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Abstract

We develop a two—period model of incentive provision based on Hopenhayn and

Jarque (2010). We study the deferral of pay in the optimal contract that implements

prudent risk—taking and discuss implications for the regulation of real life compensation

instruments, such as bonuses or clawbacks, in the banking sector. In this model, the

effects of hidden actions are persistent and hence are revealed over time. We show that,

due to the positive effect of persistence on the information available to the principal, a

higher intensity of persistence (more influence of the effort on the second period results)

will sometimes translate into less deferral of pay (less expected pay in the second period

than in the first). We also compare this model with a standard repeated moral hazard,

in which the effects of effort do not persist over time. We find that persistence does

not necessarily imply a higher proportion of deferred pay.
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1 Introduction

This paper develops a dynamic model of employee compensation to study the optimal deferral

of pay. It builds on the moral hazard model with persistence of Hopenhayn and Jarque (2010)

in which actions taken today affect output in the future. We study how deferral varies with

the degree of persistence, and how it depends on discounting. We also compare the amount of

deferral with that in the benchmark repeated moral hazard model, which has no persistence.

Many actions taken by an employee have persistent effects on an organization. The

strategic plan set by a chief executive officer (CEO) affects firm productivity today and in

the future. The control environment developed by the chief financial officer (CFO) affects

the long—term quality of accounting numbers. The investment made in a client relationship

affects sales today and in the future.

These persistent effects are particularly common in banking firms. A loan originated by

a mortgage loan officer need not default right away. A credit line originated by a commercial

bank officer will generate profits or losses over time. Securities bought by a trader will affect

profits until they mature, default, or are sold.

In the recent financial crisis, many loans and investments that were initially profitable

became dramatically unprofitable later. There is a wide belief that a reason for this is

that bank employees’ compensation was separated from the long-term consequences of their

actions (FCIC, 2011). As a result, recent regulations in the United States and Europe have

focused on regulating banker compensation to control risk. In the United States, much of this

regulation has pushed banks to compensate employees through deferring payment of bonuses

and allowing bonuses to be clawed back by the firm, with the hope of linking payments to

long—term performance (Federal Reserve, 2011).

Our goal is to provide a framework that can be used to assess the desirability of this type

of regulations. We develop a two—period moral hazard model in which the hidden actions

of a risk—averse agent have persistent effects on output, so information about past actions is

revealed over time. In the optimal contract, the principal spreads contingent payments over

the two periods to provide incentives. To summarize the time—structure of compensation,

we calculate the proportion of the total expected payment over the two periods that will be

delivered in the second period. We use this as our measure of deferral and describe how it

depends on the intensity of persistence and the discount factor.1

Our analysis builds on results from Rogerson (1985) and Hopenhayn and Jarque (2010).

Rogerson (1985) studied a standard two—period repeated moral hazard problem without

1A related question of interest is whether an outside observer, such as a regulator, could evaluate com-

pensation plans based on measure such as deferral or the importance of bonuses in overall pay and determine

whether they implement “excessive” risk—taking — where a depository institution distorts its decisions due

to the safety net. We tackle this question in Jarque and Prescott (2013). See also Phelan (2009). Here,

instead, we characterize the optimal contract that implements prudent risk—taking (i.e., high effort).
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persistence. He showed how, in the presence of commitment to long—term contracts, the

optimal smoothing of incentives over time determines the allocation of payments throughout

the contract. In a model with only one initial effort, the effects of which persist into the

second period, Hopenhayn and Jarque (2010) showed that the optimal contract heavily uses

the information generated by returns realized in later periods because this provides efficient

incentives for early persistent efforts. This provides a second force that determines the

optimal deferral of payments, together with the incentive—smoothing motive characterized

in Rogerson (1985), which still prevails in the setting with persistence.

We build on these results by developing a model where the degree of persistence in

production and the effectiveness of later actions are indexed by single-dimensional scalars.

This way, we can nest two different setups of effort with persistence, as well as the benchmark

case of a standard repeated moral hazard model without persistence in Rogerson (1985). We

focus our analysis on two particular cases of persistence. In the first one, the agent exerts

effort exclusively at the beginning of the contract, but output in the second period is affected

by that initial effort. Natural examples in financial firms of such a technology are the jobs of

a trader (who exerts effort in selecting only good assets to purchase according to clues about

their stochastic future value) and a loan originator (who exerts effort to select borrowers

worthy of credit and designs the terms of the loan according to the risk characteristics of

the borrowers). This first setup allows us to study the effect on compensation of different

degrees of persistence.

The second case we consider allows for a second period action to have an effect on the

second period, though the first period effort remains the main determinant in the probability

distribution of future output. In financial firms, credit line managers are a good example of

such a technology: they exert an initial effort to select borrowers worth of credit and design

the terms of the credit line, but they also need to exert effort in future periods to track

the evolution of the risk characteristics of the borrowers and adjust the terms of the credit

line accordingly. This second setup allows us to study the implications of substitutability of

long—term versus short—term effort across periods.

Our results consist of a complete characterization of the contract for the case of an

agent with CRRA preferences with a relative risk aversion of one—half. This choice of a

functional form allows us to solve for the closed form solution of the contract and to derive the

comparative statics. We show that, if only the initial effort affects future output, the optimal

amount of deferral may not be monotonically increasing in the intensity of persistence. This

is despite the intuitive push for deferral that arises when more information about past efforts

is contained in future output. The reason is that there is a second force that reduces deferral.

We show that the improved information that comes with increased persistence reduces the

overall need for incentives, and that reduces the required amount of deferral. Sometimes the

second force outweighs the first, creating the non—monotonicity.

In contrast, in the extension of the persistence model in which future actions also influence
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future output, we show that the more important the initial effort is relative to the second,

the more deferral there will be in the optimal contract. This is because more persistence now

implies a decrease in information about the second period action, making incentives for it

more difficult, and hence disproportionately increasing expected consumption in the second

period.

Rogerson (1985) showed that, in the standard repeated moral hazard model, deferral was

optimal despite the lack of any persistent effects in production. When comparing this model

with our main model with persistence, we find that they have different comparative statics

of deferral with respect to discounting: more patience implies higher deferral in the repeated

moral hazard, while it implies less deferral in the case with persistence. Interestingly, like we

found before, the intuition of persistence being the driving force for deferral is incomplete.

We find numerous examples in which more compensation is deferred in the repeated moral

hazard model than in the persistence model.

In terms of assessing compensation regulations, these results have several implications.

These include showing caution when linking persistence to the amount of deferral and that

regulations should focus on the actual payouts rather than the legal contractual form. They

also demonstrate the need for careful measurement of production technologies.

1.1 Related Literature

The task of studying compensation practices at banking organizations faces an important

difficulty in the lack of publicly available data on compensation.2 There are a few recent

empirical papers about bank employee incentives (Agarwal and Ben-David (2011), Berg,

Puri and Rocholl (2014), and Hertzberg, Liberti, and Paravisini, 2011), but they do not

address directly the question of deferral of pay. Cole, Kanz, and Klapper (2011) find, in

an experimental setting, that a simple form of deferral of incentives (purely postponing

payments for three months) makes loan officers exert less screening effort, resulting in lower

quality of loans.

On the theory side, a few recent articles have focused on incentives for bank employees.

Hartman-Glaser, Piskorski, and Tchistyi (2010) focus on the external agency problem be-

tween a mortgage originator and the investor buying its securitized mortgages. Inderst and

Pfeil (2013) model the internal pay practices of originating firms when the agent needs to

both exert a hidden action to generate mortgage opportunities and reveal private informa-

tion about the quality of those opportunities. They analyze how mandatory deferral of pay

2The SEC requires executive compensation disclosure for the five top—paid executives of publicly traded

firms, including financial institutions (Item 402(c)(2)(x) of Regulation S-K). For the rest of the employees

of the firms, requirements are minimal. In August of 2015, the SEC adopted a rule, which was mandated

by the Dodd—Frank Wall Street Reform and Consumer Protection Act, that requires these same firms to

report the ratio of the compensation of their CEO to the median compensation of the employees of the firm

starting in 2017.
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affects the external agency problem when the firm securitizes the mortgages it originates.

