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Abstract 

This paper studies bank regulation in the presence of deposit insur
ance, where banks have private information on their own ability and their 
investment strategy. Banks choose the mean and variance of their portfo
lio return. Regulators wish to control banks’ risk choice, even though all 
agents are risk neutral and there are no deadweight costs of bank failure, 
because high risk adversely a¤ects banks’ ex ante incentives along other 
dimensions. Regulatory tools studied are capital requirements and return-
contingent …nes. Regulators can seek to separate bank types by o¤ering a 
menu of contracts. We use numerical methods to study the properties of 
the model with two di¤erent bank types. Without …nes, capital require
ments only have limited ability to separate bank types. When …nes are 
added, separation is much easier. Fine schedules and capital requirements 
are tailored to bank type. Low quality banks are …ned when they produce 
high returns in order to control risk-taking behavior. High quality banks 
face …nes on lower returns to prevent low-type banks from pretending they 
are high quality. Combining state-contingent …nes with capital regulation 
signi…cantly improves upon pure capital regulation. 
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1 Introduction 
This paper studies bank regulation in a model where deposit insurance induces 
a wedge between private decisions and the social optimum. In this model, 
each bank has private information on its ability and chooses both the mean and 
variance of its investment portfolio. The regulator can set capital requirements 
and impose state-contingent …nes. Furthermore, the regulator may o¤er banks 
a menu of regulatory contracts. A key feature of this model is that banks 
that choose a lower portfolio variance also choose a portfolio with a higher 
mean. Thus, in contrast to our usual …nance intuition, bank portfolio returns 
endogenously exhibit a “reverse mean-variance trade-o¤”. This feature can be 
exploited by the regulator to improve social welfare. 

Often, the goal of regulation is described as “ensuring the safety and sound
ness of the banking system”. That is, the regulator seeks to reduce the overall 
risk of the bank sector. This goal is usually motivated by a desire to protect 
taxpayer liability, reduce failure resolution costs, or prevent systemic risk. We 
develop an alternative rationale for reducing bank risk that is complementary 
to, but distinct from, these standard rationales. In our paper, the cost to society 
of high failure risk is due to the way high risk distorts the ex-ante incentives of 
banks. For example, White (1991) argues that the cost of the United States 
Savings and Loans crisis was not primarily the deadweight societal cost of re-
solving the failed thrift institutions ex post. Rather, it was the cost of poor 
investment decisions made by thrifts before the wave of thrift failures started 
in the mid-1980’s. 

It is well known that many savings and loan institutions were technically 
insolvent in the early 1980’s because they held a large amount of low-interest 
mortgages made before the in‡ation of the late 1970’s but had to pay the much 
higher market rate of interest for short-term liabilities that existed in the early 
1980’s. Mistaken attempts at deregulating the S&L’s without proper supervi
sory safeguards gave these insolvent thrifts the opportunity to increase their 
portfolio risk, in essence, to gamble for resurrection. White (1991) provides ev
idence that failed thrifts were more likely to have engaged in real estate lending 
and other new activities that were not in the traditional purview of thrifts. 

In this paper, we argue that this sort of fall in the diligence with which 
banks construct their asset portfolio is associated with an increase in bank risk. 
More precisely, if banks were required (or induced) to reduce the variance of 
their portfolio, they would also tend to expend more e¤ort increasing the mean 
of their portfolio return. Thus, the welfare-maximizing regulator ought to be 
concerned about reducing bank risk, but not necessarily because risk per se is 
costly, but because reduced bank risk leads banks to make better investments, 
thereby increasing the mean output of the economy and enhancing aggregate 
welfare. 

In our model, the regulator cannot control bank risk directly, because the 
distribution of banks’ portfolio returns is private information. This di¢culty in 
determining banks’ ex ante return distributions, especially the return variance, is 
a fundamental practical problem for bank regulators. The Basel Committee on 
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Bank Regulation continues to struggle with a practical way of measuring bank 
portfolio risk in its e¤orts to implement risk-based capital requirements. We 
capture this di¢culty in an extreme way by assuming that risk is completely un
observable to the regulator. Therefore, risk must be controlled indirectly. The 
main regulatory tools available to do so in our model are state-contingent …nes. 
These …nes di¤er from most current regulatory practice, which relies primarily 
on non-state-contingent regulatory tools such as ex ante capital requirements. 
The Basel Accord of 1988 bases capital minimums on a crude risk-weighting 
of total assets held by a bank. Similarly, the Federal Deposit Insurance Cor
poration Improvement Act of 1991 (FDICIA) imposes capital requirements for 
U.S. banks. But recently, some state-contingent devices have become part of 
the regulatory tool kit. The prompt corrective action provisions of FDICIA can 
be viewed as state-contingent: if a bank’s capital falls below a minimal value, 
sanctions can be imposed, including closure. State-contingent tools play an even 
more prominent role in the “internal models approach,” a 1995 modi…cation to 
the Basel accord that applies to the trading books of large money center banks. 
This approach allows the bank to set its regulatory capital level using the Value 
at Risk (VaR) estimate produced by the bank’s own risk model. Regulators 
backtest these models to determine if the bank’s model is adequate or if it is 
accurately reporting its results. If a bank’s model performs poorly, sanctions 
can be imposed. As argued by Rochet (1999), these checks introduce some 
state-contingency into the regulatory mechanism.1 Our model explicitly studies 
state-contingent regulation by allowing …nes to depend on the return produced 
by the bank. 

This paper builds on Marshall and Prescott (2001), who study state-contingent 
…nes in a two-dimensional moral hazard model where both the mean and vari
ance of the bank’s portfolio return is private information.2 They …nd that for 
lognormal distributions of returns it is optimal to impose …nes on banks that 
produce extremely high returns. This seemingly perverse result is driven by the 
need to control risk taking. It is desirable to impose …nes on return realizations 
with the highest deterrence e¤ect per dollar of …nes assessed in equilibrium. In 
the absence of limited liability, the optimal …ne would be placed on the extreme 
left-hand tail of the distributions. However, with limited liability …nes cannot 
be assessed on the left-hand tail so they are assessed on the right-hand tail 

1 The “pre-commitment approach” is another state-contingent mechanism. Under pre
commitment, banks would be allowed to choose their own level of capital but would be subject 
to a …ne if this capital did not cover ex post losses. In the proposal, …nes were to be used 
as the penalty but other penalties, such as increased capital or increased regulatory scrutiny, 
could be used as well (Kupiec and O’Brien (1995a,b)). This approach was actually put forth 
by regulators for public comment (O¢ce of the Federal Register (1995)) but has not been 
adopted. 

2 We also build other papers in the literature on bank regulation in the presence of private 
information. Antecedent papers include Giammarino, Lewis, and Sappington (1993), Camp-
bell, Chan, and Marino (1992), Boyd, Chang and Smith (1998, 2002), Nagara jan and Sealy 
(1998), Besanko and Kanatas (1996), and Matutes and Vives (2000). Also relevant is the 
small principal-agent literature on when the agent controls risk. See, for example, Palomino 
and Prat (2003). 
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instead.3 

An obvious issue raised by this result is that if some banks are higher qual
ity than others, and if bank quality is private information, …nes on high returns 
may simply punish the high quality banks rather than deterring risk-taking by 
low quality banks, and may even deter innovation. (See Boyd (2001)). By in
corporating unobservable heterogeneity in bank types, our model can address 
this trade-o¤. The model contains both low and high quality banks. Low type 
banks have little incentive to expend e¤ort to increase their portfolio quality. 
In contrast, high-type banks make the socially optimal e¤ort choice even in the 
absence of regulation. We …nd that, as in Marshall and Prescott (2001), the 
optimal contract still imposes …nes on high returns for the low-type banks. How-
ever, these …nes are not imposed on the high-type banks because the regulator 
can separate types by o¤ering a menu of contracts. Low-type banks choose the 
contract with high return …nes, while high-type banks choose an alternative con
tract. However, because the regulator cannot observe bank type, the contracts 
on the menu must induce self selection. Consequently, some punitive measures 
need to be included in the high-type contract, even though, in the absence of 
unobserved heterogeneity the high-type would be self-regulating. This must be 
done to convince the low-type to truthfully report their type. Furthermore, we 
…nd that the costs of private information about bank type are borne entirely 
by the higher quality bank. The lower-quality bank always receives at least as 
much utility as it would have under type-observability. 

The problem is very di¢cult to analyze. There are two dimensions to the 
moral-hazard problem and there is private information on bank type.4 Further-
more, the capital requirement, while observable, a¤ects incentives. Because of 
these complications, we explore the model by using numerical methods to solve 
and analyze speci…c parametric examples. We transform the problem into a 
linear program as in Myerson (1982), Prescott and Townsend (1984), and oth
ers. Even solving this linear program is not straightforward because of the large 
number of o¤-equilibrium strategies that need to be checked to preserve incen
tive compatibility. We use a method developed in Prescott (2003) that e¢ciently 
checks these strategies. The numerical methods are described in Appendix B. 

The remainder of the paper is organized as follows: Section 2 develops the 
model. Section 3 derives some comparative static results on the connection be-
tween bank behavior and capital requirements. It also provides some conditions 
under which a decreased return variance induces a bank to increase its portfolio 
mean. Section 4 reports in detail the optimal contracts for a variety of paramet-
ric examples. The …nal section o¤ers some concluding comments. Technical 

3 The result is similar to that of Green (1984) who studied risk control in a non-banking 
environment. 

4 There is a small literature on two-stage problems that start with hidden information and 
then follow with moral hazard. Papers on this problem include Christenson (1981), Baiman 
and Evans (1983), Penno (1984), La¤ont and Tirole (1986), McAfee and McMillan (1987), 
Demougin (1989), Melamud and Reichelstein (1989), and Prescott (2003). These papers study 
a substantially simpler moral hazard problem than we do, and do not incorporate elements like 
capital requirements. Furthermore, this literature has been primarily focused on conditions 
under which a report on private information is valuable. 
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details can be found in the two appendices. 

2 The Model 
2.1 Households 
There are two periods and a single consumption good. There is a continuum of 
risk-neutral households of measure one who consume in the second period only. 
The households own all the assets in the economy, consume all the output, and 
operate all the banks. Each household includes one “banker”, who is one of 
two types, low and high. Low-type bankers are bad at operating a bank while 
high-type bankers are good at bank operation. (We discuss the consequences of 
bank type more formally below.) Let hi denote the fraction of households with 
a type i banker, for i 2 flow; highg. 

In the …rst period, a household receives an endowment of one unit of the 
consumption good. Each type of household must split this endowment between 
capital to use in its own bank and funds to deposit in other banks. Demand 
deposits pay o¤ one unit of the consumption good in the second period for each 
unit invested in the …rst period. In addition to its pecuniary payo¤, a unit of 
bank deposits provides liquidity services with utility value ½ > 0. All demand 
deposits are government insured, so the household is indi¤erent about which 
bank holds its deposits. 

