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Abstract

Whether technological progress raises or lowers aggregate employment in the short

run has been the subject of much debate in recent years. Using a simple model of in-

dustry employment, we show that cross-industry differences of inventory holding costs,

demand elasticities, and price rigidities potentially all affect employment decisions in

the face of productivity shocks. In particular, the employment response to a permanent

productivity shock is more likely to be positive the less costly it is to hold invento-

ries, the more elastic industry demand is, and the more flexible prices are. Using data

on 458 4-digit U.S. manufacturing industries over the period 1958-1996, we find sta-

tistically significant effects of variations in inventory holdings and demand elasticities

on short-run employment responses, but find less evidence pertaining to the effects of

measured price stickiness.
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1. Introduction

In 2004, inventories held throughout the U.S. economy represented approximately 120 per-

cent of final sales of goods and structures.1 Industries that produce goods for inventory, or

for which inventories are a significant component of the sales process, currently account for

half of all private sector employment. Furthermore, during recessions, changes in inventories

account for about 70 percent of the peak-to-trough decline in real GDP.2 In spite of these

facts, modern business cycle analysis has traditionally placed little emphasis on the role of

inventories.3

The nature of business cycles changes considerably when firms carry inventories. Firms

are able to make current production differ from current sales, speculate on future price

movements, and absorb shocks to demand and costs. Using a simple industry model, we

describe how inventories affect firms’ employment response to productivity shocks. In a

cross-section of U.S. manufacturing industries, consistent with the theory we develop, we

find statistically significant effects of variations in inventory holdings and demand elasticities

in the employment response to changes in technology. In particular, industries with larger

inventory holdings and more elastic demand see a more pronounced increase in employment

following a productivity improvement.

Motivated by Gali (1999), a considerable body of work in contemporary macroeconomics

has argued that aggregate employment falls in response to permanent increases in productiv-

ity and, moreover, that this fall persists over time. While this notion remains controversial

and the subject of an active research agenda, a negative response of employment to an im-

provement in productivity is often interpreted as evidence in favor of sticky prices. While

most of this work is confined to the analysis of aggregate data, Chang and Hong (2006)

find substantial variation in the way that employment responds to technology shocks in U.S.

manufacturing industry data. When we shift the analysis to industry data, the number of ob-

servations on the employment effects of changes in technology increases significantly. Hence,

one can more deeply explore how the heterogeneity in employment responses is affected by

industry characteristics.

Sticky price models typically imply that employment falls in response to a positive tech-

nology shock. When productivity increases, fixed prices imply unchanged real sales so that

less labor is required to meet a given level of nominal demand. Contrary to this conventional

prediction, we show that when firms hold inventories, they can choose to expand output

relative to sales in response to a favorable cost shock despite having sticky prices. They

1This ratio refers to quarterly final sales and inventories from the NIA Table 5.7.5.B and is taken from
Haver.

2See Blinder (1981).
3Notbale exceptions include Blinder (1981), Ramey (1991), and Bils and Kahn (2000).
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would do so both to exploit relatively low production costs and to increase inventory stocks

in anticipation of higher future sales.

To study the role of inventories in a model that allows for price rigidities, we introduce

inventories into a standard Taylor (1980)-type framework. Consistent with the inventory

literature, we assume that firms value inventories because they reduce the cost of possible

stock-outs while allowing production smoothing over time (Ramey and West, 1999; Bils

and Kahn, 2000). Within this setting, the flexible price model is nested as the case with

no price staggering. In addition, we explore the role of differences in demand elasticities

across industries. Specifically, we formalize the notion that when industry demand is suf-

ficiently inelastic, permanent technological improvements lead to decreases in employment

even when prices are fully flexible. Ultimately, we clarify that both the sticky price and flexi-

ble price framework are consistent with either decreases or increases in employment following

a productivity improvement. Employment increases associated with such an improvement,

however, always coincide with a build-up in inventories.

Given our model’s predictions, we estimate the employment responses to productivity

shocks in U.S. manufacturing industries using structural vector autoregressions (VARs) in

the spirit of Gali (1999), and more recently Christiano et al. (2004). The VARs consist

of total factor productivity (TFP), hours worked, and inventory holdings derived from the

NBER Manufacturing Productivity Database, where productivity shocks are identified as the

permanent component of TFP. We also estimate demand elasticities for all manufacturing

industries. We then correlate the magnitude of an industry’s short-run employment and

inventory responses to productivity shocks with industry measures of demand elasticity,

inventory-sales ratios, and price stickiness. To measure price stickiness, we use data on the

average duration for which prices remain unchanged provided by Bils and Klenow (2004).

As predicted by our theoretical model, a positive (negative) response of employment

to technological improvements coincides with a build up (decline) of inventories in many

industries. Furthermore, we find that both the employment and inventory responses to a

productivity shift are positively correlated with industry inventory holdings and demand

elasticity in the cross section. We find less evidence, however, in support of price stickiness.

Specifically, in the sample of industries for which the Bils and Klenow data are available, the

effects of price stickiness are not statistically significant. We also find that the price decline

associated with a permanent productivity increase is generally larger in the long run than

in the short run.

Our analysis of inventories and how they affect the employment response to productivity

shocks builds on a suggestion by Bils (1998). Accounting for changes in industry employment,

Bils finds a positive and significant effect of the inventory-sales ratio interacted with changes

in labor productivity. Besides providing an explicit theoretical justification for this argument,
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we connect the empirical work that emphasizes the use of disaggregated industry data (see

Basu et al. 2004; Shea, 1999; Marchetti and Nucci, 2004; and Chang and Hong, 2006) with

the structural VAR identification of productivity shocks using aggregate data.

This paper is organized as follows. Section 2 presents an industry model with staggered

prices augmented to include inventory investment. In Section 3, we calibrate the model

and study the employment response to productivity shocks across different degrees of goods

storability, price stickiness, and demand elasticity. In Section 4, we explore the model im-

plications in disaggregated data from the U.S. manufacturing industry. Section 5 concludes.

2. A Model with Staggered Prices and Inventories

We introduce inventories into a standard Taylor (1980)-type model with staggered prices.

We study a partial-equilibrium industry model where monopolistically competitive firms

may adjust their prices infrequently. Firms value inventories because they reduce the cost

of possible stock-outs while allowing for production smoothing over time (Ramey and West

1999, Bils and Kahn 2000).