Hoffmann, Inderst and Opp (2013) focus in multi—tasking environments in which two hidden

actions of the agent (effort and “diligence”) affect the final performance of the firm (which

they interpret as mortgage defaults or quality of financial advice). In all of these studies the

agent is risk neutral and deferral is costly only because he discounts the future at a higher

rate than the principal.

In our paper, we instead assume the agent is risk averse and focus on the case of a common

discount factor for the agent and the principal. Hence, our paper relates to the literature

on moral hazard problems between a risk—neutral principal and a risk—averse agent when

effort has persistent effects in time. In addition to the two models that we directly build on

(Hopenhayn and Jarque, 2010; and Mukoyama and Sahin, 2005), related models have been

analyzed in Fernandes and Phelan (2000), Kwon (2006), Phelan (2009), and Jarque (2010).

These studies use various assumptions on the stochastic processes and the time structure of

efforts’ effect over time to handle the technical difficulty that arises with persistence due to

the possibility of joint deviations of effort across periods.

1.2 Organization

This article is organized as follows. After describing the environment in Section 2, the

optimal contract is characterized in Section 3. Section 4 introduces our measure of deferred

pay, and Section 5 presents the results on optimal deferral. After discussing deferral for an

extension of the model to two actions in Section 6, Section 7 discusses the implications of

the models for the regulation of pay in the financial sector. Section 8 concludes.

2 Environment

There is an agent who operates a two—period project for a principal. In each period, the

project produces either a low return,  = 0, or a high return,  = 1. The returns are

publicly observable and contractible. In general, the agent can take an action, , in both

periods, though we also consider cases in which the second—period action does not affect the

outcome of the project. The action is unobservable to the principal, and it can take on two

values,  or . The agent gets disutility  () from taking an action. We set  () to 0 The

disutility of high effort,  ()  is set to   0 when effort affects the output and 0 otherwise.

When necessary, we abuse notation slightly and use 1 to refer to the first—period action of

the agent and 2 to refer to the second—period action.

Both the agent and the principal discount the future at a rate  ≤ 1 The principal is risk
neutral. The agent is risk averse, with utility of consumption  being () = 1−

1−  where we
set  = 12 for most of the analysis. Thus, the agent’s utility in each period is  ()−  ().
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The objective of this paper is to study the deferral of pay. We will assume (for technical

reasons) that the agent is not allowed to save or borrow, so pay is equivalent to consumption.

It is easy to see that, given the concavity of the utility function, some of the agent’s con-

sumption will be delayed to the second period. We denote as  the proportion of expected

consumption given in the second period, that is, the proportion deferred. We will study the

optimal level of  as a function of the primitives.

The actions of the agent affect the return through the stochastic structure of the pro-

duction technology. We denote the probability of a high return in the first period as

1(|) =  ()  where:

 () = 

 () = 

We assume that 1      0 The probability of a low output, 1 (|)  is 1− 1 (|).
The probability distribution of a high return in the second period, denoted 2(|1 2)
depends potentially both on the first and second period actions in the following way:

2(|1 2) =  (1) + (1− ) [ (2) + (1− )]  (1)

This general structure nests two setups with effort persistence that have been studied in

Hopenhayn and Jarque (2010) and Mukoyama and Sahin (2005). It also nests the standard

repeated moral hazard model (Rogerson, 1985), which we will use as a benchmark. We will

analyze three specific cases defined by different combinations of restrictions on ,  and 

values.

The stochastic structure of second period output that (1) implies is:

2(|1 2) 2 =  2 = 

1 =    + (1− ) [ + (1− )]

1 =   + (1− )  + (1− ) [ + (1− )]

 (2)

Our main case of interest is that of  = 0, when the second period effort does not affect

output. We focus our analysis on this case, since it provides a clean setup to study the

provision of incentives over time, given the timing of revelation of information. In this

case, the probability of high output in  = 2 is a weighted average of the effort—determined

probability and of  The effect of the agent’s effort on the probabilities persists, but it is

potentially smaller in  = 2 than in  = 1. We refer to the exogenous weight of the effort—

determined probability,  ∈ [0 1]  as the “degree” of persistence. We refer to the extreme
cases of  = 0 and  = 1 as no persistence and “perfect persistence,” respectively. We allow

for the degree of persistence to vary over the range  ∈ (0 1] and study the comparative
statics of deferral with respect to this parameter.
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The case of  = 1 and  = 0 is the benchmark repeated moral hazard model () in

which only second period effort affects second period output. We analyze this model because,

as we will discuss later, it also exhibits deferral of pay despite not having any persistence.

By comparing it with the persistence model we will highlight reasons for deferral of pay that

are not attributable to persistence.

Finally, we analyze an extension of the main model with persistence in which  = 1 and

  0 that is, the second—period action complements the first—period action in determining

the probability of the second—period output, and the principal designs the contract to im-

plement 2 = . This constitutes an intermediate case between the pure persistence case of

 = 0 and the benchmark .

3 Optimal contract

We assume that values for   the cost of effort  and the stochastic structure are such

that the principal finds it profitable to ask the agent to take the high action. Hence, we can

just consider the problem of finding the minimal cost to implement . Let ,  =   be

compensation in the first period as a function of the realization of  Similarly, let  be

compensation in the second period as a function of first period output, , and second period

output, . We use the standard relabeling of  =  ()  and  =  ()  and we denote

 (·) = −1 (·)  Whenever a second—period action is effective (  0)  the strategy of the

agent in the second period may depend on the first period realization. We will denote this

strategy as 2 () for  =  

The expected utility of the agent as a function of his strategy of contingent effort choices

is:

 (1 2 ()  2 ()) =
X


1(|1)
"
 + 

X


2(|1 2 ()) −  (2 ())

#
− (1) 

Recall that whenever second—period effort does not affect output, there is no disutility.

Formally:

 (1) =

(


1+
if   0

 if  = 0
;  (2) =

(


1+
if   0

0 if  = 0

This structure of effort disutility helps us to write the problem of the principal in a general

form that covers all three cases. In particular, when second—period effort does not affect

output ( = 0) both the principal and the agent will be indifferent between the low and

high actions in the second period. Hence, we can assume they implement  in both periods

even in this knife—edge case. Note that when   0 we normalize effort disutility so total

effort disutility is the same as in the case  = 0
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The principal’s optimization problem is:

min


X


1(|)
"
 () + 

X


 () 2(| )
#

(3)

subject to the domain constraints

  ≥  (0) ∀  (4)

the participation constraint (PC),

 (  ) ≥ ̄  (5)

where ̄ is the reservation utility of the agent, and the incentive constraints (IC).

In the case of  = 0 there will simply be one IC, which is for the first—period effort:

 (  ) ≥  (  )  (6)

In the case of  = 1 there are six incentive constraints: the two second—period incentive

constraints along the equilibrium path

 (  ) ≥  (  )

 (  ) ≥  (  )  (7)

the first—period incentive constraint (6), and three additional incentive constraints that con-

sider joint deviations of first— and second—period actions:

 (  ) ≥  (  )

 (  ) ≥  (  )

 (  ) ≥  (  )  (8)

There is a seventh incentive constraint that considers the strategy of (  )  but it is

easy to show that it will be implied by the constraints in (7).

The problem has a strictly convex objective function and linear constraints, so it has a

unique solution. In the common solution for the “first best” observable effort case, optimal

compensation under full information is characterized by constant consumption over the two

periods, since the incentive constraints are not part of the problem. The implied deferred

proportion of consumption is  = 12. As we will see when effort is unobservable, compen-

sation may not be evenly split across the two periods due to the trade—off between incentive

smoothing motives and the use of later information for incentives. Nevertheless, the prop-

erty that   0 will be preserved, trivially, whenever the utility of the agent is concave, for

consumption smoothing purposes. The focus of our analysis will be characterizing how the

degree of persistence of early effort affects the value of 

Next, we analyze the optimal contract when effort is unobservable, for the different

parametrizations introduced earlier.
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3.1 Benchmark: standard repeated moral hazard without persis-

tence

In our  model, the agent takes the high action in equilibrium in each of the two

periods.3 The probability distribution of return in the second period is, as a special case of

matrix 2,

2(|1 2) 2 =  2 = 

1 =   

1 =   

 (9)

or, equivalently,

2(|1 2) =  (2) 

Hence, the probability of high output is  if the action is high and  if the action is low,

i.i.d. across periods.