For simplicity, we assume that each bank can only be of size one.5 A type-
i bank funds its investments with deposits from outsiders Di 2 [0; 1]. The 
remaining portion of the investment, 1 ¡ Di , is funded by the banker’s own 
funds. These own funds will be called capital. Since every bank must be the 
same size, the deposits made by the household must equal Di, the deposits its 
bank takes from other households. We make the assumption that a household 
may not place deposits in its own bank. This assumption captures the idea that 
depositors do not monitor their bank because of deposit insurance. 

We do not model the individual assets of a bank’s investment portfolio. 
Instead, we assume that the bank chooses the distribution of its portfolio return. 
Let r denote the gross return accruing to a bank. This portfolio return has a 
cdf F (¢j¹;¾ ), where F is a two-parameter family of probability distributions 
completely characterized by its mean ¹ and variance ¾2 . For simplicity of 
exposition, we assume that there exists a pdf corresponding to F (¢j¹;¾). This 
pdf is denoted f (¢j¹; ¾). For most commonly used two-parameter distributions, 
the value of f (rj¹; ¾) is decreasing in ¹ for r su¢ciently small. Accordingly, 
we assume that there exists an r¤ (¹;¾) such that 

@f (rj¹; ¾) 
< 0; 8r < r¤ (¹; ¾) : (1)

@¹ 
5 This extreme span of control assumption is often made in the bank regulation literature. 

For example, see Boyd, Chang, and Smith (2002). 
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For example, equation (1) holds for the normal distribution with r¤ (¹; ¾) = ¹; 
it holds for the log normal distribution for an r ¤ (¹; ¾) > ¹: 

The bank chooses two characteristics of the portfolio. The …rst is the port-
folio standard deviation ¾, which measures the bank’s risk choice. The second 
is the bank’s level of screening e¤ort, s ¸ 0. We think of screening e¤ort as 
the amount of diligence applied in evaluating loans and other assets. Screening 
positively a¤ects the mean of the distribution, denoted ¹ i (s), where 

¹0 
i (s) > 0 (2) 

¹0 
i 
0 (s) < 0: (3) 

The only di¤erence between the two bank types is that a given amount of 
screening e¤ort results in a higher mean return for the high types than for the 
low types. That is, 

¹ high (s) > ¹ low (s) ; 8s: 

The cdf of the return of bank of type i that chooses screening s and risk ¾ 
will be denoted Fi (¢js; ¾) where 

Fi (rjs; ¾) ´ F (rj¹ i (s) ; ¾) : (4) 

The pdf corresponding to this cdf will be denoted fi(¢js; ¾). Screening s also 
has a utility cost °s, with ° > 0. 

In addition to the banks and households, there is a regulator who seeks to 
maximize social welfare. (We characterize explicitly the regulator’s objective 
in Section 2.2, below.) The regulator may impose …nes, gi(r ), as a function 
of the bank’s type and ex post return. These …nes are non-negative, and are 
constrained by limited liability of the bank. Consequently, 

0 · gi (r) · maxf0; r ¡ Dig: (5) 

The expected payo¤ of the ith bank, denoted vi, is 

vi ´ 
Z 1 

[r ¡ Di ¡ gi (r)] fi (rjsi; ¾i ) dr: (6) 
Di 

The household purchases consumption in the second period using its bank 
deposits (which are distinct from but equal in amount to the deposits received 
by its banker), plus the pro…ts from its banker’s activities, less a lump sum tax 
(common across types) with expected value T that is used by the deposit insurer 
to pay o¤ the depositors of failed banks. Therefore, the expected consumption 
for a household with bank type i, denoted Ci , is subject to the constraint 

Ci · Di + vi ¡ T: (7) 

Household utility is a linear function of consumption, liquidity services pro
vided by deposits and the disutility of screening e¤ort: 

Ci + ½Di ¡ °si: (8) 
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Using equations (6) and (7) we can write the bank’s utility function (8) in 
an alternative form: 

Z Di 
Z Di 

(Di ¡ r ) fi (r jsi; ¾i) dr ¡ g(ri )fi (r js i; ¾i) dr + ½Di + ¹ i (si ) ¡ °si ¡ T: 
0 0 

(9) 
The …rst term in equation (9) has the form of the payo¤ to a put option with 
strike price Di. This term captures what is commonly referred to as the deposit 
insurance put option. In e¤ect, deposit insurance gives the bank an option to 
put the bank to the deposit insurer in exchange for the insurer taking over the 
liability Di owed to the depositors. The second term is the income lost from 
…nes. The third term is the value of liquidity services received from deposits. 
The fourth term is the mean return to the bank’s portfolio. The …fth term is 
the lost utility due to screening. Notice that the household/banker takes taxes 
as given.6 

2.2 Regulator 
To cover the cost of bank failure, the regulator can use lump sum taxes and the 
…nes it collects. We assume that …nes are costly to collect, due to their punitive 
nature. In particular, there is a deadweight cost of ¿ ¸ 0 per unit …ne collected. 
Therefore, taxes must satisfy 

" 
X Z Di 

Z 1 
# 

T = hi (Di ¡ r)fi (rjsi; ¾i ) dr ¡ (1 ¡ ¿ )gi(r )fi (r js i; ¾i) dr : 
i 0 0 

(10) 
The regulator maximizes the share-weighted average of the ex ante utilities of 
the two types of households, as given in equation (9), subject to equations (5), 
(6), (7), and (10).7 However, the regulator takes into account the e¤ect on utility 
of taxes T in equation (9) while the bank takes them as exogenous. These taxes 
lay at the heart of the distortion caused by deposit insurance. 

Suppose the regulator could observe banks’ types and control their choices 
of fDi ; si; ¾i g. Substituting equations (6), (7), and (10) into the utility function 
of each bank (equation (8)) and then weighing each type by their fraction of the 
population, one obtains the following expression for the regulator’s objective 
function 

6 Static models of bank regulation often include a franchise value or charter value term in 
the bank’s objective function. (See, e.g., Keeley (1990), Marshall and Venkataraman (1999).) 
This term is a stand-in for the present value of the bank’s future operations, which is lost 
to the bank owners in the event of bankruptcy. Concern for lost franchise value acts as 
a disincentive to risk taking, and thus can o¤set the risk-encouraging e¤ects of the deposit 
insurance put option. Franchise value could easily be incorporated into this model. We 
refrain from doing so in order to focus attention speci…cally on the way the deposit insurance 
put option distorts bank incentives. 

7 We do not address potential incentive problems with the regulator’s behavior. 
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· X Z 1 
hi ½Di + ¹ i (s i) ¡ °si ¡ ¿gi (r)fi (rjsi ;¾ i) dr 

¸ 
: (11) 

i 0 

The object in square brackets in equation (11) is the utility of the type-i house-
hold from the perspective of the regulator. Ignoring …nes and taxes (the latter 
of which does not a¤ect the bank’s decisions), the only di¤erence between this 
expression and equation (9) is that equation (9) includes the payo¤ to the de-
posit insurance put option. Because of this di¤erence in objective functions, an 
unregulated banks’ decisions would generally be socially suboptimal. As we 
shall see, banks have an incentive to take on too much leverage, too much risk, 
and apply insu¢cient screening e¤ort. 

2.3 Formal Statement of the Regulator’s Problem 
In the most general speci…cation of the model, the regulator observes deposits 
D and the bank’s ex post return r , but the bank’s type i and action pair (s;¾) 
is private information. Thus, the regulator’s problem is to use instruments that 
condition on D and r to elicit information about bank type and to in‡uence the 
bank’s action choices. 

Formally, the problem takes the following steps: First, banks send reports 
to the regulator on their type i. The content of these reports cannot be veri…ed 
by the regulator so the bank can say anything. However, we know by the 
Revelation Principle that as long as we impose the right incentive constraints, 
we can restrict ourselves to a direct mechanism where a bank directly reports 
its type. Second, based on this report of i, the regulator sets a deposit level 
Di , recommends a screening-risk pair fsi; ¾i g, and sets a schedule of …nes gi (r) 
that depends on the portfolio return r. The deposit level is interpreted as 
a capital requirement, since capital equals 1 ¡ Di. We refer to a triplet of the 
deposit level, screening, and risk, (D; s;¾); as an assignment. Third, in response 
to the assignment and …ne schedule, the bank chooses its screening and risk 
levels (which need not equal the (s; ¾) pair recommended in the regulator’s 
assignment). Fourth and …nally, the return is realized, …nes and taxes are 
assessed, the depositors are paid o¤ (either by the bank or the deposit insurer), 
and each household consumes. 

Using the Revelation Principle, the regulator’s problem can be summarized 
as follows: 

Regulator’s Problem 

X 
max 

Di;si;¾i;gi (r) i 

hi 

µ
½Di + ¹ i (si ) ¡ °si ¡ 

Z 

0 

1 
¿ gi (r)fi (rjsi; ¾i ) dr

¶ 
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subject to equation (5), the following truth-telling incentive constraints 

Z Di 

(Di ¡ r ) fi (r js i; ¾i) dr + ½Di + ¹ i (si) (13) 
0 Z 1 

¡°si ¡ gi (r)fi (rjsi; ¾i ) dr ¡ T 
0Z Dj 

¸ max (Dj ¡ r ) fi (r js; ¾) dr + ½Dj + ¹ i (s) s;¾ 0Z 1 
¡°s ¡ gj (r)fi (rjs; ¾) dr ¡ T; 8i 2 flow; highg ; j 6= i; 

0 

the following moral-hazard incentive constraints that for all i 
" Z Di 

(si; ¾i) = arg max (Di ¡ r) fi (rjs; ¾) dr + ½Di + ¹ i (s) (14) 
s;¾ 0 

¡°s ¡ 
Z 1 

gi(r )fi (rjs; ¾) dr ¡ T 
¸ 

; 
0 

and the constraint in equation (10) that lump-sum taxes cover the costs of bank 
failure resolution net of …nes collected. 

The moral hazard incentive constraints (14) require that, for the deposit 
level and …ne schedule speci…ed for each bank type, the recommended values 
of screening e¤ort and risk are those that would be chosen by that type. The 
truth telling constraints (13) guarantee that banks truthfully report their type. 
The max operator on the right-hand side of equation (13) is needed because the 
optimal contract does not specify the o¤-equilibrium strategy to be used by a 
bank that lies. The utility from this strategy needs to be calculated to properly 
assess the value to a bank of misrepresenting its type. Finally, note that while 
T is in both sets of incentive constraints it enters as a constant and has no e¤ect 
on sets of feasible allocations that satisfy either constraint. 

3 Some Useful Comparative Static Results 
Before analyzing the complete Regulator’s Problem it is useful to look at the 
bank’s incentives in the absence of …nes. These comparative static results in
dicate the direction in which the bank would change its actions in response to 
possible regulatory policies. 

