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Abstract

In this paper, we study market-induced, external incentives similar to career concerns

jointly with standard, contractual incentives linking compensation to performance. We con-

sider a dynamic principal-agent problem in which the agent’s outside option is determined

endogenously in a competitive labor market. In equilibrium, strong performance increases

the agent’s market value. When this value becomes sufficiently high, the threat of the

agent quitting forces the principal to increase the agent’s compensation. The prospect of

obtaining this raise gives the agent an incentive to exert effort, which reduces the need for

standard incentives. In fact, whenever the agent’s option to quit is sufficiently close to being

“in the money,” the market-induced incentive eliminates the need for standard incentives

altogether: compensation becomes completely insensitive to current performance.

Keywords: incentives, long-term contracts, career concerns, moral hazard, limited com-

mitment

JEL codes: D82, D86, J33

1 Introduction

Misaligned incentives can induce wasteful individual behavior and lead to disastrous aggre-

gate outcomes.1 For that reason, to understand how incentives are provided in the economy is

one of the central questions in economics.

Two main sources of incentives have been identified in the literature: direct incentives spec-

ified explicitly in contracts between the counterparties to a given economic relationship, and

external incentives coming from outside of the relationship. These two sources of incentives,

∗The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank
of Richmond or the Federal Reserve System. The authors are grateful to V.V. Chari, Harold Cole, Lukasz
Drozd, Piero Gottardi, Hari Govindan, Felipe Iachan, Boyan Jovanovic, Patrick Kehoe, Dirk Krueger, Marianna
Kudlyak, Ramon Marimon, Urvi Neelakantan, Andrew Owens, Chris Phelan, Ned Prescott, B.Ravikumar, Yuliy
Sannikov, Alexei Tchistyi, Marek Weretka, Jan Werner, and two anonymous referees for their helpful comments.
Email addresses: borys.grochulski@rich.frb.org, yuzhe-zhang@econmail.tamu.edu.

1To give just one recent example, the Federal Reserve (2011) states that “Risk-taking incentives provided by
incentive compensation arrangements in the financial services industry were a contributing factor to the financial
crisis that began in 2007.”

1

Working Paper No. 13-05R



however, have been studied almost exclusively in separation from one another. The traditional

principal-agent literature studies direct incentives obtained by contractually connecting the

agent’s compensation to her performance. But this literature does not consider the impact

that the agent’s performance may have on her outside options.2 In polar contrast, the litera-

ture on career concerns studies the external incentives stemming from the impact the agent’s

performance has on her reputation and hence on wages she can earn in the future. But it

ignores contractual provision of incentives by assuming that spot wages are paid every period.3

In reality, both sources of incentives are present in many, if not most, long-term economic

relationships.4 It is therefore important to study direct and external incentives together and

examine how they jointly affect behavior.

In this paper, we study the interaction between direct and external incentives. Our model

allows for fully flexible, long-term contracts and also captures the agent’s concern for the value

she can obtain outside the present relationship. We obtain a novel characterization of the

optimal mix of incentives: external incentives are fully sufficient when the agent is a new hire

or has produced a record of strong performance; contractual incentives become needed only

after an extended period of weak performance.

There are two frictions in our model: moral hazard and limited commitment. The agent

/worker’s effort, which is unobservable to the principal/firm, determines the drift of the worker’s

productivity process. The output the worker produces for the firm is proportional to her

productivity. The worker’s effort, therefore, has a persistent impact on both the revenue of the

current firm and on the worker’s own productivity in the future. The worker cannot commit

to staying with the firm forever: at any time, she can quit and rejoin the labor market, where

she can get a new contract with a new firm. The value the worker can obtain under the new

contract—her market value—is increasing in her own productivity. Even if the compensation

she receives from her current employer does not directly reward her current performance, the

worker may want to exert effort just to improve her future productivity and enhance her market

value. We will refer to this external motive for exerting effort as the market-based incentive.5

The strength of the market-based incentive depends on the worker’s distance to quitting.

In particular, this incentive is strongest at the worker’s quitting boundary, where the worker’s

market value is equal to the continuation value she draws from the long-term contract with

her current firm. The reason for it is that when the worker is about to quit, the firm cannot

provide insurance.

2See, e.g., Rogerson (1985), Phelan and Townsend (1991), and Sannikov (2008).
3See Fama (1980), Holmstrom (1982), and the large body of literature that has followed.
4As an example, consider the CEO of a publicly traded corporation. Typically, her compensation will be

contractually connected to the corporation’s performance via grants of equity or options, which gives her a direct
incentive to create shareholder value. But the company’s performance also affects the CEO’s reputation and,
thus, her standing in the broader market for business executives. This indirect exposure to the corporation’s
performance is a second channel through which the CEO is incentivized to create shareholder value.

5This incentive is similar to career concerns, but there are important differences between the two, which we
discuss in section 1.1.
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Indeed, away from the quitting boundary, the long-term contract (at least partially) insures

the worker against her idiosyncratic productivity shocks: the continuation value inside the

contract is less sensitive to the worker’s observed performance than the worker’s outside market

value. Insurance implies that when the worker receives positive productivity shocks and her

performance improves, her continuation value inside the contract raises more slowly than does

her outside market value, which brings the worker closer to her quitting boundary. When the

quitting boundary is reached, if performance continues to improve, the continuation value inside

the contract no longer can raise more slowly than the worker’s outside market value. If it did,

it would drop below the market value, and the worker would quit.6 At the boundary, therefore,

the contract does not provide any insurance to the worker, i.e., the worker’s continuation value

is highly sensitive to her performance. Since performance is the sum of shocks and effort,

the continuation value is at this point highly sensitive to the worker’s effort, which means the

worker’s incentive to exert effort is strong. This incentive is market based, as it is brought

about by the increase in the worker’s market value. Therefore, the market-based incentive is

always strong at the quitting boundary.

When the worker is not at the quitting boundary but close to it, the long-term contract can

provide some insurance to the worker but not much, because the quitting boundary is likely to

be reached again soon. The sensitivity to the worker’s performance imposed by the possibility

of quitting therefore remains high, i.e., the market-based incentive remains strong near the

quitting boundary. The farther away from the quitting boundary the worker is, the lower the

risk of quitting, the more fully the long-term contract can insure the worker, and, thus, the

weaker the market-based incentive becomes.

We show that the optimal long-term contract relies exclusively on the market-based incentive

when the distance to the quitting boundary is below a threshold. Above this threshold, the

market-based incentive has to be supplemented with standard performance compensation. The

optimal contract, therefore, has two phases: a rigid-wage phase and a pay-for-performance

phase.

The contract starts out in the rigid-wage phase. New hires are made at the quitting bound-

ary (i.e., the worker gets from the firm no more than her market value), where the market-based

incentive is strong enough to by itself elicit optimal effort from the worker. Compensation paid

to the worker is downward-rigid, as in Harris and Holmstrom (1982): it is increased only as

needed to match the worker’s outside option and keep her from quitting, otherwise compensation

is constant. Strong performance induces frequent raises in compensation. Weak performance

means no raise, but compensation never decreases in this phase of the contract. In this phase,

thus, compensation is back-loaded, i.e., expected to increase over time, and is not volatile:

compensation does not respond to the worker’s performance outside of instances in which the

6As in Harris and Holmstrom (1982), there is no economic role for job transitions in our homogeneous-firm
model of the labor market. We thus derive the optimal long-term contract under the assumption that workers
do not quit if indifferent. The alternative assumption leads to the exact same equilibrium processes for effort
and compensation.
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worker’s quitting constraint binds.

The contract enters the pay-for-performance phase if the worker experiences a sufficiently

long streak of poor performance and her market value drops significantly below the contract

continuation value. At this point, the market-based incentive becomes weak, i.e., insufficient

to by itself elicit worker effort. Consequently, compensation is no longer downward-rigid and

becomes similar to the optimal compensation from the pure moral hazard model, as in, e.g.,

Sannikov (2008): to provide sufficient incentives, compensation must be sensitive to contempo-

raneous performance—both on the upside and on the downside. As well, compensation in this

phase of the contract is front-loaded, i.e., expected to decrease over time.

In which phase the contract spends more time depends on the parameters of the model, and

in particular on the expected growth of worker productivity. If productivity tends to grow over

time, the worker’s market value tends to increase, the quitting constraint binds often, which

makes market-based incentives strong frequently and performance pay needed rarely. With

a sufficiently large positive trend in worker productivity, the probability that contract-based

incentives are ever used can be arbitrarily small.

As an extension of our model, we study the possibility that not only workers but also

firms lack commitment. In particular, we follow Phelan (1995) in assuming that firms can fire

workers upon incurring a firing cost. In this extension, thus, in addition to the worker’s quitting

constraint, we have a firm’s participation, or firing, constraint. We show that if the firing cost

is not too large, the worker is always exposed to her market value risk and, thus, market-based

incentives are always strong. In this extension, optimal compensation has a “sticky wage”

structure: small positive or negative performance shocks do not affect compensation; large

positive (negative) shocks increase (decrease) the compensation paid to the worker.

In order to characterize the solution to our model analytically, we make several assumptions

commonly used in the dynamic contracting literature. We consider a binary effort choice set and

impose a sufficient condition on the parameters of the model (Assumption 1) for high effort to be

optimal at all times. Constant absolute risk aversion (CARA) preferences and Gaussian shocks

let us reduce to one the dimension of the state space sufficient for a recursive representation

of the contracting problem. The optimal contract is then characterized by solving an ordinary

differential equation.7 Although needed for analytical tractability, these assumptions are not

necessary for the existence of market-based incentives. Essential for the existence of market-

based incentives are workers’ limited commitment and a positive impact of workers’ on-the-job

effort on their market value. These conditions seem very plausible. The latter condition, in

particular, is similar to learning-by-doing. It will be satisfied whenever putting in effort on the

job helps a worker acquire any kind of skill or experience that is valued in the labor market.

Our model provides several testable predictions, which we discuss in Section 7. In particular,

7Because the lower bound is a reflecting rather than an absorbing barrier for the state variable in our model,
the differential equation characterizing the equilibrium contract does not satisfy standard regularity conditions
for the existence of a solution. We develop a change of variable technique to solve this problem. This technique
can be useful in studying other contracting problems with reflective barrier dynamics.
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having both a rigid-wage phase and a pay-for-performance phase, the equilibrium contract from

our model can generate wage change frequencies consistent with empirical evidence.

1.1 Relation to the literature

Our paper is related to the literature on career concerns, e.g., Holmstrom (1982), Fudenberg

and Tirole (1986). In the career concerns model, the worker’s market value increases with her

effort because of the market’s slow learning about the worker’s persistent ability/productivity

level. By exerting effort, the worker can manipulate the market’s belief and increase the spot

wage she receives. In our model, the market’s belief about the worker’s productivity is trivially

correct at all times, as the worker’s productivity is public information. Because our model does

not have complicated learning dynamics, we are able to solve it allowing for fully flexible, long-

term compensation contracts, i.e., without assuming that spot wages are paid every period.

The worker cares about her market value not because she can manipulate the market’s belief

but because her market value provides a floor under the continuation value she receives in the

optimal long-term contract.8

Gibbons and Murphy (1992) study contract- and market-induced incentives in the learning

environment of Holmstrom (1982). They restrict attention to one-period, linear compensation

contracts. This restriction makes their model tractable because, after any deviation, the de-

viating agent’s optimal effort strategy coincides with the equilibrium strategy. Our model, in

contrast, is tractable without exogenous contract restrictions.

We build on the extensive literature on optimal long-term contracts in environments in which

private information induces a trade-off between incentives and insurance, e.g., Townsend (1982),

Rogerson (1985), Spear and Srivastava (1987), Phelan and Townsend (1991). In particular, we

follow Sannikov (2008) in studying dynamic moral hazard in continuous time.9 Because this

literature takes the agent’s outside option parametrically, it does not capture external, market-

based incentives. Our paper shows that external incentives arise in the dynamic principal-agent

problem if a) strong performance enhances the agent’s outside value, and b) the agent cannot

contractually commit to not leaving her current relationship should quitting become beneficial.

We show that external incentives change significantly the structure of the optimal contract. In

particular, in addition to the pay-for-performance phase familiar from dynamic moral hazard

models, with external incentives the contract also has a rigid-wage phase in our model.

Our paper also builds on the literature on optimal contracting with commitment frictions.

In particular, we add a dynamic moral hazard problem to a version of the Harris and Holmstrom

(1982) model of the labor market with risk-neutral firms/principals competing for risk-averse

8He et al. (2013) and Prat and Jovanovic (2014) study optimal long-term contracts with learning under full
commitment, i.e., without external incentives. In Williams (2015), the persistent private information problem
arises out of the agent’s access to hidden savings.

9Levin (2003), DeMarzo and Sannikov (2006), and Garrett and Pavan (2012) are recent examples of studies
on the provision of incentives to risk-neutral agents. These papers belong to a distinct literature in which the
trade-off between incentive and insurance, central to our analysis, is absent.
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workers/agents who seek insurance against persistent idiosyncratic productivity shocks. Firms

are able to commit to long-term contracts, but workers cannot.10 As in Harris and Holmstrom

(1982), one-sided commitment leads to downward-rigid compensation in our model, but only

when the worker is close enough to quitting. Different from Harris and Holmstrom (1982), due

to moral hazard, downward-rigidity of compensation does not hold when the quitting constraint

is sufficiently slack.11

There exist a small number of studies that, like we do here, examine optimal contracts under

the two frictions of private information and limited commitment. Two studies closely related

to our paper are Thomas and Worrall (1990, Section 8) and Phelan (1995). In these papers,

however, external incentives do not arise because the agent’s outside option does not depend

on her past performance. In Atkeson (1991), the outside option of the agent (a borrowing

country) does depend on her actions (investment). For this reason, although that paper asks

a different question, we expect that market-based incentives exist in that environment. These

incentives are probably weak in that model because persistence in the impact of the private

action (investment) on the value of the outside option (autarky) is not very strong. In our

model, effort has a permanent effect on the worker’s outside option, which makes market-based

incentives much stronger and easier to identify.12

Bohren (2013) studies Perfect Public Equilibria in a class of stochastic games between a

long-run player and a sequence of short-run players, where the long-run player’s actions have

a persistent impact on future payoffs via a publicly observable state variable. Persistence

generates incentives for the long-run player and allows for equilibria with payoffs dominating

the static best response. These incentives are similar to the market-based incentives we study

in this paper in a dynamic principal-agent model.

Organization The model environment is formally defined in Section 2. Sections 3 and 4 study

single-friction versions of our model, with full commitment in Section 3 and full information in

Section 4. Optimal contracts from these models serve as benchmarks that we use to solve the

full model in Section 5. Section 6 considers two extensions: log utility and geometric Brownian

productivity shocks, and limited commitment on the firm side. Section 7 discusses testable

predictions of the model. Proofs of all results formally stated in the text are relegated to the

Appendix.

10A similar environment with one-sided commitment, but without moral hazard, is used in Krueger and Uhlig
(2006) to study equilibrium with long-term financial insurance contracts.

11Lamadon (2014) shows a different mechanism by which wage reductions can be part of an optimal long-term
contract between a risk-neutral, committed firm and a risk-averse, uncommitted worker. In his model, match-
specific productivity shocks are transmitted into wages, so the wage declines when match quality deteriorates.

12Ales et al. (2014) study a political-economy model with policymaker private information and lack of com-
mitment.
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2 A labor market with long-term contracts

2.1 Informal description

We consider a labor market populated with a large number of workers and a potentially

larger number of firms operating under free entry. For concreteness, we will assume that one

firm hires one worker.13 Time t runs from zero to infinity. At t = 0, each worker is characterized

by her initial productivity level y0. Each worker costlessly and instantaneously matches with

one of the continuum of homogeneous firms. The firm offers the worker a long-term contract. If

the worker rejects it, she can costlessly and instantaneously get a match with another firm out

of the continuum. The firm knows the worker’s initial productivity y0, the stochastic process

governing the evolution of the worker’s productivity in the future (described below), and the

worker’s outside options. In particular, the firm knows that the worker’s cost of getting a

new match instantaneously at t = 0 is zero. Therefore, the firm offers a long-term contract

that maximizes the worker’s lifetime utility subject to the firm’s break-even condition, and the

worker accepts this contract. The value of lifetime utility delivered to the worker this way is

referred to as the worker’s market value, and is denoted by V (y0). The function V is determined

in equilibrium.

As the firm designs the long-term contract maximizing the worker’s utility, it faces two

frictions: moral hazard and the worker’s lack of commitment to the contract. The moral

hazard friction is a standard shirking problem with an unobservable action the worker takes

at each t. The commitment friction results from the worker’s right to quit the current firm

and reenter the labor market at any date t. The structure of the labor market at t > 0 is the

same as it is at t = 0. The worker can costlessly and instantaneously get a match with a new

firm that will offer her a new long-term contract commencing at t and delivering to the worker

her market value V (yt), where yt is the worker’s productivity at time t. As the new firm does

not make the worker any more productive, there is no reason for quits to actually happen in

equilibrium. Despite that, the possibility of quitting restricts the set of contracts that the firm

can offer to the worker at t = 0. In particular, the worker’s time-t value of continuing with the

original firm, denoted by Wt, can never be smaller than her market value V (yt). We will refer

to Wt ≥ V (yt) as the quitting constraint. Whenever Wt = V (yt), we will say that the quitting

constraint binds, or that the worker has reached her quitting boundary.

The worker’s market value function V is an equilibrium object determined by a fixed-point

condition: if firms perceive V as workers’ outside option, then the values that firms actually

deliver to the workers must be consistent with V . If, for example, the firms perceive V to be

very high, they expect the quitting constraint to bind often, which restricts their ability to

provide insurance and makes the actual value they deliver to workers smaller than V . This

cannot be an equilibrium. The equilibrium V is determined at the point at which the perceived

13As long as each worker’s performance is observable, our results would be unchanged if firms in the model
hired multiple workers.
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and the actual values are the same.

2.2 Formal model

Workers’ productivity yt follows a Brownian motion with drift. Specifically, let z be a

standard Brownian motion z = {zt,Ft; t ≥ 0} on a probability space (Ω,F ,P). A worker’s

productivity process y = {yt; t ≥ 0} is y0 ∈ R at t = 0 and evolves according to

dyt = atdt+ σdzt. (1)

The drift in a worker’s productivity at t, at, is privately controlled by the worker via a costly

action at ∈ {al, ah} with al < ah. The constant σ > 0 is independent of the worker’s action.

Workers are heterogeneous in the initial level of their productivity y0, in the realized paths of

their productivity shocks {zt; t > 0}, and, potentially, in the action path {at; t ≥ 0} they choose.

The action path {at; t ≥ 0} taken by each worker is her private information.14 The structure

of the productivity process and each worker’s productivity level yt are public information at all

times. In particular, yt is observable not only to the firm for which the worker works at t, but

also to all other firms.

We adopt a simple production function in which the revenue the worker generates for the

firm equals the worker’s productivity yt at all times during her employment with the firm. In

a long-term employment contract, the firm collects revenue {yt; t ≥ 0} and pays compensation

{ct; t ≥ 0} to the worker. We will identify compensation ct with the worker’s consumption at

all t ≥ 0.15 Formally, a long-term contract a firm and a worker enter at t = 0 specifies an

action process a = {at; t ≥ 0} for the worker to take, and a compensation/consumption process

c = {ct; t ≥ 0} the worker receives. Processes a and c must be adapted to the information

available to the firm.

