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Abstract
Highly volatile transition dynamics can emerge when a central bank disinflates
while operating without full transparency. In our model, a central bank com-
mits to a Taylor rule whose form is known but whose coeffi cients are not.
Private agents learn about policy parameters via Bayesian updating. Under
McCallum’s (1999) timing protocol, temporarily explosive dynamics can arise,
making the transition highly volatile. Locally-unstable dynamics emerge when
there is substantial disagreement between actual and perceived feedback para-
meters. The central bank can achieve low average inflation, but its ability to
adjust reaction coeffi cients is more limited.
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1 Introduction

We examine the problem of a newly-appointed central bank governor who inherits a

high average inflation rate from the past. The bank has no offi cial inflation target

and lacks the political authority unilaterally to set one, but it has some flexibility

in choosing how to implement a vague mandate. We assume the new governor’s

preferences differ from those of his predecessor and that he wants to disinflate. We

seek an optimal Taylor-type rule and study how learning affects the choice of policy

parameters.

Sargent (1982) studies an analogous problem in which the central bank not only

has a new governor but also undergoes a fundamental institutional reform. He argues

that by suitably changing the rules of the game, the government can persuade the

private sector in advance that a low-inflation policy is its best response. In that case,

the central bank can engineer a sharp disinflation at low cost. Sargent discusses a

number of historical examples that support his theory, emphasizing the institutional

changes that establish credibility.

Our scenario differs from Sargent’s in two ways. We take institutional reform off

the table, assuming instead just a change of personnel. We also take away knowledge

of the new policy and assume that the private sector must learn about it. This is

tantamount to assuming that the private sector does not know the new governor’s

preferences.

Our scenario is more like the Volcker disinflation than the end of interwar hy-

perinflations. Erceg and Levin (2003) and Goodfriend and King (2005) explain the

cost of the Volcker disinflation by pointing to a lack of transparency and credibility.

Erceg and Levin contend that Volcker’s policy lacked transparency, and they develop

a model in which the private sector must learn the central bank’s long-run inflation

target. In their model, learning increases inflation persistence relative to what would

occur under full information, thereby raising the sacrifice ratio and producing output

losses like those seen in the early 1980s. Goodfriend and King claim that Volcker’s

disinflation lacked credibility because no important changes were made in the rules

of the game. Because the private sector was initially unconvinced that Volcker would

disinflate, the new policy collided with expectations inherited from the old regime

and brought about a deep recession.

The analysis of Erceg, Levin, Goodfriend, and King is positive and explains why
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the Volcker disinflation was costly. In contrast, we address normative questions, such

as how learning alters the central bank’s choices and what policy is optimal in that

case. Our problem is motivated by the Volcker disinflation, and a stylized version of

that episode serves as the vehicle for our analysis, but our objective is not to explain

the Volcker disinflation. On the contrary, our goal is to illustrate a powerful force

that arises when a new policy must be learned and to describe how the bank’s choices

are affected.

We study this problem in the context of a dynamic new Keynesian model modified

in two ways. Following Ascari (2004) and Sbordone (2007), we assume that target in-

flation need not be zero. We also replace rational expectations with Bayesian learning.

We assume the central bank commits to a simple Taylor-type rule whose functional

form is known but whose coeffi cients are not. Private agents learn those coeffi cients

via Bayesian updating. The bank chooses policy-rule parameters by minimizing a

discounted quadratic loss function, taking learning into account. Thus our model can

be interpreted as representing the consequences of incomplete transparency about

policy coeffi cients when the central bank is committed to a simple rule.

The main quantitative results can be summarized as follows. The optimal sim-

ple rule under the full-information benchmark brings inflation down from 4.6% to

about zero in four quarters, with reaction coeffi cients of 1.05 and 0.11, respectively,

on inflation and output growth. The sacrifice ratio, defined as the cumulative loss

in output divided by the change in target inflation, is approximately 0.5% in this

benchmark case. The optimal simple rule under learning reduces target inflation to

1 percent with reaction coeffi cients of 0.25 on inflation and 0.15 on output growth.

The transition takes about 10 quarters with much more oscillation, and the sacrifice

ratio is about three times as large than under full information.

The reason why the bank’s choice under learning differs substantially from the

full-information optimum is that the equilibrium law of motion under learning can

be a temporarily explosive process, i.e. one that is asymptotically stationary but

which has unstable autoregressive roots during the transition. When locally-unstable

dynamics emerge, the transition is highly volatile and dominates expected loss. The

central bank’s main challenge is to find a way to manage this potential for explosive

volatility.

Uncertainty about the inflation target is a lesser evil. In our examples, the bank

always achieves low average inflation, though sometimes it stops short of zero —the
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optimum under full information1 —because the transition cost would be too great.

Uncertainty about policy feedback parameters is more problematic because this is

what creates the potential for temporarily-explosive dynamics. Locally-unstable dy-

namics emerge when there is substantial disagreement between actual and perceived

feedback parameters. It follows that one way for the bank to cope is to adopt a

policy that is close to the private sector’s prior. By choosing feedback parameters

suffi ciently close to the private sector’s prior mode, the bank can ensure that the

equilibrium law of motion is nonexplosive throughout the transition, sacrificing bet-

ter long-term performance for lower transitional volatility. For the model described

below, this approximates the optimal strategy. Thus the bank’s choice of feedback

parameters is more constrained by the private sector’s initial beliefs.

A lack of transparency can therefore make disinflation very costly even under com-

mitment to a simple rule. Furthermore, although conventional wisdom emphasizes

the value of an explicit long-run inflation target, our analysis says that transparency

about reaction coeffi cients is equally important, perhaps even more so.

Our approach to learning differs from much of the macro-learning literature, in

particular from the branch emanating from Marcet and Sargent (1989a, 1989b), Cho,

Williams, and Sargent (2002), and Evans and Honkapohja (2001, 2003). Models in

that tradition typically assume that agents use reduced-form statistical representa-

tions such as vector autoregressions (VARs) for forecasting. They also commonly

assume that agents update parameter estimates by recursive least squares. In con-

trast, we assume that agents update beliefs via Bayes’ theorem. The agents who

inhabit our model utilize VARs for forecasting, but their VARs satisfy cross-equation

restrictions analogous to those in rational-expectations models. As a consequence,

the actual and perceived laws of motion (ALM and PLM, respectively) are tightly

linked. In our model, agents know the ALM up to the unknown policy coeffi cients,

and their PLM is the perceived ALM (i.e., the ALM evaluated at their current es-

timate of the policy coeffi cients). Because agents know the ALM’s functional form,

they can use Bayes theorem to update beliefs. Nevertheless, the assumption that

agents are Bayesian is not critical. We also examine whether our insights are robust

to alternative forms of learning, and we find that they are.