3.1 Unregulated banks choose suboptimally low screening 
Let us consider …rst the incentives of unregulated banks. In particular, we set 
gi (r ) = 0; 8r. According to equation (11), the choice of ¾ does not directly 
a¤ect the value of the regulator’s ob jective in the absence of …nes. Thus, the 
key concern of the regulator is to move the banks’ screening e¤ort toward the 
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social optimum. According to equation (11), the socially optimal screening 
level for bank i is characterized by 

¹ i 
0 (si ) = °; (15) 

that is, the marginal increase in the mean return must equal ° , the marginal 
cost of screening. However, according to equation (9), the privately optimal 
screening level is characterized by 

¹0 
i (si ) = ° ¡ 

Z Di 

(Di ¡ r ) 
@fi (r

@
js
s 

i; ¾i ) dr: (16) 
0 

We now show that if D is not too big relative to the mean of the distribution 
then the bank’s choice of screening is strictly lower than the social optimum. 
Equations (15) and (16) di¤er by a term that captures the way the deposit 
insurance put option varies with s. Using equations (1), (2), and (4), we can 
sign this term, as follows: 

Z Di 

(Di ¡ r) @fi (r
@
js
s 

i ; ¾i) dr = ¹0 
i (si ) 

0 

Z Di 

(Di ¡ r) @f (r j¹ i (si ); ¾i) dr 
0 @¹ 

< 0 if D < r ¤ (¹; ¾) : (17) 

According to equation (17), the left-hand side of (16) exceeds the left-hand side 
of (15) as long as the deposit level D is not too big.8 If this condition holds then 
equation (3) implies that the value of si ensuring equation (16) is strictly lower 
than the value of si implied by equation (15). In other words, the unregulated 
bank’s screening choice is strictly less than the socially optimal screening level. 
The condition that D is not too big is not too restrictive. For example, in the 
case of the normal or log normal family of distributions, inequality (1) holds 
for all r < ¹. Since D · 1 and the mean of the gross return exceeds unity 
(assuming that the bank expects a positive net return to its investments), then 
the condition that D not be too big holds automatically. 

If bank screening e¤ort were observable, the regulator could presumably 
mandate the optimal screening level directly. However, throughout this paper 
we assume that screening e¤ort is unobservable to the regulator. So how might 
the regulator induce the bank to increase its screening level? The conventional 
regulatory tool is increased capital. It turns out that mandating higher capital 
does indeed induce higher screening e¤ort. A second, less obvious tool, which 
will be an important focus later in this paper, is to induce the bank to reduce 
its risk choice. In the following, we explore each of these approaches in turn. 

3.2 Inducing higher screening e¤ort via capital regulation 
Suppose …nes are excluded from the available regulatory instruments, so the 
only regulatory tool is capital requirements. We show here that higher capital 

8 In fact, the condition D < r¤ (¹;¾) is su¢cient, but not necessary for the left-hand side 
of equation (17) to be negative. All that is needed is for D to be su¢ciently small that the 
set of r < r ¤ (¹;¾) dominates the sign of the weighted integral in equation (17). 
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tends to induce higher screening. Recall that capital simply equals 1 ¡ D, 
so mandating increased capital is equivalent to mandating a lower value for 
D . Suppose the regulator sets D and the bank then chooses s. The following 
comparative static result holds: 

Proposition 1: Suppose s > 0; D < r¤ (¹; ¾) : Then, holding ¾ constant, 
the bank’s choice of s is decreasing in D . 

(Proof See Appendix A.) 
According to Proposition 1, the regulator can induce banks to increase s by 
requiring them to reduce D , in other words, by increasing capital. 

3.3 How does the risk level a¤ect screening e¤ort? 
For most of this paper we assume that the bank’s choice of risk, ¾, is private 
information. But suppose for a moment that ¾ were observable to the regulator, 
and that the regulator could mandate a ¾ level for the bank. How would the 
regulator’s choice of ¾ a¤ect the bank’s choice of s? In this section we show 
that, for a wide range of speci…cations, s would be decreasing in ¾. That is, 
the regulator could induce higher screening (thereby o¤setting the distortions 
induced by the deposit insurance put option) by reducing the bank’s portfolio 
risk. 

To demonstrate this assertion, let us totally di¤erentiate the bank’s …rst 
order condition (16) with respect to ¾ and rearrange to get 

hR D 
i 

@s ¡ 0 (D ¡ r) fs¾ (r js; ¾) dr 
(18)= 

@¾ R 
0 
D (D ¡ r ) fss(r js; ¾)dr + ¹00 (s) 

According to equation (4), 

fs¾ (r js;¾ ) = f¹¾ (rj¹; ¾) ¹0 (s ) 

so equation (18) can be written 

@s 

hR 
0 
D (D ¡ r ) f¹¾ (rjs; ¾) dr 

i 
¹0 (s) 

@¾ 
= 

¡
R 
0 
D (D ¡ r) fss (r js; ¾) dr + ¹00 (s) 

(19) 

According to second-order condition (25) in the Appendix A, the denominator 
@sof (19) is negative. So to sign @¾ we must determine the sign of the numerator 

of equation (19). This object cannot be signed unambiguously. ¹0 (s) > 0 by 
construction, so 

@s


@¾ 
< 0 if and only if (20)


Z D 

(D ¡ r ) f¹¾ (rj¹; ¾) dr < 0: (21) 
0 
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The integral in equation (21) is the second (cross) derivative of the deposit insur
ance put option with respect to the mean and standard deviation of the return 
distribution. So equations (20) - (21) say that increased portfolio risk induces 
a reduction in screening e¤ort if and only if the sign of this cross derivative is 
negative. 

The sign of this cross derivative depends on the sign of f¹¾ (r ), which in turn 
depends on where r is located relative to the mean and standard deviation of the 
distribution, as well as on the shape of the distribution itself. It is a property 
of most commonly used two-parameter distributions that f¹¾(r) < 0 for all r 
su¢ciently small. In particular, if f is normal, then 

f¹¾ (r j¹; ¾) < 0 if r < ¹ ¡ ¾
p

3: (22) 

We were unable to obtain a similar analytic result for the log normal distribution, 
but a grid search over a wide range of ¹’s and ¾’s reveals that, for f lognormal, 
a su¢cient condition for f¹¾ (r j¹; ¾) < 0 is9 

r < eE log(r)¡¾(log(r))
p

3: (23) 

where E log (r) and ¾ (log(r)) denote the mean and standard deviation, respec
tively, of log (r). The analogy between equations (22) and (23) is obvious. 

These results suggest that, unless ¹ is very small or ¾ is very big, inequality 
(21) should hold. To check this conjecture, we numerically evaluate the left-
hand side of inequality (21) on a grid of f¹;¾ :D g combinations with support 

¹ 2 [0:5; 2:5] 
¾ 2 [0:05; 1:0] 
D 2 [0:1; 1:0] 

If we think of the return horizon as one year, these grids encompass the realistic 
cases. For the log normal distribution, inequality (21) holds for all values of 
f¾; Dg as long as ¹ ¸ 1:2 (that is, a mean net return of at least 20%). If ¹ ¸ 1:0 
(positive mean net return), inequality (21) holds except for very high risk levels 
( ¾ ¸ :7), and is there only when D = 1 (i.e., zero capital). We perform the 
same experiment with the beta distribution with support (0; 3) that is used in 
Section 4.2, below.10 With this distribution, inequality (21) holds for all f¾; Dg
in this grid as long as 1:0 · ¹ · 2:0 (that is, the mean net return is between 

9 More precisely, there exists an r¤¤ (¹;¾) satisfying 

s

log [r¤¤ (¹; ¾)] > E log (r) ¡ ¾ (log(r )) 
p
3 

In practice, we …nd that for most values of f¹; ¾g ; log [r¤¤ (¹; ¾)] ¼ E log (r) ¡ ¾ (log(r)) 
p
3: 

.t. 
f¹¾ (rj¹;¾) < 0 if r < r¤¤ (¹;¾) : 

10 The standard beta distribution has support (0; 1) : As in our baseline numerical example 
of section 4.2, we assume in these experiments that the support on r is (0; 3), so the relevant 
density function f (rj¹;¾) is the standard beta evaluated at fr=3; ¹=3; ¾=3g. 
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0 and 100%). Thus, @s 
@ ¾ < 0 for these two distributions when the mean and 

variance are in the empirically plausible region. 
This section showed that, for a wide variety of plausible distributions, reduc

ing the risk of a bank’s portfolio tends to increase its level of screening e¤ort. 
But, for most of this paper we assume that the regulator cannot observe the 
bank’s portfolio risk. How then are the results of this section useful? While the 
regulator cannot mandate a risk level, the regulator may be able to convince the 
bank to choose lower risk by indirect means, such as ex post return-contingent 
…nes. According to the results of this section, doing so will result in the bank 
choosing a higher screening level. This is what we …nd in our numerical simu
lations, described in Sections 4.3 and 4.4.2, below. 

4 An Example 
It is very di¢cult to characterize the Regulator’s Problem analytically. First, it 
contains a moral hazard problem with two dimensions (screening and risk) on 
which the bank chooses its hidden action. Second, the moral hazard is preceded 
by hidden information on bank quality. Third, the regulator also chooses a de
posit level, which, while observable, complicates the problem because it directly 
a¤ects incentive constraints. 

Because of these di¢culties, we adopt the strategy of solving numerical ex
amples to learn about the properties of this model. In this section we …rst 
describe our approach to solving the model. We then use this approach to 
solve a set of examples that illustrate how …nes are an e¤ective way to control 
risk, and by extension, control screening. In particular, our examples illustrate 
that high-return …nes can be used to deter risk-taking by the low-type banks 
whether or not bank type is public information. 

4.1 Solving the model numerically 
We solve the Regulator’s Problem numerically by formulating it as a linear pro-
gram. Linear programs are an e¤ective tool for computing solutions to mech
anism design problems.1 1 They can be used to solve problems with arbitrary 
speci…cations of preferences and technologies. Furthermore, linear programs can 
be e¢ciently solved using widely available, high quality software. 