We assume that firms and workers discount future payoffs at a common rate r. The firm’s

expected profit from a contract (a,c) is given by

Ea

[∫ ∞
0

re−rt(yt − ct)dt
]
,

where Ea is the expectation operator under the action plan a.

All workers have identical preferences over compensation/consumption processes c and ac-

tion processes a. These preferences are represented by the expected utility function

Ea

[∫ ∞
0

re−rtU(ct, at)dt

]
.

14This form of private information is often referred to as moral hazard.
15We can think of the worker’s savings or financial wealth as being observable and thus contractually controlled

by the firm.
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To make our model tractable analytically, we abstract from wealth effects in the provision

of incentives. That is, we assume constant absolute risk aversion (CARA) with respect to

consumption by taking

U(ct, at) = u(ct)φ
1at=al ,

where u(ct) = − exp(−ct) < 0, 0 < φ < 1, and 1at=al is the indicator of the low-effort action

al at time t. The high-effort action ah is costly to the worker in current utility terms because

U(c, ah) = u(c) < u(c)φ = U(c, al) for all c.16 In Section 6, we discuss the extent to which our

results depend on this form of the utility function.

Firms can commit to long-term contracts, but workers cannot. Contracts therefore must

satisfy worker’s participation (or quitting) constraints. For a worker with initial productivity

y0 ∈ R, a contract (a, c) induces a continuation value process W = {Wt; t ≥ 0} given by

Wt = Ea

[∫ ∞
0

re−rsU(ct+s, at+s)ds |Ft
]
. (2)

Contract (a, c) satisfies the worker’s quitting constraints if at all dates and states

Wt ≥ V (yt), (3)

where V (yt) is the value a worker with productivity yt can obtain if she quits and rejoins the

labor market. This market value is determined in equilibrium. We show later (in Proposition

1) that V is strictly increasing.17

The quitting constraint (3) is standard in models of optimal contracts with limited com-

mitment (e.g., Thomas and Worrall (1988)). It also resembles the lower-bound constraint on

the continuation value Wt used in many principal-agent models with private information (e.g.,

Atkeson and Lucas (1995) and Sannikov (2008)). A notable difference here, however, is that the

lower bound in those models is given by some fixed value, whereas in (3) the lower bound V (yt)

fluctuates with the worker’s productivity yt. As we show later, this difference has important

implications for the provision of incentives to the worker at the quitting boundary.

In this paper, we adopt the convention that when the quitting constraint (3) binds, i.e.,

when the worker is indifferent to quitting, the worker stays. In our model, as in Harris and

Holmstrom (1982), there are no efficiency gains from separations. Adopting the convention that

workers stay when (3) binds is without loss of generality and lets us avoid additional notation

that would be needed to describe job transitions.18

16We can equivalently write U(ct, at) as u(ct+1at=al log(φ−1)) and interpret log(φ−1) > 0 as the consumption
equivalent of the utility the agent gets from leisure associated with exerting low effort.

17Note that because y is a Markov process, V does not directly depend on t. Also, since yt is persistent and V
is strictly increasing, the high-drift/high-effort action ah improves both the output the worker produces for the
firm and the worker’s own market value at all future dates.

18If we follow the alternative convention and suppose that the worker quits when (3) binds, the optimal

9



Because action at is not observable, contracts will also have to satisfy incentive compatibility

(IC) constraints. A contract is incentive compatible if no deviation from the recommended

action process a can make the worker better off. We express IC constraints using the following

representation result of Sannikov (2008).

Let (a, c) be a contract and W the associated continuation utility process as defined in (2).

There exists a (progressively measurable) process ∆ = {∆t; t ≥ 0} such that the continuation

utility process W can be represented as

dWt = r(Wt − U(ct, at))dt+ ∆tdz
a
t , (4)

where

zat = σ−1

(
yt − y0 −

∫ t

0
asds

)
. (5)

Sannikov (2008) shows that contract (a, c) is IC if and only if for all t and ã ∈ {ah, al},

r (U(ct, ã)− U(ct, at)) + σ−1(ã− at)∆t ≤ 0. (6)

Equation (4) represents the continuation utility process as a diffusion with drift r(Wt −
U(ct, at)) and sensitivity ∆t.

19 The innovation dzat = σ−1 (dyt − atdt) represents the worker’s

current on-the-job performance. Performance at t is measured by the change in the worker’s

output, dyt, relative to what this change is expected to be at t under the recommended action,

atdt, and normalized by σ. Note that as long as the worker follows the recommended action at,

her (observable) performance dzat will be the same as the (unobservable) innovation term dzt

in her productivity process given in (1). The drift term r(Wt − U(ct, at)) gives the expected

change in the continuation utility Wt. If U(ct, at) = Wt at all t, then Wt is a martingale. The

term ∆t represents the sensitivity of the worker’s continuation utility to current performance.

Clearly, a larger ∆t will imply a stronger response of Wt to any given observed performance

dzat .

The IC constraint (6) requires that the total gain the worker can obtain by deviating from

the recommended action at to the alternative action ã be nonpositive. The first component of

this gain shows the direct impact of the deviation on the worker’s current utility. The second

component shows the indirect impact of the deviation on the continuation utility expressed

as the product of the action’s impact on the worker’s performance and the sensitivity of the

contract is the same except it ends when (3) binds for the first time and is replaced with a new contract identical
to the continuation of the original contract. This interpretation of long-term contracts is equivalent to the no-
separation convention we adopt in that it leads to identical production, consumption, and welfare. Optimal
contracting models in which terminations occur in equilibrium include Spear and Wang (2005), DeMarzo and
Fishman (2007), and DeMarzo and Sannikov (2006).

19For any process {xt; t ≥ 0} satisfying a diffusion equation dxt = αtdt+ σtdz
a
t , we will refer to αt as the drift

of xt and to σt as the sensitivity of xt.
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continuation value to performance.

If the recommended action at time t is to exert effort, i.e., if at = ah, then the IC condition

(6) reduces to ru(ct)(φ− 1) ≤ σ−1 (ah − al) ∆t, or

∆t

−u(ct)
≥ β, (7)

where β = rσ 1−φ
ah−al > 0. Analogously, the low-effort action al is incentive compatible at t if and

only if

∆t

−u(ct)
≤ β.

Written in this form, the IC constraints make it clear that the ratio ∆t/(−u(ct)) measures the

strength of effort incentives that contract (a, c) provides to the worker at time t. The high-effort

action ah is incentive compatible at t if and only if this ratio is greater than the constant β. Low

effort is incentive compatible if and only if this ratio is smaller than β. As in Sannikov (2008),

higher sensitivity of the worker’s continuation value to her current on-the-job performance,

∆t, makes effort incentives stronger. Due to non-separability of workers’ preferences between

consumption and leisure, the level of consumption ct also affects the strength of effort incentives

in our model.20 In particular, if the contract recommends high effort, the gain in the flow utility

the worker can obtain by shirking is in our model smaller at higher consumption levels.21 For

a given level of sensitivity ∆t, thus, higher current consumption ct makes effort incentives

stronger.

We are now ready to define the contract design problem faced by a firm that has just

been matched with a worker. We will define this problem generally as a cost minimization

problem in which the worker’s current productivity level is y ∈ R and the firm needs to deliver

to the worker some present discounted utility value W ∈ [V (y), 0). Although in equilibrium

the matching between workers and firms happens only at t = 0, the contract design problem

is defined generally allowing the starting date to be any t ≥ 0. Let Σ(y) denote the set of

all contracts (a, c) = ({as; s ≥ t}, {cs; s ≥ t}) that satisfy quitting constraints (3) and IC

constraints (6) for all s ≥ t. The firm’s minimum cost function C(W, y) is defined as

C(W, y) = min
(a,c)∈Σ(y)

Ea

[∫ ∞
t

re−r(s−t)(cs − ys)ds |Ft
]

(8)

subject to Ea

[∫ ∞
t

re−r(s−t)U(cs, as)ds |Ft
]

= W. (9)

20Compare our IC constraint (6) with the IC constraint (21) on page 976 of Sannikov (2008). Consumption ct
does not show up in the IC constraint of that model because preferences considered there are additively separable
between consumption and effort.

21This property is particularly easy to see if we interpret log(φ−1) > 0 as the consumption equivalent of the
utility the agent gets from shirking. Since shirking at t is equivalent to consuming ct + log(φ−1) instead of ct,
decreasing marginal utility of consumption implies that the gain from shirking is lower when ct is higher.
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The constraint (9) is known as the promise-keeping constraint: the contract must deliver to the

worker the initial value W . In the special case of W = V (y), the value −C(V (y), y) represents

the profit the firm attains in a match with a worker of type y when the worker’s outside

value function is V . Note that conditional on (W, y), the cost function C does not depend on

calendar time t. In the language of dynamic programming, (W, y) is a sufficient state variable

fully characterizing the worker, and the firm’s cost depends on this state variable only.

Next, we define competitive equilibrium in the labor market with long-term contracts.

Definition 1 Competitive equilibrium consists of the workers’ market value function V : R→
R− and a collection of contracts (ay, cy)y∈R such that, for all y ∈ R,

(i) (ay, cy) attains the minimum cost C(V (y), y) in the firm’s problem (8)–(9),

(ii) C(V (y), y) = 0 and C(W, y) > 0 for any W > V (y).

The first equilibrium condition requires that when firms assume (correctly) that the work-

ers’ outside value is their equilibrium market value, then the equilibrium contracts are cost-

minimizing (i.e., efficient) and in fact deliver to workers their market value. The second condi-

tion comes from perfect competition under free entry: profits attained by firms must be zero in

equilibrium and no firm can deliver to a worker a larger value than her market value without

incurring a loss.

2.3 Level-independence of incentives

The following proposition shows a simple relationship between the contracts that workers

with different productivity levels receive at t = 0 in equilibrium. This relationship implies a

particularly simple functional form for the equilibrium worker value function V and gives us a

partial characterization of the firm’s cost function C.

Proposition 1 If (a0, c0) is an equilibrium contract for a worker with y0 = 0, then an equilib-

rium contract for a worker with any y0 ∈ R, (ay0 , cy0), is given by

ay0 = a0, (10)

cy0 = c0 + y0. (11)

The equilibrium value function V satisfies

V (y) = e−yV (0) ∀y ∈ R. (12)

The minimum cost function C satisfies

C(W, y) = C(Wey, 0) ∀y ∈ R,W < 0. (13)

12



The independence of the optimal action recommendation from y0, shown in (10), and the

additivity of the optimal compensation plan with respect to y0, shown in (11), follow from

the independence of future productivity changes dyt from the initial condition y0 and from the

absence of wealth effects in CARA preferences. With no wealth effects, incentives needed to

induce high or low effort are the same for workers of all productivity levels. The contribution of

changes in a worker’s productivity to a firm’s revenue is also the same for all workers. Thus, the

same effort process is optimally recommended to workers of all productivity levels, and output

produced by a worker with initial productivity y0 = y > 0 is path-by-path larger by exactly y

than output produced by a worker with initial productivity y0 = 0. Competition among firms

implies then that in equilibrium the worker with y0 = y will obtain the same compensation

process as the worker with y0 = 0 plus the constant amount y at all t.

This structure of the compensation plan allows us to pin down the functional form of the

workers’ market value function V (y0), as given in (12). Intuitively, if a worker with y0 = 0

obtains V (0) in market equilibrium, then a worker with y0 = y will obtain e−yV (0) because her

consumption is larger by y at all t and the utility function is exponential, so u(ct+y) = e−yu(ct)

at all t.

In addition, this structure of optimal contracts implies a particular form of homogeneity for

a firm’s minimum cost function C(W, y), as shown in (13). Suppose some contract efficiently

delivers some value W < 0 to a worker whose initial productivity y0 = y > 0 (i.e., this

contract attains C(W, y)). Then a modified contract with compensation uniformly decreased

by y will efficiently deliver value eyW < W to a worker whose initial productivity y0 = 0

(i.e., the modified contract will attain C(eyW, 0)). But these two contracts generate the same

cost/profit for the firm, as in the second case the worker produces less output (uniformly less

by y) and receives less compensation (also less by y).22

The scalability of the contracting problem and the implied homogeneity of the minimum

cost function greatly simplify our analysis in this paper. In order to solve for the equilibrium,

it is sufficient to find one value, V (0), and one contract that supports it, (a0, c0).

2.4 Optimality of high effort

As we focus on the dynamics of compensation in this paper, we impose a sufficient condition

for the high-effort action ah to be optimal and therefore always used by firms in equilibrium. In

the absence of information and commitment frictions, i.e., in the first best, the firm provides full

insurance to the worker, i.e., it keeps the worker’s utility constant. To keep U(ct, at) constant,

the firm must pay higher compensation ct if it requires the high-effort action ah, because effort

is costly to the worker. In particular, under action ah compensation must be higher by log(φ−1)

than under action al. High effort at t, however, increases the worker’s output permanently by

22Similarly, a worker with initial y0 = −y < 0 will produce and receive y units less than a worker with y0 = 0.
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ah − al. In the absence of frictions, therefore, high effort is optimal if and only if

ah − al ≥ r log(φ−1). (14)

With limited commitment and moral hazard, there is an additional cost of implementing the

high-effort action ah: under high effort the firm cannot insure the worker as well as under low

effort. We will verify in Section 5 that the following modification of (14) is sufficient for the

action ah to be optimal at all times under moral hazard and one-sided commitment.

Assumption 1 Let κ = σ−2
(√

a2
h + 2rσ2 − ah

)
. We assume that

κ

1 + κ
(ah − al) ≥ r log

(
φ−1

)
+

1

2
βσ. (15)

In (15), the multiplicative factor κ/(1 + κ) represents the additional cost of implementing ef-

fort under limited commitment. High effort makes the worker’s productivity grow faster, which

increases the worker’s upside risk. Because this risk is not fully insurable under limited commit-

ment, implementing high effort becomes more costly in the presence of this friction. Similarly,

βσ/2 represents the additional cost of implementing effort under moral hazard. This cost, as

well, is positive because moral hazard restricts the firm’s ability to insure the worker.23

It is not hard to check that (15) holds for low enough al, so the set of parameter values

satisfying Assumption 1 is nonempty. We will maintain this assumption throughout the paper.

2.5 Recursive formulation

In order to find the cost function C(Wt, yt), we will use the methods of Sannikov (2008) to

study a recursive minimization problem with control variables at, ut ≡ u(ct), and ∆t. Scalability

and homogeneity properties of Proposition 1 let us reduce the dimension of the state space in

this recursive problem. Instead of studying this problem in the two-dimensional state vector

(Wt, yt), we can reduce the state space to a single dimension as follows. Using (13) and (12),

we have

C(Wt, yt) = C(Wte
yt , 0) = C

(
Wt

e−ytV (0)
V (0), 0

)
= C

(
Wt

V (yt)
V (0), 0

)
. (16)

This shows that the minimum cost C(Wt, yt) is the same for all pairs (Wt, yt) for which the

ratio Wt/V (yt) is the same. We will find it convenient to transform this ratio further and define

a single state variable as

St ≡ log

(
V (yt)

Wt

)
. (17)

23In Sections 3 and 4, we discuss in detail how moral hazard and limited commitment, taken separately, impair
the firm’s provision of insurance.
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Using St, we can express the firm’s cost function as

C(Wt, yt) = C

(
Wt

V (yt)
V (0), 0

)
= C

(
e−StV (0), 0

)
= C (V (St), 0) ,

where the first equality uses (16), the second uses (17), and the third uses (12). We will denote

C (V (·), 0) by J(·) and solve for this function in the state variable St.

To study the firm’s cost minimization problem in St, we must express not only the objective

function but also the constraints of this problem in terms of St. The IC constraint (7) is not

affected by the change of the state variable because it depends on the control variables only.

Using (17), we can express the worker’s quitting constraint (3) as

St ≥ 0. (18)

Thus, St measures how slack the quitting constraint is at time t. When St = 0, the quitting

constraint binds, i.e, the worker is indifferent between continuing with her current contract and

quitting.

Note that St measures slackness in the quitting constraint in units of permanent consump-

tion. Using the inverse utility function u−1(x) = − log(−x), x < 0, we can express St as

u−1(Wt)−u−1(V (yt)). Thus, St is the difference between the worker’s continuation value inside

the contract and her outside market value when both these values are converted to permanent

compensation equivalents. Indeed, if St = S for some S > 0, then the worker is indifferent

between giving up S units of her compensation forever and separating from the firm.24

With the worker equilibrium value function (12) substituted into (17), we can write the

state variable St as

St = − log(−Wt)− yt + log(−V (0)). (19)

Using Ito’s lemma, the law of motion for yt given in (1), and the law of motion for Wt given in

(4), we obtain the law of motion for the state variable St under high effort as

dSt =

(
r

(
−1− ut

−Wt

)
+

1

2

(
∆t

−Wt

)2

− ah

)
dt+

(
∆t

−Wt
− σ

)
dzat . (20)

The expected change in the slackness St consists of three terms. The first term accounts for

the impact of the current utility flow ut on the permanent compensation equivalent of the

worker’s continuation value Wt. In particular, if ut > Wt, then the continuation value owed to

the worker decreases, and so does its permanent compensation equivalent − log(−Wt). This,

ceteris paribus, reduces slackness in the quitting constraint. The second term in the drift of

24To see this, note that if St = S and {ct+s; s ≥ 0} is a compensation process that gives the worker the
continuation value Wt, then the compensation process {ct+s − S; s ≥ 0} gives the worker the continuation value
exactly equal to the value of her outside option, V (yt).
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St,
1
2 (∆t/−Wt)

2, accounts for the expected increase in permanent compensation associated

with risk exposure ∆t. For a given continuation value Wt to be delivered to the worker,

larger ∆t will require higher expected compensation (in permanent units) because the worker

is risk averse. The third term comes from the expected change in the worker’s productivity.

Faster productivity growth increases the worker’s market value, which decreases slackness in the

quitting constraint, ceteris paribus. The sensitivity term in (20) is simply the difference between

the sensitivities of u−1(Wt) and u−1(V (yt)). We will find it useful to normalize the control

variables ut and ∆t by the absolute value of the worker’s continuation utility. Introducing

ût ≡ ut
−Wt

and ∆̂t ≡ ∆t
−Wt

, we express (20) as

dSt =

(
r (−1− ût) +

1

2
∆̂2
t − ah

)
dt+

(
∆̂t − σ

)
dzat . (21)

The Hamilton-Jacobi-Bellman (HJB) equation for the firm’s cost function J is

rJ(St) = rSt − r log(−V (0)) + min
ût,∆̂t

{
r(− log(−ût)) + (22)

J ′(St)

(
r (−1− ût) +

1

2
∆̂2
t − ah

)
+

1

2
J ′′(St)

(
∆̂t − σ

)2
}
,

where control variables must satisfy ∆̂t ≥ −ûtβ to ensure incentive compatibility of the recom-

mended high-effort action ah. Note that both the HJB equation and its solution J depend on

the value V (0), which in equilibrium is determined by the firm break-even condition J(0) = 0.

The meaning of the terms in the HJB equation is standard. It may be helpful to write the HJB

equation informally as

rJ(St) = min

{
r(ct − yt) + J ′(St) (drift of St) +

1

2
J ′′(St) (sensitivity of St)

2

}
. (23)

Intuitively, the first derivative J ′ represents the firm’s aversion to the drift of St because, as we

see in (23), the total cost rJ(St) increases by J ′(St) when the drift of St increases by one unit.