The first order conditions for this problem are:

() :
1

 0 ()
= + 1 (1− )  =  

() :
1

 0 ()
= + 1 (1− ) +

2
1(|1) (1− )  =    =  

where  ≥ 0 is the multiplier on the participation constraint, (5), 1 ≥ 0 is the multiplier
of the first—period incentive constraint, and 2 ≥ 0 is the multiplier of the second—period
incentive constraint, contingent on the first—period realization being  Let  denote the

likelihood ratio of output realization  in the first period:

 =
1(|)
1(|)   =  

Note that the second—period likelihood ratios,  are based on individual outcome prob-

abilities, and they are equal to those in the first period:

 =
2(|1 2)
2(|1 2) =

1(|)
1(|) 

It is convenient when presenting our results to denote the variance of the individual outcome

likelihood ratios as  ≡   [|]  where:

 =
( − )

2

(1− )


3This is a standard textbook model. For details, see Rogerson (1985).
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The solutions for the optimal utilities when  () =
√
 (assuming the lower bound of utility

in (4) is not binding) are

 =
1

2

½
̄ + 

1 + 
+



1 + 

1− 

 (1 + )

¾
(10)

 =
1

2

½
̄ + 

1 + 
+



1 + 

µ
1− 

 (1 + )
+
1− 



¶¾
 (11)

3.2 Main model: initial effort only

In this case, output is only affected by the first—period action, so  = 0 The simplified

production technology is:

1 (|1) 2 (|1 2)
 =    + (1− )

 =   



Because the second—period probability is only conditional on the first—period action, we

introduce a simpler notation:

2(|1 2) = 2 (|1) 
As in the previous model,  denotes the likelihood ratio of output realization  in the

first period. Let  denote the likelihood ratio of the history of first— and second—period

output realizations, ( ) :

 =
1(|)2 (|)
1(|)2 (|)    =  

The first—order conditions of this problem are

1

 0()
= +  (1− )  ∀

1

 0()
= +  (1− )  ∀  (12)

where  ≥ 0 is the multiplier on the incentive constraint, (6). The following proposition

follows from these first—order conditions:

Proposition 1 (Hopenhayn and Jarque, 2010) For any utility specification that satis-

fies  0  0  00  0, and assuming the domain constraint for utility (4) does not bind,

compensation levels in the optimal contract are ranked by likelihood ratios:

   since   ,

  00 ⇐⇒   00 
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Collorary 1 In particular,

If  = 0 then  =  =    =  = 

If  ∈ (0 1) then      and     

If  = 1 then      =     

Note that the solution for consumption does not depend on the period when the transfer

takes place except through the likelihood ratios. Another important property of the optimal

contract is that it never implies perfect insurance in the first period; information is used as

soon as it becomes available.

It will be useful to focus on the case of perfect persistence to discuss the intuition of

the results. Here, when  = 1 we see that the above proposition implies  =  Also,

incentives are more high powered in the second period after a low return in the first period.

That is, it is easy to see that, for any arbitrary functional form of the utility of consumption,

0   −    −    − 

For our utility specification of  () = 2
√
, when the lower bound of utility in (4) is not

binding we can solve for the closed form solution for the contingent utilities (see Appendix

1 for details of the derivation):4

 =
̄ + 

1 + 
+ 

1

1 + 2
(1− )  (13)

where  ∈ {     }  1 ≡   [|] denotes the variance of the likelihood ratios
in the first period (which is equal to  given our assumptions about the technology in the

first period), and 2 ≡   [|] denotes the variance of the likelihood ratios in the
second period, which depends on .

3.3 Extension: two efforts

In this case, output is affected by the first— and second—period actions, so  = 1 Because we

want to analyze the effects of persistence on deferral of pay, we limit our analysis of this case

to parametrizations in which the relative effectiveness of the first—period effort is high relative

to that of the second—period effort. In particular, we restrict  ∈ (05 1) and  ≥ 1−

 As

shown in Mukoyama and Sahin (2005), this combination of parameters implies a particularly

simple form of the optimal contract in spite of the repeated action with persistence.

The principal designs the optimal contract to implement 1 =  and 2 =  The first—

period simplified production technology is the same as in the main model. The simplified

second—period production technology is:

4If the domain constraint in (4) were to bind, some of the strict inequalities in Prop. 1 would become

equalities.
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2(|1 2) 2 =  2 = 

1 =    + (1− )

1 =   + (1− ) 

 (14)

where  represents the relative importance of the first—period effort in the probability of the

high output in period 2.

Recall that the relevant incentive constraints for this extension with two efforts are the

first—period incentive constraints in (6) and (8). Fortunately, these six incentive constraints

can be reduced to one following the analysis in Mukoyama and Sahin (2005). The authors

present conditions that are sufficient for the four first—period deviations to not be profitable

for the agent, given that the second—period constraints in (7) are satisfied (see Prop. 4 in

their paper). This implies perfect insurance in the first period, which in turn makes the two

constraints in (7) become equivalent. In our setup, the marginal effect of a deviation in one

period is independent of the choice of action in the other period. This simplifies the analysis

further, and it gives rise to the following condition (the counterpart of the condition in Prop.

4 of Mukoyama and Sahin (2005) in our setting).

Lemma 1 The optimal contract with two efforts and persistence exhibits perfect insurance

in the first period if and only if  ≥ 1−



To characterize the optimal contract when the domain constraint in (4) is not binding we

can use the fact that the first—period constraints do not bind and there is perfect insurance

in the first period:

 =  ≡ 1

 =  ≡ 2

 =  ≡ 2

Hence, all variable compensation is deferred until the second period. Intuitively, for the first

period deviations to be non—binding we need the loss in expected utility of the agent in the

second period to be greater when he chooses to deviate in the first period than when he

chooses to deviate in the second one:

 (2 − 2) ( − ) ≥ (2 − 2) (1− ) ( − )  (15)

When this inequality is satisfied, incentives for the first—period action are provided entirely by

incentives for the second-period action in the second period. This is the relevant comparison

both on the equilibrium path (constraint (6)) and off the equilibrium path (constraint (8))

because the probability is linear in both efforts, and hence the marginal effect of a deviation

in the first period is independent of the action choice in the second period. The relation

between  and  stated in the lemma follows from (15).

12



Intuitively, the second-period action is not very effective at increasing the probability of

a high output, so implementing the high action in the second period requires high-powered

incentives. However, the first-period action is very effective in increasing the probability of

high output in the second period, so the agent works hard in the first period to earn a high

pay in the second. Incentives in the first period come “for free” in this setup.

The conditions of  ∈ (12 1] and  ∈ £1−

 1
¤
satisfy the conditions of Lemma 1.5 We

can now fully solve for the optimal contract. The constraints of the problem simplify to the

PC

1 +  [2 + (1− )2]−  = ̄ (16)

and the second period ICs, which are both equal and hence simplify to a unique IC:

2 + (1− )2 − 

1 + 
= [ + (1− )]2

+ [1−  − (1− )]2 (17)

Because compensation in the second period does not depend on the whole history of output,

the relevant likelihood ratio is that of just the second—period output:

 =
 (| )
 (| ) 

The first—order conditions of the problem are:

(1) :
1

 0 (1)
= 

() :
1

 0 ()
= +




[1− ] 

where  is the multiplier of the IC constraint in Eq. (17). For () = 2
√
, the constraints

together with the first-order conditions imply that

1 =
̄ + 

(1 + )

2 =
̄ + 

(1 + )
+



(1 + )



(1− )
2

1


(1− )  for  =   (18)

4 Measuring deferred pay

In this section, we discuss our choice for the measure of deferred pay,  its empirical coun-

terpart, and its suitability as a measure of deferred incentives. We argue that  can help us

5Mukoyama and Sahin (2005) present a more general probability structure and then proceed to charac-

terize the subset of probability and discount factor combinations that imply perfect insurance in the first

period.
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understand how persistence of effort and the particular structure of the incentive problem

affect – and, in particular, postpone – the optimal provision of incentives over time.