To formulate the problem as a linear program, one …rst must discretize all 
underlying variables. In our model, we discretize returns r, and …nes g, screening 
levels s, risk choices ¾, and deposit levels D. The regulator then chooses a 
joint probability distribution over the possible combinations of these variables. 
Embedded in this joint probability distribution is the terms of the regulatory 
contract. Thus, this solution method allows for the possibility of randomized 
contracts. Indeed, allowing for randomization is the key step in transforming 

11 Myerson (1982) and Prescott and Townsend (1984) are early papers that set these prob
lems up as linear programs. For a survey on the use of linear programming methods to solve 
mechanism design problems see Prescott (1999). 
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the problem into a linear program. However, we will focus primarily on cases 
where the contracts are deterministic (that is, where the probability distribution 
associated with the optimal contract is degenerate).12 

The major complication with this approach is checking the truth-telling in
centive constraints. As mentioned above, the truth-telling constraints guarantee 
that the utility from correctly reporting type dominates the utility from lying 
and then taking some feasible o¤-equilibrium strategy. One way to guarantee 
truth-telling is to check each possible o¤-equilibrium strategy. This is the stan
dard method, as in Myerson (1982). Unfortunately, as we describe in Appendix 
B, our problem involves an astronomical number of such constraints. Instead, 
we use a method developed in Prescott (2003) that takes advantage of the max 
operator in equation (13) to more e¢ciently check the truth-telling constraints. 
A detailed, self-contained, description of the numerical solution procedure can 
be found in Appendix B. 

4.2 Parameterization 
We assume that there are four possible levels of screening e¤ort, 

s 2 f0:2; 0:3; 0:4; 0:5g 

and two possible standard deviations for the bank portfolios:1 3 

¾ 2 f0:6; 1:0g: 

We assume that the increasing, concave function ¹ i mapping bank type i’s 
screening e¤ort into its portfolio mean takes the negative exponential form: 

¢ 
¹ i (s) = ¹m 

i 
ax ¡ 

¡
¹m 

i 
ax ¡ ¹m 

i 
in e¡ais 

© ª 
where, for i = low; high, ¹m 

i 
ax; ¹m 

i 
in; ai are non-negative type-speci…c para-

meters with ¹m 
i 

in < ¹m 
i 

ax . Note that ¹ i (0) = ¹m 
i 

in and ¹ i (1) = ¹m 
i 

ax . In the 
parametric examples we present below, we assume that 

¹min = 0; ¹min 
low high = 0:6; 

low = 1:7; ¹max¹max 
high = 2:3; 

alow = ahigh = 5: 
12 In the case where bank type is observable, the optimal contract can always be achieved 

with deterministic contracts. Intuitively, the only way randomization could be useful is if 
the bank makes a decision prior to the realization of the random assignment. When type is 
observable, the only choices that the banks make are their screening and risk choices. These 
are made after the assignment is made, so the regulator need never randomize the assignment. 

13 The use of only two risk levels can be motivated by the result in Marshall and Prescott 
(2001), that if banks’ portfolio returns are log normal, and if banks can choose from a closed 
interval of risk levels, their optimal choice would always be one of the two endpoints. That 
is, for any give combination fD;sg, an interior solution for ¾ is never chosen by the bank. 
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Note that the ¹ high (¢) schedule represents a parallel upward shift of the ¹ low (¢) 
schedule. 

Our solution method requires discretization of the distributions. Since dis
cretization e¤ectively imposes upper and lower bounds on the distribution, it is 
natural to start with distributions that have bounded support. In particular, 
we assume that all return distributions are from the beta family of distributions. 
Since the beta is a two-parameter distribution, it is completely described by its 
mean and variance (along with its upper and lower bounds). We assume the 
support of all distributions is the open interval (0; 3:0). We thus must construct 
a beta distribution with this support for each combination of ftype;s; ¾g : We 
then discretize these distributions on the following seven-point grid:14 

r 2 f0:04; 0:5; 1:0; 1:5; 2:0; 2:5; 2:96g: 
Finally, we set the cost of capital ½ = 0:05, the social cost of …nes ¿ = 0:01, and 
the cost of screening e¤ort ° = 1:0. 

Before turning to the optimal regulation in this example, let us look at the 
optimal bank choices in the unregulated case where no …nes are imposed and 
D = 1 (zero capital). Table 1 gives the value of the bank’s objective function 
(equation (9)) and the regulator’s objective function (equation (11)) for each 
type and each choice of fs; ¾g. (The value of the bank’s objective excludes 
the lump sum tax, which does not a¤ect bank incentives.) Note …rst that the 
regulator wants both banks to choose s = 0:4. Lower values of screening e¤ort 
are insu¢ciently productive, but the highest value s = 0:5 incurs a suboptimally 
high disutility of e¤ort. Note also that, with no deadweight cost of bankruptcy, 
the regulator is indi¤erent between high and low risk. 

Turning to the values of the banks’ objectives, the high type’s preferred 
action is s = 0:4 and ¾ = 1:0. Since this maximizes the regulator’s objective, 
the high-type bank is self-regulating in this example. In contrast, the low-type 
bank prefers the highest risk level with s = 0:3. So the task facing the regulator 
is to induce the low-type bank to increase its screening to s = 0:4: Note also that 
if the low type were forced to choose the lower risk level, the optimal choice of 
screening would coincide with the regulatory optimum s = 0:4. However, if the 
high type were forced to choose low risk, its ob jective would be maximized at the 
suboptimally high level s = 0:5. These e¤ects of risk reduction are examples of 
the result in Section 3.3 that for a large set of plausible portfolio distributions, 
screening is decreasing in risk. This will be an important consideration in the 
optimal regulatory design. Inducing the low type directly to choose the socially 

14 For each combination of screening e¤ort and risk, there is a unique beta distribution 
on support (0; 3). We discretize each distribution by evaluating the beta density at each of 
the seven grid points, and then adding " i to the ith grid point’s probability, where f" ig7 

i=1 
are chosen to minimize 

P7 
i=1 "

2 
i subject to the constraints that the resulting probabilities 

sum to unity and that the mean and variance of the discrete distribution exactly match 
the mean and variance of the original beta distribution. Since very small probabilities often 
introduce numerical instability in our solution algorithm, we then do a second round of ad 
hoc adjustments to ensure that no single probability is less than 0.001, that the means hold 
exactly, and that the variances are close to the target variances. 
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optimal screening level is di¢cult. However, if the regulator can induce the low 
type to choose low risk, it will be optimal for the bank to then select the optimal 
screening level, which is the prime concern of the regulator. 

At …rst glance, the results in Table 1 suggest that the screening level s = 0:2 
is extraneous since it appears to be neither privately nor socially optimal: No 
unregulated bank would ever choose this screening level, nor would the regulator 
ever mandate it. However, as we shall discuss below, once …nes are imposed 
screening may be so unappealing to the bank that a s = 0:2 deviation is a 
possibility that needs to be prevented. 

4.3 Optimal Regulation when bank type is observed 
Marshall and Prescott (2001) studied optimal regulation in this model when 
bank type is observable. It is useful to revisit this simpler case in the context of 
our baseline parameterization to provide a benchmark against which the results 
with unobserved heterogeneity can be compared. Several of the forces opera
tional in that model are operational in the heterogenous agent model as well. 
Furthermore, the implications of the model for this case raise some interesting 
issues that the analysis with unobserved heterogeneity may be able to clarify. 

We determine the optimal contract for each of the two types, both for pure 
capital requirements (no …nes permitted) and for the case where both capital 
requirements and ex post …nes are available. The results in the case of pure 
capital regulation for the two bank types are displayed in the …rst column of 
Table 2. The optimal contracts induce high screening and high variance for 
both types. The high type is fully leveraged, while the low type has a capital 
level of 14%. The low type needs this capital requirement to induce socially 
optimal screening. This is an example of Proposition 1 in Section 3.2, above. 
In contrast, as we discussed in Section 4.2, above, the high type chooses this 
optimal screening level even in the absence of a capital requirement. 

We now introduce …nes as a second regulatory instrument in addition to 
capital. The results for this case are displayed in the …rst column of Table 
3. Note that in this case …nes completely displace capital, since capital is a 
more costly way of in‡uencing bank incentives than state-contingent …nes. In 
particular, the optimal contract assigns the low type 0% capital (D = 1), with 
the low risk and s = 0:4. The low type is induced to take this strategy by the use 
of a …ne of 1.8910 that is assessed if the highest return is produced. There are 
no …nes imposed on the other returns. Fining a bank for doing well may seem 
counterintuitive but it is actually a simple application of the likelihood ratio 
principle; which is relevant for optimal incentive contracts. This principle can 
be understood as follows: Fines have two e¤ects on the moral-hazard incentive 
constraints: They hurt banks who take the recommended strategy, and they 
also hurt those that deviate. The relative size of these e¤ects at a particular 
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return level r , is determined by the likelihood ratio, LR (r ), de…ned as15 

prob (rj deviating strategy followed)
LR (r ) ´ 

prob (rj recommended strategy followed)
: 

This ratio can be interpreted as the prevention per unit of …ne assessed in 
equilibrium. It is generally desirable to impose the …ne on the return with the 
highest likelihood ratio. 

For this example, the investment strategy of most concern to the regulator 
is where s = 0:2 and ¾ = 1:0:16 The likelihood ratio for this deviation is 
highest at r = 0:04, the return in the extreme left-hand tail of the distribution: 
The regulator would like to impose the …ne on this return but cannot because 
of limited liability. The return with the next highest likelihood ratio for this 
deviation is r = 2:96, the return in the extreme right-hand tail. Fines can be 
assessed for this return without violating limited liability, so this is the return 
level that receives the …ne. 

Inspection of this contract reveals why capital is not used. The …ne on the 
highest return is strictly below the maximum feasible …ne, given limited liability, 
of 1.96. If this …ne were insu¢cient to induce optimal screening, it could be 
increased at the margin, thereby strengthening incentives without using costly 
capital. In our numerical simulations, we …nd that as long as …nes have a 
low regulatory cost compared to capital, capital and …nes coexist in the same 
contract only if at least one …ne is at the bound imposed by the limited liability 
constraint. 

Another important point that is illustrated by this example is that the bind
ing incentive constraint need not be near the equilibrium choice. That is, it 
need not be a local incentive constraint. 

In particular, while the lowest screening level s = 0:2 is never chosen by an 
unregulated bank, the binding incentive constraint in this example is to prevent 
deviation from fs = 0:4; ¾ = 0:6g to fs = 0:2; ¾ = 1:0g. The reason is that the 
high …ne on the right-hand tail of the distribution induces the bank to reduce 
the probability of the highest return. But there are two ways it can do so: by 
reducing ¾ or by reducing ¹ via a reduction in screening e¤ort all the way to 
s = 0:2. The former is the e¤ect desired by the regulator; the latter needs to be 
avoided as represented by the binding incentive constraint. 

This example illustrates why the …rst-order approach to incentive constraints 
does not work in this model. In the …rst-order approach (see Hart and Holm
strom (1987)) the incentive constraints are replaced with the …rst-order condi
tions to the agents subproblem; but these are necessary rather than su¢cient 
conditions. Without strong assumptions, there is no guarantee that a solution 
to the program with the …rst-order conditions is the same as the solution to 
the global program. In particular, the program utilizing …rst-order conditions 
would treat certain globally infeasible allocations as if they were feasible. In our 
example, since local incentive constraints do not bind, it would actually select 

15 For more on likelihood ratios in moral hazard models see Hart and Holmstrom (1987). 
16 This is the deviating strategy with respect to which the incentive constraint binds. 
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one of these (infeasible) allocations as the solution to the regulatory problem. 
Our linear programming method is a global method so we do not have to worry 
about this possibility. 