In a standard sticky price environment, a favorable productivity shock reduces the mar-

ginal cost of production and, consequently, prices. Due to the staggered price setting across

firms, this adjustment is spread out over time so that the price level (output) only gradually

decreases (increases) to its new long-run equilibrium path. Along the transition path, firms

that can adjust their price set lower relative prices and, consequently, increase both their

sales and production. In contrast, firms that cannot adjust their nominal prices see their

relative prices increase and face declining sales. When goods are not storable, these firms

then correspondingly reduce production and employment as in Gali (1999). When goods

are storable, however, firms have an incentive to increase production, both to take advan-

tage of the current relatively low marginal cost of production and to build up inventories in

anticipation of higher future sales; indeed, these firms know that they will be able to lower

their relative price at some future date. Therefore, despite prices being rigid, employment

can increase across all firms in response to a positive productivity shock when the cost of

holding inventories is sufficiently low. When holding inventories is very costly, because of

high depreciation in storage for instance, work hours decrease in response to a productivity

shock, as in the simple sticky-price model without inventories.

Without any price staggering, firms adjust their price at every date. In that case, a

permanent improvement in productivity can lead to either an increase or decrease in em-

ployment depending on the elasticity of industry demand. In particular, if the demand curve

is inelastic, sales do not change much with respect to prices and, therefore, improvements in

productivity allow lower levels of labor input to be used. The reverse is true when demand
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is elastic so that employment increases after a positive technology shock. In principle, this

mechanism is also operational when prices are sticky but we argue that without inventories,

implausibly large demand elasticities are needed in order that improvements in technology

generate increases in employment. Simply put, by virtue of fixing real demand in the short

run, sticky prices largely mitigate the effects of a very elastic demand.

2.1. Industry Demand

Consider an industry where monopolistically competitive firms produce a continuum of dif-

ferentiated products, i ∈ [0, 1]. The industry output, qIt , is a CES aggregate of differentiated
products, {qt (i) : i ∈ [0, 1]}:

qIt =

∙Z 1

0

qt (i)
(θ−1)/θ di

¸θ/(θ−1)
, θ > 1. (2.1)

Given nominal prices for the differentiated products, {Pt (i) : i ∈ [0, 1]}, the industry-price
index, that is, the unit cost of industry output, is

P It =

∙Z 1

0

Pt(i)
1−θdi

¸1/(1−θ)
, (2.2)

and the demand for product i is

qt (i) =
£
Pt (i) /P

I
t

¤−θ
qIt . (2.3)

We assume that an industry’s demand depends on economy-wide aggregate demand, qAt , as

well as its relative price, pIt = P
I
t /P

A
t , where P

A
t is the economy-wide aggregate price index,

qIt =
¡
pIt
¢−φ

qAt , φ > 0. (2.4)

Hence, we differentiate between an industry’s demand elasticity, φ, and an individual firm’s

demand elasticity, θ, (which measures the elasticity of substitution across differentiated prod-

ucts in the industry). In particular, while profit maximization, in order to be well defined,

requires the firm’s demand to be elastic (θ > 1), industry demand can be inelastic. We as-

sume that economy-wide demand, qAt , is exogenous and that the economy-wide price index

grows at a constant rate, PAt+1/P
A
t = μ > 1.
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2.2. Production

We base our model of production and inventory holdings on the empirical inventory in-

vestment literature (see Ramey and West, 1999). Firms choose a production path that

minimizes total cost, or more specifically, production cost and the cost of making sales. In

this subsection, we drop the firm index for ease of exposition.

A firm produces xt units of a commodity using labor, ht, as the single input to a

decreasing-returns-to-scale production function

xt = zth
α
t , 0 < α ≤ 1, (2.5)

with productivity zt. We can think of production as being constant-returns-to-scale in capital

and labor, with capital being costly to adjust relative to labor in the short run. Since our

focus is on short-run adjustments in production, it is convenient to abstract from capital

adjustment in our model.

We assume that making sales is costly and that only part of current production, denoted

by yt, makes up output that can potentially be sold. This output, along with beginning-of-

period inventory, nt, add up to total goods available for sales in the current period,

at = nt + yt. (2.6)

Generating qt units of sales requires κqt(qt/at)η, κ, η ≥ 0, units of the commodity pro-
duced. The resource constraint on output that can potentially be sold is given by

yt = xt − κqt

µ
qt
at

¶η

. (2.7)

Observe that having more goods available for sales, at, reduces the cost of making an actual

sale (say, by reducing the probability of stock-outs). The particular functional form adopted

for the cost of making sales implies an average inventory-sales ratio that is independent of

scale, both with respect to production and sales. Bils and Kahn (2000), as well as Ramey

and West (1999), document and emphasize this feature in a number of industries.

Firms hire labor in a competitive labor market at wage rate Wt. Together with the

production function (2.5), this implies the production-cost function

c(xt) = wt (xt/zt)
1/α , (2.8)

where wt = Wt/P
A
t is the real wage. With α < 1, this cost function is strictly increasing

and strictly convex–that is, the marginal cost of production is strictly increasing. Goods
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not sold in a given period can be stored, but depreciate at rate δ,

nt+1 = (1− δ) (at − qt) , 0 ≤ δ ≤ 1. (2.9)

Alternatively, we could have assumed that firms pay an inventory holding cost proportional

to the inventory stock, but the depreciation in storage framework has the advantage of

nesting the standard sticky price model with non-storable goods as a special case.

2.3. Optimal Production and Price Setting

A firm can only adjust its price every J periods, and in any period a fraction 1/J of firms

can adjust their prices. Prices are fully flexible when J = 1. Each producer is indexed

according to how much time, j, has elapsed as of time t since its previous price change.

We restrict our attention to symmetric outcomes in which producers that adjust their price

at the same time are identical. Thus there are J types of firms, and we index firms by

j ∈ {0, 1, ..., J − 1}. We denote by nj,t the beginning-of-period t inventory holdings of a firm
that, j periods ago, set its price to P0,t−j. The relative price of a type j firm at time t is

denoted by pj,t = Pj,t/P It . Because of changes in the industry price level, a firm unable to

adjust its price sees its relative price change over time, pj+1,t+1 = pj,tP It /P
I
t+1 for j = 0, ...,

J − 1.
Firms maximize the discounted present value of current and future real profits. These

profits are discounted at the constant real interest rate 1/β, 0 < β < 1, and nominal profits

are deflated using the aggregate price index PAt . The value of a type j = 0 firm that currently

adjusts its nominal price, V0,t (n0), depends on its beginning-of-period inventory holdings and

the aggregate state of the industry.4

V0,t(n0,t) = maxp0t, q0t, a0t, x0t, n1,t+1
©
pItp0,tq0,t − ct(x0,t) + βEtV1,t+1 (p1,t+1, n1,t+1)

ª
subject to (2.3), and (2.5) to (2.9).