As we stated earlier, the optimal contract with commitment will always trivially imply

deferred pay, i.e., the proportion of pay delivered in the second period,  will always be

strictly greater than 0. What we want to study is the determination of the optimal level

of  and its comparative statics with respect to the key parameters of the model. For our

analysis, it will be convenient to express deferral as the ratio of second period expected

consumption over that of the first. We denote this ratio as :

 ≡  [2]

 [1]
=



(1− )


where the expectation is taken with respect to the effort choices in both periods in equilib-

rium. Note that  is simply a monotonic transformation of  Furthermore, when  = 0,

 = 0 and when  = 12,  = 1

The empirical appeal of this measure is that it can be constructed even by a regulator who

only observes realized wages and bonuses, rather than the ex—ante details of incentive con-

tracts. With a large number of bankers,  corresponds to the ratio of average compensation

in the second period over average compensation in the first period.

For the particular utility function specification of  () =
√
 the ratio of expected

consumptions informs us about the time allocation of variable pay. We can show that a higher

 corresponds to more variable pay in the second period by deriving the Rogerson condition

from the first order conditions in the previous section. For all three cases (benchmark RMH,

main model, and extension), this condition is:

1

 0 ()
= 

∙
1

 0 ()
| 

¸
∀  (19)

For () = 2
√
, this becomes

 [ ()] =  [ ()]  (20)

In our analysis of the optimal contracts we will be able to characterize the effects of changes

in persistence on the variance of utility in each of the two periods. By the concavity of 

and Jensen’s inequality, equation (20) implies that an increase in the variance of utility will

imply an increase in expected consumption. This will allow us to use our results to determine

the allocation of variable pay across periods.6 In what follows, we study these comparative

statics on our measure  for the three cases of our model.

6Under certain implementations of the optimal contract with real—life compensation instruments, variable

pay will correspond to “bonus” payments (see section 7 for detailed discussion of this mapping). Hence, our

measure allows us to evaluate proposals of deferring “bonuses” or variable pay.
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5 The determinants of deferral of pay

We now study the determinants of deferral of pay in our main case of interest, where only

the first—period effort affects output in both periods. First, we point out the effect of risk

aversion of the agent in the relative importance of expected consumption across the two

periods. This is a well—known result since Rogerson (1985), and we simply lay out the

implications for our measures of deferred pay given our assumption of  = 2
√
. Then, we

analyze comparative statics of our measure  with respect to the intensity of persistence,

 and then with respect to the discount factor, 

The degree of risk aversion of the agent, or the concavity of his utility function, will

determine whether expected consumption will increase or decrease across the two periods

in the optimal contract. This is a direct consequence of the optimal structure of contingent

pay determined by the inverse Euler equation in (19), also known as the Rogerson condition,

first discussed in Rogerson (1985).

Proposition 2 (Rogerson, 1985) When the principal and the agent discount the future at the

same rate,  [1]   [2] whenever
1

 0() is concave; the inequality is reversed whenever
1

 0()

is convex, and it becomes equality whenever 1
 0() is linear (for example, with  () = ln ()).

It follows from this result that, within the class of CRRA utility functions, of the form
1−
1−  coefficients of relative risk aversion () of one or less imply an increasing path for
expected compensation, while coefficients of one or more imply a decreasing path. Hence,

for an agent with a relatively low risk aversion, as our  = 2
√
 implies, our measures of

deferral  and  will be relatively low.7 We will discuss how our comparative statics below

may be affected by changes in the degree of risk aversion.

Using the inverse of the utility function,  ()  and the solution for contingent utilities

in (13), we get the following expression for our measure of deferred pay:

 =

¡
̄ + 

¢2
+
³



1+2

´2
2¡

̄ + 
¢2
+
³



1+2

´2
1

 (21)

7There is a well—known but important implication that stems from equation (19). The optimal contract

is such that the agent is always left with a desire to save (assuming that the savings rate is the inverse of

the discount rate, 1), even if the path for expected compensation is increasing, as it is in our example

with () = 2
√
 Were the agent allowed to save, the actual consumptions would be more back loaded,

affecting our measure of deferral. Solving for the path of contingent consumptions in this case, however, is

not easy. The incentive constraints are harder to analyze because they need to take into account both effort

and savings deviations. Most of the literature on moral hazard and hidden savings (Abraham and Pavoni,

2006; Kocherlakota, 2004), assume a continuum of efforts and look for conditions under which the first order

condition of the maximization problem of the agent identify a global maximum. In our setting with binary

effort choice that strategy is not valid. Hence, we assume the agent is not able to save.
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Figure 1: Contingent time paths of consumption in the optimal contract for the main model

(solid line correspond to  = 0dotted line corresponds to  = 1). Parameters:  = 05 ̄ =

1  = 01  = 08  = 04

Given the time structure of the problem, the information revealed in the first period, which

is captured in the variance of the likelihood ratios in the first period, 1 is always available to

the principal in the second period. Hence, trivially, we always have 2 ≥ 1 As the Lemma

2 states, a second—period realization that is affected by the initial effort of the agent will

always strictly increase the information available in the second period.8

Lemma 2 We have 2  1 if and only if   0

Because utility is linear in the likelihood ratios (see the first order conditions in (12)), it

is easy to show that the variance of utility will also be higher in the second period.

Figure 1 illustrates the typical structure of contingent payments in the optimal contract,

and how they are affected by persistence. It compares the optimal contract for the case of no

persistence ( = 0, solid lines) with that of perfect persistence ( = 1 dotted lines). Consider

first the benchmark case of no persistence ( = 0) in which the second—period observation

does not depend on the effort of the agent, but rather it is purely random. Under this

parametrization, the optimal contract consists of the same contingent consumptions in the

two periods. This implies a deferral measure of  = 1 or, equivalently,  = 12.

In contrast, consider now the case with perfect persistence ( = 1), in which the sec-

ond period observation does depend on the effort of the agent. The optimal contract now

8The results in this section relate to the literature on the “quality of information” in moral hazard models.

See Grossman and Hart (1986) for a seminal contribution that ranks distributions in terms of “garbling,”

and Kim (1995) for a refinement that proposes mean preserving spreads rankings of the distribution of the

likelihood ratios
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prescribes different consumptions in the second period, for the same period realization, de-

pending on what the first—period realization was. Looking at first—period consumption in

Figure 1 we can see that, in the first period, the “reward” for a high output realization is

not as large as it was in the case of  = 0 and the “punishment” for a low one is not as

severe. On the other hand, comparing second—period consumption after a low realization in

the first period, the punishment for another low output is very severe. Next, we analize how

this time structure of payments due to persistence translates into deferral.

Higher persistence implies higher variance of the likelihood ratios in the second period

and higher variance of utility. However, this does not necessarily translate into more deferred

pay, as measured by  as the next proposition states.

Proposition 3 The amount of pay deferred may increase or decrease when the intensity of

persistence increases, i.e., 

R 0

The reason for the non—monotonicity is best understood by looking at the expression for

 in terms of the Lagrange multipliers of the cost minimization problem:

 () =
2 + [ (1 2 ())]

2
2 ()

2 + [ (1 2 ())]
2
1

The proof of the proposition shows that the sign of the derivative 

is positive if


¡
2 + 21

¢ 2


+ 22



(2 − 1)  0 (22)

This expression shows that an increase in persistence has two opposite effects on deferral.

The first effect is a force for backloading compensation. Since, as the proof shows, 2


 0 due

to more information content in the second—period output, the first term in (22) is positive.

The second effect is a force for frontloading compensation. Since, as the proof shows, 


 0

and 2  1 by Lemma 2, the second term in (22) is negative. Intuitively, an increase in

 which increases 2 implies that providing incentives for high effort will now be achieved

more efficiently, reducing the multiplier on the incentive constraint. The term 


(2 − 1)

being negative reflects the fact that, since expected utility is equated across the two periods,

and the variance of utility is higher in period two, a decrease in the need for incentives in

the contract implies a larger reduction in expected consumption in the period where utility

is more variable. The terms that multiply the main derivatives of interest mainly capture

the effect of the level of expected consumption ( [1]) in the race between the two forces.