4.4 Optimal regulation with unobserved heterogeneity 
According to the results in Section 4.3, the optimal structure of ex post …nes 
for the low type is to impose large …nes on the highest return level. In other 
words, banks are penalized for doing extremely well. This seemingly perverse 
result is actually quite intuitive, since an extremely high return to a low-type 
bank is a reasonably good signal of excessive risk-taking. The penalty structure 
could be duplicated by requiring the bank to issue warrants or convertible debt 
with a high strike price. However, one important concern with such a regulatory 
…ne schedule is that some banks may have a high return not because they took 
excessive risks, but simply because they are good banks. They may have better 
management or they may have a more favorable investment opportunity set. In 
this section, we address this concern by solving the Regulator’s Problem de…ned 
earlier, in which bank type is unobservable. With unobserved bank quality, we 
can investigate the trade-o¤s between the good and bad incentive e¤ects of 
high-return …nes. 

4.4.1	 Optimal capital requirements without …nes in the presence of 
unobserved heterogeneity 

When …nes are not used, the optimal capital requirements when bank type is 
unobserved in the baseline case are displayed in the last three columns of Table 
2. The table gives the optimal regulatory contracts for the two types as the 
fraction of high types, hhigh, varies from .01 to .995. 

When hhigh is not too big (less than 86%), the optimal regulatory strategy is 
to assign both types 14% capital, which is the optimal type-observable contract 
for the low type. That is, no e¤ort is made to separate types. The reason is that 
this contract is the least expensive contract (from the regulator’s standpoint) 
that induces the low-type bank to choose the highest screening level. While 
this contract is decidedly inferior from the perspective of the high-type bank, 
the only alternative from the regulator’s perspective is to let the low-type bank 
choose a lower screening level. The social cost to this alternative exceeds the 
social cost of the capital requirements imposed on the high-type bank. 

When hhigh is very high (87% or higher), the regulator again makes no 
e¤ort to separate type. For these values of hhigh, the regulator simply assigns 
both types of banks zero capital, which of course is the optimal type-observable 
contract for the high type. The low type bank responds by setting s = 0:3, a 
socially suboptimal screening level. There are so few low-type banks that the 
regulator is willing to tolerate this suboptimal screening by low-type banks in 
order to save the capital costs incurred by the high-type banks. 

Finally, for hhigh in a narrow range near 0:86; the optimal regulation is to 
separate types by o¤ering di¤erent contracts to each type. While this would be 
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impossible with non-random contracts (since both bank types would choose the 
lower-capital alternative), it is possible in theory to separate types by o¤ering 
the low-type bank a random contract while o¤ering the high-type bank a non-
random contract. The reason this is possible is that the bank’s objective function 
is nonlinear in D because it incorporates the payo¤ to the deposit insurance put 
option. The expected payo¤ of a put option is strictly convex in its strike 
price. In our example, the put option term has strictly greater curvature 
for the low type bank than for the high type bank, so, as an implication of 
Jensen’s inequality, the low-type bank has a greater preference for randomness. 
To separate types, one simply o¤ers the high type bank a nonrandom capital 
level while o¤ering the low type bank a random capital level with a somewhat 
lower mean. We see this in the second-to-last column of Table 2 for hhigh = 
86%. The optimal contract exploits this possibility by giving the high type 
a deterministic contract with 1% capital, while giving the low type a mixed 
contract that imposes 14% capital with 7% probability and zero capital with 
93% probability. We …nd it interesting that in the numerical simulations we 
have studied, this type of randomized contract is optimal only for a very narrow 
set of parameters. For the vast majority of examples, separation of types with 
pure capital regulation is suboptimal. 

4.4.2	 Optimal regulation using both capital and …nes in the presence 
of unobserved heterogeneity 

The optimal contracts for the baseline parameterization when both …nes and 
capital are used are displayed in Table 3. The …rst two rows of Table 3 give 
details of the contract for the low type. The second row is only used when the 
optimal contract is a mixture of two contract elements. The third row gives the 
optimal contract for the high type. (In the baseline parameterization mixed 
contracts are never used for the high-type bank.) As described in Section 4.3, 
the …rst column gives the optimal type-observable contracts. The remaining 
three columns give the contracts as the fraction of high types hhigh ranges from 
1% to 99.5%. 

When bank type is unobservable, the optimal type-observable contracts for 
the two bank types cannot be implemented simultaneously. The reason is that 
the contract for the high type (zero capital, zero …nes) is more attractive to the 
low type than its own contract (zero capital, high …ne on the highest output 
level). So, the low type would invariably misrepresent its type, receive the 
high-type contract, and then use a suboptimally low screening level. 

To remedy this problem the regulator can choose one of three alternatives: 

1. Assign the low type its optimal observable-type contract, and impose suf
…cient penalties on the high type (either in the form of …nes or capital 
requirements) so that the low type has no incentive to misrepresent type. 

2. Assign the high type its optimal observable-type contract, and give the 
low type a (socially suboptimal) contract that is su¢ciently attractive so 
that low-type banks have no incentive to misrepresent type. 
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3. Assign neither type its optimal observable-type contract; and craft a set 
of contracts such that neither bank type has an incentive to misrepresent 
type. 

Not surprisingly, we …nd that the optimal choice among these three alterna
tives depends on the fraction hhigh of high-type banks. In particular, alternative 
(1) is used when hhigh is relatively low, alternative (2) is used when hhigh is 
extremely high, and alternative (3) is used for intermediate values of hhigh. 

In the baseline case, the low-type contract is the same as the optimal contract 
under type-observability as long as the fraction of high types is not too high 
(hhigh below 88%). This is clearly evident in Table 3. For these values of hhigh, 
however, the contract for the high type imposes …nes at return levels 2:0 and 
2:5. These …nes are substantial. At return 2:0, over 89% of the bank’s pro…t 
(after paying o¤ depositors) is …ned away; at return 2:5 approximately 29% of 
the pro…t is …ned. So, while the low type receives the same contract as she 
would if type could be observed, the high type must pay heavy …nes in order to 
dissuade the low types from masquerading as high types. 

Neither …ne in the high-type contract is constrained by limited liability, so 
one might think that these two …nes play distinct roles. This is partially correct. 
Two constraints bind in this contract. The …rst binding constraint is the truth
telling constraint preventing low types from pro…ting by misrepresenting their 
type and choosing fs; ¾g = f0:3; 1:0g. The second binding constraint is the 
incentive constraint preventing the high type from choosing the suboptimally 
high screening e¤ort of s = 0:5. Consider Table 4 , which gives the values of 
bank and regulatory objectives for fs; ¾g pair under both the optimal low-type 
contract and the optimal high-type contract. Note that the highest value of the 
low type’s objective from truth-telling is 1.7924, attained at the socially optimal 
action pair fs; ¾g = f0:4; 0:6g. But the low type can attain this precise value 
by misrepresenting herself as a high type and choosing the socially suboptimal 
action pair fs; ¾g = f0:3; 1:0g. Thus, the truth-telling constraint binds with 
respect to this deviating action. If the …ne on either return 2:0 or 2:5 were 
reduced, this constraint would be violated and the low-type bank would pro…t 
from lying and misbehaving. 

Note also that the high-type’s objective attains its maximum of 1.69761 at 
either the socially optimal action pair fs; ¾g = f0:4; 0:1g or at the socially 
suboptimal pair fs; ¾g = f0:5; 0:1g. Thus, the high-type’s incentive constraint 
binds with respect to this latter action. If the …ne on r = 2:5 were reduced 
(without a concomitant reduction in the …ne on r = 2:0), this constraint would 
be violated.17 In other words, if only a …ne at r = 2:0 were used to dissuade 
low-type banks from lying, the …ne itself would induce high-type banks to screen 
excessively, an action that bank would never take in the unregulated case. An 
additional …ne at r = 2:5 is needed to correct this perverse incentive. This is 
an example of a possibility that can occur in optimal mechanism design when 
both moral hazard and adverse selection are present: A contractual provision 

17 If both …nes are reduced at an appropriate rate, the incentive constraint need not be 
violated. 
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designed to alleviate the adverse selection problem can itself exacerbate the 
moral hazard problem, requiring additional regulatory correction. 

This contract on the high types is inferior to their optimal type-observable 
contract, both from the perspective of social utility and private bank utility. 
Table 5 reports the social value of each contract, the private value of each 
contract before taxes (which is what matters for incentives) and the private 
value of the contract after taxes. For purposes of utility comparison, we treat 
the type-observable case as if the tax levies on the two types acted as actuarially 
fair deposit insurance premiums. That is, the costs of failure resolution for a 
given bank type are assessed only on the banks of that type.18 

Table 5 shows that the social utility of the optimal observable-type contract 
for high banks is 1.71993. In contrast, the social utility of the equilibrium 
high-type contract when bank type is unobservable is lower. For hhigh below 
0.88, this value is 1.71867. This small di¤erence is the social cost of private 
information about bank characteristics. The reason this cost is so small is that 
in both contracts the high bank makes the optimal screening choice (s = 0:4), so 
the only di¤erence from a societal standpoint is the deadweight cost of the …nes. 
When ¿ is only 1%, this deadweight cost is small; the regulator is willing to pay 
this cost when there are not too many high banks in the economy. However, 
the private cost to the high banks of type-unobservability is much larger. The 
private after-tax value to the high bank of its optimal observable-type contract 
equals the social value of 1.71993,19 while the corresponding private value of the 
equilibrium contract under type-unobservability varies from 1.63905 to 1.70902 
as hhigh varies from 0.01 to 0.88. All these values are less than the private value 
accruing to the high type when bank type is observable. In contrast, Table 
5 shows that, when bank type is unobservable, the low-type banks receive a 
private after-tax value that in all cases exceeds what they receive under type
observability. In particular, this value when type is observed is 1.11990, whereas 
when type is private information these values range between 1.12067 and 1.19065 
(for hhigh between 0.01 to 0.88). 

Thus, the optimal contracts under type-unobservability in e¤ect transfer 
value from high to low types. In this sense, the more productive banks bear the 
full costs of type-unobservability, even though these high-type banks are com
pletely self-regulating when type is public knowledge. This is relevant for regu
latory practice. It is often argued that the vast majority of banks have strong 
incentives to behave in a prudent and value-maximizing manner. These banks 
are essentially self-regulating, since their private incentives are well aligned with 
social imperatives. However, if there are enough poor quality banks, and if the 
regulators have imperfect information about bank quality, then it may be nec
essary to impose a heavy superstructure of regulation on the high banks just in 
order to a¤ect the incentives of the low banks. 