Similarly, the second derivative J ′′ shows how strongly the cost function will respond to an

increase in the volatility of St, so in this sense it represents the firm’s volatility aversion. Also,

using definitions of St and ût, it is easy to verify that the first three terms on the right-hand

side of (22) represent the firm’s flow cost r(ct − yt).
In Section 5, we will characterize optimal long-term contracts by finding a unique solution

to the HJB equation subject to appropriate boundary and asymptotic conditions. In the next

two sections, we provide two important benchmarks by finding optimal contracts in simplified

versions of our general environment in which one of the two frictions is absent.
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3 Pay-for-performance incentives in equilibrium with private

information and full commitment

In this section, we will assume full commitment: not only firms but also workers have the

power to commit to never breaking the contract. As in our general model presented in the

previous section, firms match with workers and offer them long-term contracts at t = 0. At

this time, the worker can reject the offer and move to another match instantaneously. Upon

accepting a contract at t = 0, however, the worker commits to not quitting at any t > 0.

This commitment maximizes the match’s surplus as it allows firms to provide better insurance

against fluctuations in workers’ productivity relative to the case in which the workers would

not commit. In particular, it lets firms insure the upside risk to workers’ productivity. We solve

this version of our model in closed form. In equilibrium, firms provide incentives to workers by

making compensation sensitive to current on-the-job performance.

Let ΣFC(y0) denote the set of all contracts (a, c) that at all t satisfy the IC constraint (6).

The contracting problem we study in this section is identical to the cost-minimization problem in

(8) but with the quitting constraint (3) removed, i.e., with the set of feasible contracts expanded

from Σ(y0) to ΣFC(y0). We will use CFC(W, y0) to denote the minimum cost function in this

problem. The reduced-form cost function JFC(S) is defined analogously. Note that JFC(S) is

defined for any S, even negative. Market equilibrium is defined as in the general case but using

the cost function CFC(W, y0) instead of C(W, y0).

The following proposition is a closed-form version of standard characterization results for

optimal contracts with private information and full commitment, e.g., Spear and Srivastava

(1987), Thomas and Worrall (1990).

Proposition 2 In the model with full commitment, workers’ equilibrium compensation is given

by

ct = y0 +
µ+ ah
r
− µt+ ρβzat , (24)

where 0 < ρ = (
√

1 + 4r−1β2−1)/(2r−1β2) < 1 and µ = r (1− ρ)− 1
2ρ

2β2 > 0. The sensitivity

of the equilibrium continuation value Wt with respect to observed performance dzat is

∆t = −u(ct)β at all t. (25)

Proposition 2 shows two main features of optimal compensation schemes in the model with

private information and full commitment: contemporaneous sensitivity of compensation to

performance, represented in (24) by ρβ > 0, and a negative time trend in compensation,

represented by −µ < 0. The positive contemporaneous sensitivity of compensation with respect

to the worker’s observed performance is the standard, contract-based, “pay-for-performance”

incentive for workers to exert effort. The negative trend in compensation does not provide effort
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incentives by itself, but it improves the effectiveness of the pay-for-performance incentive.

The sensitivity of the worker’s continuation value to her performance, given in (25), shows

that in equilibrium with private information and full commitment the IC constraint (7) binds

at all t. This means that incentives provided to the worker, measured by the ratio ∆t/(−u(ct)),

are in equilibrium strong enough to make the recommended high-effort action ah incentive

compatible but not any stronger. Incentives are costly because they reduce insurance. The

equilibrium contract is efficient in holding incentives down to a necessary minimum at all times.

Because this minimum does not change over time, the strength of incentives provided to the

worker is always the same, i.e., β, in this model.

This section shows that private information requires positive sensitivity ∆t. The next section

shows that positive sensitivity ∆t can arise completely independently of private information:

if workers lack commitment, their productivity shocks cannot be fully insured and, therefore,

their continuation values must remain sensitive to realizations of these shocks. Thus, in an

environment in which private information and limited commitment coexist, limited commitment

potentially could deliver the positive sensitivity ∆t that private information requires. Our main

results in this paper, which we give in Section 5, consider precisely this possibility.

4 Market-based incentives in equilibrium with limited commit-

ment and full information

In this section, we discuss the full-information version of our model. As in the general model

outlined in Section 2, firms match with workers and offer them long-term contracts at t = 0. A

worker who has accepted a contract retains the option to quit and go back to the labor market,

where she can find a new match instantaneously. Unlike in the general model, however, we will

assume in this section that workers’ actions on the job are observable, and that workers can

contractually commit to a prescribed course of action.25 The model we study in this section is

essentially a continuous-time version of the Harris and Holmstrom (1982) model of rigid wages.

This section also generalizes the optimal insurance model studied in Grochulski and Zhang

(2011), where the outside option is assumed to be autarky.

Let ΣFI(y0) denote the set of all contracts (a, c) that at all t satisfy the quitting constraint

(3). The contracting problem we study in this section is identical to the cost-minimization

problem in (8) but with the IC constraint (7) removed, i.e., with the set of feasible contracts

expanded from Σ(y0) to ΣFI(y0). We will use CFI(W, y0) to denote the minimum cost func-

tion in this problem. The reduced-form cost function JFI(S) is defined analogously. Market

equilibrium is defined as in the general case but using the cost function CFI(W, y0) instead of

C(W, y0).

25In short, workers cannot be punished for quitting but can be punished for shirking on the job.
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Proposition 3 In the model with full information, workers’ equilibrium compensation is given

by

ct = mt − ψ, (26)

where mt = max0≤s≤t ys and ψ = κσ2

2r > 0. The sensitivity of the continuation value Wt with

respect to observed performance dzat is

∆t = −u(ct)
κ

κ+ 1
e−κ(mt−yt)σ > 0. (27)

As in Grochulski and Zhang (2011), the distance between current productivity yt and the

maximum level that productivity has attained to date, mt, is a measure of slackness in the

quitting constraint. The quitting constraint binds whenever productivity attains a new to-date

maximum, i.e., when yt = mt, and is slack whenever productivity is below its to-date maximum,

i.e., when yt < mt.
26

As we see in (26), equilibrium compensation follows the downward-rigid wage pattern of

Harris and Holmstrom (1982): compensation is constant unless the quitting constraint binds;

when it binds, compensation increases monotonically. Thus, compensation never decreases, and

it increases faster the faster new all-time high levels of a worker’s productivity are attained.

The mechanism behind this wage structure is the same as in Harris and Holmstrom (1982): if

an outside firm could hire the worker away from the current firm and make a positive profit,

the worker’s wage is bid up; otherwise, the wage is constant as the current employer absorbs

all downside risk in the worker’s productivity process.

Since sample paths of the productivity process are continuous, a worker has a better chance

of attaining a new to-date maximum of her productivity—and thus obtaining a permanent

increase in her compensation—the closer her current productivity level yt is to the current to-

date maximum mt. The worker’s continuation value in the contract, Wt, increases whenever

the chance for the next permanent increase in compensation improves. This means that Wt

increases whenever current productivity yt increases, even during time intervals in which yt

remains strictly below mt, i.e., when current compensation ct does not at all respond to changes

in yt. This everywhere-positive sensitivity of the continuation value to current performance is

shown in (27). Moreover, (27) shows that the continuation value’s performance sensitivity ∆t

increases as the distance between yt and mt decreases. Thus, sensitivity ∆t is larger the closer

the quitting constraint is to binding.

Sensitivity ∆t is positive here and in the full-commitment model discussed in the previous

section, but for completely different reasons. There, firms pay for performance in order to

elicit effort. Here, firms can directly control workers’ effort, but face the possibility of workers

26In fact, the distance mt − yt is isomorphic to our state variable St with St = mt − yt −
log

(
κ+ 1− e−κ(mt−yt)

)
+ log(κ). Clearly, St is strictly increasing in mt − yt, and St = 0 if and only if

mt − yt = 0.
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quitting. When the quitting constraint becomes binding, the firm must give the worker a raise

in order to retain her. This raise is the source of positive sensitivity of the continuation value to

current performance at all times, even when the quitting constraint is slack. Because the source

of sensitivity ∆t in this section is the worker’s market option, we will call this ∆t market-induced

sensitivity.

As we see in the IC constraint (7), incentives are measured in our model by the ratio of

∆t to −u(ct). Sensitivity ∆t is therefore closely related to the notion of incentives. Despite

there being no need for incentives here, as we assume in this section that effort is observable

and contractually controllable, we should note that the contract in Proposition 3 still gives the

worker an effort incentive because the ratio ∆t/(−u(ct)) is nonzero. Indeed, if the firm were

to not observe the worker’s effort for a short instant starting at time t, the worker would still

choose to supply effort at t as long as the ratio ∆t/(−u(ct)) is larger than β. Thus, even without

moral hazard, an effort incentive exists here just because sensitivity ∆t is positive. Since this

sensitivity is market-induced, we will call this incentive the market-based incentive.

Corollary 1 The ratio ∆t
−u(ct)

is strictly decreasing in mt− yt. In particular, ∆t
−u(ct)

≥ β if and

only if mt − yt ≤ δ, where δ = κ−1 log
(

κ
κ+1

σ
β

)
> 0.

This corollary shows that the equilibrium contract obtained in the full-information model

formally satisfies the IC constraint (7) whenever slackness in the quitting constraint (3), as

measured by mt − yt, is small. That means that the market-based incentive is strong in this

region.27 The corollary also shows that the full-information contract is not overall incentive

compatible because it fails to satisfy the IC constraint (7) when the quitting constraint is

sufficiently slack. Monotonicity of ∆t/(−u(ct)) in mt−yt means that the market-based incentive

is stronger when the slack in the quitting constraint is smaller.

In this section, there is no need for incentives. Yet, they exist in equilibrium as a by-product

of limited commitment. In the next section, we consider the general version of our model with

both moral hazard and limited commitment, where incentives are needed. There, as here, the

market option improves with the worker’s performance, which will generate a market-based

incentive. Similar to Corollary 1, the market-based incentive will be strong (sufficient to induce

high effort) when slackness in the quitting constraint is smaller than a threshold. In that region

of the state space, therefore, the equilibrium contract will rely completely on market-based

incentives and will not use pay-for-performance incentives at all.

4.1 Further properties of equilibrium with full information

Proposition 3 describes the equilibrium contract in the full-information model using two

state variables: mt and yt. In the Appendix, we describe the equilibrium of this model in terms

27In particular, the full-information equilibrium contract does satisfy the IC constraint at the onset of every
employment relationship because m0 − y0 = 0 < δ.

20



of the single state variable St, and characterize the cost function JFI(St). In particular, we

show the following dynamic properties of the state variable under the equilibrium contract.

The drift and the sensitivity of St are strictly decreasing in St. The possibility of violating the

quitting constraint makes the firm infinitely averse to volatility in St at the boundary S = 0.

Hence, J ′′FI(0) =∞ and the sensitivity of St at S = 0 is zero in equilibrium. The drift of St at

S = 0 is strictly positive, i.e., S = 0 is a reflective barrier for the state variable St. In the next

section, we show that all these properties continue to hold when both private information and

limited commitment are present in the model.

5 Market-based and pay-for-performance incentives in equilib-

rium with both frictions

In this section, we characterize the optimal contract in our general model, where firms face

both the incentive problem and the quitting constraint.

5.1 Solving the optimal contracting problem

Standard methods for solving second-order differential equations like our HJB equation

(22) require two boundary conditions. Our problem is nonstandard. It has a semi-unbounded

domain (the positive half-line) with only one boundary condition: the second derivative of J

at the boundary St = 0 must be infinite because otherwise the quitting constraint would be

violated immediately after St becomes zero. Despite the lack of a second condition on J at

the boundary, our analysis of the full-information model suggests an asymptotic condition that

can be used to pin down the solution: the cost that the quitting constraint imposes on the

firm must become negligible when St goes to infinity because the (time-discounted) chance of

the constraint binding in the future becomes negligible when St is large. When St goes to

infinity, therefore, the cost function in the model with two frictions, J , must converge to the

cost function from the model with private information and full commitment, JFC . In particular,

first derivatives of these functions, J ′(St) and J ′FC(St), must become close at large values of St.

We will use this asymptotic convergence condition to pin down the solution.28 29

Our analysis of the HJB equation gives the following theorem.

28In order to use the cost function JFC from the one-friction model with full commitment as a benchmark
(lower bound) for J in the two-friction model, one must shift JFC downward by a constant to account for the
fact that a lower level of utility is provided to the worker in equilibrium in the model with two frictions (the
value V (0) is lower in this model). It is thus more convenient to express the asymptotic convergence condition in
terms of first derivatives rather than levels because a uniform vertical shift of JFC does not affect its derivative.

29In the Appendix, we discuss the cost that the quitting constraint imposes on the firm in the full-information
model relative to the environment with no frictions (the first best). This cost does go to zero when slackness in
the quitting constraint goes to infinity: the cost function JFI and its derivatives converge to the first-best cost
function and its derivatives, respectively.
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Theorem 1 There exists a unique solution to the HJB equation (22) satisfying the boundary

condition J ′′(0) = ∞ and the convergence condition limSt→∞(J ′(St) − J ′FC(St)) = 0. This

solution represents the true minimum cost function for the firm.

The method of proof given in the Appendix is similar to that in Sannikov (2008) with two

technical difficulties stemming from the specific boundary and convergence conditions we have.

First, our HJB equation does not satisfy the Lipschitz condition at St = 0 because J ′′(0) =∞.

We overcome this difficulty by using a change of variable technique. Second, the asymptotic

condition requiring convergence of J ′(St) to J ′FC(St) does not provide an actual restriction on

the boundary of the state space. We overcome this difficulty as follows. We determine a range

of possible values for the first derivative of J at St = 0 and consider a family of candidate

solutions to the HJB equation, one for each possible value of J ′(0) in this range. We show that

the asymptotic condition requiring that J ′(St) converge to J ′FC(St) as St → ∞ is violated by

all but one candidate solution. We then confirm that the one candidate solution that satisfies

this asymptotic condition indeed represents the true minimum cost function J .

Lastly, we verify that the recommendation of high effort is optimal at all t. Lemma A.11 in

the Appendix shows that this conclusion follows from our Assumption 1.

5.2 The structure of the equilibrium contract

Proposition 4 In the model with two frictions, there exists a unique S∗ > 0 such that the IC

constraint (7) binds whenever St ≥ S∗, but is slack whenever St < S∗. In each time interval in

which St remains strictly above 0 and below S∗, equilibrium compensation ct is constant. When

St hits zero, compensation increases monotonically with current productivity.

This proposition shows that, despite moral hazard, optimal compensation in our model

replicates the rigid-wage compensation structure of Harris and Holmstrom (1982) as long as

slackness in the quitting constraint remains below a threshold. Intuitively, when quitting is

near, moral hazard does not matter. The worker’s exposure to her own performance risk is

large enough to guarantee her full effort. In fact, a slack IC constraint means that the worker’s

incentives are too strong (i.e., more than necessary to induce effort) in the rigid-wage region

St < S∗. The contract would be more efficient (i.e., of higher value to the worker) if the firm

could provide more insurance, thus weakening her incentives. Doing so, however, is impossible,

because the worker’s right to quit makes her upside performance risk impossible to insure fully.

Standard models in the principal-agent literature with private information, e.g., the model

in our Section 3, predict that pay should be volatile, i.e., at all times responding to the worker’s

performance. Proposition 4 shows that this is no longer true if external, market-based incentives

are present. In fact, whenever the worker’s market value is close to the value she obtains by

continuing to work for the current employer, optimal compensation is constant, i.e., completely

unresponsive to current performance of the worker, and the worker nevertheless chooses to
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supply effort.30 Key to this result are two facts. First, as we have seen in Section 4, when

the quitting constraint binds, the firm must increase the worker’s compensation in order to

retain her. Second, when the quitting constraint does not quite bind but is close to binding,

the worker’s effort has a strong impact on the chance that the quitting constraint becomes

binding. These two facts imply that when the worker is close to quitting, she will expend effort

in order to actually hit the quitting constraint and obtain a raise. Knowing this, the firm does

not need to provide an additional incentive via performance-dependent compensation; constant

compensation is efficient.

When the quitting constraint is relatively slack, St > S∗, the IC constraint binds. This

is because the impact of the worker’s effort on her chance of hitting the quitting constraint is

smaller when the quitting constraint is more distant. The market option still gives the worker

an incentive to supply effort, but this incentive is weak (i.e., not sufficient to induce effort).

The firm must in this case supplement the market-based incentive with a contract-based pay-

for-performance incentive. We study the optimal mix of these incentives in the next subsection.

In the limiting case with St → ∞, the chance of St ever returning to zero becomes negligible

and the strength of market-based incentives goes to zero.

In sum, when St remains below S∗ the optimal contract looks exactly like the optimal

contract from the model with limited commitment and full information in Section 4. When

St goes to infinity, in contrast, the optimal contract looks like the optimal contract from the

model with private information and full commitment in Section 3.

5.3 Strength of market-based incentives

In our model, the strength of effort incentives provided to a worker at time t is measured

by the ratio ∆t/(−u(ct)). Workers will supply effort if and only if this ratio is larger than

β. Proposition 4 shows that in equilibrium, the strength of incentives is only just sufficient

to induce effort when the quitting constraint is relatively slack (St ≥ S∗), but is more than

sufficient when the quitting constraint is relatively tight (St < S∗).

We will now decompose incentives into two parts: external, market-based and direct,

contract-based. Market-based incentives will be those induced by the worker’s outside option

(as in Section 4). Contract-based incentives will be those not induced by the market option (as

in Section 3). To measure the strength of market-based incentives at t, we need to compute the

ratio ∆t/(−u(ct)) that the firm would optimally choose at t if limited commitment were the

only friction, i.e., as if the worker’s effort were observable (and hence controllable) by the firm

30He (2012) obtains downward-rigid compensation as a part of an optimal contract in a moral hazard model
with Poisson uncertainty, zero probability of success under shirking, and private savings. Also, in Sannikov
(2008), flat compensation arises in some specifications of a moral hazard model in which the agent must be
inefficiently retired at a lower bound of the set of feasible continuation values. These mechanisms are different
from ours as they rely exclusively on contract-based incentives, while the source of incentives giving rise to
downward-rigid compensation is external in our model. In particular, the IC constraint binds at all times (prior
to termination/retirement) in these two studies but it does not always bind in our model, and compensation is
downward-rigid in our equilibrium only when the IC constraint is slack.
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Figure 1: Composition of incentives.

locally at t. We compute this ratio as follows. Given the optimal cost function J , we disregard

the IC constraint at t in the HJB equation (22) and use first-order conditions to obtain current

utility u(ct) and sensitivity ∆t that the firm would choose in such a relaxed problem. Denoting

the ratio ∆t/(−u(ct)) from this locally relaxed problem by ∆̃t/(−ũ(ct)), we have

∆̃t

−ũ(ct)
=

σJ ′(St)J
′′(St)

J ′(St) + J ′′(St)
.

This ratio gives the portion of the actual ∆t/(−u(ct)) that is induced by the presence of the

worker’s market option. Thus, it represents the strength of market-based incentives at t in our

model. The remainder of the actual ∆t/(−u(ct)) represents contract-based incentives that the

firm must inject in order to ensure incentive compatibility of high effort at t.

Figure 1 plots the ratio ∆̃t/(−ũ(ct)) against St in a numerical example.31 The strength

of market-based incentives decreases as the quitting constraint becomes more distant. Be-

low S∗, market-based incentives are strong, meaning they are sufficient to induce effort, i.e.,

∆̃t/(−ũ(ct)) ≥ β, and contract-based incentives are zero. An implication of strong market-

based incentives when St < S∗, as we have seen in Proposition 4, is that compensation is

flat and workers provide effort without being compensated for current performance. Above

S∗, market-based incentives are weak, i.e., not strong enough to induce worker effort, and

the optimal contract supplements them with pay-for-performance incentives. This means that

compensation does depend on current performance above S∗. Pay-for-performance incentives

become stronger and market-based incentives become weaker as the quitting constraint becomes

more slack.