When the second effect is stronger than the first, deferral decreases with the degree of

persistence. Figure 2 presents the comparative statics for Example 1, a case where the

amount of deferral is non—monotonic in .9 All our numerical examples suggest the same

9Parameter values for Example 1: ̄ = 03  = 01  = 08  = 02  = 095 and  () =
1−
1− with  = 05
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Figure 2: Comparative statics for Example 1 showing non—monotonicities in deferral as a

function of , for  () = 1−
1−  with  = 05

single—peaked pattern for all non—monotonic cases, i.e., that the derivative turns negative for

the higher range of  In fact, we can show that 


 0 always at  = 0 implying that there

is always an increasing portion of deferral (see Lemma 3 in Appendix 2). Figure 3 presents,

for Example 1, the behaviour of expected consumption, the variance of consumption, as well

as for the variance of the likelihood ratios in period 2, 2 and the multiplier of the incentive

constraint,  We see that, as  increases, 2 increases and  decreases, consistent with the

results in Prop. 3. Although we cannot show formally that this is the case, we see in the

top right panel that the variance of consumption in each period decreases with . This was

the case in all our numerical examples.

As we pointed out earlier, our measure of deferral will be affected by the degree of risk

aversion. Although analytical characterizations for other relative risk aversion coefficients

are not available, based on numerical examples we conjecture that the non—monotonicity

that we just characterized survives to changes in this parameter. Figure 4 presents such an

example.10 For a relative risk aversion of 1.2, as dictated by proposition 2,   1 whenever

  0. In this case, deferral first decreases with  then increases. As Figure 5 shows, the

forces behind the non—monotonicities are similar in this second example than in our first

example for  = 05 : except for the fact that  [1]   [2] in example 2, all other variables

change qualitatively in a similar way.

Given that the optimal contract will always involve deferring some incentives, but both

the principal and the agent discount future payments, it is interesting to study what is the

10Parameter values for Example 2:  = 8  = 5 and  () = 1−
1−  with  = 12
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Figure 3: Comparative statics with  for Example 1: (top left panel) expected consumption

in each period, (top right panel) variance of consumption in each period, (bottom left panel)

variance of the likelihood ratios in the second period, and (bottom right panel) multiplier of

the incentive constraint.
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Figure 4: Comparative statics for Example 1 showing non—monotonicities in deferral as a

function of , for  () = 1−
1−  with  = 12

effect of both players becoming less impatient.

Proposition 4 The proportion of pay deferred in the main model decreases with the discount

factor .

Because of symmetric discounting by the principal and the agent, an increase in  does not

make payments in the second period relatively more attractive to the principal. However, it

does make the information revealed in the second period more useful: when the agent decides

on his effort choice in the first period, he weighs more the effect that it will have in his second

period utility. Hence, incentives are cheaper overall because the existing information can be

used more effectively. Formally, the value of the IC multiplier,  decreases. By a similar

logic to the one discussed above, a decrease in the need for incentives in the contract implies

a larger reduction in expected consumption in the period where utility is more variable. This

decreases expected consumption in the second period more than in the first, decreasing 

5.1 Comparison to benchmark of RMH

Even without persistence, there will be deferral in the optimal contract for our RMH bench-

mark. However, the reasons for this deferral are solely to smooth incentives over time, since

second—period output provides no information about first—period actions. The dependence

of second—period payments on first—period outcomes is optimal because it helps reduce the

variance of compensation in the first period, reducing the principal’s expected payments.
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Figure 5: Comparative statics with  for Example 2: (top left panel) expected consumption

in each period, (top right panel) variance of consumption in each period, (bottom left panel)

variance of the likelihood ratios in the second period, and (bottom right panel) multiplier of

the incentive constraint.
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We show in this section that this implies that the comparative statics with respect to the

discount factor will differ from those in the main model.

With some algebra that uses the closed form solutions in equations (10) and (11), we

can show that the portion of the second—period expected consumption that is attributable

to incentives for the first—period effort can easily be isolated. This is due to our utility

function specification, but it gives us insight into the comparative statics of deferred pay in

this model. Deferred pay for the  model is:

 =
 [1] +

(2)
2



 [1]
 (23)

or, in terms of the primitives, is

 = 1 +

(2)
2

h
̄

(1+)
+  (1)

i2
+

(1)
2


1

(1+)2



(Note that, given that the principal implements 1 = 2 = , we will have  (1) =  (2) )

Proposition 5 The proportion of pay deferred in the benchmark RMH model increases with

the discount factor .

In the  model, a change in the discount factor does not affect the spread  −

for  =  In other words, an increase in the discount factor does not affect incentives at

all in the second period in the RMH model. It does, however, make first—period incentives

cheaper because of a greater ability to spread them over the two periods, implying 


 0

This is in contrast with the effect of  in the main model, where 


 0. In that model,

we saw that an increase in the discount factor affected the cost of incentives in all periods

proportionally, because incentives are for one effort only and those are spread over the two

periods according to the relative amount of information in each.

Given the above result, it is not surprising that we can find examples for which deferral

will be higher in the RMH model than in the model with persistence. One such example is:

Example 3 Whenever ̄ = 0  = 1  (1) =  (2) =  (1 + )  and  = 1 the

proportion of pay deferred in the  model is always higher than in the main

model. (See Appendix 2 for details.)

6 Extension: Deferral with two actions and persistence

We now turn to studying the comparative statics of deferral in our extension with two actions.

This exercise highlights that implications for deferral will depend on the particular structure

of asymmetric information. We find that, in this particular case of persistence with two

actions, there will never be a decrease in deferral when  increases.
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Proposition 6 In the model with repeated actions and strong persistence ( ∈ (5 1) and
1−

≤ ), the amount of pay deferred always increases when the intensity of persistence

increases, i.e., 


 0

A sketch of the proof, which is included in Appendix 2, is as follows. Deferral can be

written as

 =
2 + [ ()]

2 e2 ()
2



or, in terms of  as

 =
2 + [ ()]

2
(1− )

2


2


Our characterization in Section 3.3 showed that pay is only variable in the second period.

It is easy to see that the variance of the likelihood ratios, e2 = (1− )
2
 decreases with 

lowering expected consumption in the second period and lowering deferral. However, when

we increase  even if we are increasing persistence, we also decrease the effect of the second—

period effort on output. This makes incentives for the second—period effort more costly to

implement, that is,  increases when  increases, raising deferral. We can show that this

second effect is stronger, making deferral increase with  in this setup.11

7 Implications for the regulation of deferred pay

Many of the recent regulations on banker compensation focus on the “bonuses” paid to

bank employees, with requirements that portions of bonuses be deferred and be clawbacked

in the future if long—term performance suffers. The idea behind the regulations is that by

better tying bonus payments to long—term performance, bank risk will be reduced (in our

model, this corresponds to implementing the high effort because that raises the probability

that the loan is repaid). What our analysis underscores is that it is not the legal form of

payments to workers that matters for incentives, but the actual state—contingent payments.

One implication is that the optimal deferral may very well be in place even in the absence

of formal escrow accounts with clawback provisions for bonuses. In other words, because

there is a wide variety of legal compensation arrangements that implement a collection of

state—contingent payments, regulations that focus on one particular arrangement may be

ineffective.

To illustrate this point, we provide two different compensation arrangements that im-

plement the optimal contract in the persistence model: one that uses deferred bonuses and

clawbacks and one that does not.12

11For values of  outside of the restrictions stated in Proposition 6, for which the perfect insurance result

does not hold, we ran a wide range of numerical examples, and in all of these we found 


 0
12For more discussion along this lines and other examples of implementation see a previous version of this

working paper, available here.
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The first compensation scheme we propose (compensation package 1) uses a combination

of a wage, first—period bonuses, deferrals, and clawbacks, much like the legal form of the

contracts considered by the regulations. Let  be the constant base wage. Let  be the

contingent bonus payment, let  be the contingent fraction of the bonus that is deferred,

and let  be the contingent fraction of the bonus that is clawed back if second—period output

is low; the subscript  =   indicates that all these instruments are contingent on the first—

period output. In summary, output—contingent compensation under this arrangement after

realization  in the first period is  + (1− ). Following realization  in the second

period, it is  + , while following  it is only  +  (1− )  That is, if the second—

period realization is low, a portion  (where  denotes the first—period realization of ) is

clawed back and the agent cannot consume it.