18 Note that this sort of type-dependent tax levy is infeasible when type is unobservable. 
19 That these two values are identical follows from our assumption that, when type is ob

servable, the costs of bank failure resolution for type i banks are assessed only on banks of 
that type, along with the fact that the value of the deposit insurance put option exactly equals 
the cost of paying o¤ the depositors in failed banks. 
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Contrast the optimal contracts in the case described above to the case where 
the fraction of high types reaches 99.5% or higher. This case is displayed in the 
last column of Table 3. At this point the regulator simply assigns the high type 
its optimal contract under type-observability. With our parameterization, this 
contract is completely unregulated (zero capital, zero …nes). Since we require 
both …nes and capital to be non-negative, there is no way to dissuade the low
type bank from misrepresenting type. (No other contract can dominate the zero 
capital, zero …ne contract in the low type’s private valuation.) As a result, the 
two types must be assigned the same contract and the truth-telling constraints 
hold trivially. The low-type bank then chooses a suboptimally low screening 
level of 0.3. However, the fraction of low-type banks is so small that the 
regulator simply does not care about the suboptimally low mean output from 
these banks. (For higher values of ¿ , this threshold is reached at lower values 
of hhigh.) 

Finally, let us brie‡y consider the intermediate case where hhigh is between 
0.89 and 0.99: When the fraction of high types is in this range, the social cost of 
…nes on the high-type banks is su¢ciently onerous that the regulator wishes to 
reduce these …nes. But to maintain truth-telling, the regulator must simulta
neously increase the value of the low-type contracts. If it did not do so, the low 
type banks would misrepresent themselves as high types. In all the examples 
we have computed, the regulator gives additional value to the low-type banks 
by assigning them a mixed contract that randomizes between a high-…ne, low 
(or zero) capital contract and a low-(or zero-) …ne, high capital contract. As 
an example, consider the second-to-last column in Table 3, which exhibits the 
optimal contract in our baseline model with hhigh = 0:89. As compared to 
the contract for hhigh = 0:88, the regulator reduces the …nes on the high type, 
imposing a zero …ne on r = 2:5 and a lower …ne on r = 2:0. In order to 
increase the utility of the low type, the regulator randomizes between the opti
mal type-observable contract (zero capital, …ne of 1.8910 on the highest return) 
and the optimal type-observable contract with capital only (14% capital, zero 
…nes). This random contract gives the low-type bank higher private value, …rst 
because it imposes a lower expected …ne, and second because (as discussed in 
Section 4.4.1) it exploits the di¤erences in the curvature of the two types’ utility 
functions. As shown in the second-to-last column of Table 5, the social value 
of this mixed contract is lower than the non-random contract, but the regulator 
is willing to forego this value in order to reduce the …ne on the high-type banks. 
Note that both the private and social values of the high-type contract are higher 
in the case than when hhigh = 0:88. 

5 Conclusion 
This paper studies a bank capital regulation model in which deposit insurance 
causes a potentially lower level of expected output because it creates a taste for 
risk that reduces marginal incentives to exert screening e¤ort. Capital regulation 
of the sort commonly seen in regulatory practice is fairly e¤ective at o¤setting 
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this distortion. However, state-contingent tools are shown to be more powerful. 
Fines can induce optimal screening e¤ort while economizing on (or eliminating 
entirely) the use of costly capital. 

We learned a number of lessons from this exercise. First, a powerful reason 
the regulator might seek to deter risk is to induce banks to choose a higher mean 
portfolio. Second, unobserved heterogeneity does not eliminate the usefulness 
of state-contingent …nes as a regulatory tool. On the contrary, …nes are still 
useful, both to deter misrepresentation of type and to deter suboptimal choices 
after type has been truthfully revealed. Third, the likelihood ratio principle 
guides the choice of return levels on which to impose the …nes. In particular, 
…nes at the highest return level tend to be used whenever the objective is to deter 
high risk-taking. Fourth, for most distribution of types, the low type receives 
its optimal type-observable contract. The utility given to the low type by these 
contracts is at least as great as that under type-observability. In contrast, the 
high type only receives its type-observable contract when there are so few low 
types that the regulator is unconcerned with separating types. Otherwise, the 
high type is given a contract that provides a strictly lower utility level than 
he would receive under type-observability. Finally, …nes are potentially a less 
costly way of separating types than the pure capital requirements that are the 
focus of much regulatory practice. When …nes are precluded, the regulator 
generally gives up any attempt to separate types, even though this is feasible in 
principle via randomization. However, when …nes are included in the regulatory 
tool kit (with a relatively low cost ¿ of 0.01), the regulator almost always chooses 
to separate types. 

The model justi…es the regulatory focus on capital adequacy and safety-and
soundness (interpreted as risk reduction), since both of these approaches can 
potentially o¤set the distortions induced by the deposit insurance put option. 
However, a reservation one might raise with the results of this paper is that 
state-contingent …nes per se are not typically observed in regulatory practice. 
Furthermore, the equilibrium contracts in this paper often require …nes on high 
returns, an approach that could encounter political and even legal obstacles. In 
future research, we are considering other regulatory instruments, such as costly 
risk audits, that have the potential of delivering similar results as those found 
in this paper while conforming more closely to observed practice. 
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A Appendix A: Proof of Proposition 1 
When …nes are set to zero, the bank’s objective in equation (9) becomes 

Z D 

(D ¡ r ) f (r js) dr + ½D + ¹ (s) ¡ °s ¡ T: 
0 

If s > 0, then the …rst- and second-order necessary conditions for optimal choice 
of s are: Z D 

(D ¡ r) fs (r js) dr + ¹0 (s) ¡ ° = 0 (24) 
0 

and Z D 

(D ¡ r) fss (rjs) dr + ¹00 (s) < 0 (25) 
0 

To determine s0 (D ), the response of s to a change in D, totally di¤erentiate 
equation (24) with respect to D : 

Fs (Djs) + s0 (D) 

" Z D 

(D ¡ r) fss (r js ) dr + ¹00 (s) 
0 

# 
= 0 (26) 

which implies 

s0 (D ) = R D 
¡Fs (D js) 

0 (D ¡ r) fss (rjs) dr + ¹00 (s) 
: (27) 

Second order condition (25) implies that 

sign [s 0 (D)] = sign [Fs (Djs)] (28) 
= sign (¹0 (s) [F¹ (D j¹; ¾)]) (29) 

According to equations, (1), (2), and (29), s0 (D ) < 0, 8D < r ¤ (¹; ¾) as in the 
statement of the proposition. 

B	 Appendix B: Solving the Regulator’s Prob
lem with Heterogeneous Agents 

We solved our numerical examples by formulating the Regulator’s Problem as a 
linear program and then solving the problem using standard linear programming 
code. There are two steps to the linearization. The …rst step is to allow random
ization in the contractual terms. This means that the regulator may randomly 
recommend (D; s; ¾) combinations to each bank type. We write this probabil
ity distribution as !i(s; ¾; D). Fines now need to depend on the realization of 
! i (s; ¾; D). Fines could also be random but because of the linear preferences 
and objective function we can write them as gi (r; s;¾ ;D ). The second step of 
the linearization is to discretize the sets of variables, that is, the g, r , s, ¾, and 
D . These grids are straightforward except for the …ne grid. The upper bound 
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on …nes depends on D and r because of limited liability. For this reason we use 
as our …ne grid f0; maxf0; r ¡ D gg. Because of the linear preferences, a two 
point grid is all we need to capture all relevant …nes. (Lotteries over the two 
points capture everything in between.) 

To formulate the problem as a linear program we solve for the joint distri
bution over the grid of variables for each type. Let ¼i (g; r; s; ¾; D ) denote the 
conditional joint probability of a type-i bank receiving assignment (D; s; ¾); re
alizing return r (if the recommended (s; ¾) are taken) and being assessed …ne g: 
(To keep the notation simple, we do not write out the explicit dependence of g 
on the realization of r and D.) Embedded in this ob ject are the two choice vari
ables of the regulator, the mixing probabilities !i (s; ¾; D) and the …ne schedule 
gi(r; s; ¾; D). They are related to the joint distribution as follows: 

X 
!i(s; ¾; D) = ¼i (g; r; s; ¾; D ) (30) 

g;r 

and X 
gi(r; s; ¾; D) = ¼i(gjr; s;¾ ;D )g: (31) 

g 

Equation (31) gives the expected level of the …ne given the return, assignment, 
and reported type, which is all we need for utility and welfare purposes. 

Our strategy is to let the regulator directly choose the joint probability 
distribution ¼i (g;r; s; ¾; D). To guarantee that this object is a probability dis
tribution, we restrict its elements to be non-negative and we require that 

X 
8i; ¼i(g; r; s; ¾; D) = 1: (32) 

g;s;¾;D 

In choosing the joint distribution, the regulator is implicitly choosing the 
probability of assignments, (30), and the …ne schedule, (31). Still, there is a 
technological relationship between the return and the investment strategy that 
must not be violated. In particular, the identity 

¼i(g; r; s; ¾; D) = ¼i (gjr; s; ¾; D)fi(rjs; ¾)!i(s;¾ ;D ) 

must hold. This identity can be guaranteed to hold by the system of linear 
equations 

X X _ _8i; D; r ; s; ¾; ¼i (g; r ; s; ¾; D) = fi (
_ 
r js; ¾) ¼i(g; r; s; ¾; D): (33) 

g g;r 

The next set of constraints are the moral-hazard constraints. These con
straints guarantee that the bank takes the recommended investment strategy 
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b b

b

conditional on truthfully reporting its type, as follows:20 8i; D;s; ¾; s; ¾; 
X X 

¼i (g; r; s; ¾; D)(r ¡ D ¡ g) + ¼i(g; r;s; ¾; D)(¡°s) (34) 
g;r ̧ D g;r 

X X 
¸ ¼i (g; r; s; ¾; D) 

fi(r js;¾) 
fi(r js;¾)

(r ¡ D ¡ g) + ¼i (g; r; s; ¾; D )(¡°s) 
g;r ̧ D g;r 

The left-hand side of (34) is the utility from taking the recommended action 
while the right-hand side is the utility from taking deviating strategy (s; ¾). 
Both sides are weighed by the marginal distribution !i(s; ¾;D ). Notice that 
the ½D and T terms have been dropped as they cancel out on both sides of the 
constraint. 

The last set of constraints are the truth-telling constraints. These constraints 
are the most problematic ones for computational purposes. First, we write these 
constraints in the same form as used in Myerson (1982). Next, we write them 
in a form that is more useful for computational purposes. 

