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Abstract

Bayesian inference is common in models with many parameters,
such as large VAR models, models with time-varying parameters,
or large DSGE models. A common practice is to focus on prior dis-
tributions that themselves depend on relatively few hyperparame-
ters. The choice of these hyperparameters is crucial because their
influence is often sizeable for standard sample sizes. In this paper
we treat the hyperparameters as part of a hierarchical model and
propose a fast, tractable, easy-to-implement, and fully Bayesian ap-
proach to estimate those hyperparameters jointly with all other pa-
rameters in the model.
In terms of applications, we show via Monte Carlo simulations that
in time series models with time-varying parameters and stochastic
volatility, our approach can drastically improve on using fixed hy-
perparameters previously proposed in the literature.
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1 Introduction

Multivariate time series models form the backbone of empirical macroe-

conomics. A common feature of all popular multivariate time series mod-

els is that, as researchers include more variables, the number of param-

eters quickly grows large. This feature is present to some degree not

only in Vector Autoregressions (VARs, Sims (1980)), or VARs that feature

time-varying parameters and/or stochastic volatility (Primiceri (2005),

Cogley & Sargent (2005), Sims & Zha (2006)), but also in multivariate

time series models that try to economize on the number of parameters

such as factor models (see for example Stock & Watson (2002)) or Dy-

namic Stochastic General Equilibrium (DSGE) models (Smets & Wouters

(2007)).

Arguably the most popular way to tackle the issue of the large number of

parameters has been to use Bayesian inference, which, via its use of pri-

ors, allows researchers to avoid overfitting the observed sample (which

comes at the cost of unrealistic out-of-sample behavior). Eliciting priors

in such high-dimensional models is a daunting task, though. A com-

mon practice is to focus on prior distributions that themselves depend

on a substantially smaller number of parameters (which we will call hy-

perparameters). One prominent example that uses this approach is the

’Minnesota’ prior for VARs (Doan, Litterman & Sims (1984)), which is es-

pecially useful in applications with many observable variables (Banbura,

Giannone & Reichlin (2010)).

The choice of hyperparameters is crucial because their influence is often

sizeable for standard sample sizes. Nonetheless, the choice of those hy-

perparameters is often ad-hoc in the literature. In this paper, we propose

a fast, tractable, and easy-to-implement Metropolis step that can easily
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be added to standard posterior samplers such as the Metropolis-Hastings

algorithm or the Gibbs sampler (Gelman, Carlin, Stern, Dunson, Ve-

htari & Rubin (2013)).1Researchers can use our approach with minimal

changes in their code (and negligible increase in runtime) to estimate

these hyperparameters. The estimation algorithm that we present in this

paper exploits the hierarchical structure that is automatically present

whenever prior hyperparameters are used, and thus can be used gener-

ally in any model with prior hyperparameters. Our approach interprets

the structure implied by the interaction of parameters of the model and

the associated prior hyperparameters as a hierarchical model, which is

a standard model in Bayesian inference (Gelman et al. (2013)).

In terms of applications, we focus in this paper on one class of multivari-

ate time series models where the influence of prior hyperparameters is

especially pronounced: VARs that feature time-varying parameters and

stochastic volatility, which have been introduced by the work of Cogley

& Sargent (2005) and Primiceri (2005), building on earlier contributions

such as Doan et al. (1984), Stock & Watson (1996) and Cooley & Prescott

(1976). These models are commonly estimated using Bayesian methods

and can feature a plethora of parameters, thus making the choice of pri-

ors important. The work of Cogley & Sargent (2005) and Primiceri (2005)

has established a de-facto standard on how to set the priors for these

models using a training sample and relatively few hyperparameters.2 In

this paper, we show in a Monte Carlo exercise that using our approach

instead of relying on standard values for the hyperparameters can dras-
1The Gibbs sampler can be viewed as a special case of the Metropolis-Hastings algo-

rithm (see again Gelman et al. (2013))
2Examples of papers that follow this structure are, among many others, Canova

& Gambetti (2009), Clark & Terry (2010) Benati & Lubik (2014), Kliem, Kriwoluzky
& Sarferaz (2013), Koop, Leon-Gonzalez & Strachan (2011), and D’Agostino & Surico
(2011).
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tically improve the estimation of the parameter and volatility paths. We

also show that our approach can lead to substantially different conclu-

sions in applications with real data - we study the joint dynamics of US

and UK inflation for a monthly sample covering the last century.

The Gibbs sampler is already the standard approach to estimate mod-

els in this class and thus our approach fits naturally into the estimation

approach used for these models.3 Our approach allows researchers to es-

timate hyperparameters for the time variation in all parameters (includ-

ing the volatilities of the residuals) without restricting those parameters

to possibly take on only a small finite number of values.

The importance of hyperparameters in this class of models has been es-

tablished by Primiceri (2005), who also estimates the hyperparameters

(to our knowledge, the only other paper that does so in a Bayesian con-

text for these models). Unfortunately, Primiceri’s approach to estimating

the prior hyperparameters is computationally very involved and requires

focusing on only a small number of possible values for the hyperparame-

ters.4 Since the hyperparameters interact with the part of the prior that

is set via the use of a training sample (which depends crucially on the

specific data sample), it is also not clear that the same discrete grid of

possible parameter values that Primiceri used should be employed for

other applications.

Since Primiceri (2005), most applications of models in this class use his

estimated values for the hyperparameters or other fixed values on an
3Even if the model of interest has previously been estimated with another posterior

sampler, our approach can be used in that case - the previous posterior sampler then
forms one block of a multiple-block algorithm, with our proposed step forming the other.