The remainder of the paper is organized as follows. Section 2 describes the model,

and section 3 explains how agents update beliefs. Section 4 presents results for our

1We abstract from the zero lower bound on nominal interest.

4



baseline specification, and section 5 examines a number of perturbations to that

specification. Section 6 explains how our paper relates to a number of others in the

literature, and section 7 concludes. A series of online appendices contains additional

results.2

2 A dynamic new-Keynesian model with positive
target inflation

We begin by describing the timing protocol, a critical element in learning models.

Then, taking beliefs as given, we describe our behavioral assumptions and the model’s

structure. A discussion of how beliefs are updated is deferred to section 3.

2.1 The timing protocol

Private agents enter period t with beliefs about policy coeffi cients inherited from

t − 1. They treat estimated parameters as if they were known with certainty and

formulate plans accordingly. Following McCallum (1999), we assume that the central

bank sets the systematic part of its instrument rule at the beginning of the period

based on information inherited from t−1.3 Then period t shocks are realized. Agents

observe the central bank’s policy action and infer a perceived policy shock ε̃it. They

also observe realizations of the private-sector shocks. Current-period outcomes are

then determined in accordance with beginning-of-period plans. After observing those

outcomes, private agents update their estimates of policy coeffi cients and carry them

forward to t+ 1.

2.2 The model

Our model is a dynamic new Keynesian model in which agents form expectations us-

ing a subjective forecasting model that can differ from the equilibrium law of motion.

Monetary policy is determined according to a Taylor-type rule that allows target

inflation to differ from zero. Private-sector behavior is characterized by two blocks

2Appendices are posted at http://files.nyu.edu/tc60/public/.
3McCallum (1999) contends that monetary policy rules should be specified in terms of lagged

variables because the Fed lacks good current-quarter information about inflation, output, and other
arguments of policy reaction functions. For instance, the Bureau of Economic Analysis released the
advance estimate of 2013.Q4 GDP on January 30, 2014, one month after the end of the quarter.
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of equations, an intertemporal IS curve and an Ascari-Sbordone version of the new

Keynesian Phillips curve. The model features staggered price setting and habit per-

sistence in consumption. A log-linearized version is presented here. For details on

how this representation was derived, see appendix A.

2.2.1 Monetary policy

The baseline model assumes that the central bank commits to a Taylor rule in differ-

ence form,

it − it−1 = ψπ(πt−1 − π̄) + ψy(yt−1 − yt−2) + εit, (1)

where it is the nominal interest rate, πt is inflation, yt is log output, and εit is an

i.i.d. normal policy shock with mean zero and variance σ2
i . The policy coeffi cients

are collected in a vector ψ = [π̄, ψπ, ψy, σi]
′, where π̄ represents the central bank’s

long-run inflation target and ψπ and ψy are feedback parameters on the inflation gap

and output growth, respectively.

We adopt this form because it seems promising for environments like ours. For

instance, Coibion and Gorodnichenko (2011) establish that a rule of this form amelio-

rates indeterminacy problems in Calvo models with positive target inflation, and Or-

phanides and Williams (2007) demonstrate that it performs well under least-squares

learning. More generally, a number of economists have argued that the central bank

should engage in a high degree of interest smoothing (e.g. Woodford (1999)). In ad-

dition, Erceg and Levin (2003) contend that output growth, rather than the output

gap, is more appropriate for estimated policy reaction functions for the U.S.

Private agents know the form of the policy rule but not its coeffi cients. At any

given date, their perceived policy rule is

it − it−1 = ψπt(πt−1 − π̄t) + ψyt(yt−1 − yt−2) + ε̃it, (2)

where ψt = [π̄t, ψπt, ψyt, σit] represents the beginning-of-period t estimate of ψ and

ε̃it = εit + (ψπ − ψπt)πt−1 + (ψy − ψyt)∆yt−1 + ψπtπ̄t − ψππ̄ (3)

is a perceived policy shock. Private agents believe that ε̃it is white noise, but it

actually depends on lags of inflation and output growth and errors in estimates of

policy coeffi cients.
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The perceived law of motion depends on the perceived policy (2). The actual law

of motion depends on actions taken by the central bank and decisions made by the

private sector, so it involves both the actual policy (1) and the perceived policy (2).

The central bank minimizes a discounted quadratic loss function,

L = E0

∑
t β

t[π2
t + λy(yt − y)2 + λi(it − i)2], (4)

that penalizes variation in inflation and the output gap, and deviations of the nominal

interest rate from its steady state. We assume that the central bank arbitrarily sets

σi and optimizes with respect to π̄, ψπ, and ψy, taking private-sector learning into

account.4

2.2.2 Behaviorial assumptions

The agents who inhabit the private sector are boundedly-rational DSGE modelers

who know a lot about their environment but not quite as much as agents in a full-

information rational-expectations model. They understand the structure of the econ-

omy and the form of the monetary-policy rule, but they do not know its coeffecients.

They build a structural model of the economy and use it for forecasting, decision

making, and learning.

Their behavior is boundedly rational in two respects. Their first-order conditions

take the form of nonlinear expectational difference equations that they cannot solve.

Instead, they log-linearize around a steady state and work with the resulting system

of linear expectational difference equations. Not knowing the economy’s true steady

state, however, they expand around the perceived steady state in period t. The

true steady state x̄ is the deterministic steady state associated with the true policy

coeffi cients ψ. The perceived steady state x̄t is defined as the long-horizon forecast

associated with the current estimate ψt. The private sector’s long-run forecast x̄t
varies through time because changes in π̄ have level effects on nominal variables and

on some real variables (Ascari 2004). Since perceptions of π̄ change as agents update

their beliefs, so do their long-run forecasts. Although nonstandard, expanding around

the perceived steady state better reflects the agents’knowledge and state of mind at

date t.
4The central bank does not experiment because it knows everything. Private agents do not

experiment because they are atomistic and cannot unilaterally influence the bank’s actions. For
both, the marginal cost of experimentation would be positive and the marginal benefit zero.
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Private agents also behave as anticipated-utility modelers (Kreps 1998), treating

the current estimate ψt as if it were known with certainty. In the context of a single-

agent decision problem, Cogley and Sargent (2008) compare the resulting decision

rules with exact Bayesian decision rules and demonstrate that the approximation is

good as long as precautionary motives are not too strong. Like a log-linear approxima-

tion, this imposes a form of certainty equivalence, for it implies that decision rules are

the same regardless of the degree of parameter uncertainty. The anticipated-utility

approach is standard in the macro-learning literature.

