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Abstract

In this paper, we study the conditions under which termination is a useful incentive device
in the canonical dynamic principal-agent moral hazard model of Sannikov (2008). We find
that temporary suspension of the agent after poor performance dominates termination if the
principal’s outside option is low and the agent’s outside option is moderate. In suspension,
the agent performs tasks free of moral hazard and receives no compensation, which rebuilds
his “skin in the game” and allows for incentives to be restored without terminating. If
the agent’s outside option is low, suspension is ineffective because it rebuilds the agent’s
skin in the game too slowly. If the agent’s outside option is high, the profitability of the
relationship with the agent is low, so the principal prefers to terminate rather than extend
the relationship through temporary suspension. Because the optimal use of suspension
versus termination after poor performance can be highly sensitive to the principal’s and
agent’s outside options, similar jobs can have vastly different average job durations, purely
for incentive reasons.

Keywords: incentives, dynamic moral hazard, termination, suspension, slow reflection

JEL codes: D82, D86, M52, C61

1 Introduction

A clear lesson obtained in the literature on agency problems is that, in order to respond
to incentives, the agent must maintain a stake in the relationship, or “skin in the game.”
Incentives are provided by exposing the agent’s stake to performance risk, where the agent’s
stake is increased if performance is strong and decreased if performance is weak. It is much
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less clear, however, what should be done when the agent’s stake runs out, i.e., when a streak of
poor performance reduces the agent’s stake to his outside option, his participation constraint
becomes binding, and his stake cannot be reduced any further. Many standard agency models,
including the canonical dynamic principal-agent model of Sannikov (2008), assume that the
relationship is at that point terminated.

In this paper, we show that this assumption is restrictive. In many cases, temporary suspension
of the agent is preferable to terminating the relationship. The trade-off between terminating
and suspending the agent after poor performance depends on the outside options of the prin-
cipal/firm and the agent. Using the model of Sannikov (2008), we show that suspending the
agent when his stake in the relationship runs out is preferable to terminating if the firm’s
outside option is low and the agent’s outside option is moderate.

As defined in Zhu (2013), suspension is a contractual phase in which the agent receives no com-
pensation and exerts no effort, so no incentives are required. The desired effect of suspension is
a deterministic increase of the agent’s stake in the relationship, which allows for incentives to
be restored at the end of suspension without terminating. The agent’s stake in the relationship
is measured by his continuation value in the contract.! Suspension is feasible, i.e., achieves its
desired effect of increasing the agent’s stake, only if the agent’s flow of utility in suspension
is strictly lower than his continuation value in the contract. In particular, when the agent’s
stake in the relationship runs out, i.e., when his continuation value in the contract matches his
outside option, suspension is feasible only if the agent’s flow of utility in suspension is strictly
lower than his outside option.

In our model, the agent’s flow of utility when receiving no compensation and exerting no effort
is normalized to zero. When the agent’s stake in the relationship runs out, therefore, suspension
is feasible only if the agent’s outside option is strictly positive. If the agent’s outside option is
not positive, suspension does not restore the agent’s skin in the game, and, thus, termination
after poor performance is, trivially, optimal.

The agent’s positive outside option is a necessary condition for the optimality of suspension, but
it is not sufficient because both the benefit and the cost of using suspension decrease with the
level of the agent’s outside option. The benefit of using suspension rather than terminating is
the profitability of the relationship, which is restored as soon as suspension ends. A high agent
outside option reduces this benefit because the relationship is less profitable when the agent’s
participation constraint is tighter. The cost of using suspension rather than terminating is the
zero expected flow of output the firm receives during suspension (implied by the agent’s zero
effort and zero compensation), which is lower than the flow value of the firm’s outside option.
A high agent outside option reduces this cost by reducing the expected duration of suspension.
Indeed, suspension is shorter when the agent’s flow of utility in suspension (normalized to zero)
is farther below his continuation value (which during suspension is equal to his outside option).