Let ± denote a function mapping the set of possible action pairs (s; ¾) into 
itself. Intuitively, if the regulator recommends action pair (s; ¾), a possible 
deviating action pair would be ± (s; ¾) (so the deviating screening level would 
be ±1 (s;¾) ; and the deviating risk level would be ± 2 (s; ¾)). Using this notation, 
one can write the truth-telling constraints in the following way, as in Myerson 
(1982): 

X X X 
¼i (g; r; s;¾ ;D )(r ¡ D ¡ g) + ¼i(g; r;s; ¾; D)((1 + ½)D ¡ °s) 

g;s;¾;D r¸D g;s;¾;D;r 

(35) 
X X 

¸ ¼j(g; r; s; ¾; D) 
fi(r j± 1 (s; ¾) ;± 2 (s; ¾))

(r ¡ D ¡ g) 
g;s;¾;D r¸D 

fj (rjs; ¾) 

X 
+ ¼j(g; r; s; ¾; D) 

fi (rj±1 (s; ¾) ; ± 2 (s; ¾))
((1 + ½)D ¡ °s); 8±; j 6= i 

g;s;¾;D;r 
fj (rjs; ¾) 

In words, the left-hand side of (35) gives the expected value to a type-i bank of 
truthfully reporting its type and selecting the recommended action pair (s; ¾). 
The right hand side gives the expected value if that bank misrepresents itself 
as a type-j bank, and then, if it receives a recommended action (s; ¾), the bank 
actually chooses the deviating actions ± (s; ¾). The key point to note about 
this constraint is that it must hold for all possible functions ± . These func
tions must specify all of the possible o¤-equilibrium strategies that a bank can 
take in response to a recommended (s; ¾) pair. There are a huge number of 
these functions. Since these recommendations may be random, each possible 
o¤-equilibrium strategy needs to include a response to each possible recommen
dation. In particular, if there are ns possible screening levels and n¾ possible 

20 While equations (34) - (37) are written di¤erently than the corresponding constraints in 
the Regulator’s problem, they are equivalent. They just have not been algebraically manipu
lated to break out the deposit insurance put option as a separate term. 
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risk levels, then there are (ns n¾)(nsn¾ ) constraints of the form (35) per (i; j) 
pair, deposit combination.2 1 

Fortunately, this serious curse of dimensionality can be dealt with by re-
formulating the truth-telling constraint. In this reformulation, an additional 
choice variable w(s; ¾; D; i; j) is introduced that keeps track of the maximum 
o¤-equilibrium utility a type-i agent can receive if he reports his type as j and 
is recommended (D; s; ¾).22 This solution strategy was anticipated in the way 
we wrote equation (13) in the Regulator’s Problem, where the utility from o¤
equilibrium strategies was dealt with by using the max operator rather than 
enumerating all the possible o¤-equilibrium strategies. The o¤-equilibrium util
ity constraints are 8s; ¾; s; ¾; D; i;j 6= i : 

X X 
w(s; ¾; D; i; j) ¸ ¼ j(g; r; s; ¾; D) 

f
f 

j

i(
( 
r
r
j
j 
s
s
;
;
¾
¾ 
)
)
(r ¡ D ¡ g) + (36) 

g r¸D 

X 
¼j(g; r; s; ¾; D) 

f
f 

j

i (
( 
r
r
j
j 
s
s
;
;
¾
¾ 
)
)
((1 + ½)D ¡ °s): 

g;r 

These constraints give the most utility a type-i bank can receive if it reports 
that it is a type-j bank and is assigned (D; s;¾ ). This utility is weighed by 
! j (s; ¾; D): The o¤-equilibrium utility can now be used to guarantee truth-
telling. The truth-telling constraints are 

X X 
8i; j 6= i; ¼i(g; r; s; ¾; D)(r ¡ D ¡ g) (37) 

X g;s;¾;D r¸D X 
+	 ¼i (g; r; s; ¾; D )((1 + ½)D ¡ °s) ¸ w(s; ¾;D; i; j): 

g;s;¾;D;r s;¾;D 

The left-hand side is the utility from telling the truth and taking the recom
mended action while the right-hand side is the utility the agent would receive 
from lying and then taking the best o¤-equilibrium strategy possible. 

The result of this reformulation is that for the example in the paper with 
eight di¤erent investment strategies we only need (ns n¾)2 + 1 constraints per 
(i; j) pair, deposit combination to satisfy the above truth-telling condition. This 
substantial reduction in the size of the linear program made it feasible for us to 
study the problem in this paper. 

The program is 
2 3 

X X 
max hi 4 ¼i (g;r; s; ¾; D)(r ¡ ¿ g + ½D ¡ s)5 

¼i(¢)¸0;wi( ¢) 
i g;r;s;¾;D 

21 In the examples of section 4 there are four possible screening levels and two possible risk 
levels, so the total number of constraints (35) per (i; j) pair, deposit combination would equal 
16,777,216. 

22 This strategy is based on the one used by Prescott (2003) to deal with a similar model 
where the shock was to an agent’s marginal disutility of e¤ort. 
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subject to probability measure constraints (32), technology constraints (33), 
moral-hazard constraints (34), o¤-equilibrium incentive constraints (36), and 
truth-telling constraints (37). 

The program is a linear program. There is a …nite number of constraints 
and a …nite number of choice variables: ¼i(g; r; s; ¾; D) and w(s; ¾; D; i; j) for 
each type i, j 6= i and each point in the (g; r; s; ¾;D ) grid. We wrote our 
code for creating the linear programming coe¢cients in Matlab. The linear 
program was then solved by calling Minos, a Fortran program solver developed 
at the Stanford Systems Optimization Laboratory. Minos was called using the 
TOMLAB optimization library. To check the accuracy of the code we also 
independently programmed the problem in the GAMS programming language, 
and then called Minos from GAMS. 

28 



References 
[1] Baiman, S., and J. H. Evans III., 1983, Pre-Decision Information and Par

ticipative Management Control Systems, Journal of Accounting Research 
21, 371-395. 

[2] Besanko, D. and G. Kanatas, 1996, The Regulation of Bank Capital: Do 
Bank Capital Standards Promote Bank Safety, Journal of Financial Inter-
mediation 5, 160-183. 

[3] Boyd, J.H., 2001, Bank Capital Regulation With and Without State-
Contingent Penalties: A Comment 54, 185-189. 

[4] Boyd, J.H., C. Chang, and B.D. Smith, 2002. Deposit Insurance: A Recon
sideration, Journal of Monetary Economics 49, 1235-1260. 

[5] Boyd, J.H., C. Chang, and B.D. Smith, 1998, Moral Hazard under Com
mercial and Universal Banking, Journal of Money, Credit, and Banking 30 
(part 2), 426-471. 

[6] Campbell, T.S., Y.S. Chan, and A.M. Marino, 1992, An Incentive-Based 
Theory of Bank Regulation, Journal of Financial Intermediation 2, 255-276. 

[7] Christensen, J., 1981, Communication in Agencies, Bell Journal of Eco
nomics 12, 661-674. 

[8] Demougin, D.M, 1989, A Renegotiation-proof Mechanism for a Principal-
agent Model with Moral Hazard and Adverse Selection, RAND Journal of 
Economics 20, 256-267. 

[9] Giammarino, R.M., T.R. Lewis, and D.E.M. Sappington, 1993, An Incen
tive Approach to Banking Regulation, Journal of Finance 48, 1523-1542. 

[10] Green, R.C., 1984, Investment Incentives, Debt, and Warrants, Journal of 
Financial Economics 13, 115-136. 

[11] Hart, O.D. and B. Holmstrom, 1987, The Theory of Contracts, in: T.F. 
Bewley, ed., Advances in Economic Theory: Fifth World Congress, (Cam-
bridge University Press, Cambridge, England), 71-155. 

[12] Keeley, M.C., 1990, Deposit Insurance, Risk, and Market Power in Banking. 
American Economic Review, 80: 118.3-1200 

[13] Kupiec, P.H. and J. O’Brien, 1995a, Recent Developments in Bank Capital 
Regulation of Market Risks, Board of Governors of the Federal Reserve 
System, Finance and Economics Discussion Series 95-51. 

[14] Kupiec, P.H. and J. O’Brien, 1995b, A Pre-Commitment Approach to Cap
ital Requirements for Market Risk, Board of Governors of the Federal Re-
serve System, Finance and Economics Discussion Series 95-36. 

29 



[15] La¤ont, J. and J. Tirole, 1986, Using Cost Observation to Regulate Firms, 
Journal of Political Economy 94, 614-641. 

[16] Marshall, D. and E. S. Prescott, 2001, Bank Capital Regulation With and 
Without State-Contingent Penalties, Carnegie-Rochester Conference Series 
on Public Policy, 54, 139-184. 

[17] Marshall, D. and S. Venkataraman, 1998, Bank Capital Standards for Mar
ket Risk: A Welfare Analysis, European Finance Review 2, 125-157. 

[18] Matutes, C. and X. Vives, 2000, Imperfect Competition, Risk Taking, and 
Regulation in Banking, European Economic Review 44, 1-34. 

[19] McAfee, R. P. and J. McMillan, 1987, Competition for Agency Contracts, 
RAND Journal of Economics 18, 296-307. 

[20] Melumad, N.D. and S. Reichelstein, 1989, Value of Communication in 
Agencies, Journal of Economic Theory 47, 334-368. 

[21] Myerson, R. B., 1982, Optimal Coordination Mechanisms in Generalized 
Principal-Agent Problems,” Journal of Mathematical Economics, 67-81. 

[22] Nagarajan, S. and C.W. Sealey, 1998, State-Contingent Regulatory Mecha
nisms and Fairly Priced Deposit Insurance, Journal of Banking and Finance 
22, 1139-1156. 

[23] O¢ce of the Federal Register, July 25, 1995, Proposed Rules, Federal Reg
ister 60 (142), 38412-38144. 

[24] Palomino, F. and A. Prat, 2003, Risk Taking and Optimal Contracts for 
Money Managers, RAND Journal of Economics 34, 113-137. 

[25] Penno, M., 1984, Asymmetry of Pre-Decision Information and Managerial 
Accounting, Journal of Accounting Research 22, 177-191. 

[26] Prescott, E.C. and R.M. Townsend, 1984. Pareto Optima and Competitive 
Equilibria with Adverse Selection and Moral Hazard, Econometrica 52, 21-
45. 

[27] Prescott, E.S., 2003, Communication in Models with Private Information: 
Theory and Computation, Geneva Papers on Risk and Insurance Theory 
28, 105-130. 

[28] Prescott, E.S., 1999, A Primer on Moral Hazard Models, Federal Reserve 
Bank of Richmond Economic Quarterly 85 (Winter), 47-77. 

[29] Rochet, J.C., 1999, Solvency Regulations and the Management of Banking 
Risks, European Economic Review 43, 981-990. 

[30] White, Lawrence J., 1991, The S&L Debacle, (Oxford University Press, 
New York). 