2.2.3 A new-Keynesian IS curve

As usual, a representative household maximizes expected utility subject to a flow

budget constraint. The household’s period-utility function is

Ut = bt log (Ct − ηCt−1)− χt
H1+ν
t

1 + ν
,

where Ct is consumption of a final good, Ht represents hours of work, bt and χt are

preference shocks, and η measures the degree of habit persistence in consumption.

The first-order condition is a conventional consumption Euler equation. After log-

linearizing, agents obtain a version of the new Keynesian IS curve,

yt − yt = ξt − ξ − E∗t
[
ξt+1 − ξ − (yt+1 − yt)−

(
γt+1 − γ

)
+ it − πt+1 − r

]
, (5)

where ξt is a transformation of the marginal utility of consumption,

ξt−ξ ≡ ξ1 (yt − yt)+ξ2

[
yt−1 − yt − (γt − γ) + βE∗t

(
yt+1 − yt + γt+1 − γ

)]
+εyt. (6)

The parameter β is a subjective discount factor, r and γ are steady-state values

for the real-interest rate and the growth rate of technological progress, respectively,

and yt is the private sector’s beginning-of-period long-run forecast for output. The

coeffi cients ξ1 and ξ2 are combinations of preference and technology parameters, and

γt and εyt are technology and preference shocks, respectively. Further details can be

found in appendix A.

This representation differs in three ways from standard IS equations. One differ-

ence concerns the choice of the expansion point. As mentioned above, agents expand

around the perceived steady state yt instead of the actual steady state y. In ad-

dition, the anticipated-utility assumption implies that E∗t ȳt+1 = yt, explaining the
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appearance of yt on the right-hand side of equations (5) and (6). A second differ-

ence concerns the expectation operator E∗t , which represents forecasts formed with

respect to the private sector’s perceived law of motion. In contrast, the central bank

takes expectations with respect to the actual law of motion, which we denote by Et.5

Finally, two shocks appear, a persistent shock γt to the growth rate of technology,

γt =
(
1− ργ

)
γ + ργγt−1 + εγt, (7)

and a white-noise shock εyt.

2.2.4 A new-Keynesian Phillips curve

Following Calvo (1983), we assume that a continuum of monopolistically competitive

firms produce a variety of differentiated intermediate goods that are sold to a final-

goods producer. Intermediate-goods producers reset their prices at random intervals,

with α representing the probability that their price remains the same. Thus we

abstract from indexation or other backward-looking pricing influences, in accordance

with the estimates of Cogley and Sbordone (2008). Since pricing and supply decisions

depend on the beliefs of private agents, they again log-linearize around perceived

steady states, obtaining the following block of equations,

πt − π̄t = βtE
∗
t (πt+1 − π̄t) + κt(yt − yt) + ς t

(
δt − δt

)
− κ̃t (ξt − ξ) (8)

+γ1tE
∗
t [(θ − 1)(πt+1 − π̄t) + φt+1] + ut + επt,

φt = γ2tE
∗
t [(θ − 1)(πt+1 − π̄t) + φt+1], (9)

δt − δt = λ1t (πt − π̄t) + λ2t

(
δt−1 − δt

)
. (10)

This representation differs in four ways from standard versions of the NKPC.

First, the NKPC coeffi cients

βt = β(1 + π̄t), κ̃t = [1−α(1+π̄t)θ−1][1−αβ(1+π̄t)θ]
α(1+π̄t)θ−1

,

κt = (1 + ν) κ̃t, ς t = νκ̃t,
γ1t = βπ̄t[1− α(1 + π̄t)

θ−1], γ2t = αβ(1 + π̄t)
θ−1,

λ1t = αθπ̄t(1+π̄t)θ−1

(1−α(1+π̄t)θ−1
, λ2t = α(1 + π̄t)

θ,

(11)

5We assume that the central bank knows the private sector’s prior over ψ. Because the central
bank’s information set subsumes that of the private sector, the law of iterated expectations implies
E∗t (Etxt+j) = E∗t (xt+j) for any random variable xt+j and j ≥ 0 such that both expectations
exist. Because the central bank can reconstruct private forecasts, it also follows that Et(E∗t xt+j) =
E∗t (xt+j). But Etxt+j 6= E∗t xt+j .

9



depend on deep parameters and estimates of target inflation π̄t. The deep parameters

are the subjective discount factor β, the probability 1−α that an intermediate-goods
producer can reset its price, the elasticity of substitution across varieties θ, and the

Frisch elasticity of labor supply 1/ν. As Cogley and Sbordone (2008) emphasize, even

though the deep parameters are invariant to changes in policy, the NKPC coeffi cients

are not. The latter change as beliefs about π̄t are updated. Equation (11) collapses

to the usual expressions when π̄t = 0.

Second, a variable

δt ≡ ln

(∫ 1

0

(pt (i) /Pt)
−θ di

)
, (12)

measuring the resource cost of cross-sectional price dispersion, has first-order effects

on inflation and other variables. If π̄t were zero, this variable would drop out of a

first-order expansion.

Third, higher-order leads of inflation appear on the right-hand side of (8). To

retain a first-order form, we introduce an intermediate variable φt that has no in-

teresting economic interpretation and add equation (9). This is simply a device for

obtaining a convenient representation.

Finally, two cost-push shocks are present, a persistent shock ut that follows an

AR(1) process,

ut = ρuut−1 + εut, (13)

and a white-noise shock επt.

2.2.5 Calibration

Parameters of the pricing model are taken from estimates in Cogley and Sbordone

(2008),

α = 0.6, β = 0.99, θ = 10. (14)

Preference parameters are calibrated as follows. The parameter ν is the inverse of the

Frisch elasticity of labor supply. The literature provides a large range of values for this

elasticity, typically high in the macro literature and low in the labor literature. We set

ν = 0.5, which implies a Frisch elasticity of 2 and represents a compromise between

the two. We think our calibration is reasonable, given that the model abstracts from

wage rigidities. The parameter η that governs habit formation in consumption is

calibrated to 0.7, a value close to those estimated in Smets and Wouters (2007) and

Justiniano, Primiceri and Tambalotti (2010).
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We also adopt a standard calibration for loss-function parameters. We assume

the central bank assigns equal weights to annualized inflation and the output gap.