31Parameter values used in this example are ah = 3, al = 0, φ = 0.7, r = 2.1, σ = 1.
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Figure 2: Example with ah > 0. Threshold S∗ = 0.44. Stationary point for St is 0.016.

5.4 Dynamics of the equilibrium contract

Unlike the two single-friction models studied in Sections 3 and 4, the model with both fric-

tions does not admit a closed-form solution. In this section, therefore, we describe the dynamics

of the equilibrium contract by characterizing the drift and the sensitivity of compensation ct

and the state variable St. We provide a mix of analytical and numerical results in this section.

We start out by presenting in Figure 2 the drift and the sensitivity of ct and St computed

numerically under the parametrization of our model used earlier to produce Figure 1.

Dynamics of compensation. In panel (a), we can identify the region of strong market-based

incentives by noting that for all St above zero and below S∗ the drift and the sensitivity of

compensation are both zero, which means that dct = 0, i.e., compensation remains constant in

this region, as predicted earlier in Proposition 4. When St goes to infinity, the impact of the

quitting constraint vanishes and optimal compensation converges to the optimal compensation

from the full-commitment model, where, by Proposition 2, the drift of ct is −µ < 0 and the

sensitivity of ct is ρβ > 0. The main message from panel (a) of Figure 2, therefore, is that

market-based incentives reduce the performance-sensitivity of compensation.

In addition to the properties of compensation at low and high values of the state variable,

where market-based incentives are respectively strong and negligible, numerical analysis lets us

characterize the dynamics of ct in the intermediate region of the state space, where market-

based incentives are not strong but are not negligible either. As we see in panel (a), at all St

greater than S∗ the sensitivity of compensation is increasing in St but remains smaller than its

asymptotic value of ρβ. The intuition for this follows from the monotonicity of the strength of

market-based incentives in St shown earlier in Figure 1. If at some St > S∗ the worker’s observed

performance is positive, dzat = dyt − ahdt > 0, then both the worker’s continuation value

inside the contract and her outside market value increase. Because the contract provides some
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insurance to the worker, the outside market value increases by more than does the continuation

value inside the contract. This means that the quitting constraint becomes less slack (St

decreases) and, thus, the chance of entering the area of constant compensation (below S∗) and

eventually hitting the quitting constraint (when the worker receives a raise) improves. This

improvement provides some incentive for the worker to supply effort. Therefore, even in the

region of weak market-based incentives, compensation can be less sensitive to contemporaneous

performance than in the model with just moral hazard, where market-based incentives are

absent. Because, as shown in Figure 1, the market-based incentive is stronger at smaller St,

the sensitivity of ct to performance decreases when St decreases at all St > S∗.

Panel (a) of Figure 2 shows that at St = S∗ (and, by continuity, also right above S∗), the

sensitivity of compensation to observed performance is actually negative. This feature of the

optimal contract is due to the non-separability in the worker’s preferences between consumption

and leisure.32 The intuition for this is as follows. As we see in (7), higher current compensation

ct relaxes the IC constraint in our model. When the IC constraint binds, the firm saves on

incentive costs by paying higher compensation now. If the IC constraint does not bind, this

effect is absent. At the threshold point St = S∗, positive and negative worker productivity

shocks dzt have an asymmetric effect on the incentive benefit of high current compensation:

positive shocks decrease St and take it into the region in which the IC constraint does not bind,

where high current compensation is not needed, while negative shocks increase St and take it

into the region where the IC constraint binds, where high current compensation does have a

benefit. This produces negative sensitivity of compensation ct to innovations in zt at St = S∗:

a positive shock dzt > 0 will not affect ct and a negative shock dzt < 0 will increase ct.

In addition, panel (a) of Figure 2 shows that the drift of compensation is lower than its

asymptotic value of −µ at all St above S∗, and is monotonic in St in this region. Similar to

the negative sensitivity of compensation, these properties of its drift are due to the fact that

compensation increases when the state variable crosses the S∗ threshold and enters the region

of weak market-based incentives. A more strongly negative drift in ct right above S∗ helps

average out the monotonic increase in ct occurring at S∗ as the state variable fluctuates around

this threshold level. When St grows and moves away from S∗, this need for a more strongly

negative drift vanishes and the drift in ct approaches −µ.

These dynamic properties of compensation are robust in the numerical experiments with

the model we conducted. The discontinuity in the drift and the sensitivity of ct at S∗ can be

shown analytically, but we do not have analytical results for the monotonicity of the drift and

the sensitivity of ct above S∗.

Dynamics of the state variable. Moving on to the dynamics of the state variable St =

u−1(Wt)− u−1(V (yt)), we note in panel (b) of Figure 2 that the sensitivity of St is everywhere

negative and monotonically increasing toward zero as St decreases toward the boundary S = 0.

32In numerical examples with separable preferences that we computed, the sensitivity of consumption is ev-
erywhere weakly positive. It is zero at all St below S∗ and positive at all St above S∗.
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The intuition for this property follows from the fact that the optimal contract provides more

insurance to a worker who is further away from quitting. At the boundary itself, the contract

cannot provide any insurance, i.e., the performance-sensitivity of the continuation value Wt has

to match the performance-sensitivity of the worker’s outside option V (yt) in order to ensure

that the quitting constraint is not violated immediately after the state variable hits its lower

bound S = 0. The farther away St is from zero, the less likely it is that the quitting constraint

becomes binding, the more fully the firm can insure the worker, and, in effect, the more negative

the sensitivity of St becomes. Asymptotically, the sensitivity of St converges to its value from

the model without quitting constraints.

The negative sensitivity of slackness St in the quitting constraint (3) means that this con-

straint can become binding only after the worker’s good performance, which is exactly opposite

to the standard moral hazard model without external incentives, e.g., Sannikov (2008). In both

models, poor performance decreases the worker’s continuation value Wt. In Sannikov (2008),

the lower bound on Wt is fixed, so when Wt decreases, the distance between Wt and its lower

bound decreases. In our model, the lower bound on Wt, V (yt), is not fixed: it is strictly increas-

ing in yt. In fact, V (yt) responds to the worker’s performance more strongly than Wt. When

performance is poor, thus, V (yt) decreases faster than Wt, so the distance between Wt and its

lower bound increases. When performance is strong, V (yt) increases faster than Wt, i.e., the

lower bound “catches up” to the continuation value Wt. The closer V (yt) approaches Wt, the

slower this catching up becomes. When slackness St in the quitting constraint is zero, Wt and

V (yt) respond to good performance exactly the same (St has zero sensitivity), so V (yt) “pushes

up” Wt but never exceeds it.33

The drift of St, shown also in panel (b) of Figure 2, is positive at the boundary of the state

space S = 0 and converges to its value from the model without quitting constraints when St

goes to infinity. Clearly, drift of St must be nonnegative at zero or else the quitting constraint

would be violated shortly after St hits zero. When St is large, the contract behaves as in the

full commitment case, which determines the value of the drift of St in this region of the state

space.

Moreover, note in Figure 2 that the drift of St at S = 0 is not only nonnegative, which is

necessary to avoid violating the quitting constraint, but is actually strictly positive. Combined

with the fact that St has zero sensitivity at S = 0, this implies that zero is a reflective barrier

for the state variable in equilibrium. Although unable to provide insurance to the worker when

St is at its lower bound, by paying compensation ct lower than the worker’s output yt and

increasing the worker’s continuation value Wt, the firm can generate a positive drift in St when

St = 0, which allows it to provide insurance to the worker in the future. This property of our

model with market-based incentives is different from the absorbing lower bound that appears

33The moving lower bound V (yt) also highlights the difference between our model and models in which the
contract is terminated at a fixed lower bound, e.g., Spear and Wang (2005), DeMarzo and Fishman (2007), and
DeMarzo and Sannikov (2006).
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Figure 3: Example with ah < 0. Threshold S∗ = 0.18. No stationary point for St exists, i.e.,
the drift in St is everywhere positive.

in many dynamic moral hazard models with a fixed lower bound on the continuation utility,

e.g., in Sannikov (2008).

These properties of the drift and the sensitivity of the state variable hold not only in the

numerical example presented in Figure 2 but are true in our model in general. Formally, we

have the following result.

Proposition 5 Let α(St) and ζ(St) denote, respectively, the drift and the sensitivity of the

state variable. In the equilibrium contract, α(St) is strictly decreasing with α(0) > 0 and

limSt→∞ α(St) = −µ− ah, and ζ(St) is strictly decreasing with ζ(0) = 0 and limSt→∞ ζ(St) =

ρβ − σ.

Note that Proposition 5 implies that the sensitivity of St is always negative, but the sign

of the drift in St is not pinned down. In particular, the direction in which St tends to move

when it is large depends on the sign of −µ − ah. This value represents the drift of the state

variable in the full-commitment version of our model. In the example presented in Figure 2,

−µ−ah < 0 and the state variable has a unique stationary point, where its drift is zero. Because

this stationary point is much smaller than S∗ in this example, St tends to start to decrease

toward zero before it reaches S∗, and thus it will only infrequently leave the region of strong

market-based incentives.

The numerical example shown in Figure 3 modifies the parametrization used in Figure 2. In

particular, in the modified parametrization the drift of the worker’s productivity, ah, is negative,

and the asymptotic value for the drift of the state variable, −µ − ah, is positive.34 Since, by

Proposition 5, the drift of St is strictly positive at zero and monotonic in St, −µ − ah > 0

means that St has in this example positive drift everywhere in the state space. In this modified

34Parameter values used in this example are ah = −0.2, al = −2.2, φ = 0.37, r = 1, σ = 1.
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Figure 4: A sample career path along which the contract is in the rigid-wage phase before
t = 0.58 and after t = 2.16. Parameters used in this figure are as in Figures 1 and 2.

parametrization, therefore, St tends to drift out of (0, S∗). Over time, it thus becomes less and

less likely that market-based incentives are strong: market-based incentives are transient in this

parametrization.35 These observations lead us to investigate where the state variable tends to

spend most time in equilibrium. We provide these results in Section 5.6.

5.5 Sample career path

Having characterized the optimal contract in terms of the drift and sensitivity functions

governing the dynamics of the state variable St and the compensation process ct in the previous

section, in this section we briefly discuss the worker’s career path under the optimal contract.

Figure 4 plots one sample path of the worker’s output yt, compensation ct, and the state variable

35Panel (a) of Figure 3 shows that dynamic properties of compensation in the parametrization with low ah are
qualitatively the same as those presented in panel (a) of Figure 2 for the case of high ah.
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St generated under the parameters used earlier in Figures 1 and 2.

Before we discuss the worker’s career path in this simulation, we should mention two features

of the contract that are salient in Figure 4. First, the state variable St is negatively correlated

with the worker’s productivity yt. This follows from the negative sensitivity of St that we

discuss in the previous section. Second, compensation ct is overall smoother than output yt,

suggesting that the firm provides a significant amount of insurance to the worker. However, ct

is not smooth at all when St hits zero. Any increase in yt results at this point in an equally

large increase in ct because of the binding quitting constraint.

The worker’s career path starts at the quitting constraint. At t = 0, the worker receives the

initial continuation value W0 equal to her market value V (y0), i.e., S0 = 0. The productivity

shocks hitting the worker are initially favorable along the depicted sample path, i.e., St initially

stays close to zero and the contract remains in the rigid-wage phase. In fact, we see that

the worker initially receives frequent raises (increases in ct needed to keep her from quitting),

reflecting the fact that the upside risk to her productivity is uninsurable due to the possibility

of quitting. Starting at t = 0.20, shocks become less favorable: output drops and St begins to

increase. The contract remains in the rigid-wage phase until t = 0.58, where St crosses over S∗

for the first time. Between the peak output time t = 0.20 and the crossing time t = 0.58 we

observe constant compensation, which reflects full insurance of negative productivity shocks in

the rigid-wage phase of the contract.

At t = 0.58, the contract exits the rigid-wage region and enters a pay-for-performance phase.

Compensation becomes sensitive to performance in this phase, as market-based incentive are

no longer sufficient to elicit effort. In addition, between t = 0.58 and the contact’s re-entry into

the rigid-wage region at t = 2.16 we can observe a negative trend in the path of compensation,

which is consistent with the negative drift of ct depicted in Figure 2a. In the second spell of

the rigid-wage phase starting at t = 2.16, the path of compensation follows the same pattern

as in the first spell starting at t = 0: positive shocks trigger compensation raises when St = 0,

while negative shocks are fully absorbed by the firm.

The frequency with which the contract will make excursions into the pay-for-performance

region, and the duration of these spells, depend on the parameters in the model. As we see in

Figure 2b, the stationary (i.e., zero-drift) point of St is much lower than S∗ in this parametriza-

tion. Pay-for-performance incentives, thus, will be needed rarely.36 In contrast, under the

parameter values of Figure 3, the drift of the state variable is everywhere positive, so the con-

tract will rarely, if at all, return to the rigid-wage region after its first exit. We investigate the

long-run properties of the optimal contract next.

36The sample path we present in this simulation is somewhat atypical. We chose it to highlight the spell of
pay-for-performance incentives.
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5.6 Market-based incentives in the long run

This section provides two results. The first result gives a sufficient condition for the existence

of a stationary stochastic steady state (an invariant distribution) for the state variable St.

Theorem 2 If in the model with full commitment the drift of the state variable St is negative,

i.e., if −µ− ah < 0, then in the model with both frictions there exists an invariant distribution

for the state variable St.

This result is intuitive because a negative drift in St when St is large prevents St from diverging.

A strictly positive drift in St at zero makes the lower bound a reflecting barrier for St. These

two forces give rise to a non-degenerate stationary distribution in St in the long run.37

The second result uses the stationary distribution for St to examine the fraction of time

that the optimal contract spends in the region with strong market-based incentives. Denote

the invariant distribution of St by π.

Proposition 6 limah→∞ π([S∗,∞)) = 0.

This proposition shows that if the worker’s productivity has a sufficiently large drift under high

effort, the optimal compensation contract will be free of pay-for-performance incentives most

of the time. The argument for this result is that when ah is large, the drift of the state variable

is strongly negative at values of St strictly smaller than S∗. This makes events in which St

leaves the region of strong market-based incentives very rare, and thus eliminates the need for

pay-for-performance compensation incentives in equilibrium almost always.

6 Two extensions

In this paper, we adopt the CARA utility function, a Brownian motion productivity process,

and one-sided limited commitment for the tractability of this framework. In particular, in this

framework we can show that the high effort recommendation is optimal everywhere, and we can

characterize the region of strong market-based incentives analytically. However, our main result

showing that market-based incentives have a strong impact on optimal compensation contracts

is not specific to the CARA-normal model with one-sided lack of commitment. In this section,

we examine robustness of our result by considering two extensions. First, we consider two-

sided lack of commitment (i.e., firms can fire workers) in the CARA-normal model. Second, we

consider a model with log preferences and a geometric Brownian motion productivity process

in the one-sided lack of commitment case. The cost of departing from the CARA-normal

framework in this section is that we are only able to provide numerical solutions for these two

extensions.38

37If −µ− ah > 0, we can show that limt→∞ St =∞ with probability one.
38Within the CARA-normal framework with one-sided limited commitment, our analytical results can easily

be extended to the case in which the absolute risk aversion parameter in the utility function is different from
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Figure 5: Example with two-sided lack of commitment and a large firing cost F = 2.71. The
endogenous upper bound S̄ = 2.02.

6.1 Two-sided lack of commitment

Following Phelan (1995), we assume in this section that firms can fire workers upon incurring

a deadweight cost F ≥ 0. This introduces a participation constraint on the side of the firm:

J(St) ≤ F at all t. This constraint implies that St ≤ S̄ at all t, where S̄ = J−1(F ). Our model

in Section 5 is a special case with F =∞.

The numerical solutions we have obtained under various parametrizations show that market-

based incentives become stronger when firm commitment becomes weaker. Figure 5 shows the

equilibrium dynamics of compensation and the state variable when the firing cost F is set at

2.71.39 With this F , the endogenous upper bound on St is determined at S̄ = 2.02. In [0, S̄],

there are two regions with strong market-based incentives, where compensation is constant,

and one region with weak market-based incentives, where pay-for-performance incentives are

used.40 In the lower region of constant compensation, as in the baseline model, the worker is

motivated by the prospect of the raise that the firm must give her to keep her from quitting

when St hits zero. In the upper region of constant compensation, the worker is motivated by

the wage cut that she will have to accept in order to keep the firm from firing her when St

reaches S̄.

Like quitting, firing of workers never actually happens in equilibrium. Panel (b) of Figure

5 shows that when St approaches the firing boundary S̄, the drift of St is negative and its

sensitivity goes to zero, which means that at S̄ the process St is reflected downward. Thus,

one. In this paper, we keep the absolute risk aversion parameter fixed at one because considering other values
would make the notation less clear without adding any insight.

39Other parameters are the same as in Figure 3.
40Similar to the one-sided case, due to the non-separability of preferences between consumption and leisure,

there is a discontinuity in the drift and in the sensitivity of compensation at the boundaries between the regions
of strong and weak market-based incentives.
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Figure 6: Example with two-sided lack of commitment and a small firing cost F = 1.54. The
endogenous upper bound S̄ = 0.96.

zero and S̄ are reflecting barriers that keep St in [0, S̄].

In addition to the example presented in Figure 5, we have computed examples with different

levels of the firing cost F . In these examples, we have examined the structure of equilibrium

compensation. When F decreases, S̄ = J−1(F ) decreases, so the interval [0, S̄] shrinks. The

middle region of that interval, where market-based incentives are weak, shrinks as well. In fact,

the middle region shrinks faster than the interval [0, S̄].

For a small enough firing cost F , the region of weak market-based incentives vanishes com-

pletely and, hence, equilibrium compensation never uses pay-for-performance incentives. In

these cases, compensation is piecewise constant: ct is constant when St fluctuates inside the

interval (0, S̄), ct increases when St hits zero, and ct decreases when St hits S̄. Compensation,

therefore, has a “sticky wage” structure: small performance shocks do not affect the wage, but

large shocks do. Figure 6 presents one such example. In this figure, F = 1.54 is smaller than

in Figure 5.41 As we see, the equilibrium firing threshold S̄ is smaller here than in Figure 5,

but remains positive, i.e., the firm still provides insurance to the worker. Panel (a) shows that

the drift and the sensitivity of ct are both zero everywhere inside (0, S̄). As in the previous

example, we can see in panel (b) that 0 and S̄ are reflecting barriers for St.

Also, we note in the above example that the IC constraint does not bind anywhere in [0, S̄].

This means that the equilibrium contract is the same as what it would be if workers’ effort

were observable. With a small enough firing cost, therefore, the commitment friction becomes

strong enough to completely crowd out the private information friction.

The lower the firing cost F , the less insurance firms provide in equilibrium. In the limiting

case with F = 0, we have S̄ = 0 and firms provide no insurance, i.e., they simply pay workers

the output workers produce: ct = yt at all t.

41All other parameters are the same as in Figure 3 and Figure 5.
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Figure 7: Regions of strong market-based incentives.