One can show that, when using compensation packages of the type described in scheme

1, perfect persistence ( = 1) calls for higher deferral than non—persistence ( = 0), and

persistence calls for clawbacks, while non—persistence does not. (Section 9.4 in the Appendix

contains the details of this implementation and the proof of this claim). Based on this

example, one could conclude that a simple way to regulate compensation in occupations that

have the feature of information being revealed over time is to demand a high level of the

amount of deferral, , and to use clawbacks. However, there exist alternative implementations

of the optimal contingent scheme in which such mandatory high levels of deferral would be

distorting. One example would be the arrangement we propose next, compensation package

2

In compensation package 2, second—period wages are dependent on first—period outcomes,

that is, we allow for   =   These contingent wages in the second period can be

interpreted as promotions or demotions as a function of early performance. A first—period

bonus, 0 is paid in addition to  in the first period only if output is high. Following

output  in the first period, contingent payments in the second period are  if output is

low and+ if output is high. The derivations in Section 9.4 in the Appendix show that,

by having      and a first period bonus scheme independent of that of the second

period, there is no need to have explicit deferral or clawback of bonuses. Even in the case of

perfect persistence,  = 1 just because there are no formal clawbacks in place one cannot

conclude that incentives are not properly implemented

Needless to say, there are a multitude of other ways to implement any desired state-

contingent compensation levels. There are guaranteed bonuses, varying performance targets

for bonus plans, changes to non-pecuniary benefits, etc. There is also ample anecdotal evi-

dence that bonuses and raises depend on subjective evaluations of the worker’s performance.

This implies that managers can make compensation implicitly depend on past performance

and in ways that make it hard for an outsider to evaluate.

Our discussion in this section calls for caution when evaluating and regulating compen-

sation schemes. First, in terms of evaluation, the formal language used to describe compen-

24



sation, such as “bonus,” does not describe the actual state—contingent payments, which are

what matter for incentives. Second, in terms of regulation, rules that impose clawbacks or

reduce bonus payments may be ill—suited, given the ability of firms to use other instruments

to implement state—contingent compensation levels. Our discussion does say that evaluation

and regulation should be based on measurement of actual payouts, and measures like the

 measure we proposed should be useful along this dimension. Nevertheless, it should also

be recalled that for such a measure of deferral we have shown that contract theory does

not necessarily call for more deferral when the intensity of persistence is higher. In fact, we

have shown that a good understanding of the particular structure of the incentive problem is

necessary to understand the right amount of deferral that should be expected in the prudent

risk—taking contract. In particular, measurement of the amount of deferral is not the only

thing required, but detailed measurement of the details of the production technology, e.g.,

how much persistence is there, is also necessary. A one—size—fits—all approach is likely not

appropriate to regulate deferral of pay in the financial industry.13

8 Conclusion

This paper characterizes the optimal deferral of compensation in a two-period principal—

agent problem in which a hidden action has a persistent effect on output. We proposed a

measure of deferral and, assuming the risk—averse agent has square root utility, characterized

its comparative statics with respect to the degree of persistence and the common discount

factor of the principal and the agent. We identified two countervailing effects that determine

the optimal amount of deferral. The first effect is the intuitive one that by waiting to pay the

agent until the principal has better information about the agent’s performance, incentives

can be more efficiently implemented. The second effect is less intuitive, but also related to

having better information. When the effect of effort is persistent over time this means that

there is more than one output that provides information about hidden effort. This “better”

information allows compensation to be less variable overall, and, sometimes, that lowers the

expected payment in the second period made by the principal more than that of the first

period. That is, in some cases, the second force dominates so deferred compensation can

decrease as persistence increases.

Even in the absence of persistence, there is value to deferring compensation in multi—

period incentive problems. To provide a benchmark, we studied our measure of deferral

in the standard repeated moral hazard model. Interestingly, we found cases where there is

more deferral of compensation in this model than in the corresponding persistence model.

One significant difference between the two classes of models is that the comparative statics

of deferral differed with respect to discounting.

13For a related discussion, see Jarque and Prescott (2015).
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Persistent effects of inputs on output is a pervasive feature of production processes. While

this class of models is applicable to a wide variety of problems, one particularly interesting

application is the banking sector. Recent regulation attempts to limit bank risk by requiring

banks to defer higher proportions of compensation than they have in the past. A first

implication of our results is that while deferral is an important part of optimal contracting

arrangements seeking to implement prudent risk—taking, more deferral is not always desirable

and, somewhat surprisingly, more persistence in production does not necessarily mean that

there should be more deferral. In that sense, mandatory minimums on deferral may very

well be undesirable.

A second implication of our results concerns the measurement and assessment of incen-

tives in compensation arrangements: assessment should not be based on the legal form of

the compensation arrangements. That is, whether payments are labeled a bonus or a raise

is pretty much irrelevant for incentives; what really matters is the actual state-contingent

payments, regardless of their legal form, that are paid out. While this may seem like an

obvious point, it is one that is often ignored. Our measure of deferral, which captures the

time path of expected compensation, is independent of the legal form of payments and thus

useful for assessing the timing of compensation.
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9 Appendix 1: Derivations of optimal contract

9.1 Benchmark RMH

The FOCs are:

() :
1

 0 ()
= + 1 (1− )   =  

() :
1

 0 ()
= + 1 (1− ) +

2
 Pr

(1− )    =  

We can solve for the multipliers using the PC and the IC, and the fact that 1 0 = 2:

 =

µ
̄

1 + 
+  ()

¶
1

2

1 =
1

2

 ()



1

1 + 

2 =
1

2
 Pr

 ()




where  =
(−)2
(1−) is the variance of the individual outcome realizations. Expressions for

utilities:

 =
1

2

½
̄

1 + 
+  () +  ()

1− 

1 (1 + )

¾
 =

1

2

½
̄

1 + 
+  () +  ()

µ
1− 

 (1 + )
+
1− 



¶¾
Given the expressions for the utilities, we can find expected consumption in each period:

 [1] = 2 + 21

=
1

4

(µ
̄

1 + 
+  ()

¶2
+
[ ()]

2



1

(1 + )
2

)
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 [2] = 2 + 2 +

µ
22

2
+

22

2 (1− )

¶


=
1

4

(µ
̄

1 + 
+  ()

¶2
+
[ ()]

2



µ
1

(1 + )
2
+ 1

¶)


9.2 Main model

For our utility specification, when the lower bound of utility is not binding14 we can solve

for the closed form solution for the contingent utilities.15 From the FOCs,

() :
√
 = +  (1− ) 

where  is the multiplier of the IC constraint and  is the multiplier of the IC constraint.

Combining these with the PC and the IC, we have

 =

¡
̄ + 

¢
2 (1 + )

 =


2

1

1 + 2


so

 = 2
√
 =

̄ + 

1 + 
+ 

1

1 + 2
(1− )  (24)

where  ∈ {     }. Note that 1 =  =
(−)2
(1−) 

Inverting  () = 2
√
 we get that

 = [+  (1− )]
2

=
1

4 (1 + )
2

∙
̄ + +



̄

¡
1− 

¡

¢¢¸2



14The necessary and sufficient condition on the parameters for the non—negativity constraint on square

root utility not to be binding is:

̄


+ 1 ≥ max



1

̄

"µ
1− b
1− 

¶2
− 1
#


where  and b denote the probabilities of repayment on and off the equilibrium path, respectively, and ̄
the average discounted variance of the likelihood ratios, corresponding to model ∈ {    }.
15Note that if the domain constraint in (4) were to bind, some of the strict inequalities in Prop. 1 would

become equalities.
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Expected consumption at each  can be written as:

 [|] = 
£
[+  (1− )]

2 |
¤

= 2 + 2

=
1

4 (1 + )
2

"¡
̄ + 

¢2
+

µ


1 + 2

¶2


#


9.3 Extension

The constraints of the problem simplify to the PC

1 +  [2 + (1− )2]− 

1 + 
− 



1 + 
= ̄

and the second period ICs, which are both equal and hence simplify to a unique IC:

2 + (1− )2 − 

1 + 
= [ + (1− )]2

+ [1−  − (1− )]2

or, rearranging,

{ − [ + (1− )]}2 + {(1− )− [1−  − (1− )]}2 =


1 + 

(1− ) ( − ) (2 − 2) =


1 + 


The first—order conditions of the problem are:

(1) :
1

 0 (1)
=
√
1 = 

() :
1

 0 ()
=
√
 = +




[1− ] 

where  is the multiplier of the IC constraint and  is the multiplier of the IC constraint.