Since the model expresses inflation as a quarterly rate, this corresponds to λy = 1/16.

We also set λi to 0.5, which implies that the weight on fluctuations of the annual-

ized nominal interest rate is half the weights attached to fluctuations in annualized

inflation and the output gap.6

Turning to parameters governing the shocks, we set γ = 0, thereby abstracting

from average growth. For the persistent shocks ut and γt, estimates are taken from

Cogley, Primiceri, and Sargent (2010),

ρu = 0.4, 100σu = 0.12, (15)

ργ = 0.27, 100σγ = 0.5.

Last but not least, the standard deviations of the white noise shocks εyt and επt are

set equal to

σπ = σy = 0.01/4. (16)

3 Learning about monetary policy

Everyone knows the model of the economy and the form of the policy rule, but private

agents do not know the policy coeffi cients. Instead, they learn about them by solving

a signal-extraction problem. If ψ entered linearly, they could do this with the Kalman

filter. Because ψ enters non-linearly, however, agents must solve a nonlinear filtering

problem. This section describes how this is done. We first conjecture a perceived

law of motion (PLM) and then derive the actual law of motion (ALM) under the

PLM. After that, we verify that the PLM is the perceived ALM. Having verified that

private agents know the ALM up to unknown policy coeffi cients, we use the ALM to

derive the likelihood function. Agents combine the likelihood with a prior over policy

parameters and use the posterior mode as their point estimate.

3.1 The perceived law of motion

By stacking the IS equations, the aggregate supply block, exogenous shocks, and

perceived monetary-policy rule, the private sector’s model of the economy can be

6Results for economies with learning are not sensitive to the choice of λi.
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represented as a system of linear expectational difference equations,

AtSt = BtE
∗
t St+1 + CtSt−1 +Dtε̃t, (17)

where St is the model’s state vector, ε̃t is a vector of perceived innovations, and

At, Bt, Ct, and Dt depend on the model’s deep parameters (see appendix A.5 for

details). These matrices have time subscripts because they depend on estimates of

the policy coeffi cients ψt. We conjecture that the PLM is the reduced-form VAR

associated with (17),

St = FtSt−1 +Gtε̃t, (18)

where Ft solvesBtF
2
t −AtFt+Ct = 0 andGt = (At −BtFt)

−1Dt.
7 As in a conventional

rational-expectations model, (18) serves two functions, describing agents’ current-

quarter plans and how they forecast future outcomes.

3.2 The actual law of motion

To find the actual law of motion, we stack the actual policy rule (equation 1) with

equations governing private sector behavior (5-7, 8-13). This results in another system

of expectational difference equations,

AtSt = BtE
∗
t St+1 + CatSt−1 +Dtεt. (19)

The state vector and the matrices At, Bt, and Dt are the same as in (17). In addition,

all rows of Cat agree with those of Ct except for the one corresponding to the monetary-

policy rule. In that row, the true policy coeffi cients ψ replace the estimated coeffi cients

ψt (see appendix A.5).

A solution for the ALM can be found as follows. Since outcomes are determined

in accordance with agents’plans (equation 18), they depend on the perceived shocks

ε̃t. A relation between perceived and actual innovations can be found by subtracting

(19) from (17),

Dtε̃t = Dtεt + (Cat − Ct)St−1. (20)

Substituting this relation back into agents’ plans expresses outcomes in terms of

actual shocks,

St = HtSt−1 +Gtεt, (21)

7Following Sims (2001), this matrix quadratic equation is solved using a generalized Schur de-
composition.
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where

Ht = Ft + (At −BtFt)
−1(Cat − Ct). (22)

The ALM depends on both actual policy coeffi cients, because that is what governs

central bank behavior, and on perceived policy coeffi cients, because that is what

guides private-sector behavior.

When there is a unique nonexplosive solution for (Ft, Gt), the solution for Ht is

also unique but not necessarily nonexplosive. When multiple nonexplosive solutions

for (Ft, Gt) exist, there are also multiple solutions for Ht, and our programs choose

one of them. However, this kind of multiplicity never occurs in our simulations.

3.3 The PLM is the perceived ALM

The reduced-form ALM and PLM are both V AR(1) processes with conditionally

gaussian innovations. Under the ALM, the conditional mean and variance are8

mt|t−1(ψtrue) = Ht(ψtrue)St−1, (23)

Vt|t−1(ψtrue) = GtVε(ψtrue)G
′
t,

where Ht(ψtrue) and Vε(ψtrue) are the ALM conditional mean and variance arrays

evaluated at the true value ψtrue. If the agents in the model were interviewed and

asked their view of the ALM, they would answer by replacing ψtrue in Cat with ψt,

thus obtaining Ct, implying

m̃t|t−1(ψt) = FtSt−1, (24)

Ṽt|t−1(ψt) = GtVε(ψt)G
′
t.

These expressions coincide with the conditional mean and variance under the PLM.

Hence the PLM is the perceived ALM. This is true not only asymptotically but for

every date during the transition.9

8According to the timing protocol, Ht and Gt can be regarded either as beginning-of-period t
estimates or end-of-period t−1 estimates, which explains why it is legitimate to use them to calculate
the conditional mean and variance.

9Among other things, this implies that private-sector forecasts are consistent with contingency
plans for the future. For instance, for j > 0, log-linear consumption Euler equations between periods
t+ j and t+ j + 1 hold in expectation at t.
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3.4 The likelihood function

The observables are stacked in a vector Xt = [πt, ut, yt, γt, it]
′ = eXSt, where eX is an

appropriately defined selection matrix (see appendix A.5). The other elements of St
allow us to express the model in first-order form but convey no additional information

beyond that contained in the history of Xt. Using the prediction-error decomposition,

the likelihood function for data through period t can be expressed as

p(X t|ψ) =
∏t

j=1 p(Xj|Xj−1, ψ). (25)

Since the private sector knows the ALM up to the unknown policy parameters, they

can use it to evaluate the terms on the right-hand side of (25). According to the

ALM, Xt is conditionally normal with mean and variance

mX
t|t−1(ψ) = eXHt(ψ)St−1, (26)

V X
t|t−1(ψ) = eXGtVε(ψ)G′te

′
X ,

where Ht(ψ) and Vε(ψ) are the ALM conditional mean and variance, respectively,

evaluated at some value of ψ. It follows that the log-likelihood function is

ln p(X t|ψ) = −1

2

∑t
j=1 { ln |V X

j|j−1(ψ)| (27)

+[Xj −mX
j|j−1(ψ)]′

(
V X
j|j−1(ψ)

)−1
[Xj −mX

j|j−1(ψ)]}.