4To be more specific, Primiceri (2005) uses a reversible jump MCMC algorithm to
estimate the hyperparameters. To get proposal densities, he in a first step has to es-
timate his time-varying parameter model conditional on each possible combination of
hyperparameters.
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ad-hoc basis. Furthermore, these papers do not take into account that

uncertainty about these hyperparameters could influence later inference,

whereas our approach automatically takes this uncertainty into account.

Some readers might wonder why the choice of prior hyperparameters is

important. Shouldn’t the importance of the prior vanish as the data size

increases? In this paper, we show that the hyperparameters influence

estimation outcomes for the class of models we consider and standard

sample sizes available for macroeconomic analysis.5

While we present our approach using a time-varying parameter VAR

with stochastic volatility, the extension to other time-varying parame-

ter models such as factor augmented VARs with time varying parame-

ters and stochastic volatility (see Ellis, Mumtaz & Zabczyk (2014) and

Baumeister, Liu & Mumtaz (2013), for example) or factor models with

time-varying parameters and stochastic volatility is straightforward be-

cause of the modular structure of the Gibbs sampler.6 Our approach

will also be of interest to researchers trying to estimate multivariate ex-

tensions of the univariate stochastic volatility model presented in Kim,

Shephard & Chib (1998). As will become evident in our discussion of

the models we study, this class of models allows for the stochastic incre-

ments in the stochastic volatility processes for different variables to be

correlated, whereas in the finance literature on multivariate stochastic

volatility, those increments are often assumed to be independent (Chib,

Nardari & Shephard (2006)). Our approach can also be used for DSGE

models with stochastic volatility as introduced by Justiniano & Primiceri
5This echoes the results in Reusens & Croux (2015), who carry out an extensive

Monte Carlo study of prior sensitivity using a VAR with time-varying parameters, but
no stochastic volatility.

6In the appendix, we show how to augment the standard Gibbs sampler for fixed
coefficient VARs to include the estimation of prior hyperparameters.
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(2008).7

Stock & Watson (1996) propose a frequentist approach to estimate scal-

ing parameters in the law of motion for time-varying parameter models.

Benati (2015) adapts their approach to a time-varying parameter VAR

model without stochastic volatility. Benati’s approach is computation-

ally more involved than ours and a mix of Bayesian and frequentist ap-

proaches, thus making it harder to interpret in the otherwise Bayesian

estimation of these models. Furthermore, he focuses on the hyperpa-

rameter for the coefficients (since his model does not feature stochastic

volatility), while our approach is general enough to estimate the hyper-

parameters in the law of motion for stochastic volatilities.

Lubik, Matthes & Owens (2014) calibrate the hyperparameters using

a prior predictive approach: They simulate paths for parameters and

volatilities from the prior and choose fixed values for the hyperparam-

eters so that a pre-specified set of moments of the simulated parameters

and volatilities approximate as close as possible the corresponding mo-

ments obtained by estimating fixed coefficients VARs on a set of rolling

training samples.

Our paper is more generally related to the literature on choosing prior

hyperparameters in Bayesian inference. Giannone, Lenza & Primiceri

(2013) estimate prior hyperparameters for time-invariant VARs with con-

jugate Normal-Inverse Wishart priors by exploiting the fact that in this

case the density of the data conditional on the hyperparameters is known

in closed form, which they maximize with respect to the hyperparame-

ters. Therefore they do not have to use a Gibbs sampler. On the other

hand, their approach only delivers a point estimate of the hyperparam-
7Incorporating stochastic volatility in DSGE models substantially improves the fore-

casting performance, as highlighted by Diebold, Schorfheide & Shin (2016).
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eters and thus does not take into account the uncertainty surrounding

the parameters. Our approach can be applied to any model in which prior

hyperparameters are present and thus presents an alternative to the ap-

proach in Giannone et al. (2013) for the fixed coefficient VARs they study.

In the models we focus on in this paper, there is no closed form for the

marginal data density. The approach by Giannone et al. (2013) can thus

not be easily extended to time-varying parameter models. As highlighted

by Giannone et al. (2013), their approach is an empirical Bayes approach,

while our approach focuses on the hierarchical structure imposed by the

use of prior hyperparameters.

In an early attempt to tackle the problem of estimating prior hyperpa-

rameters, Lopes, Moreira & Schmidt (1999) propose an alternative pro-

cedure to estimate hyperparameters using sampling importance resam-

pling. Their approach requires the calculation of the marginal likelihood

conditional on the hyperparameters of interest, i.e. the density of data

conditional only on the hyperparameters, with all other parameters in-

tegrated out. Computing even one such marginal likelihood is a com-

putationally daunting task in the models we focus on in this paper (to

the point that marginal likelihoods are basically never computed in this

literature). The approach in Lopes et al. (1999) would require the com-

putation of such a marginal likelihood for every unique draw of the hy-

perparameters, thus rendering it infeasible for the applications we are

interested in. Furthermore, in the class of models we study, researchers

regularly use loose priors. It is well known (Gelman et al. (2013)) that in

the case of loose priors, the exact specification of those priors has a sub-

stantial influence on the value of the marginal likelihood, even though

point estimates and error bands are largely unaffected. Our approach,
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on the other hand, is not sensitive to the priors for the other parameters

in the model.

Korobilis (2014) estimates some prior parameters in a VAR with time-

varying parameters and stochastic volatility. He restricts the prior co-

variance of the innovations to the parameters to be diagonal. Those di-

agonal elements are then estimated in a Gibbs sampling step. His ap-

proach could be combined with ours since Korobilis (2014) relies on prior

hyperparameters for the prior covariance matrix of the innovations to the

parameters.

