e, A, and b, and then directly enter them into
the linear programming code. While for some problems this is fine, memory limitations quickly
matter. As the cardinality of P increases, the size of the linear program increases. If n, denotes
the cardinality of set X, then the number of variables in the program is n = n.n4n, variables
plus ng(ng — 1) slack variables. The number of constraints is 1 +n,(n, — 1) +ngng. For example,
if there are 100 consumptions, 50 outputs, and 100 actions, then there are 500,000 variables,
9900 slack variables, and 14,901 constraints. Some commercial codes may be able to handle this
size of problem, but it would still require an enormous amount of memory and computation, far
exceeding the capabilities of my software and hardware.

In terms of memory requirements, the action set A is the most costly to increase in terms of
the size of the program. Increasing the number of elements in this set increases the number of
incentive constraints and technology constraints, as well as the number of variables. Increasing
the number of outputs is also costly but unlike actions does not affect the number of incentive
constraints. Increasing the number of consumptions is the least costly because the size of the

consumption set only affects the number of variables.

3 Dantzig-Wolfe Decomposition

As described in the previous section, the cardinality of the grids is the primary limitation to com-

puting solutions. In this section, I show that the moral hazard problem has a special structure

10

that can be computed using a variant of the Dantzig-Wolfe decomposition algorithm. This algo-
rithm breaks the global program into subproblems. The subproblems are computed separately,
greatly lowering the problems’s memory requirements.

In the course of developing the algorithm, similarities to dynamic programming will be dis-
cussed. This connection is emphasized for two expositional reasons: First, the dynamic program-
ming interpretation will make clear the value of action lotteries. Second, many readers are familiar
with dynamic programming. Despite the similarities to dynamic programming, however, there is
an important difference that lies at the heart of the algorithm’s efficiency. The algorithm avoids
computing the entire value function. Exactly how the algorithm does this will be discussed in
some detail later, but there is an interesting interpretation in terms of searching over the space

of Planner’s weights.

[uy up us . . . up |
1 1 1 1
Ay

Ay
As
L A.n .

Figure 1: Structure of Program 1 constraint matrix.

Figure 1 describes the structure of the constraint matrix of Program 1, that is, the moral-
hazard problem where the principal’s utility is maximized subject to the agent receiving his
reservation utility level. Each Aj; is the portion of the coefficient matrix on the constraints and
variables that are relevant only to action a;. In terms of Program 1, the constraints corresponding
to block A; are the incentive constraints for an agent recommended action a; and the technology
constraints corresponding to action a;. Coeflicients in A;j are those on variables directly involving
action a;, that is, m(c,q,a;). All other coefficients in this row are zero because the values of
variables 7(c, ¢, a;), j # i, do not affect the feasibility of these constraints.

The remaining two constraints connect or link the blocks of constraints. The top one in the

matrix is the participation constraint, the u; are vectors of coefficients determining utility the

11

agent receives if action q; is taken. The second constraint is the probability measure constraint.
The coefficients in this constraint are one, as indicated by the vector 1. Finally, it should be noted
that the constraint matrix for the planner’s formulation is obtained by removing the participation
constraint.

A constraint matrix that can be divided into blocks with only a few connecting constraints is
called block angular. Dantzig and Wolfe (1960) first developed an algorithm that takes advantage
of this structure. Description of the method can be found in many linear programming textbooks,
such as Bertsimas and Tsitsiklas (1997).

The block-angular structure of the constraint matrix allows the problem to be separated into
subproblems, one for each block, that are only connected by the connecting constraints. Much
like a dynamic program, the subproblems are analyzed separately to calculate utilities that the
principal and agent may receive if action a; is recommended. Then, the maximal combination of
these utilities is chosen in a way that satisfies the connecting constraints.