6.2 Log preferences and geometric Brownian motion

We have also studied numerically a version of our model with the log utility of consumption

additively separable from the utility of leisure, with a geometric Brownian motion productivity

process, and with one-sided commitment. In that framework, the high-effort action is not

always optimal, but it is when slackness in the worker’s quitting constraint is not too large. We

have examined numerically the solution to the optimal contracting problem, and have found

that strong market-based incentives also exist in this model.42 Figure 7 shows the area of strong

market-based incentives in our main CARA-normal model (panel (a)) and in a log-geometric

model (panel (b)). The main conclusion of our previous analysis holds in the log-geometric

framework: market-based incentives are strong when the quitting constraint is not very slack.

7 Testable predictions

Downward wage rigidity is a well-documented phenomenon. Consistent with other studies

estimating the frequency of nominal wage changes, Gottschalk (2005) estimates the annual

probability of a wage decline to be between 4 and 5 percent, and the probability of no wage

change to be about 50 percent. That evidence would not be consistent with the career concerns

model, the pure moral hazard model, or the rigid wage model, but it can be consistent with the

predictions of our model. The career concerns model and the pure moral hazard model do not

generate wage constancy, as wages change in these models as soon as new information carried

by the worker’s observed performance becomes available. The rigid wage model of Harris and

Holmstrom (1982) does not predict any wage decreases. Our model can generate both wage

constancy and wage decreases. In particular, the proportion of wage decreases can in our model

42Detailed solutions are available upon request.
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be small relative to wage constancy or wage increases if the contract spends a large fraction of

time in the rigid-wage region with occasional excursions into the pay-for-performance region.43

As shown in Section 5.6, this pattern can be consistent with steady-state properties of the

contract.

Our characterization of the equilibrium contract also provides testable predictions on the

likelihood of the use of pay-for-performance compensation across occupations and over the life-

cycle. Performance-based incentives should be more frequently observed a) in occupations in

which workers do not acquire much general, transferable human capital but only firm-specific

human capital, or none, b) when the growth of a worker’s general productivity is slower, e.g.,

later in the life-cycle, c) when firing workers is costly, and d) when workers’ past performance is

harder for outsiders to observe. Gibbons and Murphy (1992), Loveman and O’Connell (1996),

and Lazear (2000) provide evidence consistent with these predictions. In a rich data set on

compensation of executives, Gayle et al. (ming) document that new hires’ compensation is less

closely tied to the firm’s performance than the compensation of longer-tenured executives, again

consistent with the predictions of our model.

8 Conclusion

In this paper, we build a model that lets us study contractual incentives jointly with ex-

ternal, market-based incentives similar to career concerns. In the model, external incentives

arise out of a) the persistent impact of effort on the worker’s productivity, and b) one-sided

commitment. We show how external incentives change the structure of the optimal long-term

contract: connecting pay to performance is only needed when performance is weak; it is not

needed when performance is strong.

When we relax the assumption of full commitment on the side of the firm and allow for firing

of workers upon paying a small firing cost, performance pay becomes completely unnecessary.

If firms can fire workers, market-based incentives are stronger because workers are motivated

not only by the prospect of a pay raise but also by the risk of being fired.

Our model is designed to study the impact of market-based incentives on the dynamics

of compensation in situations where maximum effort is always desirable. Understanding the

impact of market-based incentives on effort in addition to compensation is an interesting ques-

tion for future research. In this paper, we abstract from search frictions in the labor market

and from aggregate uncertainty. How they affect market-based incentives is another interesting

question for future research.44

Our analysis suggests that market-based incentives exist in principal-agent relationships be-

43In the extension of our model studied in Section 6, wage declines can also be generated by a binding firing
constraint for the firm.

44Rudanko (2011) studies long-term contracts in a search model with idiosyncratic and aggregate uncertainty
under full information and full commitment. Cooley et al. (2013) study long-term contracts in a search model
with limited commitment.
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yond the particular setting of our model, as long as the agent’s effort (or other action benefiting

the principal) improves the agent’s standing in the market outside the present principal-agent

relationship. For this reason, we expect that market-based incentives play an important role in

many firm-employee and, perhaps particularly so, firm-executive relationships. As well, market-

based incentives may be important in lender-borrower relationships, where the borrower’s out-

side option (e.g., refinancing terms) can depend on the performance of her outstanding debt.

Appendix

Proof of Proposition 1

We prove (13) first, (12) second, and (10) and (11) last. The proof of (13) proceeds in the

following five steps: (i)-(v).

(i) Recall that (8) defines the firm’s cost minimization problem at any time. In particular,

the cost minimization problem at time 0 is

C(W, y) = min
(a,c)∈Σ(y)

Ea

[∫ ∞
0

re−rt(ct − yt)dt
]

(28)

subject to Ea

[∫ ∞
0

re−rtU(ct, at)dt

]
= W.

The principle of optimality states that the solution to a time-0 dynamic programming

problem also solves the problem starting from t > 0, i.e., Ea
[∫∞

0 re−rs(ct+s − yt+s)ds|Ft
]

=

C(Wt, yt). From the definition of equilibrium, we have C(W, y) ≥ 0 for W ≥ V (y). This

property and the quitting constraint Wt ≥ V (yt) imply that C(Wt, yt) ≥ 0, or

Ea

[∫ ∞
0

re−rs(ct+s − yt+s)ds|Ft
]
≥ 0,∀t ≥ 0. (29)

(ii) We now define an auxiliary cost minimization problem in which the quitting constraint is

replaced with the non-positive continuation profit constraint (29), and show that the cost

function from this problem, C̃(W, y), is the same as C(W, y). For any y and W ≥ V (y),

define C̃(W, y) as

C̃(W, y) = min
(a,c)

Ea

[∫ ∞
0

re−rt(ct − yt)dt
]

(30)

subject to W0 = W, (a, c) is incentive compatible, and (29),

where the process {yt; t ≥ 0} starts from the initial condition y0 = y. Since the solution to

(28) is shown to satisfy (29) in step (i) of this proof, C(W, y) ≥ C̃(W, y) ≥ 0. If W = V (y),

then C(V (y), y) = 0 = C̃(V (y), y). If W > V (y), denote the contract solving (30) by
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(a′, c′). Define λ ≡ min{t : Wt = V (yt)}. Then a contract (a′′, c′′) that is equal to (a′, c′)

on [0, λ) but switches to the market contract after λ has the same cost as (a′, c′), as both

the market contract and the tail of (a′, c′) have zero cost starting at λ. Since (a′′, c′′)

satisfies (3), it is feasible in (28). Hence C(W, y) ≤ C((a′′, c′′)) = C((a′, c′)) = C̃(W, y).

(iii) If a contract (a, c) delivers utility W , then (a, c + x) delivers We−x for any x ∈ R. This

is because W = Ea
[∫∞

0 re−rtU(ct, at)dt
]

if and only if

We−x = e−xEa

[∫ ∞
0

re−rtU(ct, at)dt

]
= Ea

[∫ ∞
0

re−rtU(ct + x, at)dt

]
.

(iv) The incentive compatibility of (a, c) is equivalent to the incentive compatibility of (a, c+

x). In fact, the incentive compatibility of (a, c) requires that Ea
[∫∞

0 re−rtU(ct, at)dt
]
≥

Eb
[∫∞

0 re−rtU(ct, bt)dt
]

for any deviation strategy b, which is equivalent to

Ea

[∫ ∞
0

re−rtU(ct + x, at)dt

]
≥ Eb

[∫ ∞
0

re−rtU(ct + x, bt)dt

]
.

(v) We now verify that C̃(W, y) = C̃(Wey, 0). Suppose (a, c) solves the problem in C̃(W, y).

We verify that (a, c − y) is feasible in the minimization problem defining C̃(Wey, 0).

First, steps (iii) and (iv) have shown that (a, c− y) delivers utility Wey and is incentive

compatible. Second, if y = {yt; t ≥ 0} starts with the initial condition y0 = y and

Ea
[∫∞

0 re−rs(ct+s − yt+s)ds|Ft
]
≥ 0, then y0 = {y0

t ; t ≥ 0} defined as y0
t ≡ yt − y ∀t

starts with the initial condition y0
0 = 0, and

Ea

[∫ ∞
0

re−rs(ct+s − y − y0
t+s)ds|Ft

]
= Ea

[∫ ∞
0

re−rs(ct+s − y − (yt+s − y))ds|Ft
]
≥ 0.

Hence (a, c − y) satisfies (29) in C̃(Wey, 0) and so it is feasible in the problem defining

C̃(Wey, 0). Feasibility of (a, c− y) in this problem implies that

C̃(Wey, 0) ≤ Ea

[∫ ∞
0

re−rt(ct − y − y0
t )dt

]
= Ea

[∫ ∞
0

re−rt(ct − yt)dt
]

= C̃(W, y).

By a symmetric argument, we can show C̃(Wey, 0) ≥ C̃(W, y). Thus, C̃(W, y) = C̃(Wey, 0).

By step (ii), this implies (13).

We move on to showing (12). The proof is by contradiction. If V (0)e−y > V (y), then

0 = C(V (0), 0) = C(V (0)e−y, y) > C(V (y), y) = 0, which is a contradiction. If V (0) < V (y)ey,

then 0 = C(V (0), 0) < C(V (y)ey, 0) = C(V (y), y) = 0, which is again a contradiction.

Finally, we move on to proving (10) and (11). We need to show that if (a, c) is optimal in the

contracting problem for C(y, V (y)) defined in (8), then (a, c− y) is optimal in the contracting

problem for C(0, V (0)). We first show that the candidate contract (a, c− y) is feasible in this
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problem. Steps (iii) and (iv) above imply that this candidate contract is incentive compatible

and delivers utility V (y)ey = V (0). The candidate contract satisfies the quitting constraint (3)

because

Ea

[∫ ∞
0

re−rsU(ct+s − y, at+s)ds |Ft
]

= exp(y)Ea

[∫ ∞
0

re−rsU(ct+s, at+s)ds |Ft
]

≥ exp(y)V (yt)

= V (yt − y)

= V
(
y0
t

)
,

where, as before, the income process yt starts at y, and y0
t ≡ yt − y starts at 0. Thus, the

candidate contract (a, c − y) satisfies quitting, IC, and promise-keeping constraints, and so it

is feasible in the contracting problem for C(0, V (0)).

To finish the proof, we show that the candidate contract (a, c− y) attains 0 = C(0, V (0)),

and hence is optimal in this problem:

Ea

[∫ ∞
0

re−rt((ct − y)− y0
t )dt

]
= Ea

[∫ ∞
0

re−rt(ct − y − (yt − y))dt

]
= Ea

[∫ ∞
0

re−rt(ct − yt)dt
]

= 0.

�

Proof of Proposition 2

The proof has three steps: the first step shows the binding IC constraint and (25), the

second shows the optimality of high effort, and the third shows (24).

First, we show that

JFC(S) = JFC(0) + S, for all S ∈ R. (31)

Indeed, if an IC contract (a, c) delivers to the worker initial utility VFC(0), then for any S ∈ R
the contract (a, c + S) is also IC and delivers to the worker initial utility VFC(0) exp(−S) =

VFC(S). Hence, for any y, the principal’s cost function under full commitment satisfies CFC(

VFC(S), y) = CFC(VFC(0), y)+S. Setting y = 0 in this equality and using definition JFC(S) =

CFC(VFC(S), 0), we obtain JFC(S) = JFC(0) + S.

Substituting (31) into the HJB equation (22) and using J ′FC = 1 and J ′′FC = 0, we obtain

r (St + JFC(0)) = rSt − r log(−VFC(0)) + min
ût,∆̂t≥−ûβ

{
r(− log(−ût)) + r (−1− ût) +

1

2
∆̂2
t − ah

}
.
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Canceling rSt on both sides, we obtain a static minimization problem (controls do not change

over time) determining the value of JFC(0)

rJFC(0) = −r log(−VFC(0)) + min
û,∆̂≥−ûβ

{
r(− log(−ût)) + r (−1− û) +

1

2
∆̂2 − ah

}
. (32)

Since the expression under minimization is quadratic in ∆̂ and −ûβ > 0, the IC constraint will

bind and the optimal ∆̂ = −ûβ, which implies (25). The optimal û solves the convex problem

min
û

{
−r log(−û) + r (−1− û) +

1

2
(−û)2 β2

}
.

The first-order condition of this problem is a quadratic equation in (−û) given by

−1 + (−û) + r−1β2 (−û)2 = 0, (33)

with a single positive root

−û =

√
1 + 4r−1β2 − 1

2r−1β2
.

This root is in Proposition 2 denoted by ρ. Because 0 <
√

1+4x−1
2x < 1 for all x > 0, we have

that 0 < ρ < 1. Substituting −û = ρ and ∆̂ = ρβ into (32) yields

rJFC(0) = −r log(−VFC(0))− r log(ρ) + r (−1 + ρ) +
1

2
ρ2β2 − ah. (34)

Second, we confirm that high effort is always optimal. Note that the value of JFC(0) under

low effort would be determined by

rJFC(0) = −r log(−VFC(0)) + min
û,∆̂≤−ûβ

{
r(− log(−û)) + r (−1− ûtφ) +

1

2
∆̂2 − al

}
, (35)

where the optimal ∆̂ = 0 and the optimal û solves minû {−r log(−û) + r (−1− ûφ)}, which has

a unique solution −û = φ−1. This implies that JFC(0) under low effort would be

rJFC(0) = −r log(−VFC(0))− r log(φ−1)− al.

Thus, high effort is optimal if and only if −r log(φ−1)−al ≥ −r log(ρ)+r (−1 + ρ)+ 1
2ρ

2β2−ah.

To prove this inequality, note that Assumption 1 implies β < σ and

ah − al − r log(φ−1) ≥ 1

2
βσ ≥ 1

2
β2 =

(
−r log(−û) + r (−1− û) +

1

2
(−û)2 β2

)∣∣∣∣
û=−1

≥ −r log(ρ) + r (−1 + ρ) +
1

2
ρ2β2.
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Third, we show (24). From u(ct)/Wt = −û = ρ, we have − exp(−ct) = Wtρ, which gives us

that dct = −d log(−Wt) = d(St + yt). Recalling (21), or using Ito’s lemma again, we have

dct =

(
r (−1− û) +

1

2
∆̂2

)
dt+ ∆̂dzat

= −
(
r (1− ρ)− 1

2
(ρβ)2

)
dt+ ρβdzat

= −µdt+ ρβdzat ,

where the second line uses optimal controls −û = ρ and ∆̂ = ρβ, and the third line uses the

definition of µ in Proposition 2. To see that µ > 0 note that r(1−ρ)− 1
2(ρβ)2 > r(1−ρ)−(ρβ)2 =

0, where the equality follows from (33). To obtain initial consumption c0, note that JFC(0) = 0

in equilibrium. This and (34) imply that

r (log(−VFC(0)) + log(ρ)) = r (−1 + ρ) +
1

2
ρ2β2 − ah = −µ− ah.

From − exp(−c0) = W0ρ = VFC(y0)ρ = VFC(0)e−y0ρ we have

c0 = y0 − (log(−VFC(0)) + log(ρ)) = y0 +
µ+ ah
r

.

Solving dct = −µdt+ ρβdzat with this initial condition yields (24). �

Proof of Proposition 3

We know from Grochulski and Zhang (2011, equations (11) and (12), page 2365) that the

optimal compensation at time t is given by ct = u−1(ū(mt)), where ū is a strictly increasing

function given by

ū(y) = VFI(y)−
V ′FI(y)

limε↓0
d
dε (1− Eahy [e−rτy+ε ])

,

with τy+ε denoting the hitting time of the level y + ε. Because yt is a Brownian motion with

drift ah, we know that Eahy [e−rτy+ε ] = e−κε, where κ is defined in Assumption 1.45 Thus,

limε↓0
d
dε (1− Eah [e−rτy+ε ]) = κ and the function ū is simplifies to

ū(y) = VFI(y)− −VFI(y)

κ
=

(
1 +

1

κ

)
VFI(y) = u(y)

(
1 +

1

κ

)
(−VFI(0)).

Therefore, optimal compensation satisfies u(ct) = u(mt)
(
1 + 1

κ

)
(−VFI(0)). Applying u−1 to

both sides, we obtain ct = mt − log
(
1 + 1

κ

)
− log(−VFI(0)). From JFI(0) = 0 we compute

45This expression is different in Grochulski and Zhang (2011), i.e., Eahy
[
e−rτy+ε

]
= ( y+ε

y
)−κ, because the

income process considered there is a geometric Brownian motion.
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log(−VFI(0)) = log
(

κ
κ+1

)
+ κσ2

2r , which gives us (26).

As in Grochulski and Zhang (2011), the worker’s continuation value process satisfies

Wt =
(

1− e−κ(mt−yt)
)
ū(mt) + e−κ(mt−yt)VFI(mt) =

(
1 +

1− e−κ(mt−yt)

κ

)
VFI(mt),

from which we can compute the sensitivity of Wt as −VFI(mt)e
−κ(mt−yt)σ, which, with u(ct)

= VFI(mt)
(
1 + 1

κ

)
gives us (27). �

Proof of Corollary 1

The proof follows immediately from (27). We only need to check that δ > 0, or κσ
κ+1 > β.

Indeed,

κσ

κ+ 1
>
rσ log(φ−1)

ah − al
>
rσ(1− φ)

ah − al
= β,

where the first inequality follows from Assumption 1. �

Preliminary analysis of the HJB equation

Below, we will often use û, ∆̂, J ′ and J ′′ as shorthand notation for û(S), ∆̂(S), J ′(S) and

J ′′(S), respectively.

Lemma A.1 The IC constraint is slack if and only if σJ ′J ′′

J ′+J ′′ > β. When it is slack,

∆̂ =
σJ ′′

J ′ + J ′′
, (36)

û = −J ′−1. (37)

Proof The first-order conditions for ∆̂ and û are

∆̂ ≥ σJ ′′

J ′ + J ′′
, û ≥ −J ′−1,

with equalities if the IC constraint is slack. Thus, if the IC constraint is slack, then (36) and

(37) hold, and ∆̂ > −ûβ implies β < ∆̂
−û = σJ ′J ′′

J ′+J ′′ . If the IC constraint binds, then ∆̂ ≥ σJ ′′

J ′+J ′′

and û ≥ −J ′−1, and thus ∆̂ = −ûβ implies β = ∆̂
−û ≥

σJ ′J ′′

J ′+J ′′ . �

Let H (S, J ′, J ′′) denote the right-hand side of the HJB equation (22), that is

H (S, J ′, J ′′) ≡ min
û,∆̂≥−ûβ

r(S − log(−V (0))− log(−û))

+J ′
(
r(−1− û) +

1

2
∆̂2 − ah

)
+

1

2
J ′′(∆̂− σ)2, (38)
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where J ′ and J ′′ are scalars. Whenever H (S, J ′, J ′′) is invertible in J ′′, we may rewrite the

HJB equation as a second-order ordinary differential equation (ODE)

J ′′(S) = H −1(S, J, J ′). (39)

We study the invertibility of H (S, J ′, ·) next.

Lemma A.2 If J ′ ≥ κ
κ+1 , then at any J ′′ ∈ [0,∞) the function H (S, J ′, J ′′) is strictly in-

creasing in J ′′, and

∆̂ < σ. (40)

Proof The Envelope theorem states that ∂H
∂J ′′ = 1

2(∆̂ − σ)2, which implies that H (S, J ′, J ′′)

strictly increases in J ′′ whenever ∆̂ 6= σ. It is then sufficient to show (40). Indeed, if the IC

constraint is slack, then ∆̂ = σJ ′′

J ′+J ′′ < σ. If the IC constraint binds, then

∆̂ = −ûβ ≤ βJ ′−1 ≤ r(1− φ)σ

(ah − al) κ
κ+1

<
r(1− φ)σ

r log(φ−1)
< σ, (41)

where the inequalities follow from −û ≤ J ′−1, J ′ ≥ κ
κ+1 , Assumption 1, and 1−φ

log(φ−1)
< 1. �

Because H is continuous and differentiable in (S, J ′, J ′′), so is the inverse function H −1.