In the next section, we describe the general algorithm before turning to

time-varying parameter models in section 3. We then carry out a sim-

ulation study in section 4 before showing the effect of estimating prior

hyperparameters on a real data set of historical inflation data for the US

and the UK in section 5.

2 How to Estimate Prior Hyperparameters

In this section, we derive a Metropolis step to estimate prior hyperpa-

rameters. The model is given by a likelihood function p(Y |Ω, H, h) where

Y is the matrix of data (note that here the data is not necessarily time

series data), Ω is the set of all parameters except for the parameter block

H associated with the hyperparameter vector h. The prior for H, p(H|h),

depends on the hyperparameter h. To give a specific example, it might

be useful to think of h as the scaling parameters for the Minnesota prior

used in the Bayesian estimation of VARs - then H would be the intercepts

and the coefficients on lagged observables. We assume that Ω and H are

estimated via Gibbs-sampling or the (possibly multiple-block) Metropolis-
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Hastings algorithm, as described, for example, in Gelman et al. (2013).

The augmented algorithm that includes the estimation of the hyperpa-

rameters then alternates between draws from the algorithm to draw Ω

and H (both those steps condition on a value for h) and the drawing of

h conditional on H and Ω, which we describe in this section.8 The prior

beliefs about the hyperparameter h are encoded in a prior distribution

p(h). From a conceptual point of view, a researcher could introduce an-

other level of hierarchy and make the prior for h depend on more hyper-

parameters as well. Since we are concerned with applications where the

dimensionality of h is already small (such as the time-varying parameter

models we describe later), we will not pursue this question further in this

paper - our approach could be extended in a straightforward matter if a

researcher was interested in introducing additional levels of hierarchy.

We focus here on drawing one vector of hyperparameters, but other hyper-

parameters could be included in Ω (which could be high-dimensional, as

in our time-varying parameter VAR later). Draws for those other hyper-

parameters would then be generated using additional Metropolis steps

that have the same structure. We assume that the following assumptions

hold (assumption 1 is only necessary if multiple vectors of hyperparame-

ters are present in the model):

Assumption 1 The different vectors of hyperparameters are a priori in-

dependent of each other.

Assumption 2 All parameters of the model except for the parameter block

directly linked to a specific hyperparameter are a priori independent of

that specific hyperparameter.
8In the appendix, we lay out the estimation algorithm for a VAR with time-varying

parameters and stochastic volatility in detail.
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Neither of these assumptions are restrictive. If assumption 1 is violated,

the dependent vectors of hyperparameters just have to be grouped into

one larger vector of hyperparameters.9 The modifications for the algo-

rithm in this case are straightforward. Violations of the second assump-

tion can be handled similarly: The different parameter blocks whose pri-

ors depend on the same hyperparameters have to be grouped together in

one larger parameter vector, which then depend on the same vector of

hyperparameters.

Deriving a Metropolis step for h amounts to deriving a formula for the

acceptance probability in the Metropolis-Hastings step. We draw a real-

ization from the proposal density q, which will be accepted with probabil-

ity αi at iteration i of the algorithm. This acceptance probability in the

Metropolis-within-Gibbs step at iteration i 10 is given by

αi = min

(
1,

p(Ω, h,H|Y )q(hprop|hi−1)

p(Ω, hi−1, H|Y )q(hi−1|hprop)

)
(1)

a superscript prop denotes a proposed value, a superscript i − 1 denotes

values from iteration i− 1 of the algorithm and superscripts are dropped

for H and Ω for convenience. We now simplify αi in this general environ-

ment.

First, we rewrite p(Ω, h,H|Y ):

p(Ω, h,H|Y ) ∝ p(Y |Ω, h,H)p(Ω|h,H)p(H|h)p(h) (2)

By the hierarchical nature of the model (the hyperparameters only enter

the prior for H), p(Y |Ω, h,H) does not depend on h since it conditions on
9We later spell out these assumptions in more detail for our VAR model.

10We call this step a Metropolis-within-Gibbs step even if all other parameter blocks
in the model are estimated with Metropolis steps themselves.
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H. Thus, p(Y |Ω, h,H) cancels out in the numerator and denominator of

αi. By assumption 2 and the hierarchical nature of the hyperparameter

structure (and, if necessary, assumption 1), the term p(Ω|h,H) equals

p(Ω|H), which then also cancels out in the fraction determining αi. We

are left with

αi = min

(
1,

p(H|hprop)p(hprop)q(hprop|hi−1)

p(H|hi−1)p(hi−1)q(hi−1|hprop)

)
(3)

A key insight to this equation is that all identities that need to be valu-

ated are either the proposal density q or prior densities (p(h) is the prior

density for h while p(H|h) is the prior density of H, which depends on the

hyperparameter h). Generally those densities are known in closed form

and thus fast to evaluate, thus making our algorithm computationally

efficient.

3 The VAR Model and the Estimation of Hy-

perparameters

This section presents the class of models we us in our applications and

the necessary additional steps in the Gibbs-sampling algorithm for time-

varying parameter VARs to estimate the prior scale parameters. As an-

other specific example, the appendix shows how to use our approach with

a popular specification for fixed coefficient VARs.