Each subproblem ¢ is a small problem consisting only of variables related to action a;, the
A; block of constraints, plus an additional constraint that the variables sum to one. This latter
constraint normalizes the subproblem’s allocation into ez post utility terms. Because the values
of the right-hand side variables b are zero, this normalization does not affect the relative values

of utility.” The subproblem’s constraints rearranged are

X ey Plld)
Va € A, %ﬂ(aq,az)((c,a) o(ala) (c,a))

Vg, ZW(69Q7ai)(1_p(Q|ai))_ Z W(Ca%ai)p(qjai) = 0,

c c,q#q

ZW(Ca%ai) = 1, (8)

cq

and a non-negativity constraint.
The set of allocations 7(c, g, a;) that satisfies these constraints is a convex set with a finite
number of extreme points. Since this set is bounded by the last constraint, the set is a convex

hull of these extreme points. Call this set of extreme points P;.

"Adding this constraint to the subproblem is a departure from the standard development of the Dantzig-Wolfe
decomposition algorithm. The standard form would calculate not only the subproblem’s contributions to utilities,
but also its contribution to the probability measure constraint. There would also be a difference in the master
program. The reason I depart from the standard presentation is that my variant makes clear the connections
to dynamic programming, a technique most economists are familiar with and it demonstrates the role of action
lotteries.

12

Feasible principal-agent utility pairs for this subproblem are calculated by evaluating the
objective function and participation constraint over the convex hull of P;. Because these utility
functions are linear, however, this set can be represented as the convex hull of their utility functions
evaluated at each point in P;. Let X; be the set of utilities evaluated at P;, and call an element in
this set z;. Each point z; is a two-dimensional vector listing the principal’s and agent’s utilities.
I use the notation z,,, and z,,; to describe the principal’s and agent’s utility, respectively.

Once the utility points are enumerated for each subproblem, the master program can be solved.
Let m(x;) be the probability of choosing z;. The master program is

Master Program

ey 2 e

Ti,0

s.t. Zw(wi)xui > U, (9)

Tyl

d owl(xi) =1, z € X, (10)

Tiyi
where the two constraints correspond to the connecting constraints in Figure 1. This program
is a linear program, just as was the original formulation. The difference is that the variables
m(c,q,a;) have been replaced by (z,,,zw;) and the A; constraints have been replaced by the
restriction that z; € X;. Also, notice that the scaling done in the subproblem is rescaled here so
that the 7(c, ¢, a;) embedded in z; is the same value as would result from Program 1. Finally, the

optimality condition is
Vi, Xy — foXw; < Hp, (11)

where p,, is the dual variable for the participation constraint and g, is the dual variable for the
probability measure constraint.

A simple example illustrates the basic idea behind the program. Consider an economy with
two actions, A = {a1, a2}. Figure 2 is a graph in utility space that describes Y;, the sets of feasible
utilities for each possible action that may be implemented. The agent’s utility is on the x-axis and
the principal’s utility is on the y-axis. The set Y7, bounded by the solid line and the axes, is the

set of feasible utilities obtainable if action a; is recommended. Points in the set X are scattered

13

Utility of principal

u
Utility of agent

Figure 2: Feasible utility pairs for each implementable action.

along the boundary of Y7. The set Y5, bounded by the dotted line and the axes, is similarly defined
for action as. These sets are independent of each other because of the block-angular structure of
the constraints. While these sets are convex, their union need not be, as in the example.

Figure 2 describes the problem faced by the program, after the subproblem utilities have been
calculated. The master program calculates the optimal combination of points from X; and X
that satisfies the two constraints. The set of feasible allocations in the master program is the
convex hull of X |J X2 (which is equal to Y; | Y2). In Figure 2, the hyphenated line indicates the
boundary of utility points that are feasible but are not in X; or Xo.

The optimal combination of points will be a lottery, possibly degenerate. If the optimal
solution involves points from more than one set, then an action lottery is a property of the
solution. As Figure 2 suggests, such a lottery may occur if the union of ¥7 and Y5 is not convex.
The discreteness of the action grid may cause such a non-convexity but, as demonstrated later
in an example, more substantive aspects of the problem, such as the technology, may also cause
such a non-convexity.

Figure 2 also illustrates the loss from disallowing action lotteries in the contract space. Without
action lotteries, the corresponding master program would restrict itself to considering points that

give at least U utils in sets Y7 or Ya. The point s; is the best such point in Y7 and so is the

14

best such point in Y5 so the program would choose s; because it gives the principal higher utility.
Because the action choice is deterministic, the participation constraint must hold, in a sense,
pointwise. In contrast, the program with action lotteries would choose s5, a convex combination
of points s3 and s4. This point gives the agent U utils in expectation and is Pareto superior to
S1.