The value of firms that cannot change the price of their products, Vj,t (pj, nj), j = 1, . . . , J−1,
depends on their current relative prices, pj, their beginning-of-period inventory holdings, nj,

4Hereafter, we subsume the dependence on the aggregate state in the time index t.
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and the aggregate state:

Vj,t(pj,t, nj,t) = maxqjt, ajt, xjt, nj+1,t+1
©
pItpj,tqj,t − ct(xj,t) + βEtVj+1,t+1 (pj+1,t+1, nj+1,t+1)

ª
,

subject to (2.3), and (2.5) to (2.9),

VJ−1,t(pJ−1,t, nJ−1,t) = maxqJ−1,t, aJ−1,t, xJ−1,t ,n0,t+1©
pItpJ−1,tqJ−1,t − ct(xJ−1,t) + βEtV0,t+1 (n0,t+1)

ª
subject to (2.3), and (2.5) to (2.9).

Optimal price setting satisfies the following first-order conditions,

∂Vj,t
∂pj,t

= pIt
£
qj,t − λj,tθp

−θ−1
j,t q̃t

¤
+ βEt

∙
∂Vj+1,t+1
∂pj+1,t+1

P It
P It+1

¸
for j = 0, .., J − 1(2.10)

with
∂V0,t
∂p0,t

=
∂VJ,t
∂pJ,t

= 0,

where λj,t is the shadow value of additional sales (that is, the Lagrange multiplier on the sales

constraint (2.3)). The shadow value of sales is equal to the real price minus the marginal

cost of an additional unit sold, ψj,t,

λj,t = p
I
tpj,t − c0j,t

©
1 + κ (1 + η) (qj,t/aj,t)

η − κη (qj,t/aj,t)
1+ηª| {z }

ψj,t

. (2.11)

Equation (2.11) combines the first-order conditions for optimal sales and inventory holdings.

The marginal cost of an additional sale reflects three components: the marginal cost of

producing the commodity, c0j,t, the marginal cost of making sales, κ (1 + η) (qj,t/aj,t)
η, and the

sales-facilitating effect of inventory holdings, −κη (qj,t/aj,t)1+η. We can repeatedly substitute
expression (2.11) for the shadow value of sales in equation (2.10) to obtain an expression for

the optimal price as

p0,t =

µ
θ

θ − 1
¶ Et

hPJ−1
j=0 β

jψj,t+jqj,t+j
i

Et
hPJ−1

j=0 β
j
¡
P It /P

I
t+j

¢
qj,t+j

i . (2.12)

Hence, price-adjusting firms set their price as a generalized markup over the marginal cost

of sales. In a steady state with no inflation and no relative price changes, equation (2.12)

reduces to a static markup over marginal cost. Expression (2.12) for the optimal price differs

from the one that emerges in a standard Taylor-type sticky-price model only with respect

to the definition of marginal cost. Thus, our analysis takes into consideration the marginal

cost of sales rather than the marginal cost of production.

In contrast to conventional sticky-price models, inventories affect the marginal cost of
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additional sales in our framework. Specifically, the production-smoothing role of inventories

can be observed in the optimal choice of aj,t and nj+1,t+1,

c0j,t
©
1− κη (qj,t/aj,t)

1+ηª = β (1− δ)Et
£
c0j+1,t+1

¤
, (2.13)

which equates the marginal increase in cost from producing one additional unit today, given

no change in current sales, to the decrease in the discounted present value of marginal cost

from producing one less unit tomorrow. Aside from production smoothing, note also that

today’s marginal cost of holding additional inventories implicitly reflects the sales facilitating

effect of inventories,−κη (qj,t/aj,t)1+η.

2.4. Industry Equilibrium

We close the model by assuming that the real wage in the industry labor market is an

increasing function of industry employment,

wt = w̄h̄
γ
t , γ > 0. (2.14)

Our industry labor supply specification, therefore, allows a permanent increase in industry

productivity to cause a permanent increase in hours worked. We shall see in section 4.2 that

hours appear to be non-stationary in most manufacturing industries.

The following section explores a recursive industry equilibrium where prices and quan-

tities depend on the state of the industry. The state of the industry is characterized by

the relative prices inherited from the previous period (by the firms that cannot adjust their

nominal prices), {pj,t : j = 1, ..., J − 1}, the beginning-of-period inventory holdings of all
firm types, {nj,t : j = 0, ..., J − 1}, and productivity, zt. We define aggregate industry em-
ployment, production, sales, and inventory holdings respectively as

h̄t =
1

J

J−1X
j=0

hjt, ȳt =
1

J

J−1X
j=0

yjt, q̄t =
1

J

J−1X
j=0

qjt, n̄t =
1

J

J−1X
j=0

nj,t. (2.15)

3. The Response of Employment and Inventories to Productivity

Shocks in the Model

We now study the industry’s response to a permanent productivity shock. For this purpose,

we linearize our model around its deterministic steady state. We show that when goods are

storable, firms use inventories to smooth production and employment increases in response

to a permanent productivity shock. This finding applies to various parametrizations of price

rigidity and the sales-cost function. Consistent with conventional sticky-price models, we also
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show that if commodities depreciate rapidly while in storage, that is, if it is costly for firms

to use inventories, industry employment responds negatively to a permanent productivity

shock. Finally, we provide a description of how the employment response changes with

inventory-sales ratios, the degree of price stickiness, and demand elasticities.

3.1. Calibration

Our benchmark parameter values are selected along the lines of other quantitative studies

on business cycles. A time period represents a quarter. We assume a 4 percent annual

real interest rate, β = 0.99. The labor elasticity of synthetic output, α, equals 2/3 and

a firm’s price elasticity of product demand, θ, is set to 10, which implies an 11 percent

markup of price over marginal cost when prices are flexible. Because firms set their price

as a markup over marginal cost, the labor-income share is lower than the output elasticity

with respect to labor, w
P

j hj,t/
P

j pj,tyj,t = 0.6. We normalize both economy-wide real

aggregate demand and the industry relative price at one, and assume that the economy-wide

price index increases at a fixed 4 percent annual rate.5 For our baseline model, we assume

that goods do not depreciate in storage, δ = 0, that industry demand is elastic, φ = 1.5,

and that nominal prices remain fixed for 4 quarters, J = 4. Alternative parameterizations

are also considered for robustness, in particular 0 ≤ δ ≤ 0.95, 0.5 ≤ φ ≤ 5, and 1 ≤ J ≤ 6.
Productivity, zt, is assumed to follow a random walk with zero drift.