The observable vector yt is modeled as:

yt = µt +
L∑

j=1

Aj,tyt−j + et (4)
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where the intercepts µt, the autoregressive matrices Aj,t and the covari-

ance matrix of et are allowed to vary over time. To be able to parsimo-

niously describe the dynamics of our model, we defineX ′
t ≡ I⊗(1, y′t−1..., y

′
t−L)

and rewrite (4) in the following state space form11:

yt = X ′
tθt + et (5)

θt = θt−1 + ut (6)

The observation equation (5) is a more compact expression for (4). The

state equation (6) describes the law of motion for the intercepts and au-

toregressive matrices. The covariance matrix of the innovations in equa-

tion (5) is modeled following Primiceri:

et = Λ−1
t Σtεt (7)

The covariance state Λt is a lower triangular matrix with ones on the

main diagonal and representative non fixed element λi
t. Σt is a diagonal

matrix with representative non fixed element σj
t . The dynamics of the

non fixed elements of Λt and Σt are given by:

λi
t = λi

t−1 + ζ it (8)

log σj
t = log σj

t−1 + ηjt (9)

To conclude the description of our model, we need to make distributional

assumptions on the innovations εt, ut, ηt, and ζt, where ηt and ζt are vec-

tors of the corresponding scalar innovations in the elements of Σt and Λt.

We assume that all these innovations, which govern the time variation
11I denotes the identity matrix.
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for the different parameters in this models, are normally distributed with

covariance matrix V , which we, following Primiceri, restrict as follows:

V = V ar





εt

ut

ζt

ηt




=



I 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 W


(10)

S is further restricted to be block diagonal with J blocks, which simpli-

fies inference (this is inconsequential for our extension to the standard

Gibbs sampler, but we decided to use the standard model in the liter-

ature). Note that W , on the other hand, is not restricted, allowing the

increments in the stochastic volatility processes to be correlated.

We will now describe the estimation of general prior hyperparameters in

this setting before turning to the specific prior hyperparameters used by

Primiceri (2005) and the subsequent literature. We repeat, for expository

purposes, the derivation of the Metropolis-Hastings acceptance probabil-

ity from the previous section as applied to this specific model.

The priors for Q, S, and W are given by:

Q ∼ pQ(hQ) (11)

W ∼ pW (hW ) (12)

Sj ∼ pSj(hSj) j = 1, . . . , J (13)

where hi, i ∈ (Q,W, Sj) denotes the vectors of hyperparameters for each

set of matrices. Sj is the j-th block of S.

We are interested in estimating the hyperparameters hQ, hW , {hSj}Jj=1. To

do so, we attach priors pX(X) to the hyperparameters (X = {hQ, hW , {hSj}Jj=1}).
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In our empirical applications, we assume that the prior specification for

all other parameters are the same as in Primiceri (2005), but this is in-

consequential for our algorithm. We denote by Ω all parameters to be

estimated except for the prior hyperparameters themselves and the as-

sociated covariance matrices Q, W , and {Sj}Jj=1 . Our approach builds

on the insight that equations (11) to (13) can be interpreted as a hier-

archical model, which in our case is embedded in a larger model, the

VAR with time-varying parameters and stochastic volatility. Bayesian

inference lends itself naturally to the estimation of hierarchical models

because they can be analyzed with a Gibbs sampler or the multiple-block

Metropolis-Hastings algorithm. This ease of estimation and the flexi-

bility of hierarchical models explains their popularity (see for example

Gelman et al. (2013)).

We now restate the two assumptions used to derive our algorithm for the

specific model at hand:

Assumption 3 The different vectors of hyperparameters are a priori in-

dependent of each other:

p(hQ, hW , hS1, ..., hSJ) = phQ
(hQ)phW

(hW )phS1
(hS1) · · · phSJ

(hSJ)

Assumption 4 All parameter blocks of the model except for the parame-

ter block directly linked to a specific hyperparameter (via one of the equa-

tions 11 through 13 in this model) are a priori independent of that specific

hyperparameter (e.g. W and Sj j = 1, . . . , J are a priori independent of

hQ).

As long as we assume that pQ, pW , and pSj are all inverse Wishart distri-

butions (as is standard in the literature), the drawing of the covariance
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matrices themselves can be carried out just as in the algorithm described

in Del Negro & Primiceri (2015) once we condition on the hyperparame-

ters.

To estimate the hyperparameters, we use a Metropolis-within-Gibbs step

(Geweke (2005)) for each vector of hyperparameters. We focus here on the

estimation of hQ because the other blocks are conceptually the same. The

acceptance probability αi at iteration i of the Metropolis-within-Gibbs al-

gorithm is given by:

αi = min

(
1,

p(Ω, hprop
Q , Q, {hSj}, {Sj}, hW ,W |yT )q(hprop

Q |hi−1
Q )

p(Ω, hi−1
Q , Q, {hSj}, {Sj}, hW ,W |yT )q(hi−1

Q |hprop
Q )

)
(14)

where a superscript prop denotes the prosed value and a superscript i−1

the value from the previous iteration (superscripts are dropped for all

other parameters for ease of reading). yT is the history of observables

used for estimation (yT = {yt}Tt=1). q is the proposal density.

For each vector of hyperparameters, we need to calculate the following

posterior:

p(Ω, hQ, Q, {hSj}, {Sj}, hW ,W |yT ) ∝ (15)

p(yT |Ω, hQ, Q, {hSj}, {Sj}, hW ,W )p(Ω, {hSj}, {Sj}, hW ,W |hQ, Q)p(Q|hQ)p(hQ)

Two observations are key to simplifying this formula: First, once we

condition on Ω, the conditional density of yT is independent of hQ and

thus cancels out in the calculation of the Metropolis-Hastings acceptance

probability because it appears in both the denominator and the numera-

tor. This can be seen by studying equation (4) and noting that Ω contains

the sequence of {µi, {Aj,i}kj=1,Λi,Σi}Ti=1. Once we know Ω and Q, hQ is not

needed for the calculation of this density.
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The second point worth noting is that conditional on Q, hQ does not carry

any information about any of the other parameters. This is due to the

hierarchical nature of the model and the two assumptions made before.