Computationally, the master program is a step backwards. Despite the reduction of the
problem to two constraints, the number of variables has increased by an incredible amount, far
too many to enumerate. The master program also demonstrates why computing a dynamic
program is not a good strategy either. A dynamic program would solve for a value function, that
is, the northeastern frontier of each subproblem in Figure 2, and then solve the master program.
Solving for the value function, however, would require solving a huge number of subproblems,
probably not much better than enumerating all of the vertices.

Dantzig-Wolfe decomposition

The Dantzig-Wolfe decomposition algorithm surmounts the problem posed by the large number
of variables by only calculating values of x; as they are needed. The idea is that most extreme
points are not visited by the simplex routine. Consequently, most of the columns in the master
program, that is the extreme points of the subproblems, do not ever need to be computed.

The algorithm starts with an initial feasible solution to the master problem. Let X; C X
be a set consisting of the extreme points of this feasible solution. Next, the algorithm solves the
master problem but with the restriction that z; € X;. This is a very small linear program that has
a basic feasible solution by assumption. The optimality condition (7) needs the dual variables p
and the coefficients of the non-basic variables cp and D. The dual variables are easily computed
from the solution to the master problem because 1 = B~1b, but coefficients on the vast number
of non-basic variables, however, are not known at this point.

It is at this step that the algorithm saves on storage requirements. Rather than calculating
the coefficients on each of the non-basic variables, that is, calculating the huge number of extreme
points of each subproblem, it calculates from each subproblem the extreme point that maximizes
the objective function. These extreme points are computed by solving the following subproblem

for each ¢

15

Subproblem Program

max T C) Ja/i u C7a/’i — ww —c
W(c,q,ai)zogq: (q)(() w (q))

subject to (8).

The solution to this problem is an z; € X;, where
Vri € Xiy Ty, — fwZw;, < xfh — ,uw:c;;i.

This result is important because the optimality condition (11) for the master problem is V7,
Va; € Xi, Ty, — HwTw; < fp. Therefore, if for each 4, the optimality condition is satisfied by z}
then it is satisfied by all z; € X; and the solution to the master problem is optimal.

If the optimality condition is not satisfied, then the solution to the master problem is not in
X;. The algorithm then proceeds by adding to each X; the previously calculated solutions to the
subproblems. Then, the master problem is resolved and the algorithm continues until a solution
is found.

The algorithm is powerful because it does not calculate all of the extreme points of each
subproblem. During each iteration it calculates only the extreme points needed to find the solution
to the subproblem. Furthermore, most of the computation is performed on the subproblems which
are substantially smaller than the Program 1. If the algorithm does not require a large number
of iterations it should be effective.

Connection to Planner’s problem

There is a connection between the algorithm and the Planner’s problem that provides intuition
into the algorithm’s workings. Before discussing this connection, it is necessary to develop some
implications of the algorithm for the Planner’s problem.

In the Planner’s problem, Program 2, there is no participation constraint connecting the

subproblems. Consequently, the optimization condition is
Ay, + (1= N)Tw, < pp.

Because there is one constraint the dual variable is trivial to calculate. In the master program
for this problem, the basis consists one variable. Therefore, using the fundamental theorem of

linear programming Az, + (1 — X\)zu,; = pp, which is the optimality condition. Consequently,

16

Utility of principal

u
Utility of agent

Figure 3: Points computed at successive iterations.

each subproblem only needs to be solved once. The results are then compared to determine which
action or actions is optimal. An implication of this result, is that there exists a solution to the
Planner’s problem that is degenerate in action lotteries.

Returning to the Participation constraint program, the optimization condition is z,,;, — fyZw; -
This term can be interpreted in terms of a Planner’s problem, where the Planner’s weight on the
agent is one and the Planner’s weight on the principal is —u,,. The variable p,, is called a simplex
multiplier; at an optimum, it is the Lagrangian multiplier. The participation constraint is greater
than or equal to in this problem so this multiplier is negative.