If the agent’s outside option is very high, its impact on the benefit of using suspension is strong:
the agent’s participation constraint becomes so tight that the firm cannot match the agent’s
outside option without turning in a loss. In this case, clearly, suspension has no value as the
firm prefers to not offer a contract to the agent at all. If the agent’s outside option is positive
but low, its impact on the cost of suspension is strong. In particular, if the agent’s outside

!Precisely, it is the excess of the agent’s continuation value in the contract over his outside option.



option is zero, the flow of utility delivered to the agent in suspension exactly matches his
outside option, the duration of suspension becomes infinite, and suspension becomes useless.
Suspension, thus, is most valuable if the agent’s outside option is moderate, i.e., neither too
high nor too low.

Interestingly, since the benefit of a shorter suspension can outweigh the cost of a tighter
participation constraint, an optimal contract may terminate an agent with a low outside option
while suspending and retaining an otherwise identical agent whose outside option is higher.
Thus, an increase in an agent’s outside option can make it less likely that the agent will leave
the firm.

In sum, an optimal contract will suspend the agent after poor performance instead of termi-
nating if the agent’s outside option is moderate and the firm’s outside option is sufficiently
low, as a lower firm outside option reduces the opportunity cost of suspending. In particular,
if the firm’s outside option is zero, suspension has no opportunity cost, which makes suspen-
sion preferable to termination in all cases, as long as suspension is feasible and the overall
relationship is profitable.

With suspension after poor performance dominating termination, the optimal contract changes
qualitatively: the contract’s only exit is the standard retirement of the agent after strong per-
formance, when the agent’s continuation value reaches an endogenous retirement threshold.?
As an implication, the model predicts that observed contract durations should be discretely
longer when suspension is optimal. In fact, a small change in either the firm or the agent’s
outside option can alter the optimal choice of termination versus suspension after poor perfor-
mance. In these cases, such a small change will trigger a large change in the expected duration
of the contract. Thus, our standard moral hazard model shows that two similar jobs can have
vastly different average job durations.

To relate the conditions for the optimal use of termination and suspension to external markets
faced by the firm and the agent, it is easy to embed our optimal contracting problem in a
simple search and matching framework, where the outside options in the current match are
determined as the values the firm and the agent can obtain from a new match less search
costs.> Our model predicts that termination of the agent after poor performance should be
observed in jobs in which either the firm or the agent can rematch easily, while suspension
should be observed in jobs in which the firm faces relatively high cost to replace the agent.

The model’s predictions provide novel testable implications: suspensions should be observed in
mid-level jobs, while terminations in low- and top-level jobs. Indeed, these implications follow
if firms face relatively low costs to replace workers in low-level jobs, while workers in top-level
jobs have high outside options.* Mid-level, skilled jobs fit the conditions for the optimality of

2Clearly, our model isolates moral hazard. In reality, terminations after poor performance can be observed
for reasons other than incentives. E.g., terminations can be due to learning of the agent’s type or in response
to a persistent negative shock to the quality of the match between the firm and the agent. Following Mortensen
and Pissarides (1994), such shocks have been explored in models with long-term contracts in, e.g., Lamadon
(2016) and Lise et al. (2016).

3See Remark 1 in Section 2.

*Jenter and Lewellen (2020) argue that performance-induced CEO turnover is common. At the same time,
following Jensen and Murphy (1990), the empirical literature on executive compensation, surveyed in Edmans
and Gabaix (2016), finds that the threat of termination is not a very significant source of managerial incentives,



suspension rather than termination if firms face substantial costs in finding suitable replace-
ment and the workers’ outside options are positive but moderate. Correspondingly, our model
implies that higher average job durations should be observed in mid-level jobs than in either
low- or top-level jobs.