For () = 2
√
, the PC together with the first—order conditions imply that

2+ 

∙
2

µ
+




[1− ]

¶
+ (1− )2

µ
+




[1− ]

¶¸
−  = ̄

2+ 2+ 2




∙
 − 


+ 1−  − (1− )(1− )

(1− )

¸
−  = ̄

2 (1 + )−  = ̄
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 =
̄ + 

2 (1 + )


The IC together with the first-order conditions imply that

(1− ) ( − ) 2

µ
+




[1− ]− − 


[1− ]

¶
=



1 + 

2



(1− ) ( − ) [ − ] =



1 + 

2




[(1− ) ( − )]
2

 (1− )
=



1 + 

 =


2 (1 + )

 (1− )

[(1− ) ( − )]
2


Recall that  =
(−)2
(1−) . In the extension with two efforts, the variance of the likelihood

ratios in the second period, e2 will be a modified version of  :
e2 = [(1− ) ( − )]

2

 (1− )
= (1− )

2


Hence, we can write

 =


2 (1 + )



(1− )
2

1




1 =
̄ + 

(1 + )

2 =
̄ + 

(1 + )
+



(1 + )



(1− )
2

1


(1− )  for  =  

9.4 Implementation of optimal contract with real life schemes

9.4.1 Compensation package 1

In order to implement the optimal contract, this compensation scheme must satisfy the

following system of equations:

 =  + (1− )

 =  + (1− )

 =  + 

 =  + 

 =  + (1− ) 

 =  + (1− ) 
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Define the following notation for consumption spreads: ∆0 = − ∆ as the difference

between the two highest second—period consumptions ( −  when   0) ∆ as the

difference between the two lowest second—period consumptions ( −  when   0) and

∆ = − Using this notation, and noting that Proposition 1 implies that all these spreads
are positive whenever  = 1, this first scheme implies:

 = 

 = ∆ +∆0 +∆ +∆

 = ∆ +∆

 =
∆ +∆

∆ +∆0 +∆ +∆

 =
∆

∆ +∆

 =
∆

∆ +∆

 = 1

That is, a bonus payment is given in the first period, with    and a portion of each is

deferred to the second period. Note that since    and    it follows that   12

and   12 Also, if output in the second period is low, all of the deferred part of bonus

 is clawed back (that is, if the first period realization was high). On the other hand, only

  12 is clawed back of the deferred part of  (that is, if the first—period realization was

high).

When  = 0 however,  =  and  =  Hence, there is no meaningful contingent

spread in the second period, and the consumption spread is the same in both periods. Also,

∆ = 0 This simple scheme is easily achievable with the following instruments:

 = 

 = 2∆0

 = 0

 =
1

2
 = 0

 = 0

 = 0

That is, a bonus payment is given only after a high realization in the first period, of which 1/2

is deferred. Deferral is, then, lower when there is no persistence of effort. More importantly,

because there is no information about effort contained in the second period, clawbacks in the

second period are not useful. Hence, when using compensation packages of the type described
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in scheme A, persistence calls for higher deferral than non—persistence, and persistence calls

for clawbacks, while non—persistence does not.

9.4.2 Compensation package 2

In this alternative, the optimal contingent consumptions are implemented by the wage and

bonus scheme as follows:

 = 

 =  +0

 =  +

 =  +

 = 

 = 

Using the notation for consumption spreads, this scheme simply implies, for  = 1:

 = 

0 = ∆0

 = 

 = ∆

 = 

 = ∆

where, by Proposition 1,      and    When  = 0 we simply have that

 = = and  =  = 0More importantly, under this compensation scheme there

are no deferrals or clawbacks, even when there is perfect persistence.

10 Appendix 2: Proofs

Proof of Proposition 1. See Hopenhayn and Jarque (2010).

Proof of Corollary 1. The proof of Corollary 1 follows trivially from Proposition 1 and

substitution the values of  in the corresponding likelihood ratios.

Proof of Lemma 1. Mukoyama and Sahin (2005) present a more general probability

structure and then proceed to characterize the subset of probability and discount factor
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combinations that imply perfect insurance in the first period. The conditions in Mukoyama

and Sahin become, under our assumptions:

 { − [ −  ( − )]} ≥  − [ + (1− )] 

 {[ + (1− )]− } ≥  − [ + (1− )] 

Simplifying, the first condition becomes:

 ≥ 1− 




and the second condition becomes:

 ≥ 1− 




Proof of Proposition 2. See Rogerson (1985).

Proof of Lemma 2. We can write 1 =  as:

1 =
X
=

1(|) { − []}2

=
( − )

2

(1− )

= 



+ (1− )

1− 

1− 
− 1

= ̂1 − 1

where ̂1 ≡ =1 [|]  1 denotes the expectation of the likelihood ratios of the first

period outcome realizations under the conditional distribution defined by . The variance
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in the second period can be written as

2 =
X

= =

1(|)2 (|1) { − []}2

=
X


Pr Pr ( − 1)2

=
X


Pr Pr
¡
2

2
 − 2 + 1

¢
=

X


Pr Pr

⎛⎝cPr2cPr2
Pr2 Pr

2


− 2
cPrcPr
Pr Pr

+ 1

⎞⎠
=

X


cPrcPrcPrcPr
Pr Pr

− 2
X


cPrcPr +X


Pr Pr

=
X


cPrcPr − 2 + 1

=
X


cPr

ÃX


cPr

!
− 1

=
X


cPr

h
̂2 ()

i
− 1

= ̂2 ()
X


cPr − 1

= ̂1̂2 ()− 1
2 = ̂1̂2 ()− 1

where ̂2 () ≡ =2 [|] denotes the expectation of the likelihood ratios of the second
period realization under the conditional distribution defined by :

̂2 = 


 + (1− )
+ (1− )

1− 

1− [ + (1− )]


Clearly, given our assumption that    we have that ̂2 is strictly greater than 1 if and

only if   0 Then, ̂2  1 implies 2  1

Proof of Prop. 3. We are interested in showing that the effect of an increase in  on the

deferral of pay could be positive or negative:

 =
 [2]

 [1]
=

2 + 22

2 + 21

Recall that

2 =   () = ̂1̂2 ()− 1
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where

̂1 = 



+ (1− )

(1− )

(1− )

̂2 () = ̂
̂


+ (1− ̂)

(1− ̂)

(1− )


Hence 2

= ̂1

̂2()


is positive if and only if

̂2()


 0. We can show that the conditional

second—period variance, 2 = ̂2 ()−1 which is a simpler expression, increases with  This
will imply that ̂2 increases with  as well. We can write the conditional variance in the

second period, 2 ≡   [ (2) |1 ]  as

2 =
2 ( − )

2

( + (1− )) [1−  + (1− )]


or, using a notation shortcut  ≡  + (1− )

2 =
(− )

2

 (1− )
= ̂2 ()− 1

Because there is no persistence of output, this conditional variance does not depend on the

realization of 1

2 () = ̂2 ()− 1

=
(− ̂)

2

 (1− )

=
[ + (1− ) −  − (1− )]

2

 (1− )

=
2 ( − )

2

 (1− )

=
2 ( − )

2

[ + (1− )] (1−  − (1− ))

=
2 ( − )

2

[ ( − ) + ] [1−  −  ( − )]

=
2 ( − )

2

 ( − ) (1− )− 2 ( − )
2
+  (1− )−  ( − )

=
2 ( − )

2

 (1− )−  ( − ) (2 − 1)− 2 ( − )
2

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Then

2 ()