Consider Figure 3 which is similar to Figure 2. As before, Y7 and Yy are the sets of feasible
utility pairs for subproblems one and two, respectively. The algorithm starts with extreme points
that can be used to form a feasible solution. On the first iteration, let X, = {n1,nq}, where the
feasible solution is a convex combination of n; and ny. The algorithm proceeds by calculating
the dual. In this problem, p,, is the slope between the points. The agent’s Planner’s weight is
1 and the principal’s is p,,. The weights are not normalized to sum to one, in order to facilitate
comparison with the optimality condition of the master program.

Next, the subproblems are solved with the new weights. The solutions to these subproblems

yield points n3 € X1 and ng € Xo. If the optimality condition is not yet satisfied, these points

17

are added to X and X5 and the algorithm continues. Each iteration, the subproblems are solved
using updated Planner’s weights. Under this interpretation, the algorithm is searching through the
space of Planner’s weights for the weights that deliver the optimal feasible solution. Furthermore,
each of these calculations picks points along the Pareto frontiers of the subproblem.

In terms of dynamic programming, the Pareto frontiers of the subproblems are the state
variables (the agent’s utility and the action) and the value function evaluated at the state variables
(the principal’s utility). The algorithm is selectively evaluating points along the value function.
Compared with dynamic programming, the effectiveness of the algorithm depends on the number
of times the value functions are evaluated. For the examples I compute in the next section, the

algorithm only evaluates the value function a few times before it finds the optimal solution.

4 Examples

This section computes solutions to two economies. The examples are designed to illustrate the
capabilities of the dynamic programming methods developed in this paper. The first example
uses the Dantzig-Wolfe decomposition algorithm to solve a participation constraint problem. The
example demonstrates the role that action lotteries may play. The second example looks at a
Planner’s problem to evaluate the qualitative properties of the optimal contract in a problem
where the agent controls two-dimensions of the probability distribution of returns.
Computation

All computational results reported in this section were done on a Risc6000 workstation with
256MB of RAM. The programs were computed using code written in Matlab v5.1 and ¢. The
programs created the constraints in Matlab and then called the linear programming routine as a
function. The routine I used is lp_solve version 1.2 which is written in c¢. Matlab is not as fast
as compiled code but it is easier to program in. Most of the numerical work involves the linear
programming routine. The routine Ip_solve is a linear programming routine based on the simplex

routine. It uses sparse matrix techniques to save on memory and computational costs.

4.1 Example 1: Action Lotteries

Consider an economy with a continuum of agents, of measure one, each of whom has the same
preferences and his own production technology. Each agent may only supply effort on his own plot

and his effort is hidden from everyone else. Output is publicly observed, however. The probability

18

distribution of a project’s return is only a function of the agent’s effort.

The economy is a closed economy so no resources may flow in or out. Because there is a
continuum of agents and project returns are independent, there is no aggregate uncertainty. The
resource constraint for the economy is

Z m(c,q,a)(c—q) <O0. (12)

C7q7a
Formally, this constraint is identical to the utility function of a risk-neutral principal.
My goal is to solve for allocations that treat the agents ex ante identical so I maximize the

expected utility of the representative agent. The allocation problem in this economy is

subject to a resource constraint (12), incentive constraints (2), technology constraints (2), and a
probability measure constraint (5). The problem is formally equivalent to maximizing the utility
of the agent subject to the principal receiving a reservation level of utility.

Grid

The grids are

C ={0.0, 0.01, 0.02, ..., 2.0},

Q ={0.5, 1.5},
A ={0.05, 0.075, 0.06, ..., 1.95}.

Preferences

Agents’ preferences are u(c,a) = 5 +0.8(2—a)?°. Utility is concave in consumption and convex
in effort.

Technology

The distinctive feature of this example is the technology. It contains a range of actions with
increasing returns to scale and another range with decreasing returns to scale. The probability
density function of the high output, ¢ = 1.5, given the action is

1—(a—1)%2

a <1,
p(g = 1.5]a) = {]+(a%])0.2
2

a> 1.

The probability density function of the low output, ¢ = 0.5, is simply p(¢ = 0.5]a) = 1 — p(q =
1.5]a). The probability density function is best understood by examining Figure 4.