3.5 The private sector’s prior and posterior

Private agents have a prior p(ψ) over the policy coeffi cients. At each date t, they find

the log posterior kernel by summing the log likelihood and log prior. Because of the

anticipated-utility assumption, their decisions depend only on a point estimate, not

on the entire posterior distribution. Among the various point estimators from which

they can choose, they adopt the posterior mode,

ψt = arg max
(
ln p(X t|ψ) + ln p(ψ)

)
. (28)

Notice that agents take into account that past outcomes were influenced by past

beliefs. By inspecting the ALM and PLM, one can verify that past values of the

conditional mean mX
j|j−1 and the conditional variance V

X
j|j−1 depend on past estimates

as well as the current candidate ψ. Past estimates are bygones at t and are held

constant when agents update the posterior mode.
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Notice also that the estimates are based not just on the policy rule but also

on equations for inflation and output. The agents exploit all information about ψ,

taking advantage of cross-equation restrictions implied by the ALM. How much the

cross-equation restrictions matter in this context is examined below.

4 Quantitative analysis of a backward-looking rule

A new governor appears at date 0 and formulates a new policy rule that becomes

operative at date 1. After observing the private sector’s prior, the governor chooses

the long-run inflation target π̄ and reaction coeffi cients ψπ, ψy to minimize expected

loss under the new policy, with the standard deviation of policy shocks σi being set

exogenously. We initially assume that σi = 0.001 (10 basis points per quarter) and

later examine what happens when σi is zero.

4.1 Initial conditions

The economy is initialized at the steady state under the old regime. To create a

scenario like the end of the Great Inflation, we calibrate the old regime to match

estimates of the policy rule for the period 1966-1981. We assume that the policy rule

for that period had the same functional form as in equation (1), and we estimate

π̄, ψπ, ψy, and σ
2
i by OLS. Point estimates and standard errors are reported in table

1.

Table 1: The Old Regime
π̄ ψπ ψy σi

0.0116 0.043 0.12 0.0033
(0.013) (0.08) (0.04) (0.01)

Note: Estimates of policy coeffi cients, 1966-1981, with standard errors in parentheses.

The estimate for π̄ implies an annualized inflation target of 4.6 percent. The

reaction coeffi cients are both close to zero, with ψy being slightly larger than ψπ.

Policy shocks are large in magnitude and account for a substantial fraction of the

total variation in the nominal interest rate. Standard errors are large, especially for

ψπ. The economy is initialized at the steady state associated with this policy rule,

π0 = 0.0116, y0 = −0.0732, and i0 = 0.0217, where inflation and nominal interest are

expressed as quarterly rates.
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4.2 Evaluating expected loss and finding the optimal simple
rule

If the model fell into the linear-quadratic class, the loss function could be evaluated

and optimal policy computed using methods developed by Mertens (2009a, 2009b).

The central bank has quadratic preferences, and many elements of the transition equa-

tion are linear, but learning introduces a nonlinear element. Since this is essential,

we use other methods for evaluating expected loss.

We proceed numerically. We start by specifying a grid of values for π̄, ψπ, and

ψy. Then, for each node on the grid, we simulate 100 sample paths, updating private-

sector estimates ψt by numerical maximization at each date. The sample paths are

each 25 years long, and the terminal continuation value is set to zero, representing

a decision maker with a long but finite horizon. Realized loss is calculated for each

sample path, and expected loss is the cross-path average of realized loss. The optimal

rule among this family is the node with smallest expected loss.

4.3 A full-information benchmark

To highlight the role of learning, we begin by describing the optimum under full

information. When private agents know the new policy coeffi cients, the optimized

Taylor rule sets π̄ = 0, ψπ = 1.05, and ψy = 0.11. Figure 1 depicts average responses
of inflation, output, and nominal interest gaps, which are defined as deviations from

the steady state of the new regime. Recall that the economy is initialized in the

steady state of the old regime and that the disinflation commences at date 1.10

The nominal interest rate rises at date 1, causing inflation to decline sharply and

overshoot the new target. After that, inflation converges from below. This rolls back

the price level, partially counteracting the effects of high past inflation. As Woodford

(2003) explains, a partial rollback of the price level is a feature of optimal monetary

policy under commitment because a credible commitment on the part of the central

bank to roll back price increases restrains a firm’s incentive to increase its price in

the first place. Under full information, the optimal simple rule shares this property.

The initial increase in the nominal interest rate causes the output gap to fall below

zero. Since inflation and output growth are below target at date 1, the central bank

10Inflation and nominal interest gaps at date 0 coincide because the steady-state real interest rate
is the same under the two regimes.

16



0 2 4 6 8 10 12

0.06

0.04

0.02

0

0.02

0.04

0.06

0.08

0.1

Quarters

Inflation Gap
N ominal Interes t Gap
Output Gap

Figure 1: Response of inflation, output and interest rate under full information

cuts the interest rate at date 2, damping the output loss and initiating a recovery.

Convergence to the new steady state is rapid, with inflation, output, and interest

gaps closing in about a year. After 4 periods, inflation is close to its new target,

which is 4.6 percentage points below the old target. The cumulative loss in output

is approximately 2.6 percent. The sacrifice ratio, defined as the cumulative loss in

output divided by the change in target inflation, is 0.56 percent. The sacrifice ratio

is small under full information because the model has no indexation. Although prices

are sticky, the absence of indexation means that inflation is weakly persistent. The

absence of indexation also explains why the bank seeks a substantial rollback in the

price level.

Under full information, the economy is highly fault tolerant11 with respect to

policies away from the optimum. Figure 2 portrays iso-expected loss contours as

a function of π̄, ψπ, and ψy. Each panel involves a different setting for π̄, ranging

from 0 to 3 percent per annum, and ψπ and ψy are shown on the horizontal and

vertical axes, respectively. Expected loss is normalized by dividing by the loss under

the optimal rule so that contour lines represent gross deviations from the optimum.