Thus we get that

p(Ω, {hSj}, {Sj}, hW ,W |hQ, Q) = p(Ω, {hSj}, {Sj}, hW ,W |Q) (16)

As a result, we find that p(Ω, {hSj}, {Sj}, hW ,W |Q) also cancels out in the

acceptance probability since it is not a function of hQ. The acceptance

probability then simplifies to

αi = min

(
1,

p(Q|hprop
Q )p(hprop

Q )q(hprop
Q |hi−1

Q )

p(Q|hi−1
Q )p(hi−1

Q )q(hi−1
Q |hprop

Q )

)
(17)

p(Q|hQ) is the prior density for Q described above (which is usually an

inverse Wishart density) and p(hQ) is the prior on hQ. Once we have fixed

a proposal density for hQ, evaluating the acceptance probability is thus

straightforward. Not only can the same argument be made for the other

hyperparameters introduced before, but for any hyperparameter since

the logic used for deriving the acceptance probability only hinges on the

hierarchical nature of the model with respect to the prior hyperparame-

ters.

Now turning to the exact specification in Primiceri (2005), the priors for

Q, S and W are set as follows:

Q ∼ IW (k2
QdfQVQ, dfQ) (18)

W ∼ IW (k2
WdfWVW , dfW ) (19)

Sj ∼ IW (k2
SdfSjVSj, dfSj) (20)
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where df denotes the degrees of freedom, IW is the inverse Wishart dis-

tribution, V are prior scaling matrices, and kX , X ∈ {Q,W, S} are the

scalar hyperparameters we want to estimate.

In this paper, we focus on the estimation of low-dimensional hyperparam-

eters. In theory, our algorithms could be adapted to estimate the prior

scaling matrices V ; however, for most practical applications the V ma-

trices are high-dimensional objects, so we focus instead on picking the V

matrices using a training sample, as is standard in the literature.

One difference relative to the general algorithm above is that, to be in line

with Primiceri and the subsequent literature, we use the same kS for all

blocks of S. For the different blocks of S, we use the fact that conditional

on kS the priors for the different blocks are independent inverse-Wishart

densities. Thus, in that case we get

P (S|kS) =
J∏

j=1

P (Sj|kS) (21)

4 Simulation Study

We use a univariate AR(1) process in a simulation study to demonstrate

the properties of our approach. We plot results for 5 representative sam-

ples, but also report summary statistics based on 500 samples. The data-

generating process is an AR(1) process with time-varying AR parameter

and stochastic volatility:

yt = ϕtyt−1 + εt, εt
iid∼ N(0, σ2

t )

ϕt = ϕt−1 + et, et
iid∼ N(0, Q)

log(σt) = log(σt−1) + ut ut
iid∼ N(0,W )
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We set Q = 0.01 and W = 0.001. The initial values are ϕ0 = 0.5 and

σ0 = 0.1. In addition, we constrain the AR-coefficient ϕt to be strictly

smaller than unity and the stochastic volatility σ2
t to be strictly smaller

than 100.12 We generate 450 observations and discard the first 100, so

that the final sample size is T = 350 (from which we use 40 periods as a

training sample to initialize the prior in the same fashion as Primiceri

(2005)). We approximate the posterior using 5000 draws and use an ad-

ditional 5000 draws to adaptively set the proposal densities for the hyper-

parameters. The simulated parameters exhibit substantial movements

in both the AR parameter and residual volatility. We report simulation

results using 5 separate simulations.

We use independent inverse gamma priors for the hyperparameters. The

parameters of those priors are chosen such that the prior mode is at 0.05

and the variance is infinite. Flat priors give similar results in this appli-

cation.

Figure (1) shows actual and estimated paths of the AR coefficient. We

compare the estimation procedure with fixed tuning parameters (fixed

at the values used in Primiceri (2005), kQ = 0.01 and kW = 0.01) to our

approach.13 The bold lines represent the posterior medians at each point

in the sample, while the dashed lines are the 68 % posterior bands (the

blue lines are the results for our approach, while the red lines are the

estimated parameter paths with fixed hyperparameters). Evidently, if

the true data-generating process exhibits a substantial degree of time

variation in the AR parameter, fixing the hyperparameters can lead to

a dramatic underestimation of the degree of time variation of the AR
12We do this to generate paths of observables that resemble standard economic time

series.
13The title of each figure in this section shows whether or not the true data-generating

process features fixed coefficients or time-varying coefficients.
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Figure 1: Actual (in black) and estimated AR coefficients (for both esti-
mated (in blue) and fixed (in red) values for the hyperparameters).
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Figure 2: Actual (in black) and estimated standard deviations (for both
estimated (in blue) and fixed (in red) values for the hyperparameters).

coefficient. In fact, the estimation results for the case with fixed hyper-

parameters suggest that there is basically no time variation in the AR
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parameter at all. Our approach, instead, can capture the time variation

present in our simulations. As can be seen in figure 1, estimating the hy-

perparameters does not lead to estimates of time variation in parameters

that overstate the true amount of time variation. In fact, the estimated

parameter paths still resemble smooth approximations to the true paths

of the AR parameter. It is worth pointing out here that many studies

that use time-varying parameter VARs with stochastic volatility indeed

find that many parameters do not vary substantially over time (Cogley &

Sargent (2005)). We will see in the empirical application below that the

findings in this section carry over to real-world examples.