We use observations on average inventory-sales ratios to determine the scaling parameter

κ in the sales-cost function, conditional on the sales-cost elasticity, η. For the baseline

model, we use η = 1 and set the steady state inventory-sales ratio, n/q, to 0.2 at an annual

frequency. If marginal cost were constant and equal across firms, the first-order conditions

for inventories (2.13) would imply that the steady state sales-inventory ratio, q/a, is the

same for all firm types,

κη (q/a)1+η = 1− (1− δ)β. (3.1)

Given the assumptions on the sales-cost elasticity and the annual inventory-sales ratio, which

implies q/a = 0.55 at a quarterly frequency, this yields κ = 0.0329. In our economy,

firms face increasing marginal costs so that sales-inventory ratios differ across firms, but the

average annual sales-inventory ratio remains close to 0.2 under this parameterization. For

alternative parameterizations of the inventory-sales ratio, we consider values in the range

0.05 ≤ n/q ≤ 0.4, which cover 96 percent of average inventory-sales ratios across 458 4-digit
5Since real aggregate demand and the aggregate price index are exogenous, monetary policy does not

accommodate productivity disturbances at the industry level. Dotsey (2002), and Galí et al. (2003), have
shown that even with sticky prices, employment can respond positively to a productivity increase if monetary
policy accommodates productivity shocks.
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manufacturing industries over the period 1958-1996.6 Finally, we assume that the elasticity

of industry wage with respect to hours (the inverse of the labor-supply elasticity), γ, is 1.

3.2. Dynamic Effects of Productivity Shocks

Figure 1 shows the aggregate and individual-firm responses of sales, output, and employment

to a permanent productivity increase when goods do not depreciate in storage (δ = 0), and

prices remain fixed for 4 periods. Observe first that in response to a productivity shock,

industry employment increases on impact and converges to a higher steady state. Since the

productivity shock lowers firms’ marginal costs, firms that adjust prices at the time of the

shock (type 0 firms) lower their nominal price and see their sales increase in the current as

well as upcoming periods. To meet the immediate increase in demand, as well as to build

inventories so as to lower the cost of making future sales, price-adjusting firms hire more

labor and increase production in the current period (see the upper-left panel of Figure 1B). In

contrast, firms that cannot change their nominal price see their relative prices rise and their

current sales decline. However, type 3 firms (those that adjusted their price three periods

ago), knowing that they will be able to lower their price in the near future, anticipate higher

future sales. Hence, in an effort to build up inventories to meet these sales, they increase

production and employment contemporaneously. Only firms that have adjusted their price

in the last period (type 1 firms) significantly lower their employment on impact following

the productivity shock. At the aggregate industry level, therefore, output, employment, and

inventories all increase following a positive productivity shock when goods are durable.

In contrast, Figure 2 shows that when it is very costly to store goods due to a high

depreciation rate in storage (δ = 0.9), industry employment declines following a permanent

increase in productivity. In this case, even anticipating higher future sales, firms whose prices

are fixed at the time of the shock (types 1, 2, and 3) cannot effectively use inventories to

smooth marginal cost since goods deteriorate rapidly while in storage. As their relative price

increases on impact, sales and production decline and, consequently, they hire less labor. As

depicted in Figure 2, output closely tracks sales under this scenario. Furthermore, output and

employment increase only for firms that can change their price at the time of the productivity

shock. At the industry level, therefore, employment declines. In this sense, our model with

costly storage essentially reproduces the intuition underlying standard sticky-price models

without inventories, including Gali (1999) and others.

6With regards to the sales-cost elasticity, we study parameterizations in the range η ∈ [0.05, 2.5]. Results
are not sensitive with respect to this parameter.
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3.3. Storability, Demand Elasticity, and Price Stickiness

Given the framework we have just laid out, the short-run hours response to a permanent

technology disturbance varies with an industry’s use of inventories, its demand elasticity,

and the degree of nominal price rigidity in that industry. Figure 3 shows the cumulative

one-year response of employment to a one-percent permanent increase in productivity for

model solutions computed using various combinations of the parameters δ, κ, φ, and J .

Panels A.1 and A.2 of Figure 3 contrast two cases with different industry demand

elasticities. In particular, employment responses are plotted for different price durations

(1 ≤ J ≤ 4), and depreciation in storage (0 ≤ δ ≤ 0.9), according to whether industry

demand is inelastic (panel A.1, φ = 0.75), or elastic (panel A.2, φ = 1.5). For each choice

of depreciation rate, δ, we adjust κ so as to generate an annual inventory-sales ratio of 0.2,

as in our baseline case. When demand is relatively inelastic in Panel A.1, the short-run

response of hours to a productivity increase is always negative irrespective of price duration

and depreciation in storage. As the depreciation rate increases, the hours response becomes

more negative the greater the degree of price stickiness. When demand is relatively elastic

in Panel A.2, the short-run hours response to a productivity increase is always positive when

goods do not depreciate in storage, δ = 0, irrespective of price stickiness. The hours response

is always positive when prices are fully flexible, J = 1. When prices are sticky, J = 4, small

values of the depreciation rate are enough to generate negative employment responses.

To sum up, when prices are fully flexible, permanent improvements in productivity can

either increase or decrease short-run employment depending on the elasticity of industry

demand. When prices are sticky, improvements in productivity can either increase or decrease

short-run employment depending on firms’ ability to carry inventories.

Panels B.1 and B.2 plot employment responses for different degrees of price duration,

J = 1, 2, 3, and annual inventory-sales ratios, 0.05 ≤ n/q ≤ 0.4, when industry demand is
elastic and inelastic, respectively. We adjust the sales cost κ in order to generate different

annual inventory-sales ratios. When φ = 0.75 in panel B.1, the employment response is

negative whether prices are sticky or flexible. In contrast, when demand is elastic, φ = 1.5

in panel B.2, an industry’s employment response is always positive irrespective of price

stickiness. Observe that in both cases, however, an industry’s short-run employment response

to a productivity improvement always increases with its average inventory-sales ratio.