This implies that the second derivative J ′′ in (39) is continuous and differentiable, i.e., J ′′′

exists.46

Lemma A.2 allows us to define the ODE (39) in the region

D ≡
{

(S, J, J ′) ∈ R3 : H (S, J ′, 0) ≤ rJ ≤H (S, J ′,∞) and J ′ ≥ κ

κ+ 1

}
.

Next we derive an explicit functional form for H −1(S, J, J ′) when the IC constraint is slack.

Lemma A.3 If the IC constraint is slack, then

J ′′ =

(
σ2/2

r(J − S + log(−V (0))− log(J ′)− 1) + (r + ah)J ′
− 1

J ′

)−1

. (42)

Proof If the IC constraint is slack, substituting (36) and (37) into the HJB equation yields

rJ = rS − r log(−V (0)) + r log(J ′) + J ′

(
r

(
−1 +

1

J ′

)
+

1

2

(
σJ ′′

J ′ + J ′′

)2

− ah

)
46However, the fourth derivative J ′′′′ may not exist: because the policy functions (û, ∆̂) in (38) may have kinks

at the boundaries between the regions of binding and slack IC constraints, ∂(H −1)
∂J

= 1/ ∂H
∂J′′ = 2/(∆̂− σ)2 may

have kinks and the second derivative ∂2(H −1)

∂J2 may not exist.
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+
1

2
J ′′
(

σJ ′′

J ′ + J ′′
− σ

)2

,

which simplifies to

rJ = rS − r log(−V (0)) + r log(J ′)− rJ ′ + r − ahJ ′ +
1

2
σ2 J ′J ′′

J ′ + J ′′
.

Solving for J ′′ in the above yields (42). �

The next lemma studies the HJB equation at the boundary S = 0. Let α(St) and ζ(St)

denote the drift and the sensitivity of St given in (21) evaluated at optimal controls û(St) and

∆̂(St).

Lemma A.4 In the model with two frictions,

(i) κ
κ+1 ≤ J

′(0) ≤ r
r+ah− 1

2
σ2 and 0 ≤ α(0) ≤ 1

2(κ+ 1)σ2,

(ii) J ′′(0) =∞ and ζ(0) = 0,

(iii) the IC constraint is slack when the quitting constraint binds.

Proof That α(0) ≥ 0 and ζ(0) = 0 follow from the nonnegativity of St at all t. In particular,

ζ(0) 6= 0 would imply St < 0 shortly after St = 0 because a typical Brownian motion sample path

has infinite variation. From the law of motion (20) we have that α(0) = r (−1− û(0))+ 1
2σ

2−ah
and ζ(0) = ∆̂(0)− σ.

(i) First, we show J ′(0) ≥ κ
κ+1 . Note that κ

κ+1 = J ′FI(0) by part (i) of Lemma B.1. We are

thus showing here that J ′(0) ≥ J ′FI(0). By contradiction, suppose J ′FI(0) > J ′(0). Then

rJFI(0) + r log(−VFI(0))

= min
û
r(− log(−û)) + J ′FI(0)

(
r(−1− û)− ah +

1

2
σ2

)
= r log

(
κ+ 1

κ

)
+ J ′FI(0)

(
r(−1 +

κ+ 1

κ
)− ah +

1

2
σ2

)
> r log

(
κ+ 1

κ

)
+ J ′(0)

(
r(−1 +

κ+ 1

κ
)− ah +

1

2
σ2

)
≥ min

−ûβ≤σ
r(− log(−û)) + J ′(0)

(
r(−1− û)− ah +

1

2
σ2

)
= rJ(0) + r log(−V (0)),

where the first inequality follows from
(
r(−1 + κ+1

κ )− ah + 1
2σ

2
)
> 0, and the second

inequality follows from κ+1
κ β < σ. Because JFI(0) is the minimum cost to deliver utility

VFI(0) under one friction (limited commitment), the scalability in Proposition 1 implies

that JFI(0) + log(−VFI(0)) − log(−V (0)) is the minimum cost to deliver utility V (0)

under one friction, which must be lower than J(0), the cost to deliver the same utility

V (0) under two frictions. This contradicts the above inequality.
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Second, since part (iii) shows that the IC constraint is slack, it follows from Lemma A.1

that −û = J ′−1. Under this condition, J ′(0) ≤ r
r+ah− 1

2
σ2 is equivalent to r (−1− û(0)) +

1
2σ

2 − ah = α(0) ≥ 0. Further, under −û = J ′−1, κ
κ+1 ≤ J ′(0) is equivalent to

r (−1− û(0)) + 1
2σ

2 − ah ≤ r
(
−1 + κ+1

κ

)
+ 1

2σ
2 − ah = 1

2(κ+ 1)σ2.

(ii) Suppose J ′′(0) < ∞ so that the assumptions of Lemma A.2 are met. But then (40)

contradicts ζ(0) = ∆̂(0)− σ = 0.

(iii) It follows from Assumption 1 and J ′′(0) =∞ that β = rσ(1−φ)
ah−al < rσ log(φ−1)

ah−al < σ = σJ ′J ′′

J ′+J ′′ .

By Lemma A.1, thus, the IC constraint is slack when St = 0.

�

Discussion. It is useful to briefly discuss the intuition behind Lemma A.4. As in the model

with full information, the binding quitting constraint forces the firm to extinguish all volatility

in St at the boundary St = 0. To achieve this, the sensitivity of the state variable has to be zero

at the boundary, i.e., ζ(0) = 0. This, in turn, is consistent with the firm’s cost minimization if

and only if the firm is infinitely averse to volatility in St at zero, hence J ′′(0) =∞.

As in the full-information model, the firm provides no insurance to the worker when St = 0,

as the continuation value inside the contract is at that point as volatile as the worker’s market

value, and, because providing insurance is feasible when St > 0, the firm induces a positive

drift in St at St = 0. Comparing part (i) of Lemma A.4 with part (i) of Lemma B.1, however,

we see that the firm’s aversion to drift in the state variable, represented by the first derivative

of the cost function, is larger in the two-friction model than in the full-information model.

Accordingly, the positive drift in St at zero is smaller here than in the full-information model.

This difference is due to the cost of future incentives. Part (iii) of Lemma A.4 shows that the

IC constraint is slack when the quitting constraint binds. But we know from our analysis of the

full-commitment model in Section 3 that the IC constraint binds when the quitting constraint

is completely absent. Since the equilibrium contract in the two-friction model approximates the

equilibrium contract of the full-commitment model when St is large, the IC constraint will bind

in the two-friction model at St large enough. Inducing a positive drift in St in the two-friction

model, therefore, has the disadvantage of making it more likely that the quitting constraint

becomes sufficiently slack for the IC constraint to bind. This disadvantage is absent in the

full-information model. The expected cost of future incentives, thus, makes positive drift in St

more costly to the firm in the two-friction model, which is reflected in the firm’s higher drift

aversion J ′(0) ≥ J ′FI(0) and lower drift of St at zero, as shown in part (i) of Lemma A.4.47

Closely related is the intuition for why the IC constraint is slack when the quitting constraint

binds. Corollary 1 shows that the IC constraint is slack at St = 0 in the full-information model.

This and the fact that the firm has a higher drift aversion in the two-friction model imply that

47Although conditions in part (i) of Lemma A.4 are given as weak inequalities, we show later that they are
actually strict. Intuitively, the cost of future incentives is strictly positive because the IC constraint binds with
strictly positive probability in equilibrium.
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the IC constraint must also be slack at St = 0 in the two-friction model. Indeed, a smaller drift

in St at zero implies that the worker in the two-friction model receives a higher utility flow ût.

Since the sensitivity of St is zero at St = 0, the normalized, market-induced sensitivity of the

worker’s continuation value, ∆̂t, must equal σ in both models. With higher ût and the same

∆̂t, the IC constraint is more slack in the two-friction model than in the full-information model.

Proof of Theorem 1

The proof is organized into three lemmas: Lemma A.5, Lemma A.9 and Lemma A.10. Three

auxiliary lemmas are also proved: Lemma A.6, Lemma A.7 and Lemma A.8.

We start out by noting that because J ′′(0) =∞, the HJB equation at S = 0 reduces to

J(0) = − log(−V (0)) + log(J ′(0)) + 1− J ′(0)
r + ah − 1

2σ
2

r
.

Treating the right-hand side of this equation as a function of J ′(0), denote its value by h(J ′(0)).

Lemma A.4 now implies a range of possible values for J(0), J ′(0) and J ′′(0) given by
(
J(0),

J ′(0), J ′′(0)
)

= (h(J ′(0)), J ′(0),∞) for J ′(0) ∈
[

κ
κ+1 ,

r
r+ah− 1

2
σ2

]
. Thus, the knowledge of J ′(0)

would be sufficient to pinpoint the values for J(0) and J ′′(0). Not knowing J ′(0), however, we

will proceed as follows. Denote by K(S) the function solving the HJB equation starting from

an initial condition K ′(0) ∈
[

κ
κ+1 ,

r
r+ah− 1

2
σ2

]
. This gives us a set of candidate solution curves

K(S), one for each starting value K ′(0) ∈
[

κ
κ+1 ,

r
r+ah− 1

2
σ2

]
. The true cost function J has to

coincide with one of these curves. The asymptotic condition limS→∞ J
′(S) = 1 = J ′FC(S) will

determine which of the candidate solution curves represents the true cost function J .

In order to carry out this program, we need to first show that the solution to the HJB

equation (42) exists in the neighborhood of zero despite the fact that the HJB does not satisfy

the Lipschitz condition at S = 0 (because J ′′(0) =∞).

Lemma A.5 The HJB equation has a unique candidate solution K in a neighborhood of S =

0 with the boundary condition (K(0),K ′(0),K ′′(0)) = (h(K ′(0)),K ′(0),∞) for any K ′(0) ∈(
κ
κ+1 , B

)
, where

B =

{
1, if ah <

1
2σ

2,
r

r+ah− 1
2
σ2 , if ah ≥ 1

2σ
2.

The IC constraint is slack (i.e., σK′K′′

K′+K′′ > β) in a neighborhood of S = 0.

Proof Use a change of variable: define x ≡ K ′(S) and interpret both S and K as functions of
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x. Since dS
dx = 1

K′′(S) and dK
dx = dK

dS
dS
dx = x

K′′(S) , we have the differential equation system

dS

dx
=

1

2σ−2 (r(K − S + log(−V (0))− log(x)− 1) + x (r + ah))
− 1

x
,

dK

dx
=

x

2σ−2 (r(K − S + log(−V (0))− log(x)− 1) + x (r + ah))
− 1.

The solution exists and is unique in a neighborhood of (x, S,K) = (K ′(0), 0, h(K ′(0))) because

the local Lipschitz condition is satisfied. When x is close to K ′(0), S and K both strictly

increase in x because

dS

dx

∣∣∣∣
x=K′(0)

= 0,

dK

dx

∣∣∣∣
x=K′(0)

= x
dS

dx

∣∣∣∣
x=K′(0)

= 0,

d2S

dx2

∣∣∣∣
x=K′(0)

=
2σ−2

(
r
x − r − ah

)
K ′(0)2

+
1

x2
=

2σ−2
(

r
K′(0) − r − ah + 1

2σ
2
)

K ′(0)2
> 0,

d2K

dx2

∣∣∣∣
x=K′(0)

=
dS

dx

∣∣∣∣
x=K′(0)

+ x
d2S

dx2

∣∣∣∣
x=K′(0)

> 0.

Part (iii) of Lemma A.4 shows that the IC constraint is slack at S = 0. Because K′K′′

K′+K′′ =
x

x 1
K′′+1

= x
xS′(x)+1 is a continuous function of x, the IC constraint remains slack in a neighbor-

hood of x = K ′(0). This neighborhood of x is mapped to a neighborhood of S because S is

strictly increasing in x. �

We can now move on to studying global properties of candidate solutions to the HJB

equation. For a given candidate solution K, define

S̄ ≡ min
S

{
S > 0 : K ′(S) = 1 or K ′′(S) = 0 or K ′′(S) =∞

}
, (43)

with min ∅ =∞.

The next three lemmas are auxiliary and will be used later.

Lemma A.6 If S̄ <∞ and K ′′(S̄) = 0, then K ′(S̄) < 1.

Proof By contradiction, suppose K ′′(S̄) = 0 and K ′(S̄) = 1. Then the function K(·) that

satisfies K(S) = K(S̄) + S − S̄ for all S solves the HJB equation. This violates the condition

that K ′′(0) =∞. �

Lemma A.7 If K is a candidate solution with S̄ <∞ and K ′′(S̄) =∞, then r(−1− û(S̄)) +
1
2σ

2 − ah < 0.
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Proof By contradiction, suppose r(−1− û(S̄)) + 1
2σ

2−ah ≥ 0. The HJB equation at S = S̄ is

rK(S̄) = r(S̄ − log(−V (0))− log(−û(S̄))) +K ′(S̄)

(
r(−1− û(S̄)) +

1

2
σ2 − ah

)
.

Because r(−1− û(S̄)) + 1
2σ

2 − ah ≥ 0 and K ′(S̄) > K ′(0),

rK(S̄) ≥ r(S̄ − log(−V (0))− log(−û(S̄))) +K ′(0)

(
r(−1− û(S̄)) +

1

2
σ2 − ah

)
≥ rS̄ + min

û
r(− log(−V (0))− log(−û)) +K ′(0)

(
r(−1− û) +

1

2
σ2 − ah

)
= rS̄ + rK(0),

where the equality follows from the HJB equation at S = 0. This contradicts the fact that

K ′(S) < 1 for all S ∈ [0, S̄]. �

Lemma A.8 If K is a candidate solution with S̄ =∞, then limS→∞K
′(S) = 1.

Proof Suppose by contradiction G ≡ limS→∞K
′(S) 6= 1. Since K ′(S) < 1 for all S, G < 1.

Then

0 > rK(S)− r(K(0) +GS)

= min
û,∆̂

{
r(S − log(−V (0))− log(−û)) +K ′(S)

(
r(−1− û) +

1

2
∆̂2 − ah

)
+

1

2
K ′′(S)(∆̂− σ)2

}
− r(K(0) +GS)

≥ r(1−G)S + min
û
r(− log(−V (0))− log(−û)) +K ′(S) (r(−1− û)− ah)− rK(0)

→ ∞, as S →∞.

This is a contradiction. �

We now move on to two key lemmas of this proof.

Lemma A.9 There exists a unique K ′(0) ∈ ( κ
κ+1 , B) such that the candidate solution K sat-

isfies S̄ =∞.

Proof Existence: Suppose by contradiction that all candidate solutions have S̄ < ∞. The

rest of the proof proceeds in several steps.

(i) The solution curves starting with different K ′(0) are ordered: higher K ′(0) leads to per-

manently higher solution curves. Suppose there are two curves K1 and K2 with ini-

tial conditions K1(0) < K2(0) and K ′1(0) < K ′2(0), then K ′1(S) < K ′2(S) for all S ∈
[0,min{S̄1, S̄2}]. If not, define S ≡ min{S : K ′1(S) = K ′2(S)}. Because K ′1(S) < K ′2(S)

for all S ≤ S, K1(S) < K2(S). Hence the HJB equation and K ′1(S) = K ′2(S) imply
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that K ′′1 (S) < K ′′2 (S), which means that K ′1(S) > K ′2(S) when S − S > 0 is small. This

contradicts the definition of S.

(ii) Define

U ≡ {K ′(0) : S̄ <∞, either K ′(S̄) = 1 or K ′′(S̄) =∞},
L ≡ {K ′(0) : S̄ <∞,K ′′(S̄) = 0}.

It follows from Lemma A.6 that U ∩ L = ∅. We show below that both U and L are

nonempty and open, which generates a contradiction because ( κ
κ+1 , B) = U ∪ L is a

connected set.

(iii) U is open. Take a K ′(0) ∈ U . We will show that there exists a δ > 0 such that if

|K ′1(0) −K ′(0)| ≤ δ, then K ′1(0) ∈ U . Since K ′(0) ∈ U , S̄ < ∞. Two cases need to be

considered: K ′(S̄) = 1, and K ′′(S̄) = ∞. In the first case, because K ′′(S̄) > 0, there

exists a small ε > 0 such that K ′(S̄ + ε) > 1. Because the solution of a differential

equation depends continuously on its initial condition, there exists a small δ > 0, such if

|K ′1(0)−K ′(0)| ≤ δ, then

K ′1(S̄ + ε) > 1, (44)

sup
S∈[0,S̄+ε]

∣∣∣∣ 1

K ′′1 (S)

∣∣∣∣ < ∞. (45)

Inequality (44) implies S̄1 < S̄+ε. It follows from (45) that K ′′1 (S̄1) > 0, hence K ′1(0) /∈ L.

Thus, K ′1(0) ∈ U .

In the second case, recall that the HJB equation is solved by a change of variable whenever

K ′′(S) =∞. Then

dS

dx

∣∣∣∣
x=K′(S̄)

= 0,
d2S

dx2

∣∣∣∣
x=K′(S̄)

=
2σ−2

(
r(−1− û)− ah + 1

2σ
2
)

x2
< 0,

where the inequality follows from Lemma A.7. Hence there exists a small ε > 0 such that
dS
dx |x=K′(S̄)+ε < 0. Because the solution of a differential equation depends continuously on

its initial condition, there exists a small δ > 0 such that if |K ′1(0)−K ′(0)| ≤ δ, then

dS1

dx

∣∣∣∣
x=K′(S̄)+ε

< 0, (46)

sup
S∈[0,S1(K′(S̄)+ε)]

∣∣∣∣ 1

K ′′1 (S)

∣∣∣∣ = sup
x∈[K′1(0),K′(S̄)+ε]

∣∣∣∣dS1

dx

∣∣∣∣ <∞. (47)

Inequality (46) implies S̄1 < S1(K ′(S̄) + ε). It follows from (47) that K ′′1 (S̄1) > 0, hence

K ′1(0) /∈ L. Thus, K ′1(0) ∈ U .
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(iv) L is open. Recall from Lemma A.6 that if K ′(0) ∈ L, then K ′′(S̄) = 0 and K ′(S̄) < 1.

Differentiating the HJB equation and applying the Envelope theorem yield48

0 = r +K ′′
(
r(−1− û) +

1

2
∆̂2 − ah

)
+

1

2
K ′′′(σ − ∆̂)2 − rK ′.

Hence K ′′(S̄) = 0 and K ′(S̄) < 1 imply

1

2
K ′′′(S̄)(σ − ∆̂)2 = r(K ′ − 1)−K ′′

(
r(−1− û) +

1

2
∆̂2 − ah

)
< 0.

Therefore K ′′′(S̄) < 0 and there exists a small ε > 0 such that K ′′(S̄ + ε) < 0.

Pick a small ε1 > 0, such that K ′(ε1) satisfies r(−1 + 1
K′(ε1)) + 1

2σ
2 − ah > 0. Recall

that the HJB equation is solved in a neighborhood of S = 0 by a change of variable.