19

—— p(@=15/a)]

0.8

0.7+

probability
o
(6]
T

0.4

0.3

0.2

action

Figure 4: Probability of the high output given the action for Example 1.

Computation
There are 201 consumption grid points, 2 output grid points, and 77 action grid points. To
solve this program directly, not using decomposition, would require solving a problem with 30,954
variables and 6008 constraints. While this is not a large program by many standards, it caused
Matlab to run out of memory. By contrast, using the decomposition algorithm requires computing
77 linear programs with 402 variables and 79 constraints per iteration.

My code first created the constraint matrix for each subproblem and saved them to disk. Next,
an initial feasible point was obtained by solving each subproblem using weights of (1,0) and (0,1).
If a solution exists for the problem, these extreme pairs of Planner’s weights produce a level of
the resource constraint above and below zero. With these points in X, a solution to the master
program will exist. On the first pass through the subproblems, only nine of the subproblems were
found to have a feasible solution. (Not surprisingly, the infeasible ones were actions in the sharply
increasing returns and the sharply diminishing returns range of A.) The algorithm kept track of
feasible subproblems and only computed them on subsequent iterations. To use the decomposition
algorithm, I set a stopping criterion of 10~® on the optimum condition.

The program solved quickly. The total time it took to solve this program using the decompo-

sition algorithm was 102.9 cpu seconds and it only took three iterations to converge. Almost half

20

of the time, 49 cpu seconds, was used by Matlab to create the constraint matrices. Each iteration
was relatively quick, on the order of 3 to 4 cpu seconds. The reason for this is that only the nine
subproblems with feasible solutions needed to be computed. On the first iteration, when all 77
were checked, the program took 39 cpu seconds.

Solution

The solution to the problem includes a lottery over the lowest action and a relatively productive

action. The lottery is

m(a=0.050) = 0.0924,

m(a=1.075) = 0.9076.

Slightly more than 9 percent of the population is assigned the low effort and nearly 91 percent
are assigned the high effort.
For each of the two assigned actions, there is a compensation schedule. For the low action,

the schedule is

m(c =1.20|/g = 0.5, a = 0.05) = 1,

m(c =1.19|¢ = 1.5, a = 0.05) = 1.

No incentive constraint binds for lowest action in this problem, so analytically there should be
full risk-sharing across the two outputs. As predicted by theory, risk-sharing is nearly perfect in
this example. Any difference here is due to numerical approximation.

For the higher action, ¢ = 1.075, there is an incentive problem. Consequently, consumption

needs to depend on output. The compensation schedule for people recommended this action is

m(c=0.54lg =0.5, a =1.075) = 0.5311,

m(c=0.55lg =05, a=1.075) = 0.4689,

m(c=1.40|¢g = 1.5, a = 1.075) = 1.

The consumption lottery that occurs if the low output is realized is of no economic content. It is

solely a result of the grid.

21

In terms of Figure 2, agents recommended the low action are receiving a utility point in set
Y7 and the other agents are receiving a utility point in set Y5. Despite the convexity in effort
disutility, the increasing returns in production are so strong in this economy that it is worth
splitting the population into agents who work low and high amounts.

A surprising computational feature of the results was the low number of iterations between
the master and subproblem programs. In general, problems may take more iterations to finish.
I also computed the problem where the economy owes resources to the rest of the world, that
is, W = —0.5. For this parameter specification, all agents are required to work a relatively high
amount. The reason is that the program needs to extract resources to transfer to the rest of the
world. Because agents work the high amount, the compensation schedule is output dependent
and looks much like the schedule for those working high amounts in the previous experiment.
Aside from the degeneracy in action lotteries, the main difference between this and the previous
experiment is that this problem took 10 iterations to converge. The extra iterations added some

time to the computing a solution, causing the program to solve in 125.0 cpu seconds.
4.2 Example 2: Two-dimensional action choice

In this example, I study a principal-agent problem where the agent chooses the mean and variance
of a project’s return. The agent is risk averse and receives disutility if he increases the mean or
lowers the variance of the project’s return. The principal is risk-neutral in consumption but he
is extremely averse to low returns. A possible interpretation is that the principal loses control of
the project if returns are below a certain amount, maybe because he has to make a debt payment.
With these preferences the principal desires a high mean, low variance effort decision by the agent.
I formulate this problem as a Planner’s program. My interest is the qualitative properties of
the optimal contract and since the Planner’s program is easier to compute, I follow this strategy.
The Planner’s weight was set to 0.5 in this example.
Grids
Let A,, and A, roughly refer to the mean and standard deviation of the project, respectively.