Panels C.1 and C.2 depict the effects of industry demand elasticity, φ, and price stickiness,

J , on hours worked when goods do not depreciate in storage, δ = 0, and when goods perish

rapidly in storage, δ = 0.9. When δ = 0, irrespective of price stickiness, employment responds

positively to an improvement in productivity as long as industry demand is sufficiently elastic,

φ > 1. When goods are more perishable, with a price duration of 2 quarters, an industry
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demand of elasticity of 2 is required to obtain a positive employment response. When prices

are fixed for a year, J = 4, a larger demand elasticity, φ = 6, is required in order that

employment increase in response to a positive technology shock. Irrespective of depreciation

in storage and price stickiness, note that the employment response always increases with the

magnitude of industry demand elasticity.

4. The Response of Employment and Inventories to Productivity

in U.S. Manufacturing

As we have just argued, an industry’s employment response to a productivity shock depends

in principle not only on the extent of price stickiness in that industry, but also on its ability to

carry inventories and the elasticity of demand for the industry’s product. To investigate these

implications in the data, we now turn our attention to the joint behavior of productivity,

employment, and inventories in U.S. manufacturing industries. For each industry, we estimate

the short-run employment response to a permanent productivity increase. We then relate

that employment response to measures of demand elasticity, price stickiness, and inventory

holdings.

4.1. Data

We obtain data on industry productivity, employment, and inventory holdings from the

NBERManufacturing Productivity Database (see Bartelsman and Gray, 1996). TheDatabase

includes annual information on 458 4-digit SIC manufacturing industries over the period

1958-1996, and largely reflects information from the Annual Survey of Manufacturing.

To measure industry productivity, some adjustment to the industry TFP growth series

of the Database is necessary. The cost of labor in the Database only includes wages and

salaries but does not include fringe benefits. Therefore, we scale each 4-digit industry’s

payments to labor based on the ratio of employer FICA payments to wages and salaries in

the corresponding 2-digit industry. Given the adjusted wage income share, we recalculate

the industry’s TFP growth series following the procedure described in Bartelsman and Gray

(1996).

Industry employment is the sum of aggregate hours worked by production and non-

production workers in that industry. Unfortunately, data on the average workweek of non-

production workers is not available. We follow the Database’s convention and set the work-

week of non-production workers to 40 hours. Our measure of real inventory stocks is the

total end-of-period nominal inventory stock deflated by the value of shipments price deflator.

We estimate the price elasticity of industry demand, φ̂, from a regression of industry real
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sales growth on the rate of industry price change. To account for the simultaneity problem

intrinsic to such regressions, we instrument for the rate of price change using variables that

reflect supply shocks, namely TFP growth and energy price changes. While energy prices are

most likely exogenous relative to demand shifts, their correlation with output prices is limited

since they make up only a small portion of total cost. In contrast, TFP growth rates are

more strongly correlated with industry output price changes but, due to unobserved factor

utilization, they may not represent strictly exogenous supply shocks. Wages and material

prices are likely to be poor instruments since they are non-trivially affected by industry

demand shifts when the industry has a significant share in factor markets. While our price

elasticity measures vary with the choice of instruments, our cross-industry regressions below

are not significantly affected by the particular choice of demand elasticity estimate. As a

practical matter, the most statistically significant estimates are obtained with our benchmark

instruments, TFP growth rates, and energy price changes.

We obtain statistically significant demand elasticity estimates in 343 out of the 458 in-

dustries available. There are only 18 industries (or less than 4 percent of all industries)

whose demand elasticities are estimated with an incorrect sign (i.e., the demand elasticity is

positive). For those industries, we set the price elasticity to 0 in our cross-industry regres-

sions.7 For the 440 industries whose estimated demand elasticities are negative, estimates

range from −7.30 to −0.04, with a mean of −1.52 and a median of −1.26.
We control for the effects of inventory holding costs on the employment response to

changes in technology by using industry average inventory-sales ratios, n/q. While inventory-

sales ratios are endogenous in the model, without a production smoothing motive, long-run

inventory-sales ratios reflect only inventory technology parameters that are unrelated to

demand (i.e., unrelated to φ and θ), or average price duration, J .8 This feature of the model

limits the potential endogeneity problem associated with using average inventory-sales ratios

as a control variable rather than some more direct measure of inventory holding costs.

Finally, we measure the length of time over which prices are fixed (J) using the average

duration for which product prices remain unchanged as documented by Bils and Klenow

(2004). The Bils-Klenow price data are based on unpublished price quotes collected by

the Bureau of Labor Statistics over the period 1995-1997. At the 4-digit level, we obtain

measures of average price duration for 110 manufacturing goods. Across these goods, price

duration, weighted by industry average output, is on average 4.6 months.

7Our results are not affected by this transformation.
8Recall equation (3.1) which holds when firms face constant marginal costs.
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4.2. Empirical Specification

For each industry, we estimate a baseline structural VAR in the growth rates of industry

TFP, ∆ zt, hours worked, ∆ht, and end-of-period inventory holdings, ∆nt+1. We then cal-

culate the response of hours worked to a permanent increase in productivity. Following the

original work of Galí (1999), we identify permanent productivity shocks by assuming that

measured productivity is non-stationary and that productivity shocks are the only source of

movements in long-run productivity. Following Chang and Hong (2006), we use TFP rather

than labor productivity as our measure of productivity. At the industry level, labor produc-

tivity is not an appropriate measure of productivity since shocks with permanent effects on

labor productivity confound true productivity shocks with other shocks. Put another way,

permanent changes in industry labor productivity result not only from permanent produc-

tivity changes, but also from permanent changes in input ratios stemming from permanent

changes in relative prices.9

We do not require hours worked or inventories to be stationary at the industry level.

While current empirical evidence on the stationarity of aggregate hours worked is mixed,

the assumption that aggregate per capita hours worked are stationary is often motivated

by reference to balanced growth path considerations.10 At the industry level, however, a

permanent change in the productivity of a given industry leads to a permanent change in

relative productivity across industries. Therefore, for aggregate hours to remain unchanged,

industry hours must change permanently to reflect the change in relative productivity. Using

standard Dickey-Fuller unit root tests across all 458 industries, we reject non-stationarity

of hours worked and inventory stocks at the 10 percent significance level in only one out of

twenty industries. Thus, we do not restrict hours or inventories to be stationary and write

our industry VARs in first-differences of TFP, hours worked, and inventory holdings.