=

( − )
2

2 (1− )
2

½
2
£
 (1− )−  ( − ) (2 − 1)− 2 ( − )

2
¤

−2 £− ( − ) (2 − 1)− 2 ( − )
2
¤ ¾

=
( − )

2

2 (1− )
2

½
2
£
 (1− )−  ( − ) (2 − 1)− 2 ( − )

2
¤

+2
£
( − ) (2 − 1) + 2 ( − )

2
¤ ¾

=
( − )

2

2 (1− )
2


½
2 (1− )− 2 ( − ) (2 − 1)− 22 ( − )

2

+ ( − ) (2 − 1) + 22 ( − )
2

¾
=

( − )
2

2 (1− )
2
 {2 (1− )−  ( − ) (2 − 1)} 

The sign of the derivative will be determined by the sign of

2 (1− )−  ( − ) (2 − 1) 

Assume that ( − ) (2 − 1)  0 Then the above expression takes its minimum value

when  = 1 and this value is positive:

2 (1− )− ( − ) (2 − 1) = 2 − 22 − 2 +  + 22 − 

=  − 2 + 

=  −  +  − 

=  (1− ) +  (1− )  0

If, instead, ( − ) (2 − 1)  0 then the expression is obviously positive. So
2()


 0

With this, we can go back to the expression for deferred pay:

 =
2 + 2 () 2 ()

2 + 2 () 1


Since  = ̄+
2(1+)

 we have that 

= 0 Instead, since

 =


2

1

1 + 2 ()


this multiplier changes with  We can easily see that this derivative is negative:




=



2

− 2


[1 + 2 ()]
2
 0

Combining the results above, we can see that 2+22
2+21

may increase or decrease with  : on

one hand, it may increase because   0   0 and 2


 0; on the other hand, it may
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decrease because 

= 0 and 


 0 and 2  1 The formal derivative shows this:




=

¡
2 


2 + 2 2



¢ ¡
2 + 21

¢− ¡2 + 22
¢
2


1¡

2 + 21
¢2

=
2
¡
2


2 + 2 2


− 2


1
¢
+ 2

£
1
¡
2


2 + 2 2



¢− 22 1¤¡
2 + 21

¢2
= 

2
¡
2

2 + 2


− 2


1
¢
+ 

£
212




+ 2 2


1 − 212 

¤¡
2 + 21

¢2
= 

2
¡
2

(2 − 1) + 2



¢
+ 3 2


1¡

2 + 21
¢2 

The sign of 

will be determined by the sign of

2
µ
2



(2 − 1) + 

2



¶
+ 3

2


1

This will be positive whenever°°°°22 (2 − 1)

°°°°  2
2


+ 3

2


1

or, since 2  1 but



 0

22



(1 − 2)  

2



¡
2 + 21

¢


Lemma 3 


 0 always at  = 0

Proof of Lemma 3. When  = 0 we have that 2 = 1 =  and hence  =  =  as

well as  =  =  (see Prop. 1). This implies  [1] =  [2] and  = 1 when  = 0

Consider  =  where  is a small but positive number. By Lemma 2, at  =  we have

2  1 which implies  [1]   [2] and   1, and hence 


 0
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Proof of Prop. 4. The derivative of the deferred pay for our main model with persistence

is:




=

−2221(1+1)2
(1+2)

3(1+)2

∙¡
̄ + 

¢2
+
³



1+2

´2
1

¸
∙¡
̄ + 

¢2
+
³



1+2

´2
1

¸2

−

∙³


1+2

´2
1 (1 + 1)

¸
−2221(1+1)
(1+2)

3(1+)2∙¡
̄ + 

¢2
+
³



1+2

´2
1

¸2
=

−2221 (1 + 1)
2
¡
̄ + 

¢2∙¡
̄ + 

¢2
+
³



1+2

´2
1

¸2
(1 + 2)

3
(1 + )

2

 0

Proof of Prop. 5. Recall that  (1) =  (2), and denote both by  ()  The derivative

of the deferred pay for the benchmark RMH is:




=

 ()



0−
½
2
n

̄
1+

+  ()
o

−̄
(1+)2

+
³
[()]2



´2 ³ −2
(1+)3

´¾
∙³

̄
1+

+  ()
´2
+

[()]2


1

(1+)2

¸2  0

Alternatively, we could use the expressions with the multipliers:

 = 1 +

³
2
2

2
+

2
2

2(1−)

´


2 + 21

 =
1

2

̄ +  (1) +  (2)

1 + 
=

̄ +  () (1 + )

2 (1 + )
;




=

−̄
2 (1 + )

2
 0

1 =
1

2

 (1)



1

1 + 
;

1


=
1

2

 (1)



−1
(1 + )

2
 0
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2 =
1

2
 Pr

 (2)


;

2


=
1

2
Pr

 (2)


 0

However,
2
2

2
=

2
2

2(1−) =
[(2)]

2

22
 and the derivative of that term with respect to  is zero,

so only the denominator of  changes (decreases) when  increases. In other words, changes

in the discount factor do not affect expected consumption in the second period, but they

decrease expected consumtion in the first. Hence, we confirm that 


 0

Proof of Claim in Example 3. Note that, for  and  independent random variables,

it can be shown (Goodman, 1962) that:

  ( ) = ( [ ])
2
  () + ( [])

2
  ( ) +   ()  ( ) 

In our main model with persistence, the second—period likelihood ratio,  is equal to the

product of the likelihood ratios of the two individual outputs, and  [|] =  [|] =
1. Hence,

2 =   ()

=   ()

= 121 + 1
22 + 12

Recall that 1 =  Note also that when  = 1 we have that 2 = 1 (1 + 1)  so 2 =

 (2 + )  Substituting our assumptions of ̄ = 0 and  (1) =  (2) =


1+
in equations 21

and 23, we have that    if and only if

1 +

2

(1+)2

2

(1+)2
+ 2

(1+)2

1

(1+)2


2 + 2

[+(2+)]2
 (2 + )

2 + 2

[+(2+)]2


1 + 1

(1+)2
+ 1



1 + 1

(1+)2


1 + 1

[+(2+)]2
 (2 + )

1 + 1

[+(2+)]2


(1+)2+1+(1+)2

(1+)2

(1+)2+1

(1+)2



[+(2+)]2+(2+)

[+(2+)]2

[+(2+)]2+

[+(2+)]2

 (1 + )
2
+ 1 + (1 + )

2

 (1 + )
2
+ 1


[ +  (2 + )]

2
+  (2 + )

[ +  (2 + )]
2
+ 


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Substituting our assumption of  = 1

4 + 1 + 4

4 + 1


[ +  (2 + )]
2
+  (2 + )

[ +  (2 + )]
2
+ 

4 + 5

4 + 1


[3 + 2]
2
+ 2 + 2

[3 + 2]
2
+ 

4 + 5

4 + 1


92 + 63 + 4 + 2 + 2

92 + 63 + 4 + 

4 + 5

4 + 1


3 + 62 + 10 + 2

3 + 62 + 9 + 1

(4 + 5)
¡
9 + 62 + 3 + 1

¢
 (4 + 1)

¡
10 + 62 + 3 + 2

¢
362 + 243 + 44 + 4 + 45 + 302 + 53 + 5  402 + 243 + 44 + 8 + 10 + 62 + 3 + 2

44 + 293 + 662 + 49 + 5  44 + 253 + 462 + 18 + 2

293 + 662 + 49 + 5  253 + 462 + 18 + 2

43 + 202 + 31 + 3  0

Proof of Prop. 6. In the extension to two actions, we can write the variance in the

second period as:

2 = (1− )
2


Hence, this variance will decrease when  increases:

2


= −2 (1− )   0

We also can solve for the multiplier of the IC in (17) as a function of  :

 = 


2
= 



(1− )
2



We will have that  increases with 




=



 (1− )
3
 0

Whether deferral  increases or decreases with  will depend on which of these two forces

dominates:

 =
2 + 22

2


41



We can substitute for  and 2 as a function of :

 =
2 +

³


(1−)2

´2
(1− )

2


2

=
2 + 22

(1−)2
2

Taking the partial with respect to  we find that it is always positive:




=

222

2 (1− )
3

 0
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