30 



-----------

-----------

Table 1: Private and Social Value of Unregulated Banks 

Type = low 

(s, s) = ( 0.20 , 0.60 ) 
(s, s) = ( 0.30 , 0.60 ) 
(s, s) = ( 0.40 , 0.60 ) 
(s, s) = ( 0.50 , 0.60 ) 

(s, s) = ( 0.20 , 1.00 ) 
(s, s) = ( 0.30 , 1.00 ) 
(s, s) = ( 0.40 , 1.00 ) 
(s, s) = ( 0.50 , 1.00 ) 

Type = high 

(s, s) = ( 0.20 , 0.60 ) 
(s, s) = ( 0.30 , 0.60 ) 
(s, s) = ( 0.40 , 0.60 ) 
(s, s) = ( 0.50 , 0.60 ) 

(s, s) = ( 0.20 , 1.00 ) 
(s, s) = ( 0.30 , 1.00 ) 
(s, s) = ( 0.40 , 1.00 ) 
(s, s) = ( 0.50 , 1.00 ) 

Private Value Social Value 

1.1219 0.9246 
1.1725 1.0707 
1.1853 1.1199 
1.1600 1.1105 

1.3220 0.9246 
1.3520 1.0707 
1.3441 1.1199 
1.3050 1.1105 

1.5596 1.5246 
1.6864 1.6707 
1.7254 1.7199 
1.7276 1.7105 

1.6873 1.5246 
1.7865 1.6707 
1.8231 1.7199 
1.8126 1.7105 

Notes:  Table 1 displays the value of the bank’s objective (“Private Value”) and the regulator’s objective (“Social Value”) as a function of type 
(low or high), risk level s and screening level s, when capital and fines are both set to zero. The private value is exclusive of the lump sum tax 
T. The parameters correspond to the baseline parameterization in Section 4.2: mmin = {0, 0.6}, mmax = {1.7, 2.3}, a = {5, 5}, r = 0.05, t = 0.01, 
g=1.0. 



Table 2: Optimal Capital Regulation in the Baseline Case 

Bank Type: Private or 
Public Information? 

Public Private 

High type %: NA 1% - 85% 86% 87% - 99.9% 

Low Type 

Contract 
Assignment 

1 

Probability of 
Assignment: 
Screening Level (s): 
Risk Level (s ): 
Capital Level (1-D): 

1 
0.4 
1.0 

14% 

1 
0.4 
1.0 

14% 

0.07 
0.4 
1.0 

14% 

1 
0.3 
1.0 
0% 

Contract 
Assignment 

2 
(if 

applicable) 

Probability of 
Assignment: 
Screening Level (s): 
Risk Level (s ): 
Capital Level (1-D): 

0.93 
0.3 
1.0 
0% 

High Type Contract 
Assignment 

Probability of 
Assignment: 
Screening Level (s): 
Risk Level (s ): 
Capital Level (1-D): 

1 
0.4 

1 
0% 

1 
0.4 
1.0 

14% 

1 
0.4 
1.0 
1% 

1 
0.4 
1.0 
0% 

Notes for Table 2: This table gives the details of the optimal contracts for the low type bank and the high type bank in the baseline case when 
fines are prohibited, so the regulator only uses capital requirements. The parameterization used is: r = 0.05, g = 1.0. The first two panels, 
labeled “Low Type,” give the details of the contract for the low type bank. (The second panel is only used if the optimal contract for the low 
type randomizes between two contract assignments.) The third panel gives the contract for the high type bank. Each panel gives the 
probability of the assignment (1.0 unless a random contract is used), and the assigned screening level, risk level, and capital level. The first 
column, labeled “Public”, gives the optimal contract when type is public information. The remaining three columns give the optimal contract 
when type is private information and the percentage of high type banks takes three different ranges. The parameters correspond to the baseline 
parameterization in Section 4.2: mmin = {0, 0.6}, mmax = {1.7, 2.3}, a = {5, 5}, r = 0.05, t = 0.01, g=1.0. 



Table 3: Optimal Contracts in the Baseline Case with Capital and Fines 

Bank Type: Private or Public 
Information? 

Public Private 

High type %: NA 1% - 88% 89% 99.5% 

Low Type 

Contract 
Assignment 

1 

Probability of Assignment: 
Screening Level (s): 
Risk Level (s ): 
Capital Level (1 -D): 

Fines 
Return = 0.04: 
Return = 0.5: 
Return = 1: 
Return = 1.5: 
Return = 2: 
Return = 2.5: 
Return = 2.96: 

1 
0.4 
0.6 
0% 

0 
0 
0 
0 
0 
0 

1.8910 

1 
0.4 
0.6 
0% 

0 
0 
0 
0 
0 
0 

1..8910 

.62 
0.4 
0.6 
0% 

0 
0 
0 
0 
0 
0 

1.8910 

1 
0.3 

1 
0% 

0 
0 
0 
0 
0 
0 
0 

Contract 
Assignment 

2 
(if 

applicable) 

Probability of Assignment: 
Screening Level (s): 
Risk Level (s ): 
Capital Level (1 -D): 

Fines 
Return = 0.04: 
Return = 0.5: 
Return = 1: 
Return = 1.5: 
Return = 2: 
Return = 2.5: 
Return = 2.96: 

.38 
0.4 
1.0 

14% 

0 
0 
0 
0 
0 
0 
0 

High Type Contract 
Assignment 

Probability of Assignment: 
Screening Level (s): 
Risk Level (s ): 
Capital Level (1 -D): 

Fines 
Return = 0.04: 
Return = 0.5: 
Return = 1: 
Return = 1.5: 
Return = 2: 
Return = 2.5: 
Return = 2.96: 

1 
0.4 

1 
0% 

0 
0 
0 
0 
0 
0 
0 

1 
0.4 

1 
0% 

0 
0 
0 
0 

0.8917 
0.4321 

0 

1 
0.4 

1 
0% 

0 
0 
0 
0 

0.8812 
0 
0 

1 
0.4 

1 
0% 

0 
0 
0 
0 
0 
0 
0 

Notes for Table 3: This table gives the details of the optimal contracts for the low type bank and the high type bank under the baseline parameterization: t = 0.01, r = 0.05, g = 1.0. The first two panels, labeled “Low 
Type,” give the details of the contract for the low type bank. The second panel is only used if the optimal contract randomizes between two contract assignments. The third panel gives the contract for the high type 
bank. (In the baseline parameterization, the high type bank is never assigned a randomized contract.) Each panel gives the probability of the assignment (1.0 unless a randomized contract is used), the assigned 
screening level, risk level, and capital level, and the amount of fines on each of the seven return levels. The first column gives the optimal contract when type is public information. The remaining three columns give 
the optimal contract when type is unobservable and the percentage of high type banks takes three different values or ranges. The parameters correspond to the baseline parameterization in Section 4.2: mmin = {0, 0.6}, 
mmax = {1.7, 2.3}, a = {5, 5}, r  = 0.05, t = 0.01, g=1.0. 



Table 4: Private and Social Value of Regulated Banks 

Type = low 

(s, s) = ( 0.20 , 0.60 ) 
(s, s) = ( 0.30 , 0.60 ) 
(s, s) = ( 0.40 , 0.60 ) 
(s, s) = ( 0.50 , 0.60 ) 

(s, s) = ( 0.20 , 1.00 ) 
(s, s) = ( 0.30 , 1.00 ) 
(s, s) = ( 0.40 , 1.00 ) 
(s, s) = ( 0.50 , 1.00 ) 

Type = high 

(s, s) = ( 0.20 , 0.60 ) 
(s, s) = ( 0.30 , 0.60 ) 
(s, s) = ( 0.40 , 0.60 ) 
(s, s) = ( 0.50 , 0.60 ) 

(s, s) = ( 0.20 , 1.00 ) 
(s, s) = ( 0.30 , 1.00 ) 
(s, s) = ( 0.40 , 1.00 ) 
(s, s) = ( 0.50 , 1.00 ) 

Optimal Contract of Low-type Banks 
Private Value Social Value Private Value Social Value 

Optimal Contract of High-type Banks 

1.11999 0.92458 1.00512 0.92343 
1.16939 1.07064 0.98048 1.06875 
1.17924 1.11986 0.93554 1.11743 
1.14933 1.11034 0.87430 1.10759 

1.17924 0.92317 1.17204 0.92310 
1.13388 1.06850 1.17924 1.06895 
1.04524 1.11694 1.16832 1.11817 
0.94440 1.10684 1.13100 1.10871 

1.53659 1.52437 1.23150 1.52132 
1.57752 1.66958 1.30321 1.66684 
1.47614 1.71743 1.35410 1.71621 
1.31935 1.70637 1.47319 1.70791 

1.23535 1.52008 1.51925 1.52292 
1.09230 1.66373 1.64260 1.66924 
0.96035 1.71130 1.69761 1.71867 
0.84346 1.70076 1.69761 1.70931 

Notes: Table 4 displays the value of the bank’s objective (“Private Value”) and the regulator’s objective (“Social Value”) for the optimal low-
type contract and the optimal high-type contract as a function of type (low or high), risk level s and screening level s. The optimal contract for 
a low-type bank has zero capital and a fine of 1.8910 on the highest return. The optimal contract for a high-type bank has zero capital and a 
fine of 0.8917 on the return equal to 2.0 and a fine of 0.4321 on the return equal to 2.5. The parameters correspond to the baseline 
parameterization in Section 4.2: mmin = {0, 0.6}, mmax = {1.7, 2.3}, a = {5, 5}, r = 0.05, t = 0.01, g=1.0. 



Table 5: Comparison of Social and Private Values of Contracts for the Baseline Case 

Bank Type: Private or Public 
Information? Public Private 

High type %: NA 1% 88% 89% 99.5% 

Low Type 

Social value of contract: 

Private value of contract before taxes: 

Private value of contract after taxes: 

1.11987 

1.17924 

1.11987 

1.11987 

1.17924 

1.12067 

1.11987 

1.17924 

1.19065 

1.11720 

1.22470 

1.20066 

1.07068 

1.35196 

1.24785 

High Type 

Social value of contract: 

Private value of contract before taxes: 

Private value of contract after taxes: 

1.71993 

1.82314 

1.71993 

1.71867 

1.69761 

1.63904 

1.71867 

1.69761 

1.70902 

1.71903 

1.73275 

1.70971 

1.71993 

1.82315 

1.71904 

Notes to Table 5:  This table gives the social value (the value in the regulator’s objective function) and the private value (the value in the 
bank’s objective function) of optimal contracts both before and after taxes. The parameterization for the baseline case is: t= 0.01, r=0.05, g = 
1.0. The first column, labeled “Public” gives these valuations for the optimal contract when bank type is observable. The remaining four 
columns give the values for the optimal contracts when type is unobservable, and the percentage of high types takes on four values. The 
parameters correspond to the baseline parameterization in Section 4.2: mmin = {0, 0.6}, mmax = {1.7, 2.3}, a = {5, 5}, r = 0.05, t = 0.01, g=1.0. 
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