Our estimation procedure can be summarized as follows. Consider the vector MA repre-

9The same argument can be made for the aggregate data used by Galí (1999). The identification as-
sumption that only permanent productivity shocks have permanent effects on labor productivity is based
on a balanced growth argument within the neoclassical growth model. Implicitly, one assumes that other
permanent changes to the return on capital, such as permanent changes to the capital income tax rate, have
only a minor impact on the (productivity-normalized) capital-labor ratio. See for instance Uhlig (2004). At
the industry level, however, one expects that permanent changes in relative prices and factor rentals are
large.
10This was first discussed by Shapiro and Watson (1988). For some recent and opposing views, see

Christiano et al. (2003), and Francis and Ramey (2002).

14



sentation of our three variable system,⎡⎢⎣ ∆zt

∆ht

∆nt

⎤⎥⎦
| {z }

Yt

=
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| {z }

A(L)

⎡⎢⎣ εz,t

eh,t

en,t

⎤⎥⎦
| {z }

εt

(4.1)

where εz,t and {eh,t, en,t} denote productivity and non-productivity shocks respectively. The
disturbance terms are assumed to be orthogonal, that is Eεtε0t = Σ is diagonal, and the

polynomial in the lag operator need not be finite. We do, however, assume that a VAR rep-

resentation exists, that is A(L) in (4.1) is invertible, B (L) = A(L)−1. Our main identifying

restriction — that only productivity shocks affect industry TFP in the long run — implies

that a12(1) = a13(1) = 0. The responses of hours worked and inventories to a productivity

shock identified in this way will be independent of the other shocks. Thus, there is no need to

disentangle the non-productivity shocks through additional identifying assumptions. As in

Gali (1999), we simply impose a block triangular structure on the inverse matrix of long-run

multipliers in the VAR, B(1), as a way to orthogonalize the reduced form errors {eh,t, en,t}.
The triangular nature of B(1), and the fact that Σ is diagonal, allows us to estimate each

equation in B (L)Yt recursively. All VARs are estimated using a one-year lag and standard

errors are computed by bootstrapping based on 500 draws.

Since industries may have experienced different degrees of technological change over time,

we normalize the productivity shocks across industries. In particular, for each industry we

scale the productivity shock such that it increases TFP by one percent in the long run. We

denote industry i’s short-run response of hours worked (i.e. the first-year response) to this

normalized productivity shock by SRh.

We then perform cross-industry regressions that relate the estimated short-run response

of employment, SRh, to industry characteristics, X, such as average inventory-sales ratios,

demand elasticity, and the average duration of output prices,

SRh = α+Xb+ u. (4.2)

Note that the dependent variable in (4.2), SRh, is only an estimate of the true short-run

employment response to a technology shock. Since this uncertainty introduces heteroskedas-

ticity into our cross-industry regressions, we use Huber-White robust standard errors for

inference.11

11In addition to the use of Huber-White standard errors, we also estimated equation (4.2) with industry
observations weighted by the inverse of the standard error corresponding to that industry’s short-run em-
ployment response. In other words, industries with less precise estimates of SRh are given less weight. This
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4.3. Employment and Inventories in a Cross-Section of Manufacturing Industries

The results from our estimated structural VARs are best illustrated by comparing the impulse

response functions for two industry aggregates that differ widely in their ability to store their

output and in their estimated demand elasticities: raw foods (meat and dairy products) on

the one hand, and durable goods on the other hand. The raw foods industry has relatively

low inventory holdings and faces a relatively inelastic demand: industry inventories are 3.5

percent of annual sales, and the mean estimated demand elasticity is 0.5.12 For comparison,

in aggregate manufacturing, inventories represent 14 percent of annual sales and the mean

estimated demand elasticity is 1.04. Conversely, the durable goods industry has relatively

high inventory holdings and faces a relatively elastic demand: inventories represent 18 percent

of annual sales, and the mean estimated demand elasticity is 1.64.13

Figure 4 shows the responses of TFP, hours worked, and inventory holdings to a perma-

nent productivity increase in each of our benchmark industries.14 In the raw foods industry

(Figure 4A), hours worked unambiguously fall following a one-standard-deviation productiv-

ity shock, while inventories show little movement. Our theory suggests that these responses

for raw foods arise because of their inelastic demand and, to the degree that prices are sticky,

because inventory holding costs are high in that industry. Conversely, in the durable goods

industry (Figure 4B), hours worked increase significantly after a productivity shock and a

significant inventory build-up takes place. Given the theory we have laid out, we naturally

expect these findings in that the relative ease with which durable goods can be carried as

inventories mitigates any negative effects of price stickiness on employment. Moreover, even

if prices were fully flexible, the fact that durable goods have elastic demand helps produce a

positive response of employment to productivity shocks.

According to our industry VARs estimated across 458 4-digit manufacturing industries,

following a productivity shock that raises industry long-run TFP by 1 percent, hours worked

increase in 302 industries. While the estimated hours response vary considerably across

industries, from −2.77 to 3.59 percent, the mean employment increase is 0.32 percent, (see
the first row of Table 1).15 In Table 2, the short-run response in hours, SRh, is highly

additional weighting scheme does not have a substantive effect on our regression results.
12The estimated demand elasticities range from 0.2 to 1.19 (in absolute value) with a median of 0.41.
13For the durable goods aggregate, we estimate negative demand elasticities in 253 out of 260 industries.

Estimated demand elasticities range from 0.06 to 7.26 in absolute value with a median of 1.39.
14When we estimate structural VARs for the two industry aggregates, “raw foods” and “durable goods,”

TFP growth, ∆zt, is aggregated as: ∆zt =
P
i μi,t∆zi,t, where ∆zi,t and μi,t are TFP growth and the output

share of industry i in the industry aggregate. Industry aggregate employment and inventory stocks are the
sum of the component industries employment and inventories.
15This finding stands in sharp contrast to Kiley (1998) who finds a negative correlation between hours and

the permanent component of labor productivity across 2-digit U.S. manufacturing industries. As pointed out
above, in our structural VARs with industry data, TFP rather than labor productivity is the theoretically
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correlated with the short-run response of inventories, SRn, with a correlation coefficient of

0.57 across all industries. The employment response is also positively correlated with both

average inventory-sales ratios (0.13) and industry demand elasticities (0.22), as predicted by

the theory.

Results from cross-industry regressions, shown in Table 3, indicate that both average

inventory-sales ratios and estimated demand elasticities have significant explanatory power

in accounting for differences in employment responses to technology shocks. Moving from

an industry with an average inventory-sales ratio of 0.16 (the sample mean), to one with

an average inventory-sales ratio of 0.43 (a one-unit log increase), increases the employment

response to an improvement in technology (which ultimately raises industry TFP by one per-

cent) from 0.32 percent to 0.52 percent. Similarly, moving from an industry with a demand

elasticity of 1.04 (the sample mean) to 2.04 (a one-unit increase), raises the employment

response to a normalized technology shock from 0.32 to 0.54 percent. Both these effects are

highly significant, with p values well below 1 percent.