The effects of underestimating the time variation in the AR parameter

can be seen when looking at the estimated parameter paths for σt in fig-

ure 2, which can show a substantial upward bias in the case of fixed hy-

perparameters. This is particularly striking in the upper right panel and

the middle left panel of figures 1 and 2, where we can see that with fixed

hyperparameters and substantial time variation in parameters (which

is most present in those two panels), the model interprets large changes

in the AR coefficients as changes in the residual covariances. The main

takeaway from this exercise is not that the hyperparameters in Primiceri

(2005) are ’wrong’ in any sense, but rather that, if a researcher is inter-

ested in a very different application (including, but certainly not limited

to, a different number of observables), then that researcher should think

carefully about the prior hyperparameters. We offer one data-driven way

to take the dependence of the results on the prior hyperparameters into

account.

To get a sense how much more time variation our approach allows, it is in-

structive to study the estimated values for the hyperparameters. Across
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parameter fixed hyperparameters estimated hyperparameters ratio
ϕt 0.46 0.23 2
σt 0.03 0.01 1.79

Table 1: RMSEs for the median parameter estimates

simulations the estimated posterior median values for kQ vary from .21

to .63, whereas the estimated median values for kW range from .04 to .07.

Contrasting this with the values obtained in Primiceri (2005) and the as-

sociated parameter paths, we can see that larger values for the scaling

parameters substantially influence the estimated paths of parameters,

even with a large sample and few parameters as in our simulations.

To make sure that our results are not driven by the small number of 5

samples, we now report root mean squared errors (RMSEs) for 500 simu-

lations using the same setup as described before. The root mean squared

errors are constructed using the posterior median at each point in time

as the point estimate. Table 1 confirms the pattern that we saw in the

figures: With estimated hyperparameters, the estimates of time-varying

parameters and volatilities are much better able to track the true values

(the root mean squared errors for the parameter ϕt are twice as large with

fixed hyperparameters and the corresponding number for the volatilities

σt is 79 % larger).

A possible concern for users of our approach might be that it might over-

estimate the amount of time variation if no or little time variation is

present. To address this concern, we repeat the same exercise with a

data-generating process that features fixed coefficients (fixed at the ini-

tial values used in the previous exercise). The results are shown in fig-

ures 3 and 4. While our approach leads to slightly more estimated time

21



variation for both parameters of the model14, the results for both ap-

proaches are very similar. In particular, whenever the true parameter

values are included in the posterior bands of one approach, the true pa-

rameter values are also included in the bands estimated using the other

approach.

50 100 150 200 250 300

0.4

0.45

0.5

0.55

50 100 150 200 250 300

0.45

0.5

0.55

50 100 150 200 250 300

0.5

0.55

0.6

50 100 150 200 250 300

0.4

0.45

0.5

0.55

50 100 150 200 250 300
0.35

0.4

0.45

0.5

fixed AR − AR coefficient

Figure 3: Actual (in black) and estimated AR coefficients (for both esti-
mated (in blue) and fixed (in red) values for the hyperparameters).

5 Empirical Application

VARs with time-varying parameters and stochastic volatility have pre-

viously been used to analyze long historical time series - see, for ex-

ample, Sargent & Surico (2011), D’Agostino & Surico (2011), and Ah-

madi, Matthes & Wang (2016).15 As the sample size increases, there

seems more reason to allow for the possibility of changing parameters
14The estimated posterior median values for kQ range from .04 to .05, whereas the

values for kW range from .03 to .04.
15Other papers that have used time series models with time-varying parameetrs

and stochastic volatility (not necessarily VARs) include Cogley & Sargent (2015) and
Schorfheide, Song & Yaron (2014).
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Figure 4: Actual (in black) and estimated standard deviations (for both
estimated (in blue) and fixed (in red) values for the hyperparameters).

and volatilities. These changes can come from various sources - tech-

nological progress, changes in institutions, political changes, and inter-

national conflicts are just some of the reasons why we might suspect

that constant parameter models are ill-suited for long historical sam-

ples. With long historical time series that are very different from the

time series used by Primiceri (2005), there is little reason to believe a-

priori that the hyperparameters chosen by Primiceri should reflect a re-

searcher’s view of the amount of time variation present in the data. To

assess the importance of estimating the prior hyperparameters, a long

historical dataset thus seems like a useful laboratory. We study a VAR

with monthly year-over-year CPI inflation data for the US and the UK

starting in 1915.16

The first 95 months are used as the training sample to initialize the pri-

ors. To be consistent with most of the literature, we use 2 lags.17 We use

inverse gamma priors for the hyperparameters. For simplicity, we use
16The data is from the Global Financial database.
17We use 50000 draws to adaptively pick the parameters of the proposal densities for

the hyperparameters and another 50000 draws to actually approximate the posterior.
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the same (loose) priors for all three hyperparameters that we have used

in our Monte Carlo simulations. As a reminder, we pick the parameters

for the prior of the hyperparameters such that the prior mode is at 0.05

and the variance is infinite. 18
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Figure 5: Marginal posterior distributions of the three hyperparameters
along with common values used in the literature.

Figure 5 plots the marginal posteriors for the three hyperparameters

(estimated using a random-walk Metropolis-Hasting algorithm with the

inverse-Gamma prior) along with the values used in Primiceri (2005). We

can see that there is substantial uncertainty surrounding the hyperpa-

rameters, which our approach takes into account. We also see that the
18As a robustness check, we will later show results for a prior with finite variance.