The diamond in the upper left panel depicts the optimal simple rule. Expected loss

increases slowly as policy moves away from the optimum. For instance, when π̄ = 0,

11Levin and Williams (2003) introduced the term “fault tolerance”to describe the extent to which
expected loss increases as policies move away from the optimum.
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Figure 2: Iso-expected loss contours under full information

relative loss remains below 2 for most combinations of ψπ and ψy and rises above 10

only when ψπ approaches zero. Although expected loss is higher for higher values of

π̄, the surface remains relatively flat. Later we contrast this with an absence of fault

tolerance under learning.

4.4 A Taylor rule optimized for learning

We assume that private agents initially anticipate a continuation of the old regime,

and we calibrate their priors using the estimates of policy coeffi cients for 1966-1981

shown in table 1. In particular, they believe that policy coeffi cients are independent

a priori,

p(ψ) = p(π̄)p(ψπ)p(ψy)p(σ
2
i ), (29)

and they adopt truncated normal priors for π̄, ψπ, and ψy and a gamma prior for σ
2
i .

For π̄, ψπ, ψy, the mean and standard deviation of an untruncated normal density

are set equal to the numbers in table 1. To enforce nonnegativity, the unrestricted

priors are truncated at zero and renormalized so that transformed priors integrate to

unity. For σ2
i , hyperparameters are chosen so that the implied mode and standard

deviation match the numbers in the table. The results are shown in figure 3.
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Figure 3: A prior based on the old regime

Priors for ψπ and ψy concentrate slightly to the right of zero, and little mass is

assigned to values greater than 0.25. On the other hand, priors for π̄ and σi assign

non-negligible probability to a broad range of values. According to this specification,

private agents are open to persuasion about π̄ and σi but are skeptical that the central

bank will react aggressively to inflation or output. Overcoming that skepticism will

be a major challenge for the central bank.

Figure 4 portrays iso-expected loss contours as a function of π̄, ψπ, ψy. As before,

σi is held constant at 10 basis points per quarter. The left-hand column depicts the

results of a broad search over a coarse grid, while the column on the right portrays

calculations based on a finer grid that focuses on the low expected-loss region of the

policy-coeffi cient space. Expected loss is again normalized by dividing by the loss for

the rule optimized for learning.

In the left-hand column, regions of low expected loss concentrate in the southwest

quadrant of the panels, near the prior mode for ψπ and ψy. Expected loss increases

rapidly as the feedback coeffi cients move away. Indeed, in the northeast quadrant,

expected loss is more than 100 times greater than under the optimal simple rule. The

optimal simple rule under full information is marked by an asterisk and lies in the
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Figure 4: Iso-expected loss contours under learning

high-loss region.

The reason why the economy loses fault tolerance under learning is that the equi-

librium law of motion can be a temporarily explosive process, i.e. one that is asymp-

totically stationary but which has explosive autoregressive roots during the transition.

The agents in our model want to be on the stable manifold, but they don’t know where

it is. Their plans are based on the PLM, which depends on Ft, but outcomes are gov-

erned by the ALM, which involves Ht. The eigenvalues of Ft are never outside the

unit circle but the eigenvalues of Ht can be explosive even when those of Ft are not.

Thus, actions that would be stable under the PLM can be unstable under the ALM.

The matrices Ht and Ft differ because of disagreement between the actual policy

ψ and the perceived policy ψt (see equation 22). The eigenvalues of Ht are close

to those of Ft (hence are nonexplosive) when ψt is close to ψ. Explosive eigenvalues

emerge when there is substantial disagreement between ψt and ψ. On almost all sim-
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Figure 5: Nonexplosive region for H1

ulated paths, the private sector eventually learns enough about ψ to make explosive

eigenvalues vanish, but the transition is highly volatile and dominates expected loss

when the initial disagreement is large and/or learning is slow.

The shaded area in figure 5 depicts the region of the policy-coeffi cient space for

which the eigenvalues of H1 are nonexplosive. Since the nonexplosive region is similar

for all settings of π̄, we just show it for π̄ = 0. This region is sensitive to ψπ and ψy,

however, and concentrates near the prior mode. The central bank can move π̄ far

from the private sector’s prior mode without generating locally-unstable dynamics,

but moving ψπ and/or ψy far from their prior modes makes the transition turbulent.

To locate the optimum under learning, we search on a finer grid in the southwest

quadrant of the (ψπ, ψy) space. Isoloss contours are shown in the right column of figure

4, and the optimum is marked by a diamond, π̄ = 0.01, ψπ = 0.25, and ψy = 0.15.

Relative to the full-information solution, target inflation is slightly higher, and the

reaction to output growth is a bit more aggressive. The main difference, however, is

that the central bank responds less aggressively to inflation. Since the full-information

optimum ψπ = 1.05 lies outside the nonexplosive region, the transition would be

initially very turbulent. Furthermore, since the private sector is prejudiced against

such large values of ψπ, explosive eigenvalues would remain active for too long. For

these reasons, the optimal policy puts ψπ and ψy only slightly outside the nonexplosive

region. The bank can adjust π̄ more freely, however, thereby achieving low average

inflation.
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Because the location of the nonexplosive regions depends more on ψπ and ψy than

on π̄, uncertainty about reactions coeffi cients is more problematic than uncertainty

about target inflation. As shown in appendix B, when uncertainty about ψπ, ψy, and

σi is deactivated and π̄ is the only uncertain policy parameter, the initial nonexplosive

region expands to fill most of the (ψπ, ψy) space. Since the ALM becomes nonexplo-

sive for most policies, the economy becomes highly fault tolerant, and private agents

learn π̄ very quickly. For these reasons, the model behaves much as it does under full

information. The optimal policy is similar, and impulse response functions resemble

those in figure 1. In contrast, when uncertainty about π̄ is deactivated and ψπ, ψy,

and σi are uncertain, the results are qualitatively similar to those shown here. Uncer-

tainty about feedback parameters is more costly because it activates locally-explosive

dynamics.

A second loss of fault tolerance emerges in the right column of figure 4. For small

values of ψπ, estimates occasionally stray too close to zero, pushing the PLM close

to the indeterminacy region. Outcomes are highly volatile when this occurs, causing

expected loss to rise. For an effective stabilization, the bank must choose a value

for ψπ that not only achieves determinacy under full information but which also be

guards against estimates straying too closely to zero during the transition.