For convenience, we denote the solution for an initial condition K ′1(0) by S1(x) when

x ∈ [K ′(0),K ′(ε1)]. Because the solution of a differential equation depends continuously

on its initial condition, there exists a small δ > 0, such that if |K ′1(0)−K ′(0)| ≤ δ, then

K ′′1 (S̄ + ε) < 0, (48)

sup
S∈[0,S̄+ε]

∣∣K ′1(S)
∣∣ < 1, (49)

sup
S∈[S1(K′(ε1)),S̄+ε]

∣∣K ′′1 (S)
∣∣ < ∞. (50)

Inequality (48) implies S̄1 < S̄ + ε. If S̄1 ∈ (0, S1(K ′(ε1))] (i.e., K ′1(S̄1) ≤ K ′(ε1)),

because r(−1 + 1
K′1(S̄1)

) + 1
2σ

2 − ah > 0, Lemma A.7 implies that K ′′1 (S̄1) < ∞. If S̄1 ∈
[S1(K ′(ε1)), S̄ + ε], (50) implies that K ′′1 (S̄1) <∞. It follows from (49) and K ′′1 (S̄1) <∞
that K ′1(0) /∈ U . Hence K ′1(0) ∈ L if |K ′1(0)−K ′(0)| ≤ δ.

(v) L 6= ∅. We will show that κ
κ+1 ∈ L. By contradiction, suppose κ

κ+1 ∈ U . That is, if

K ′(0) = κ
κ+1 , then either K ′(S̄) = 1 or K ′′(S̄) = ∞. The HJB equations for JFI and K

imply that if JFI(S) + log(−VFI(0)) ≥ K(S) + log(−V (0)) and J ′FI(S) = K ′(S), then

J ′′FI(S) ≥ K ′′(S). Hence, the same argument as in part (i) shows that J ′FI(S) ≥ K ′(S)

for all S ≤ S̄. It follows from J ′FI(S) < 1, ∀S that K ′(S̄) < 1 and K ′′(S̄) = ∞. A

contradiction arises as follows.

rJFI(S̄) + r log(−VFI(0))

= min
û,∆̂

r(S̄ − log(−û)) + J ′FI(S̄)

(
r(−1− û) +

1

2
∆̂2 − ah

)
+

1

2
J ′′FI(S̄)(∆̂− σ)2

< min
û
r(S̄ − log(−û)) + J ′FI(S̄)

(
r(−1− û) +

1

2
σ2 − ah

)
48The third derivative K′′′ exists because K′′(S) = H −1(S,K,K′) and H −1 is differentiable.
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≤ r(S̄ − log(−û(S̄))) + J ′FI(S̄)

(
r(−1− û(S̄)) +

1

2
σ2 − ah

)
,

where û(S̄) = −(K ′(S̄))−1 is the optimal û at S̄ for K(S̄). Because J ′FI(S̄) ≥ K ′(S̄) and

r(−1− û(S̄)) + 1
2σ

2 − ah < 0 (shown by Lemma A.7),

r(S̄ − log(−û(S̄))) + J ′FI(S̄)

(
r(−1− û(S̄)) +

1

2
σ2 − ah

)
≤ r(S̄ − log(−û(S̄))) +K ′(S̄)

(
r(−1− û(S̄)) +

1

2
σ2 − ah

)
= rK(S̄) + r log(−V (0)),

which is a contradiction as JFI(0) + log(−VFI(0)) = K(0) + log(−V (0)) and J ′FI(S) ≥
K ′(S) imply JFI(S̄) + log(−VFI(0)) ≥ K(S̄) + log(−V (0)).

(vi) U 6= ∅. First, suppose ah <
1
2σ

2. If 1 − K ′(0) > 0 is sufficiently small, then K(·) will

reach K ′ = 1. Second, suppose ah ≥ 1
2σ

2. If K ′(0) = B, then we show that dS
dx |x=B+ε < 0

for small ε > 0. To prove this, note that, similar to the proof in Lemma A.5,

dS

dx

∣∣∣∣
x=K′(0)

= 0 =
dK

dx

∣∣∣∣
x=K′(0)

,

d2S

dx2

∣∣∣∣
x=K′(0)

=
2σ−2

(
r

K′(0) − r − ah + 1
2σ

2
)

K ′(0)2
= 0,

d2K

dx2

∣∣∣∣
x=K′(0)

=
dS

dx

∣∣∣∣
x=K′(0)

+ x
d2S

dx2

∣∣∣∣
x=K′(0)

= 0.

The Taylor expansion of 2σ−2 (r(K − S + log(−V (0))− log(x)− 1) + x (r + ah)) is

K ′(0) + 2σ−2

(
r

(
dK

dx
− dS

dx
− 1

x

)
+ (r + ah)

)
(x−K ′(0))

+2σ−2r

(
d2K

dx2
− d2S

dx2
+

1

x2

)
(x−K ′(0))2 + o((x−K ′(0))2)

= x+
2σ−2r

(K ′(0))2
(x−K ′(0))2 + o((x−K ′(0))2) > x,

where the inequality holds when x−K ′(0) > 0 is small, since 2σ−2r
(K′(0))2

> 0. Therefore,

dS

dx

∣∣∣∣
x=B+ε

=
1

2σ−2 (r(K − S + log(−V (0))− log(x)− 1) + x (r + ah))
− 1

x
< 0,

for small ε > 0. Because the solution of a differential equation depends continuously

on its initial condition, there exists a small δ > 0, such that if the initial condition
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K ′1(0) ∈ (B − δ,B), then

dS1

dx

∣∣∣∣
x=B+ε

< 0, (51)

sup
S∈[0,S1(B+ε)]

∣∣∣∣ 1

K ′′1 (S)

∣∣∣∣ = sup
x∈[K′1(0),B+ε]

∣∣∣∣dS1

dx

∣∣∣∣ <∞. (52)

It follows from dS1
dx |x=K′1(0) > 0 and (51) that dS1

dx = 0 for some Ŝ ∈ (0, S1(B+ε)). Because
dS1
dx = 1

K′′1 (S)
, we know that K ′′1 (Ŝ) = ∞. Hence S̄1 ≤ Ŝ must be finite. It follows from

(52) that K ′′1 (S̄1) > 0, hence K ′1(0) /∈ L and K ′1(0) ∈ U .

Uniqueness: By contradiction, suppose there are two initial conditions K ′1(0) < K ′2(0) with

S̄1 = S̄2 =∞. Subtracting one HJB equation from the other yields

r(K2(S)−K1(S))

= min
û,∆̂

{
−r log(−û) +K ′2(S)

(
r(−1− û) +

1

2
∆̂2 − ah

)
+

1

2
K ′′2 (S)(∆̂− σ)2

}
−min

û,∆̂

{
−r log(−û) +K ′1(S)

(
r(−1− û) +

1

2
∆̂2 − ah

)
+

1

2
K ′′1 (S)(∆̂− σ)2

}
.

The left-hand side is positive at S = 0 and is strictly increasing with S, as shown in part (i) of

the proof of existence. Lemma A.8 implies that limS→∞K
′
1(S) = limS→∞K

′
2(S) = 1. For any

ε > 0, there exists a large S such that 0 < K ′′1 (S) +K ′′2 (S) < ε. Therefore, the right-hand side

can be made as small as needed if S is large. This is a contradiction. �

Lemma A.10 The candidate solution K with S̄ =∞ is the true cost function J .

Proof Because the technique of using the HJB equation to verify the optimality of K is

standard, we omit the details of the steps involved. We verify two things:

(i) The cost of any IC contract is weakly higher than K(S).

(ii) There exists an IC contract whose cost equals K(S).

To see (i), pick an IC contract starting at S0 = S ≥ 0 and consider the stochastic process

{St; t ≥ 0} in this contract. Define

Mt ≡
∫ t

0
(cs − ys)re−rsds+ e−rtK(St). (53)

The HJB equation implies that Mt is a submartingale (i.e., it has a nonnegative drift), hence

K(S) = M0 ≤ E [M∞] = E
[∫ ∞

0
(cs − ys)re−rsds

]
. (54)
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To see (ii), construct a stochastic process {St; t ≥ 0} using S0 = S and the policy functions

implied by the HJB equation for K. Denote the contract generated by {St; t ≥ 0} and the

policy functions as σ∗. Then Mt defined in (53) is a martingale, and the inequality in (54) is

replaced with an equality. This shows that the cost of σ∗ is K(S). �

Proof of Proposition 4

We will show the existence of a unique S∗ > 0 such that

σJ ′J ′′

J ′ + J ′′


> β, if S < S∗,

= β, if S = S∗,

< β, if S > S∗.

By Lemma A.1, this will show that the IC constraint is slack if and only if St < S∗.

Existence of S∗: Lemma A.5 shows that σJ ′(S)J ′′(S)
J ′(S)+J ′′(S) > β when S is small. If S∗ does not

exist, then σJ ′(S)J ′′(S)
J ′(S)+J ′′(S) > β for all S. Recall the definition of S̄ in (43) and recall that J satisfies

S̄ =∞ by Lemma A.9. The definition of S̄ implies that J ′′(S) > 0 for all S > 0. This further

implies 1 > J ′(S)
J ′(S)+J ′′(S) and

σJ ′′(S) >
σJ ′(S)J ′′(S)

J ′(S) + J ′′(S)
≥ β, for all S,

which contradicts the fact that J ′(S) < 1 for all S.

Uniqueness of S∗: It is sufficient to show that if σJ ′(S∗)J ′′(S∗)
J ′(S∗)+J ′′(S∗) = β for some S∗, then

σJ ′(S)J ′′(S)
J ′(S)+J ′′(S) > β for S < S∗. There are two steps: the first step shows a property (55), which is

used in the second step to complete the proof of uniqueness.

First, we show that if σJ ′J ′′

J ′+J ′′ ≥ β, then

rJ ′ + ah
J ′J ′′

J ′ + J ′′
< r. (55)

If ah ≤ 0, then (55) is obvious because J ′ < 1. When ah > 0, by contradiction, suppose that
σJ ′J ′′

J ′+J ′′ ≥ β and

rJ ′ + ah
J ′J ′′

J ′ + J ′′
≥ r (56)

at some Ŝ. Starting from Ŝ, solve the differential equation

rJ = r
(
S − log(−V (0)) + log(J ′)

)
+ J ′ (−r − ah) + r +

σ2

2

J ′J ′′

J ′ + J ′′
. (57)
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Differentiating (57) with respect to S yields

rJ ′ = r

(
1 +

J ′′

J ′

)
+ J ′′ (−r − ah) +

σ2

2

d
(
J ′J ′′

J ′+J ′′

)
dS

,

which implies

σ2

2

d
(
J ′J ′′

J ′+J ′′

)
dS

= rJ ′ − r
(

1 +
J ′′

J ′

)
+ J ′′ (r + ah)

=
J ′ + J ′′

J ′

(
rJ ′ + ah

J ′J ′′

J ′ + J ′′
− r
)
≥ 0, (58)

where the inequality uses (56). Hence we have that either
d
(
J′J′′
J′+J′′

)
dS > 0, or

d
(
J′J′′
J′+J′′

)
dS = 0. In

the latter case, rJ ′ + ah
J ′J ′′

J ′+J ′′ − r = 0 and differentiating (58) yields

σ2

2

d2
(
J ′J ′′

J ′+J ′′

)
dS2

=
d
(
J ′+J ′′

J ′

)
dS

(
rJ ′ + ah

J ′J ′′

J ′ + J ′′
− r
)

+
J ′ + J ′′

J ′

rJ ′′ + ah
d
(
J ′J ′′

J ′+J ′′

)
dS


= 0 +

J ′ + J ′′

J ′
J ′′ > 0.

In both cases, there exists a small ε > 0 such that J ′J ′′

J ′+J ′′ is strictly increasing in [Ŝ, Ŝ+ε]. Hence

on [Ŝ, Ŝ+ ε] the solution J to (57) does satisfy the HJB equation and the IC constraint is slack.

If we extend J beyond Ŝ + ε, J ′J ′′

J ′+J ′′ is always strictly increasing, because J ′ is increasing and

ah is positive in (58). Hence,

J ′′ >
J ′J ′′

J ′ + J ′′
>

J ′(Ŝ)J ′′(Ŝ)

J ′(Ŝ) + J ′′(Ŝ)
, for all S > Ŝ,

contradicting the fact that J ′(S) < 1 for all S.

Second, we show that σJ ′(S)J ′′(S)
J ′(S)+J ′′(S) > β for all S < S∗. Solve the differential equation (57)

backward on [0, S∗]. Equations (55) and (58) show that J ′(S)J ′′(S)
J ′(S)+J ′′(S) is strictly decreasing in S.

Hence the solution J to (57) does satisfy the HJB equation and the IC constraint is slack.

This completes the proof of the first statement in Proposition 4. To prove the second

statement, we now show that both the drift and the sensitivity of compensation are zero when

S ≤ S∗.
It follows from û = u(c)

−W and S = log(V (y)
W ) that

c = − log(−û)− log(−W ) = − log(−û) + S + y − log(−V (0)).

If S ≤ S∗, then −û = (J ′)−1, and c = log(J ′) + S + y− log(−V (0)). According to Ito’s lemma,
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the drift of compensation is

J ′′

J ′

(
r(−1− û) +

1

2
∆̂2 − ah

)
+ r(−1− û) +

1

2
∆̂2 +

1

2

J ′′′J ′ − J ′′2

J ′2
(∆̂− σ)2

=
J ′′

J ′

(
r(−1− û) +

1

2
∆̂2 − ah

)
+ r(−1− û) +

1

2
∆̂2 +

1

2

J ′′′

J ′
(∆̂− σ)2 − 1

2

J ′′2

J ′2
(∆̂− σ)2

=
J ′′

J ′

(
r(−1− û) +

1

2
∆̂2 − ah

)
+ r(−1 +

1

J ′
) +

1

2

J ′′′

J ′
(∆̂− σ)2

=

(
J ′′
(
r(−1− û) +

1

2
∆̂2 − ah

)
+ r +

1

2
J ′′′(∆̂− σ)2 − rJ ′

)
J ′−1,

where the second equality follows from ∆̂ = σJ ′′

J ′+J ′′ and ∆̂2 = J ′′2

J ′2 (∆̂− σ)2. Differentiating the

HJB equation with respect to S and applying the Envelope theorem yield

rJ ′ = r + J ′′
(
r(−1− û) +

1

2
∆̂2 − ah

)
+

1

2
J ′′′(∆̂− σ)2.

Therefore, the drift of compensation is zero. The sensitivity of compensation is

J ′ + J ′′

J ′
(∆̂− σ) + σ =

J ′ + J ′′

J ′

(
− J ′σ

J ′ + J ′′

)
+ σ = 0.

Finally, we show that consumption is nondecreasing in any time interval I such that St < S∗

for all t ∈ I. Suppose by contradiction that ct > cs for some t, s ∈ I, t < s. Let ε be a

small positive number and consider an alternative consumption plan (c̃t, c̃s) given by u(c̃t) =

u(ct)− ε and u(c̃s) = u(cs) + ε. We will show that (c̃t, c̃s) is better than (ct, cs), contradicting

the optimality of the contract. The variation (c̃t, c̃s) not only reduces the principal’s cost

(because the agent is risk averse) but also maintains the quitting constraint (because the agent’s

continuation value at t is unchanged, and her continuation value at s is increased). When ε > 0

is small, this variation does not violate any IC constraints because the constraints are slack in

the time interval I. �

Verification of optimality of high effort

Lemma A.11 Under Assumption 1, it is optimal to implement high effort for all S ≥ 0.

Proof To show that low effort is suboptimal, we need to verify that

min
û,∆̂≥−ûβ

r(− log(−û)) + J ′(S)

(
r(−1− û) +

1

2
∆̂2 − ah

)
+

1

2
J ′′(S)(∆̂− σ)2

≤ min
û,∆̂≤−ûβ

r(− log(−û)) + J ′(S)

(
r(−1− ûφ) +

1

2
∆̂2 − al

)
+

1

2
J ′′(S)(∆̂− σ)2. (59)

The following two steps verify (59) for S ≤ S∗ and for S > S∗, respectively.
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First, if S ≤ S∗, then the IC constraint ∆̂ ≥ −ûβ is slack according to Proposition 4.

Inequality (59) is equivalent to

J ′(S)(ah − al) ≥ r log(φ−1),

which follows from J ′(S) ≥ J ′(0) > κ
κ+1 and Assumption 1.

Second, if S > S∗ (i.e., the IC constraint binds), then σJ ′J ′′

J ′+J ′′ ≤ β. We have

min
û,∆̂≥−ûβ

r(− log(−û)) + J ′
(
r(−1− û) +

1

2
∆̂2 − ah

)
+

1

2
J ′′(∆̂− σ)2

≤
(
r(− log(−û)) + J ′

(
r(−1− û) +

1

2
∆̂2 − ah

)
+

1

2
J ′′(∆̂− σ)2

)∣∣∣∣
û=−1

J′ ,∆̂= β
J′

=
(
r(− log(−û)) + J ′ (r(−1− û)− ah)

)∣∣
û=−1

J′
+

1

2J ′2
(J ′β2 + J ′′(σJ ′ − β)2)

≤
(
r(− log(−û)) + J ′ (r(−1− û)− ah)

)∣∣
û=−1

J′
+

1

2
βσ,

where the last inequality follows from σJ ′ ≥ rσ log(φ−1)
ah−al ≥ rσ(1−φ)

ah−al = β and

βσJ ′2 − J ′β2 − J ′′(σJ ′ − β)2 = (σJ ′ − β)(J ′β − J ′′(σJ ′ − β))

= (σJ ′ − β)(J ′ + J ′′)

(
β − σJ ′J ′′

J ′ + J ′′

)
≥ 0.

Furthermore,

(
r(− log(−û)) + J ′ (r(−1− û)− ah)

)∣∣
û=−1

J′
+

1

2
βσ

≤ min
û
r(− log(−û)) + J ′ (r(−1− ûφ)− ah) + r log(φ−1) +

1

2
βσ

≤ min
û,∆̂≤−ûβ

r(− log(−û)) + J ′
(
r(−1− ûφ) +

1

2
∆̂2 − al

)
+

1

2
J ′′(∆̂− σ)2

+J ′(−ah + al) + r log(φ−1) +
1

2
βσ

≤ min
û,∆̂≤−ûβ

r(− log(−û)) + J ′
(
r(−1− ûφ) +

1

2
∆̂2 − al

)
+

1

2
J ′′(∆̂− σ)2,

where the last inequality follows from Assumption 1. Thus (59) is verified. �

Proof of Proposition 5

We start with the following auxiliary lemma:

Lemma A.12 J ′′′(S) < 0 for all S ≥ 0. Further, limS→∞ J
′′(S) = 0.
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Proof The proof of Proposition 4 has shown that J ′(S)J ′′(S)
J ′(S)+J ′′(S) = 1

1
J′(S)+ 1

J′′(S)
is strictly de-

creasing in S when S < S∗. Hence either J ′(S) or J ′′(S) must be strictly decreasing. Since

J ′(S) increases with S, J ′′(S) strictly decreases with S when S < S∗. If J ′′(S) is not globally

decreasing, then there is a S̄ ≥ S∗ at which J ′′′(S̄) = 0. When the IC constraint binds at

S > S∗, we have ∆̂ = −ûβ and the HJB equation takes the form of

rJ(S) = rS − r log(−V (0))

+ min
û

{
−r log(−û) + J ′(S)

(
r (−1− û) +

1

2
(−ûβ)2 − ah

)
+

1

2
J ′′(S) (−ûβ − σ)2

}
.