To explore the effects of price stickiness, we are forced to use the smaller sample size for

which the Bils and Klenow (2004) measure of average price duration is available, 111 out of

458 industries. In this smaller sample, a regression of the short-run employment response

to technology shocks against average inventory-sales ratios, demand elasticities, and price

stickiness, shown in Table 3, Column (2), continues to identify average inventory-sales ratios

as a significant explanatory variable, with a coefficient of 0.14 compared to 0.20 in the larger

sample (Table 3, Column 1). The coefficient on demand elasticity, however, is now close to

zero and ceases to be significant. This result reflects the fact that the correlation between

the employment response to technology shocks and industry demand elasticity declines from

0.22 in the large sample to 0.04 in the restricted sample. In excluding more than 3/4 of

our original data sample, therefore, important information is omitted. In this regression,

the average price duration of industry products appears unrelated to the way employment

responds to technology shocks. While this finding somewhat undermines the importance of

price stickiness in determining firms’ employment response to technology shocks, the small

sample size of the Bils and Klenow (2004) data set prevents us from viewing this finding as

conclusive.

In general, we retain from our findings, based on the full sample of 458 observations, that

an industry’s ability to carry inventories and its demand elasticity significantly affect the way

employment and inventories respond to productivity disturbances. In particular, industries

preferred measure of productivity. Chang and Hong (2006) show that this distinction is also empirically
relevant. Indeed, for the same data, they find mostly negative employment responses to identified permanent
productivity changes when labor productivity is used as a measure of technology. They attribute this
predominantly negative response to permanent changes in relative input use.
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that are either able to carry large inventories or in which demand elasticity is high tend

to display large positive employment and inventory responses to permanent productivity

increases.

5. Further Considerations

5.1. Alternative VAR Specifications

It should be clear that our model has implications not only for employment but also for such

variables as sales, inventory-sales ratios, and prices that are not included in our baseline

3-variable VAR. Although our data encompasses a large number of industries, the fact that

each industry contains only about forty observations confines us to relatively small scale

VARs. Therefore, to evaluate the robustness of our results, we estimate three alternative

3-variable VARs that continue to include productivity and employment, but we substitute

either sales, inventory-sales ratios, or prices for inventories. Data on industry sales and

prices can be directly obtained from the NBER Database. Real sales is defined as the value

of industry shipments deflated by the value of shipments price deflator, and we use the latter

deflator as our industry price measure.

We find that the short-run employment responses to a permanent productivity increase

in these alternative 3-variable VARs generally mimic those of our baseline specification.

First, the distribution of short-run employment responses across industries is very similar

for the four different VAR specifications. Employment tends to increase in most industries,

and the mean employment increase in response to a 1 percent permanent TFP increase is

about 0.3 percent across VAR specifications. Second, the industry short-run employment

responses are highly correlated among the different VAR specifications, with correlations

ranging from 0.80 to 0.85. Third, the impact of inventory-sales ratios and estimated demand

elasticities on the cross-industry variation of short-run employment responses is qualitatively

and quantitatively very similar to those shown in Table 2. In Table 4, Columns (1)-(4),

practically all coefficients are significant at the 1 percent level. We see the only exception

to this pattern in the alternative VAR estimates with the price series as the third variable

(Column 4). The employment responses from this price-based VAR tend to be smaller, but

even this VAR yields predominantly positive employment responses.

We find that in response to a permanent productivity increase, sales tend to increase more

than inventories, and inventory-sales ratios tend to fall. This feature replicates the stylized

facts for unconditional correlations of sales and inventory-sales ratios, cf. Ramey and West

(1999) and Bils and Kahn (2000). We also find, however, that the countercyclical behavior

of inventory-sales ratios is not uniform: in 94 out of the 458 industries, inventory-sales ratios
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rise following a productivity increase.16

Finally, in most industries, prices fall in response to a permanent increase of TFP. Overall,

prices decrease in both the short run and the long run in 411 out of 458 industries. Further-

more, in 361 out of these 411 industries, the long-run price decline exceeds the decline in

short-run prices. The mean decline in prices following a normalized technology shock is 0.56

percent in the short run, and 0.98 percent in the long run across all industries. Note that

the long-run magnitude of the mean fall in prices is almost equal to the long-run increase

in TFP. These observations are suggestive of an industry supply that is more elastic in the

short run than in the long run.

5.2. Searching for a More Direct Measure of Inventory Holding Costs

We have argued that inventory holdings play a significant role in accounting for cross-

sectional differences in firms’ employment response to technology shocks in manufacturing

data. While long-run inventory-sales ratios are independent of demand considerations ab-

sent a production-smoothing motive in our model, variations in industry demand elasticity

and the volatility of demand likely affect these ratios in practice. To avoid this potential

endogeneity problem requires that one obtain a more direct exogenous measure of inventory

holding costs.

To address this issue, we examine a data set provided by Bils and Klenow (1998) on the

average service-life of products. This data set is based on information from the Bureau of

Economic Analysis and the interoffice memorandum used by major U.S. property casualty

insurance companies. We augment the Bils-Klenow service-life data by assuming that raw

foods and processed foods (e.g., canned and frozen foods) can be stored for 0.2 years and

0.5 years, respectively. Specifically, raw foods include meat products (SIC 2011, 2013, 2015),

dairy products (2021, 2022, 2023, 2024, 2026), and bakery products (2051, 2052). Processed

foods include the rest of food industries under SIC 20. In total, we are able to obtain service

life measures for 98 manufacturing products at the 4-digit level, with a mean weighted by

average industry output of 4.2 years. In the sample of industries for which we have average

service life data, the correlation between service life and inventory-sales ratios is high and

positive at 0.44, which suggests that service life might constitute a useful instrument for

average inventory-sales ratios.

In Table 5, Column (1), we re-estimate the regression of employment responses to tech-

nology shocks on inventory-sales ratios and industry demand elasticity but, in doing so,

we instrument for inventory-sales ratios using Bils and Klenow’s service life data. We find

that the coefficient on average inventory-sales ratios increases considerably, from 0.2 to 0.68.