Figure 6 portrays impulse response functions for inflation, output, and nominal

interest gaps for the optimal simple rule under learning. The transition is longer

and more volatile than under full information. Inflation again declines at impact,

overshooting π̄ and partially rolling back past increases in the price level, but now

inflation oscillates as it converges to its new long-run target. The transition takes

about two and a half years, with inflation remaining below target for most of that

time. There is also a shallow but long-lasting decline in output. The output gap

reaches a trough of -0.9 percent in quarter 5 and remains negative for 3 years. The

cumulative output gap during this time is -6.6 percent. Since inflation falls perma-

nently by 3.6 percentage points, the sacrifice ratio amounts to 1.8 percent of lost

output per percentage point of inflation, 3 times larger than under full information.

According to Ascari and Ropele (2011), most estimates of the sacrifice ratio for the

Volcker disinflation lie between 1 and 3, so our model is in the right ballpark.
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Figure 7 portrays mean estimates of the policy coeffi cients, again averaged across

100 sample paths. The true coeffi cients are shown as dashed lines while average

estimates are portrayed as solid lines. The estimates move quickly toward their

respective true values and are not far off after 10 quarters. Rapid convergence of ψπ
and ψy are crucial for eliminating locally-explosive dynamics. Beliefs about target

inflation and the policy shock variance also quickly approach neighborhoods of their

respective true values, but this seems secondary for transitional volatility.

5 Perturbations to the baseline learning model

To highlight aspects of the baseline model, we now turn to a number of perturbations.

For the sake of brevity, the main points are summarized here, and a full presentation

of results is relegated to a series of appendices.

5.1 McCallum’s information constraint

McCallum’s information constraint plays a critical role in our analysis. To highlight

its importance, we constrast the backward-looking Taylor rule in equation (1) with

one involving contemporaneous feedback to inflation and output growth,

it − it−1 = ψπ(πt − π̄) + ψy(yt − yt−1) + εit. (30)

There is also a slight change in the timing protocol. Private agents still enter period

t with beliefs about policy coeffi cients inherited from t− 1, and they treat estimated

parameters as if they were known when updating their decision rules. But now the

central bank and private sector simultaneously execute their contingency plans when

period t shocks are realized. After observing current-quarter outcomes, private agents

update estimates and carry them forward to t + 1. All other aspects of the model

remain the same, including the prior on (π̄, ψπ, ψy, σi).

Because actual central banks cannot observe current quarter output or the price

level, they would not be able to implement this policy. We examine it here in order

to isolate the consequences of lags in the central bank’s information flow.

As shown in appendix C, locally-explosive dynamics vanish in this case, and the

learning economy becomes highly fault tolerant. The model therefore behaves more

like its full-information counterpart than did the economy with a backward-looking

rule. For instance, while the full-information optimum sets π̄ = 0, ψπ = 2.4, and
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ψy = 0.1, the rule optimized for learning sets π̄ = 0, ψπ = 1.4, and ψy = 0.1. The

learning rule has the same inflation target and reaction coeffi cient on output growth

as under full information, but it responds to inflation gaps a bit less aggressively.

Compared with the baseline model, however, the central bank is less constrained by

initial beliefs and freer to adjust its reaction coeffi cients. The learning transition is

also shorter and less volatile than for the backward-looking rule, and the sacrifice

ratio is about the same (1.9 percent for the contemporaneous rule as opposed to 1.8

percent for the backward-looking policy). Learning is slower than for the backward-

looking rule, but that is because there is less transitional volatility in inflation and

output growth.

Many of the diffi culties reported for the baseline case follow from the fact that

central banks cannot observe current quarter output and inflation. If a rule with con-

temporaneous feedback to inflation and output were feasible, it would be superior.

The difference between contemporaneous and backward-looking Taylor rules is more

pronounced under learning than under full information. More important, though,

even when allowing contemporaneous feedback in the policy rule, the optimal simple

rule under learning responds less aggressively to inflation, and disinflation carries a

nontrivial cost. Learning precludes a sharp low-cost disinflation for the contempora-

neous rule as well as the backward-looking policy.

5.2 Policy shocks

The baseline calibration for σi reflects a tension between two considerations. On the

one hand, estimated policy reaction functions never fit exactly, implying σi > 0. On

the other, a fully optimal policy would presumably be deterministic, implying σi = 0.

The baseline specification compromises with a small positive value (σi = 10 basis

points per quarter).

If the true value of σi were zero and known with certainty, the signal extrac-

tion problem would unravel, with agents perfectly inferring the other three policy

coeffi cients after just three periods. This would not happen in our model even if

σi were zero because the agents’prior on σi encodes a belief that monetary-policy

shocks are present. Prior uncertainty about σi is enough to preserve a nontrivial

signal-extraction problem.

Furthermore, since the initial nonexplosive region depends neither on σi nor on

prior beliefs about σi, the central bank’s main challenge in a σi = 0 economy would be
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the same. It follows that the optimized rule should be similar. Appendix D confirms

this intuition: when σi = 0 and all other aspects of the baseline economy are held

constant, the optimized rule sets π̄ = 0.01, ψπ = 0.15, and ψy = 0.1. Thus target

inflation and the response to output growth are about the same, and the response

to inflation is a bit weaker. The same is true when σi = 0 and the prior standard

deviation for σi is reduced by half. In both cases, impulse response functions under

the optimized rule resemble those in figure 6.

That agents entertain a belief that policy shocks are present is critical. Whether

actual policy shocks are small or zero is secondary.

5.3 A two-tier approach12

In the baseline model, the central bank introduces two reforms at once, reducing

target inflation and strengthening stabilization by responding more aggressively to

inflation and output growth. Appendix E contrasts this with a two-tier approach

that separates the reforms, with policymakers first switching to a rule designed to

bring target inflation down and thereafter changing feedback parameters to stabilize

the economy around the new target.

We formulate this approach as follows. We assume that for a certain period whose

length is exogenously set, the policymaker reduces π̄ but continues with response

coeffi cients inherited from the old regime. After this initial period, when beliefs about

π̄ have had a chance to adjust, the policymaker adjusts the reaction coeffi cients. Once

again, all other aspects of the baseline specification remain the same. Appendix E

considers models in which the first stage lasts 10 and 20 quarters, respectively.

Alas, the two-tier approach prolongs the transition and makes matters worse.

Delaying the second reform postpones but does not circumvent the problem of coping

with locally-explosive dynamics. This challenge now emerges at the end stage 1 rather

than the beginning of the disinflation, but it does not go away.

A separation of reforms also retards learning. During stage 1, beliefs about ψπ
and ψy harden around old-regime values because agents observe more weak responses

to inflation and output growth. This hinders learning about ψπ and ψy in stage 2.