Our choice of an inverse-gamma prior confronts the possible pile-up problem for the
hyperparameters discussed by Stock & Watson (1996). We thus reduce the prior prob-
ability mass for the hyperparameters very close to zero. As seen in our Monte Carlo
study (where we used the same priors), this does not preclude finding no time variation
in parameters if indeed the data-generating process does not feature time-varying pa-
rameters. While the pile-up problem described in Stock & Watson (1996) was not an
issue in our Monte Carlo exercise, we do suggest researchers use an informative prior to
steer clear of any possibility of the pile-up problem appearing in real-world applications.
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posterior modes are substantially different from the values used in Prim-

iceri (2005). Primiceri estimated these values for a specific dataset. Our

results hopefully caution the reader to not blindly use fixed values for

other applications. As we saw in the case of our simulations, estimating

the prior hyperparameters can have a substantial impact on parameter

paths and, as a result, statistics derived from the estimated parameter

and volatility paths such as impulse responses, forecasts, and variance

decompositions. To illustrate this impact, we focus on the ’core inflation’

statistic used by Cogley & Sargent (2005). Core inflation is defined here

as the implied steady state value of inflation if the parameters of the

VAR were fixed at each point in time at their posterior mean.19 Thus,

this measure, depicted in figure 6, can be interpreted as an estimate of

trend inflation. Figure 6 shows that core inflation based on estimated hy-

perparameters, while still substantially smoother than the data, is not as

smooth as the estimate using the fixed hyperparameter values of Prim-

iceri (2005). To give one example, core inflation for the UK peaks around

10 % (in annual terms) with our approach, whereas it is only 6 % for

the fixed hyperparameter-based estimates. The differences are especially

pronounced during the 1930s and the 1970s (periods where inflation was

large in absolute value). The greater amount of time variation in param-

eters implied by the posterior distribution shown before clearly has an

impact on the core inflation statistic.

As a robustness check, we re-estimate our model using a different

prior. For simplicity, we only change the prior for kQ. We keep the prior

mode fixed at the same value as before, but now use parameter values

that imply a finite variance, namely .01 (whereas the prior variance was
19We checked that the VAR based on time t posterior mean parameter values is sta-

tionary for all t so that this calculation makes sense.
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Figure 6: Core inflation for the US and UK, using either estimated hy-
perparameters or the values from Primiceri.

infinite before). Figure 7 shows that the results are indeed robust to these

changes in the prior.

6 Multivariate Scaling Parameters

Like in the case of intercepts of our VAR or parameters associated with

one given equation of the VAR, some groups of parameters or volatilities

might vary at a different rate than other parameters. In this section

we show how to incorporate this idea into our framework. Benati (2015)

also estimates different scaling parameters for different equations in his

VAR.

We denote by kx vectors of scaling parameters of dimension dx, where
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Figure 7: Marginal posterior distributions of the three hyperparameters
along with common values used in the literature, prior with finite vari-
ance

matrix x is of dimension dx by dx. We then assume the following forms

for the priors of the matrices Q, W , and Sj:

Q ∼ IW (diag(kQ)dfQVQdiag(kQ), dfQ) (22)

W ∼ IW (diag(kW )dfWVWdiag(kW ), dfW ) (23)

Sj ∼ IW (diag(kSj)dfSjVSjdiag(kSj), dfSj) (24)

where diag is an operator that turns a d by 1 dimensional vector into a

d by d dimensional diagonal matrix with the elements of the vector on

the main diagonal. In practice, estimating one k scaling parameter per

coefficient/volatility is not feasible for VARs of the size commonly used

in applications because of the large number of coefficients that would

have to be estimated. Instead, we propose to group parameters into a
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relatively small number of groups and use one k scaling parameter per

block of parameters. As mentioned before, natural choices for blocks in

the case of the θ coefficients could be intercepts vs. all other parameters

or a grouping of θ coefficients by equation. We would then augment our

description of the algorithm with a deterministic mapping from the rel-

atively small number of scaling parameters (which we call k̆x) to kx.

In terms of the estimation algorithm, nothing of substance changes:20 in

the proposal step, the proposal density is now multivariate normal and in

the calculation of the acceptance probability we have to adjust the evalu-

ation of p(Q|kQ) to take into account the updated form of the density (see

equation (22)) and the fact that the prior p(k∗
Q) is now multivariate. One

could use independent priors for each element of k̆Q, for example. The rest

of the Gibbs sampling steps for other parameters are unaffected, with the

exception of the step where Q: the scaling matrix for the inverse-Wishart

density needs to be updated as described in equation (22).

To give an example that this extension can make a substantial differ-

ence, we re-estimate our VAR described in the previous section, allowing

for two different values of kQ - one for the intercepts and one for all other

parameters. We still use one hyperparameter each for W and {Sj}Jj=1. For

the sake of brevity, we focus here on results using our infinite variance

specification for all hyperparameters (results using the finite variance

prior are similar, just as before). Figure 8 plots the marginal posteriors

of the hyperparameters. We can see an interesting pattern: The poste-

rior distribution for the kQ value associated with the intercepts is sim-

ilar to that obtained for all parameters in the previous section, but the

kQ parameters for all other parameters is an order of magnitude larger,
20The changes are the same for all blocks. We describe it here for the case of Q.
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Figure 8: Marginal posterior distributions of the four hyperparameters
along with common values used in the literature.

showing that substantial time variation can be hidden by assuming an

overly tight prior structure. The posteriors for the hyperparameters are

basically unchanged.