The grids are

C ={0.0, 0.02, 0.04, ..., 1.98},

Q ={0.0, 0.04, 0.08, ..., 1.96},
A ={0.70, 0.75, 0.80, ..., 1.10},
A, ={0.30, 0.35, 0.40, ..., 0.60},
A=A, x A,

22

0.1

(am,av) =(1.1,0.30)
0.09 . . (a,a)=(0.9,0.45)]
) (am,av) =(0.7,0.60)
0.081 (@,a,) = (1.1,0.60) | |

0.07 -

0.06 - N

probability
o I3 o
o o o
w S (5]
T T T

o

o

N
T

0.01f

output

Figure 5: Probability density function for selected actions.

The grid of actions is a two-dimensional vector.
Preferences

Preferences are

u(c, am, a,) = 5 +0.25(2 — a,,)"® + a,, and,

) g—c—20 ¢<0.2
w(c,q){ qg—c qg>0.2.

The agent is risk-averse and dislikes high mean and low variance actions. The principal is risk-

neutral but with an extreme aversion to low output.

Technology

The technology is a rough approximation to a normal distribution. For each (am,a,), the prob-

ability density of output is obtained by evaluating the normal distribution for all @ and then

normalizing so that qu(q|am,av) = 1. Figure 5 shows the distribution for a selection of the

action pairs.

Solution

Because of the principal’s aversion to low outputs, the principal wants an action that minimizes

the probability of outputs less than 0.2. Accordingly, the solution is a degenerate lottery with

23

1.8

16 — ¢(q) E
14t E

1.2 B

consumption
=
T
|

o
®
T
1

0.6 B

0.4r B

0.2 i

0 I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

output

Figure 6: Consumption sharing rule for Example 2.

probability one on the action pair (am,,a,) = (1.1,0.3). The compensation schedule that imple-
ments this action pair needs to do two things. First, it has to ensure that the agent does not
take a low mean action. Second, the schedule has to stop the agent from taking a high variance
action. In this problem, these are potentially conflicting goals. For example, low consumption for
high outputs rewards high variance actions and punishes low mean actions. The program weighs
all of the incentive effects and implements the high mean, low variance action by punishing the
agent for low and high outputs and rewarding him for intermediate outputs. Figure 6 shows the
optimal compensation schedule which is non-monotonic.

Computational results

This program is a large linear program, with 315,000 variables and 7057 constraints. Solving it
using the Dantzig-Wolfe decomposition algorithm requires solving 63 linear programs with 5000
variables and 113 constraints.® It took 181.6 cpu minutes to compute this problem. Slightly more
than 10 cpu minutes was spent creating the constraints. The rest of the time was spent solving
the subproblems.

The algorithm greatly increases the number of actions that can be included into the problem.

8For this problem, the limit on the number of actions I could compute globally was 8. At 9 actions, I ran into
memory constraints.

24

200

180 -

160 -

140

120 -

time
=
o
S
T

60

20

0 I I I I
0 10 20 30 40 50 60 70

number of actions in grid

Figure 7: Computation time in cpu minutes as a function of the size of the action grid.

The nature of the subproblems suggest that the time to compute solution is roughly linear in the
number of actions. As the number of actions increases, one more subproblem needs to be computed
while each subproblem only increases by one constraint. Figure 7 shows the computation time in
cpu minutes as a function of the size of the action grid. The x-axis lists the number of actions
while the y-axis lists the cpu minutes required to compute each problem. In each experiment,
a subset of A was used. Figure 7 demonstrates that for this example, the time required, while

convex, is close to linear.