16Additional tables are available upon request.
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However, the coefficient on demand elasticity now becomes statistically insignificant. The

increase in the standard error associated with the demand elasticity coefficient arises from

the fact that, while the service life data is correlated with average inventory-sales ratios, it is

even more strongly correlated with industry demand elasticity (0.59). The second stage re-

gression, therefore, is subject to non-trivial multicollinearity. In a model with durable goods

consumption, goods that are more durable are typically associated with a larger investment

response to a change in their price. The reason is that following a price change, a lower

depreciation rate helps create a larger change in the implicit rental rate of the durable good.

As shown in Table 5, Column (2), the multicollinearity issue we have just described also

applies if we were to use average service life as an instrument for demand elasticity instead

of average inventory-sales ratios. In this case, of course, it is the coefficient on demand

elasticity that increases considerably, from 0.22 to 0.53, but so does the estimated standard

error on the average inventory-sales ratios coefficient. Ultimately, the ideal instrument for

our model should be correlated with inventory-sales ratios but uncorrelated with industry

demand elasticity.

6. Conclusion

Recent studies have interpreted the employment response to productivity shifts as a litmus

test for the existence of frictions in nominal price adjustment. This paper has shown that

whether or not inventories can be used to break the link between production and sales is

crucial for understanding firms’ employment response to productivity shocks. In conventional

sticky price models without inventories, productivity shocks reduce employment. In contrast,

the same shocks cause firms that can carry inventories to expand output relative to sales

and, as a result, to hire more workers. For quantitatively reasonable calibrations, we show

that following a productivity shock, employment increases when the inventory holding costs

are sufficiently low and industry demand is elastic.

Based on 458 4-digit disaggregated U.S. manufacturing data over the period 1958 to 1996,

we estimate how firms respond to productivity shocks. Consistent with our theory, we find

that an industry’s employment response to shifts in productivity is strongly correlated with

its standard characteristics, such as inventories and demand elasticities, that are entirely

within the domain of flexible price models. On the other hand, using direct evidence on the

degree of price rigidities across industries, we could not find a link between price stickiness

and the short-run employment response to productivity shocks.
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Table 1. Summary Statistics

Mean S.D. Min Max obs.

SRh .32 .77 -2.77 3.59 458

SRn .85 .98 -2.05 6.32 458

n/q .16 .07 .02 .55 458

φ̂ 1.04 .76 0 4.85 458

J 4.3 mo. 3.3 .77 29.9 111

δ−1 4.5 yrs. 5.64 .2 27.5 98

Note: SRh and SRn are the short-run responses of hours and inventories

obtained from our baseline industry VAR. n/q is the average inventory-sales

ratio; φ̂ the estimated industry demand elasticity; J : the average duration of

output price (in months) for 111 industries; δ−1 the average service life (in years)

of the output for 98 industries.

Table 2 Cross-Industry Correlations

SRh SRn lnn/q φ̂ ln J ln δ−1

SRh 1.00

SRn 0.57 1.00

lnn/q 0.13 0.05 1.00

φ̂ 0.22 0.14 0.03 1.00

ln J 0.07 0.01 0.1 0.03 1.00

ln δ−1 0.21 0.10 0.44 0.59 0.2 1.00

Note: The variables are as defined in Table 1. Correlations with the log

average price duration (ln J) are based on 111 industries. Correlations for the

log average service life (ln δ−1) are based on 98 industries. Correlation between

ln J and ln δ−1 is based on 72 industry products.
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Table 3. The Employment Response to Productivity Shocks:

The Effects of Inventory-Sales Ratio, Demand Elasticity, and Price Stickiness

(1) (2)

ln(n/q) 0.20∗∗∗ 0.14∗

(0.07) (0.07)

φ̂ 0.22∗∗∗ 0.01

(0.06) (0.07)

ln J 0.07

(0.09)

Nobs 458 111

R2 0.06 0.02

Note: The dependent variable is SRh, an industry’s short-run response of

hours to a 1 percent permanent productivity increase estimated from our baseline

3-variable industry VAR. The right-hand side industry variables are as defined

in Table 1. The numbers in parenthesis are standard deviations based on robust

Huber-White sandwich estimators of variance. Asterisks denote p-values of less

than 10% (*), less than 5% (**), and less than 1% (***). All regressions include

a constant term, not displayed in the Table.
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Table 4. Alternative VARs: The Response of Employment to Productivity Shocks:

(1) (2) (3) (4)

Dep. Var. SRhn SRhq SRhn/q SRhp

ln(n/q)i 0.20∗∗∗ 0.14∗∗ 0.15∗∗∗ 0.05

(0.07) (0.06) (0.06) (0.05)

φ̂ 0.22∗∗∗ 0.18∗∗∗ 0.18∗∗∗ 0.19∗∗∗

(0.06) (0.05) (0.05) (0.04)

R2 0.06 0.05 0.06 0.06

Note: The dependent variable SRhi is an industry’s short-run response of

hours to a 1 percent permanent productivity increase in a 3-variable VAR when

the third variable is inventories (i = n), sales (i = q), inventory-sales ratio

(i = n/q), or price (i = p). The right-hand side variables are as defined in Table

1. The regressions are as described in Table 3.

Table 5. The Employment Response to Productivity Shocks:

The Effects of Inventory-Sales Ratio and Demand Elasticity

(1) (2)

ln(n/q) 0.68∗∗ 0.03

(0.32) (0.13)

φ̂ 0.12 0.53∗∗

(0.17) (0.19)

Nobs 98 98

Note: See Table 3. In Column (1), the log of average service life (ln δ−1) is

used to instrument for lnn/q. In Column (2), the log of average service life is

used as an instrument for demand elasticity φ.
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Figure 1. The Response to a Permanent Productivity Increase Without Depreciation in

Storage, δ = 0
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B. Individual Firms’ Response
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Figure 2. The Response to a Permanent Productivity Increase With Depreciation in

Storage, δ = 0.9

A. Aggregate Response
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B. Individual Firms’ Response
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Figure 3. Employment Responses to Productivity Shocks
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Note: We graph the cumulative one-year response of hours to a 1 percent

permanent increase in productivity. All parameter values are set at their baseline

values with the exception of (δ,φ, J,κ) as described in the text. In Panel A, we

vary δ and J for inelastic (A.1, φ = 0.75) and elastic (A.2, φ = 1.5) demands.

In Panel B, we vary the steady state inventory-sales ratio n/q and J for inelastic

(B.1, φ = 0.75) and elastic (B.2, φ = 1.5) demands. In Panel C, we vary φ and

J for low (C.1, δ = 0) and high (C.2, δ = 0.9) depreciation rates.
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Figure 4. Response to Technology from VAR
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