7 Conclusion

The choice of prior hyperparameters in large multivariate time series

models is a daunting task. Because of the large dimensionality, using

introspection to obtain a prior is very dificult. Thus, many researchers

have turned to automated or semi-automated prior choices that depend

only on few hyperparameters. Since those hyperparameters influence the

prior distribution of large dimensional objects, their choice can be crucial.

We argue that, considering the number of hyperparameters is usually

relatively small, researchers should consider estimating them. This is
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especially relevant because, as we show in this paper, this estimation can

be carried out with only minor changes in existing codes and at negligible

computational cost (because the densities that need to be evaluated in the

additional estimation step are prior distributions that are usually fast to

evaluate).

We show that estimating these hyperparameters in a popular class of

models in empirical macroeconomics can drastically improve estimates.
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A The Metropolis-within-Gibbs step imple-

mentation in more detail

In this section, we present details on the algorithm for the posterior sam-

pling of the scaling parameters in the VAR with time-varying parameters

and stochastic volatility. For the sake of brevity, we describe the sampling

procedure for a generic scaling factor kX , X ∈ {Q,S,W}. Given a draw

for X, the conditional posterior p(kX |X) ∝ p(X|kX)p(kX) can be obtained

with a Metropolis-Hastings step. We use a version of the (Gaussian) ran-

dom walk Metropolis-Hastings algorithm with an automatic tuning step

for the proposal variance in a burn-in phase. The algorithm is initialized

with values k0
X (which we choose to be the values from Primiceri (2005))

and σ2
kX

, which we change in a preliminary burn-in phase to achieve a

target acceptance rate.

1. At step i, take a candidate draw k∗
X from N(ki−1

X , σ2
kX
)

2. Calculate the acceptance probability αi
kX

= min
(
1,

p(X|k∗X)p(k∗X)

p(X|ki−1
X )p(ki−1

X )

)
3. Accept the candidate draw by setting ki

X = k∗
X with probability αi

kX
.

Otherwise set ki
X = ki−1

X .

4. Calculate the average acceptance ratio ᾱkX . Adjust the increment

standard deviation σkX every qth iteration according to σNew
kX

= σkX

ᾱkX

α∗ ,

where α∗ denotes the target average acceptance ratio. Do not adjust

after the iteration i exceeds the burn-in threshold I.

In practice, we set α∗ = .5 and the burn-in threshold I equal to one-

half of the total repetition number.
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B The algorithm for a fixed-coefficient VAR

Fixed coefficient VARs are often estimated using the Gibbs sampler (see

Koop & Korobilis (2010)). A fixed coefficient Gaussian VAR is of the form:

yt = µ+
L∑

j=1

Ajyt−j + et (25)

with et ∼iid N(0,Σ).

If we define β ≡ [µ′ vec(A1)
′ . . . vec(AL)

′]′, the most commonly used Gibbs

sampler assumes that

β ∼ N(β(ϕ), Vβ(ϕ)) (26)

Σ ∼ IW (S, df) (27)

where we have made the dependence of the prior for β on hyperparame-

ters ϕ explicit. Note that the priors on β and Σ are assumed independent

and are thus not natural conjugate priors. We could also introduce addi-

tional hyperparameters for the prior on Σ, but since popular priors such

as the Minnesota prior focus on β, we will do the same here. A Gibbs

sampler for this model consists of the following three steps:

1. Draw β|Σ, ϕ

2. Draw Σ|β, ϕ - since this step conditions on β, it simplifies to draw-

ing Σ conditional only on β since ϕ does not carry any additional

information about Σ once we condition on β

3. Draw ϕ|β,Σ. As discussed in this paper, this simplifies to drawing

ϕ|β

32



The first two steps of the Gibbs sampler are standard in the literature

(see again Koop & Korobilis (2010)), except that we have to possibly change

ϕ at every iteration when drawing β. The last step is described in detail

in this paper.

C The complete algorithm

In this section, we describe the complete algorithm to estimate the TVP-

VAR model with stochastic volatility described in the main text. We mod-

ify the algorithm described in Del Negro & Primiceri (2015) to include

additional steps for the drawing of the hyperparameters.

The algorithm proceeds as follows21

1. Draw ΣT from p(ΣT |yT , θT ,ΛT , V, sT , kQ, kS, kW ). This step requires

us to generate draws from a nonlinear state space system. We use

the approach by Kim et al. (1998) to approximate draws from the de-

sired distribution. For a correct posterior sampling of the stochastic

volatilities, we follow the corrigendum in Del Negro and Primiceri

(2013) and the modified steps therein.

2. Draw θT from p(θT |yT ,ΛT ,ΣT , V, kQ, kS, kW ). Conditional on all other

parameter blocks, equations (4) and (5) from the main text form a

linear Gaussian state space system. This step can be carried out

using the simulation smoother detailed in Carter & Kohn (1994).

3. Draw ΛT from p(ΛT |yT , θT ,ΣT , V, kQ, kS, kW ). Again, we draw these

covariance states based on the simulation smoother of the previ-

ous step, exploiting our assumption that the covariance matrix of
21A superscript T denotes a sample of the relevant variable from t = 1 to T .
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the innovations in the law of motion for the λ coefficients is block

diagonal. This assumption follows Primiceri (2005), where further

details on this step can be found.

4. Draw W , Q and Sj. Given our distributional assumptions, these

conditional posteriors of the time-invariant variances follow inverse-

Wishart distributions (which are functions of kQ, kS, kW ).

5. Draw sT , the sequence of indicators for the mixture of normals needed

for the Kim et al. (1998) stochastic volatility algorithm.

6. Draw kQ, kS, kW . Each of these scaling parameters is drawn via the

algorithm described in section B of the appendix.
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