5 Extensions

Any linear program with a block-angular constraint matrix can be computed using the Dantzig-
Wolfe decomposition algorithm. Several important extensions of the moral-hazard problems retain
this structure, including some multiple-agent models and models with production inputs.

For a multiple-agent model to be block-angular, decisions made by one agent can only affect
other agents through the connecting constraints. An example that satisfies this condition is one
where agents’ technologies are independent and there is a risk-neutral principal who has access

to outside funds. Mathematically equivalent, is the problem where there is a finite number of

25

agent types, each of whom is a fraction of the population, that face an economy-wide resource
constraint like in Example 1.

Another important class of models that the technique can be applied to is moral-hazard
models where there is also a publicly observed input into the technology. In these models, there
would be one subproblem per effort-input pair. The connecting constraints would depend on the
specification of the problem. For example, if there was a closed economy that not only faced a
consumption resource constraint, like (12) in Example 1, but also a resource constraint on the
amount of the input available to the economy, then there would be an additional connecting
constraint. The additional connecting constraint would create one more dual variable in the
master program and add a term to the objective function, corresponding to the value of input
resource constraint. If instead, the input is purchased by the principal at some price, then the
master program would only have a resource constraint and probability measure constraint just

like the master program in Example 1.

6 Conclusion

Linear programming is an important tool for computing private-information problems. The
method can be used for problems with arbitrary specifications of preferences and technology.
The Dantzig-Wolfe decomposition algorithm expands the capabilities of linear programming by
greatly increasing the size of problems that may be computed. The algorithm was demonstrated
by computing solutions to two examples. Both examples departed from the standard technology

assumptions made in the literature.

26

References

Bertsimas, Dimitris and John N. Tsitsiklis. Introduction to Linear Optimization. Belmont,

Massachusetts: Athena Scientific, 1997.

Boyd, John H. and Bruce D. Smith. “How Good are Standard Debt Contracts? Stochastic
versus Nonstochastic Monitoring in a Costly State Verification Environment.” Journal of

Business 67 (1994): 539-561.

Dantzig, G. B. and P. Wolfe. “The Decomposition Principle for Linear Programs.” Operations
Research, 8, (1960): 101-111.

Hansen, Gary D. “Indivisible Labor and the Business Cycle.” Journal of Monetary Economics

16 (1985): 309-27.
Lehnert, Andreas. “Solow Growth Models and Moral Hazard.” Manuscript, 1997.

Luenberger, David G. Introduction to Linear and Nonlinear Programming. Reading, Mas-

sachusetts: Addison-Wesley Publishing Company, Inc, 1973.

Mookherjee, Dilip and Ivan Png. “Optimal Auditing, Insurance, and Redistribution.” Quar-
terly Journal of Economics 104 (May 1989): 399-415.

Myerson, Roger B. “Optimal Coordination Mechanisms in Generalized Principal-Agent Prob-

lems.” Journal of Mathematical Economics 10 (June 1982): 67-81.

Prescott, Edward C. and Robert M. Townsend. “Pareto Optima and Competitive Equilibria
with Adverse Selection and Moral Hazard.” Econometrica 52 (January 1984a): 21-54.

Prescott, Edward S. and Robert M. Townsend. “Theory of the Firm: Applied Mechanism
Design.” Manuscript 1997.

Rogerson, Richard. “Indivisible Labor, Lotteries and Equilibrium,” Journal of Monetary

Economics 21 (January 1988): 3-16.

Rogerson, William. “The First-Order Approach to Principal-Agent Problems.” Econometrica
53 (1985): 1357-68.

27

[13] Townsend, Robert M. “Information Constrained Insurance: The Revelation Principle FEx-

tended.” Journal of Monetary Economics 21 (1988): 411-450.

[14] Townsend, Robert M. The Medieval Village Economy: A Study of the Pareto Mapping in

General Equilibrium Models. Princeton, N.J.: Princeton University Press, 1993.

28

	Working Paper Series Title: Computing Moral-Hazard Problems Using the Dantzig-Wolfe Decomposition Algorithm
	Working Paper Series Date: WP 98-06
	Working Paper Series Authors: Edward S. Prescott
Federal Reserve Bank of Richmond