The first-order condition for the optimal û is

rc′(û) + J ′′(S)σβ = rJ ′(S) + (J ′(S) + J ′′(S))β2(−û). (60)

Because J ′ increases with S while J ′′ is stationary at S = S̄, equation (60) implies that (−û)

and ∆̂ decrease with S, when S is close to S̄. Differentiating the HJB equation yields

0 = r + J ′′
(
r(−1− û) +

1

2
∆̂2 − ah

)
+

1

2
J ′′′(σ − ∆̂)2 − rJ ′.

Because the term J ′′
(
r(−1− û) + 1

2∆̂2 − ah
)
− rJ ′ decreases with S ∈ (S̄ − ε, S̄ + ε) for a

small ε, J ′′′(S) < 0 for S ∈ (S̄ − ε, S̄) and J ′′′(S) > 0 for S ∈ (S̄, S̄ + ε). Because of these two

inequalities, J ′′′ cannot be zero again for any S > S̄. That is, J ′′′ > 0 for all S > S̄. Then J ′′

increases with S and J ′ will reach one eventually, a contradiction. �

Now we can prove the proposition.

First, we show that (−û) and ∆̂ decrease with S. If S ≤ S∗, then −û = 1
J ′(S) and ∆̂ = σJ ′′

J ′+J ′′

decrease with S, because J ′ increases and J ′′ decreases with S. If S ≥ S∗, then (−û) and

∆̂ decrease with S, because in the first-order condition (60), J ′ increases and J ′′ decreases

with S, and σ > β(−û). Further, because limS→∞ J
′(S) = 1 and limS→∞ J

′′(S) = 0, the

first-order condition (60) approaches condition (33), which means that limS→∞(−û) = ρ and

limS→∞ ∆̂ = ρβ.

Second, we show the properties of the drift and the sensitivity of S. That α(S) = r(−1 −
û)+ 1

2∆̂2−ah and ξ(S) = ∆̂−σ are decreasing in S is because −û and ∆̂ decrease with S. That

α(0) > 0 follows from ∆̂(0) = σ, −û(0) = 1
J ′(0) , and J ′(0) < r

r+ah− 1
2
σ2 in Lemma A.9. That

limSt→∞ α(St) = −µ − ah follows from limS→∞(−û) = ρ, limS→∞ ∆̂ = ρβ, and the definition

of µ. That limS→∞ ζ(S) = ρβ − σ follows from limS→∞ ∆̂ = ρβ. �

Proof of Theorem 2

The proof proceeds in two steps: the first step constructs a diffusion process x on (−∞,∞),

the second step shows that x has an invariant distribution, which implies that S has an invariant
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distribution too.

First, the equilibrium dynamics of the state variable St in the full-commitment model can

be obtained by substituting the optimal policies −ût = ρ and ∆̂t = ρβ into (21):

dSt = − (µ+ ah) dt− (σ − ρβ) dzat . (61)

(i) Construct a function f : [J ′(0),∞) → [0,∞) such that f ′(x) > 0 for x > J ′(0), f ′′(x) is

continuous for x ≥ J ′(0), and f(x) = S(x) for x ≈ J ′(0) and f(x) = x for large x. Here

S(x) denotes the mapping from x = J ′(S) to S, from the change of variable in Lemma

A.5. We can extend the domain of f to (−∞,∞) by defining f(x) ≡ f(2J ′(0) − x) for

x < J ′(0). Because S′(x)|x=J ′(0) = 0, the left derivative and right derivative of f are

equal at x = 0. Hence, f is still continuously differentiable after the extension.

(ii) Construct a diffusion process for x ∈ (−∞,∞) as follows. Because S is a diffusion

process, so is x = f−1(S) whenever x > J ′(0). The drift ᾱ(x) and sensitivity ζ̄(x) of x

are, respectively,

ᾱ(x) = (f−1)′(S)α(S) +
1

2
(f−1)′′(S)(ζ(S))2,

ζ̄(x) = (f−1)′(S)ζ(S),

where S = f(x). Symmetrically, if x < J ′(0), then x = 2J ′(0)− f−1(S) is also a diffusion

process.

Second, for S to have an invariant distribution it is sufficient to show that x has an invariant

distribution. To show that x has an invariant distribution on (−∞,∞) we verify the sufficient

conditions in Karatzas and Shreve (1991, Exercise 5.40, page 352).

(i) Nondegeneracy. The sensitivity ζ̄(x) 6= 0 at x > J ′(0) because f ′(x) > 0 for x > J ′(0)

and ζ(S) 6= 0 for S > 0. Although ζ(0) = 0, ζ̄(J ′(0)) 6= 0 because f−1(S) = J ′(S) for

S ≈ 0 and

lim
x↓J ′(0)

ζ̄(x) = lim
S↓0

J ′′(S)(∆̂− σ) = lim
S↓0

J ′′(S)J ′(S)

J ′(S) + J ′′(S)
> 0.

The sensitivity ζ̄(x) 6= 0 at x < J ′(0) due to symmetry.

(ii) Local integrability. Because ζ(x) is continuous in x and is always nonzero, it is bounded

away from zero. That is, there exists ε > 0 such that (ζ(x))2 ≥ ε for all x.

(iii) p(−∞) = −∞ and p(∞) =∞, where the scale function p(x) is defined as

p(x) ≡
∫ x

c
exp

(
−2

∫ ξ

c

ᾱ(θ)

ζ̄(θ)2
dθ

)
dξ,
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where c is a fixed number. We will only show p(∞) =∞ as the proof for p(−∞) = −∞ is

similar. Since f(θ) = θ for large θ, limθ→∞
ᾱ(θ)

ζ̄(θ)2
= limθ→∞

α(θ)
ζ(θ)2

= −µ−ah
σ2 < 0, where the

inequality follows from the assumption −µ− ah < 0.. Therefore, limξ→∞−2
∫ ξ
c

ᾱ(θ)

ζ̄(θ)2
dθ =

∞, and limx→∞ p(x) =∞.

(iv) m(−∞,∞) <∞, where the speed measure m is defined as

m(dx) ≡ 2dx

p′(x)ζ̄(x)2
.

Because limθ→∞
ᾱ(θ)

ζ̄(θ)2
= −µ−ah

σ2 < 0 and limθ→∞ ζ̄(θ)2 = σ2, there is a large x̄, such that
ᾱ(θ)

ζ̄(θ)2
< −µ−ah

2σ2 and ζ̄(θ)2 > σ2

2 for θ ≥ x̄. Hence, if x ≥ x̄, then

p′(x)ζ̄(x)2 = exp

(
−2

∫ x

c

ᾱ(θ)

ζ̄(θ)2
dθ

)
ζ̄(x)2

≥ exp

(
−2

∫ x̄

c

ᾱ(θ)

ζ̄(θ)2
dθ

)
exp

(
µ+ ah
σ2

(x− x̄)

)
σ2

2
,

which implies that m([x̄,∞)) =
∫∞
x̄

2dx
p′(x)ζ̄(x)

dx is finite. That m((−∞, 2J ′(0) − x̄]) < ∞
follows from symmetry.

�

Proof of Proposition 6

We start with the following auxiliary lemma:

Lemma A.13 Let S1 = 1 − log(1 + 1−e−κ
κ ) and S2 = 2 − log(1 + 1−e−2κ

κ ). For large ah,

r(−1 + 1
J ′FI(S1)

) + 1
2σ

2 − ah < −ah
3 and S1 < S2 < S∗.

Proof First, we compute J ′FI(S1) in the full-information model. From the proof of Proposition

3, we know that ut = κ+1
κ VFI(mt) and Wt = (1 + 1−e−κ(mt−yt)

κ )VFI(mt). Therefore, û(St) =

ut
−Wt

= −
κ+1
κ

1+ 1−e−κ(m−y)
κ

. The first-order condition in the HJB equation implies û(S) = − −1
J ′FI(S)

,

which together with m− y = 1 at S1 imply that

r

(
−1 +

1

J ′FI(S1)

)
= r

(
−1 +

κ+1
κ

1 + 1−eκ(y−m)

κ

)
=

re−κ

κ+ 1− e−κ
.

It follows from limah→∞ ahκ = r that

lim
ah→∞

re−κ

κ+1−e−κ

ah
= lim

ah→∞

re−κ

(κ+ 1− e−κ)ah
=

1

2
.
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Therefore, r
(
−1 + 1

J ′FI(S1)

)
+ 1

2σ
2 − ah < −ah

3 for large ah.

Second, S1 < S2 because limah→∞ S1 − S2 = −1− limκ→0 log(1 + 1−e−κ
κ ) + limκ→0 log(1 +

1−e−2κ

κ ) = −1 + log(3
2) < 0.

Third, S2 < S∗FI , where S∗FI denotes the smallest S at which the IC constraint is violated in

the full-information model. At S2, m−y = 2. It follows from eκ(−2) > r(1−φ)
ah−al

κ+1
κ that S2 < S∗FI

for large ah.

Fourth, S∗FI < S∗. We show that J ′(S∗FI) > J ′FI(S
∗
FI) and J ′′(S∗FI) > J ′′FI(S

∗
FI). An

argument similar to part (i) in the proof of Lemma A.9 shows the former. To see the latter,

suppose by contradiction J ′′(S∗FI) ≤ J ′′FI(S∗FI). The HJB equation for JFI is

rJFI(S
∗
FI) + r log(−VFI(0)) = r(S∗FI − log(−û)) + J ′FI(S

∗
FI)

(
r(−1− û) +

1

2
∆̂2 − ah

)
+

1

2
J ′′FI(S

∗
FI)(∆̂− σ)2.

Hence J ′(S∗FI) > J ′FI(S
∗
FI), J

′′(S∗FI) ≤ J ′′FI(S∗FI), and r(−1− û) + 1
2∆̂2 − ah < 0 imply that

rJFI(S
∗
FI) + r log(−VFI(0))

= r(S∗FI − log(−û)) + J ′FI(S
∗
FI)

(
r(−1− û) +

1

2
∆̂2 − ah

)
+

1

2
J ′′FI(S

∗
FI)(∆̂− σ)2

> r(S∗FI − log(−û)) + J ′(S∗FI)

(
r(−1− û) +

1

2
∆̂2 − ah

)
+

1

2
J ′′(S∗FI)(∆̂− σ)2

≥ rJ(S∗FI) + r log(−V (0)),

which contradicts JFI(S) + log(−VFI(0)) ≥ J(S) + log(−V (0)) for all S ≥ 0. That S∗FI < S∗

follows from

σJ ′(S∗FI)J
′′(S∗FI)

J ′(S∗FI) + J ′′(S∗FI)
>

σJ ′FI(S
∗
FI)J

′′
FI(S

∗
FI)

J ′FI(S
∗
FI) + J ′′FI(S

∗
FI)

= β.

�

Now we can prove the proposition.

Because the trend of S is negative in [S1,∞), the derivative of the scale function, p′(S), is

strictly increasing in S. Further,

(
log(p′(S))

)′
= −2

(
r(−1 + 1

J ′(S)) + 1
2∆̂(S)2 − ah

(∆̂(S)− σ)2

)

≥ −2

(
r(−1 + 1

J ′FI(S1)
) + 1

2σ
2 − ah

(∆̂(S)− σ)2

)
≥ 2ah

3σ2
, for S ≥ S1,
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where the first inequality follows from J ′(S) ≥ J ′(S1) > J ′FI(S1) and the second inequality

follows from r(−1 + 1
J ′FI(S1)

) + 1
2σ

2 − ah < −ah
3 , which is shown in Lemma A.13. This implies

that p′(S) ≥ p′(S∗) exp(2ah
3σ2 (S − S∗)) for S ≥ S∗. We have

m[S∗,∞)

m[S1, S2]
=

∫∞
S∗

1
p′(S)(∆̂(S)−σ)2

dS∫ S2

S1

1
p′(S)(∆̂(S)−σ)2

dS
≤

∫∞
S∗

1
p′(S)dS∫ S2

S1

1
p′(S)dS

,

which follows from ∆̂(S) > ∆̂(S̃) for all S < S∗ < S̃. This inequality is shown by ∆̂(S) =
J ′′(S)

J ′(S)+J ′′(S) = J ′(S)J ′′(S)
J ′(S)+J ′′(S)(J ′(S))−1 > β(J ′(S))−1 ≥ β(J ′(S̃))−1 = β(−û(S̃)) = ∆̂(S̃). Further,

∫∞
S∗

1
p′(S)dS∫ S2

S1

1
p′(S)dS

≤

∫∞
S∗

1
p′(S)dS

(S2 − S1) 1
p′(S∗)

≤

∫∞
S∗

1

exp(
2ah
3σ2

(S−S∗))
dS

S2 − S1
=

1
2ah
3σ2 (S2 − S1)

.

Hence limah→∞ π([S∗,∞)) = limah→∞
m[S∗,∞)
m[0,∞) ≤ limah→∞

m[S∗,∞)
m[S1,S2] = 0. �

Properties of the cost function JFI and dynamics of the state variable St in

the model with full information

Lemma B.1 In the model with full information,

(i) J ′FI is everywhere positive and strictly increasing with

J ′FI(0) =
κ

κ+ 1
and lim

St→∞
J ′FI(St) = 1.

(ii) J ′′FI is everywhere positive and strictly decreasing with

J ′′FI(0) =∞ and lim
St→∞

J ′′FI(St) = 0.

(iii) The drift of the state variable, α, is strictly decreasing with

α(0) =
1

2
(κ+ 1)σ2 > 0 and lim

St→∞
α(St) = −ah.

(iv) The sensitivity of the state variable, ζ, is everywhere negative and strictly decreasing with

ζ(0) = 0 and lim
St→∞

ζ(St) = −σ.

Proof It is useful to derive policies û(St) and ∆̂(St) as functions of mt and yt. From the

proof of Proposition 3, we know that ut = κ+1
κ VFI(mt), ∆t = −VFI(mt)e

−κ(mt−yt)σ and Wt =

60



(1 + 1−e−κ(mt−yt)
κ )VFI(mt). Therefore,

û(St) =
ut
−Wt

= −
κ+1
κ

1 + 1−e−κ(m−y)
κ

,

∆̂(St) =
∆t

−Wt
=

e−κ(mt−yt)

1 + 1−e−κ(mt−yt)
κ

σ.

This implies that û(St) increases and ∆̂(St) decreases in St. Further, û(0) = −κ+1
κ , ∆̂(0) = σ,

limSt→∞ û(St) = lim(mt−yt)→∞ û(St) = −1, and limSt→∞ ∆̂(St) = lim(mt−yt)→∞ ∆̂(St) = 0.

(i) Since J ′FI(St) = (−û(St))
−1, the property of J ′FI(St) follows from that of û(St) in the

above.

(ii) It follows from J ′FI(St) = (−û(St))
−1 = (1+ 1−e−κ(mt−yt)

κ )/κ+1
κ and St = mt−yt− log(κ+

1− e−κ(mt−yt)) that

J ′′FI(St) =
κ

κ+ 1

e−κ(mt−yt)

1− e−κ(mt−yt)κ
κ+1−e−κ(mt−yt)

=
κ

κ+ 1

1

eκ(mt−yt) − κ
κ+1−e−κ(mt−yt)

,

which decreases in mt−yt. If St = 0, then mt−yt = 0 and clearly J ′′FI(0) =∞. Moreover,

limSt→∞ J
′′
FI(St) = limmt−yt→∞ J

′′
FI(St) = 0.

(iii) It follows from α(St) = r(−1−û(St))+ 1
2(∆̂(St))

2−ah that α(St) decreases in St. Further,

α(0) = r(−1 +
κ+ 1

κ
) +

1

2
σ2 − ah =

1

2
(κ+ 1)σ2,

lim
St→∞

α(St) = r(−1 + 1) +
1

2
02 − ah = −ah.

(iv) It follows from ζ(St) = ∆̂(St)− σ that ζ(St) decreases in St. Further,

ζ(0) = ∆̂(0)− σ = 0, lim
St→∞

ζ(St) = 0− σ = −σ.

�

Discussion. The quitting constraint is the only friction in the full-information version of

our model. If this friction were absent, the contracting environment would be the so-called

first best: firms would fully insure workers against fluctuations in their productivity by giving

them permanently constant compensation and workers would be committed to never quitting

or shirking. In the first best, Wt is constant, so, as evident from (19), the dynamics of the

state variable St reduce to dSt = −dyt, which means that α(St) = −ah and ζ(St) = −σ at

all St. With the worker’s compensation constant, the firm’s profit simply follows the random

changes in the output produced by the worker. The first-best cost function, denoted as JFB,
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therefore satisfies J ′FB(St) = 1, as a larger drift of the worker’s output process would reduce

the firm’s cost one-to-one.49 Also, since firms are risk-neutral and never run into quitting or

incentive constraints in the first best, they are indifferent to volatility in St. This means that

J ′′FB(St) = 0 for all St.
50

Lemma B.1 shows that the equilibrium cost function and the dynamics of the state variable

in the model with the quitting constraint converge to the first best when slackness St in the

quitting constraint becomes large. This convergence is intuitive. When St is large, the expected

time until the quitting constraint binds again is large, and so the equilibrium contract (26) is

expected to provide full insurance to the worker far into the future. Since the equilibrium

contract at this point approximates the first-best contract very closely, its cost is close to the

first-best cost function.

On the other extreme, when the quitting constraint binds (i.e., at St = 0), ensuring that it

continues to be satisfied under all realizations of the shock to the worker’s productivity is only

possible if, first, there is no volatility in St at St = 0, and, second, the drift of St at St = 0

is nonnegative. The optimal contract, as we see in Lemma B.1, does induce the sensitivity

ζ(0) = 0, which extinguishes all volatility in St at the boundary. Consistently, J ′′FI(0) = ∞,

which reflects the fact that the firm is infinitely averse to the volatility in St when the quitting

constraint binds, as any nonzero volatility would lead to a violation of the quitting constraint

with probability one immediately after St hits zero.

Note that the absence of volatility of St means that the volatility of the worker’s continuation

value inside the contract is the same as the volatility of her outside option, which means that

locally at St = 0 the firm cannot provide any insurance to the worker. To avoid violating the

quitting constant, clearly, the drift of St at St = 0 must be nonnegative. A strictly positive

drift of St at St = 0 is beneficial in that it relaxes the quitting constraint, which allows the firm

to provide insurance to the worker as soon as St becomes strictly positive. But positive drift

in St is also costly because in order to obtain it the contract must back-load compensation and

produce a strictly positive drift in the worker’s continuation value Wt. Positive drift in Wt is

costly as it means that intertemporal smoothing of the worker’s consumption is poor. (Recall

that drift of Wt at the first best is zero.) The optimal drift α(0) given in the above lemma

is the outcome of balancing this trade-off. It is strictly positive, so zero is a reflecting rather

than absorbing barrier for the state variable and insurance is provided to the worker. Its size

is limited, however, by the intertemporal inefficiency of excessive compensation back-loading.

Consistently, J ′FI(0) = κ
κ+1 < 1 = J ′FB(0) reflects the fact that positive drift of St has a benefit

in the full-information-limited-enforcement model that it does not have in the first best: it helps

relax the quitting constraint. As a consequence, the firm is less averse to drift in St than it is

49Recall from (23) that the first derivative of the cost function represents the impact of the state variable’s
drift on the firm’s total cost. In the first best, the drift of the state variable is the negative of the drift of the
worker’s output.

50Recall again from (23) that the second derivative of the cost function represents the impact of the state
variable’s volatility on the firm’s total cost.
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at the first best, which means that J ′FI is everywhere smaller than J ′FB ≡ 1.
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