Less obviously, the separation of reforms also retards learning about target inflation

in stage 1. Wherever π̄ appears in the likelihood function it is multiplied by ψπ.

Since ψπ remains close to zero during stage 1, π̄ is weakly identified and hard to learn
12We thank Klaus Adam for suggesting this exercise.
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about. One of the purposes of a simultaneous reform is to strengthen identification

of π̄ by increasing ψπ. The two-tier approach also postpones this until stage 2.

As shown in appendix E, optimized Taylor rules set π = 2 percent per annum,

ψπ = 0.15, and ψy = 0.15 or 0.2. Target inflation is therefore slightly higher than for

simultaneous reforms, the inflation response is a bit weaker, and reaction to output

growth is about the same. Learning is slower, the transition is longer and more

volatile, and expected loss is substantially higher.

5.4 Single-equation learning

Agents in the baseline model exploit cross-equation restrictions on the ALM when

estimating policy coeffi cients. This places a heavy computational burden on decision

makers who are supposed to be boundedly rational. Appendix F lightens their burden

by assuming that agents estimate equation (1) by recursive least squares with either

constant or decreasing gain. All other aspects of the baseline specification remain the

same.

Although estimates of policy coeffi cients sometimes differ from those in the base-

line model, optimized Taylor rules are essentially the same. That results are similar

for constant and decreasing gain algorithms is not surprising because the samples are

small and the rates at which the respective algorithms discount past data are almost

the same. That the results are similar to those for full-system learning means that

cross-equation restrictions are less informative than in a full-information rational-

expectations model. In the latter, private decision rules are predicated on knowledge

of the true policy coeffi cients and therefore convey a lot of information about them.

In a learning model, private decision rules are predicated on estimates of policy coef-

ficients and encode less information about the true policy. Somewhat to our surprise,

little is to be gained by exploiting cross-equation restrictions in the learning economy.

Single-equation learning is almost as good.

6 Discussion of related literature

The literature on monetary policy with adaptive learning is vast, and good surveys

can be found in Evans and Honkopohja (2009) and Gaspar, et al. (2011). Here we

discuss a few papers that are especially relevant to ours.

A number of papers identify attributes of the equilibrium law of motion that
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are influential in our analysis. For instance, Erceg and Levin (2003), Orphanides

and Williams (2005), Milani (2006, 2007), and Slobodyan and Wouters (2012) ex-

amine new Keynesian models with adaptive learning and demonstrate that learning

enhances inflation persistence.13 Orphanides and Williams emphasize that central

banks should take steps to counteract this increase in persistence. In their model,

this is done by reacting more aggressively to inflation. In ours, adverse initial beliefs

that reaction coeffi cients are close to zero prevent the bank from responding aggres-

sively, and inflation persistence is restrained — at least during the transition — by

keeping reaction coeffi cients close to prior beliefs.

The conclusion that knowledge of the inflation target affords little benefit for sta-

bilization when other aspects of monetary policy are uncertain also appears in Eusepi

and Preston (2010). The reasons supporting this conclusion differ, however. First

and foremost, our notions of stability differ. Eusepi and Preston examine whether

learning dynamics eventually converge to a rational-expectations equilibrium (REE).

For a model with least-squares learning, they demonstrate that learning dynamics

can fail to converge to REE when the central bank’s inflation target is known but

other aspects of monetary policy are not and that convergence to REE is restored if

the central bank can credibly communicate the variables upon which nominal interest

decisions are conditioned. Our model is closer to the latter case: private agents know

the arguments and form of the policy rule, and their estimates eventually converge

to the true policy coeffi cients.14 Our conclusion depends not on limiting beliefs but

on the nature of the transition: uncertainty about reaction coeffi cients is more costly

in our environment because this is what activates temporarily explosive dynamics.

Among the above cited papers, only Erceg and Levin consider the implications for

disinflation, and their analysis focuses on uncertainty about target inflation and takes

the policy rule as given. None analyze how the potential for explosive transitional

dynamics influences the central bank’s strategy.

Hagedorn (2011) examines optimal disinflation in a new Keynesian model with

perfect credibility and rational expectations. He demonstrates that the transition

path for the nominal interest rate is uniformly lower than it would be under the

original inflation target. Hagedorn stops short of characterizing optimal policy under

13Milani and Slobodyan and Wouters estimate DSGE models with learning and show that struc-
tural sources of inflation persistence such as indexation lose empirical support when learning is
introduced and that exogenous shocks become less persistent.
14We have no theorem to this effect, but this is what happens in the simulations.
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learning, however, commenting that this would require solving a challenging signal-

extraction problem. His notion of optimality is broader than ours, but we tackle

the signal-extraction problem. The price of extending the model in this direction

was narrowing the family of policies to Taylor rules. Embracing a broader notion of

optimality would be an important extension.

For a stylized, small-scale new Keynesian model, Gaspar, et al. (2006, 2011) show

how to do this. They study optimal monetary policy in an environment where agents

learn adaptively and the central bank takes the learning process into account when

formulating its policy.15 The optimal rule shares some features of optimal policy

under commitment and rational expectations, but commitment plays no role and the

bank relies instead on its ability to influence estimated inflation persistence. Like

Hagedorn, their notion of optimality is broader than ours, and they characterize the

optimal policy by numerically solving a dynamic program. Their approach is feasible

in models with a low-dimensional state vector but would run afoul of the curse of

dimensionality in ours. We chose to enrich the economic environment at the expense

of narrowing our focus to Taylor rules. Scaling their methods to a larger model would

be another important extension.

7 Conclusion

We model transitional dynamics that emerge when a central bank tries to disinflate

when operating without full transparency. The bank commits to a simple Taylor

rule whose form is known but whose coeffi cients are not. Private agents learn about

those coeffi cients via Bayesian updating. Under a McCallum timing protocol, locally-

explosive dynamics can emerge when the new policy lacks transparency, making the

transition highly volatile. The potential for locally explosive outcomes dominates

expected loss and materially alters the bank’s choice of feedback parameters relative

to what would be chosen if operating under complete transparency and credibility.

The bank copes by choosing feedback parameters close to the private sector’s initial

beliefs. Uncertainty about target inflation is secondary, and the bank can reduce

average inflation substantially without generating much turbulence. Its ability to

achieve greater stability by adjusting reaction coeffi cients is more limited.

15They do not study disinflation, however.
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