In our model, suspension can be implemented only with the action of zero effort, which gives
suspension a narrow meaning of doing nothing and receiving no compensation. More broadly,
however, suspension can be implemented by a) switching the agent’s job assignment to any task
that is free of moral hazard and b) underpaying him.> Underpaying the agent in suspension
allows his stake in the relationship, or continuation value, to increase. In fact, the more severely
the agent is underpaid, the faster his stake in the relationship grows and, hence, the sooner
he can exit suspension, which makes suspension more effective. Similarly, if multiple tasks
free of moral hazard can be assigned to the agent, the more punishing the agent’s assignment
during suspension, the more effective suspension becomes. For example, if the firm could assign
“busy work” to the agent (a task free of moral hazard that may be totally unproductive but is
costly for the agent to perform), busy work would be assigned in suspension because such an
assignment would reduce the necessary duration of suspension, thus making suspension more
effective. Furthermore, if busy work is more tedious to the agent than regular work, the agent
can be underpaid in suspension without a nominal decrease in compensation.

We characterize an optimal contract assuming commitment to no-renegotiation. When we relax
this assumption, the optimal contact can take two forms. If the firm’s outside option is positive,
the standard renegotiation-proof contract of DeMarzo and Sannikov (2006) with stochastic
termination at an endogenous lower bound is optimal. If the firm’s outside option is zero, for
example due to vacancy creation costs in a competitive labor market, an optimal renegotiation-
proof contract suspends the agent at an endogenous lower bound without terminating.

Relation to the literature In two-period principal-agent moral hazard models, the opti-
mality of endogenous contract termination after poor performance is studied in Stiglitz and
Weiss (1983) and Spear and Wang (2005). These two-period settings, however, are too simple
to capture the benefits of a temporary suspension and a subsequent resumption of effort, which
is an important alternative to termination in our model.

Reflection of the agent’s continuation value process off a lower bound implied by the agent’s
participation constraint is optimal in many dynamic risk-sharing problems with private in-
formation, as shown in, e.g., Atkeson and Lucas (1995), Phelan (1995), Wang (1995), Fong
and Li (2017), and Zilberman et al. (2019). These studies, however, do not consider termina-
tions. Other studies, by contrast, make assumptions that eliminate suspension. For example,
Clementi and Hopenhayn (2006) assumes that the agent’s outside option is zero. Szydlowski
(2019) assumes that the firm’s outside option is sufficiently high. DeMarzo and Sannikov (2006)
and He (2009) assume that the agent’s shirking action is extremely costly for the firm. We al-
low for both suspension and termination and study the conditions under which one dominates
the other.

In the model of DeMarzo and Sannikov (2006), Zhu (2013) relaxes the assumption that the
agent’s shirking action is extremely costly to the principal. He considers a class of models

consistent with high outside options of CEOs.
SFor example, a professor may be assigned a high teaching load after a period of low output in research.



parametrized by how costly the shirking action is to the principal and how much utility it
provides to the agent, and studies the conditions under which asking the agent to shirk is
optimal. He finds that occasional shirking is a part of an optimal contract if the agent’s shirking
action is not too costly to the principal and gives either a sufficiently high or a sufficiently low
flow of utility to the agent. Suspension of the agent occurs in an optimal contract in the
latter case. In this paper, we follow Zhu (2013) by using two HJB component equations to
construct an optimal contract: one equation restricted to maintain positive volatility in the
agent’s continuation value process, and one restricted to keep this volatility at zero. In our
model, however, shirking always provides a zero flow payoff to the principal and a zero flow
of utility to the agent. Under this assumption on the shirking action, we investigate how the
trade-off between termination and suspension depends on the outside options of the principal
and the agent. We find that the agent’s outside option has a nonmonotonic impact on the
value of suspension. The optimal timing of suspension is different in our model from that in
Zhu (2013). In our model, it is never optimal to suspend the agent before his participation
constraint binds. In Zhu (2013), the principal is more patient than the agent, and it is typically
optimal to suspend the agent before his participation constraint binds.®

Piskorski and Westerfield (2016) introduce a costly stochastic monitoring technology to the
model of DeMarzo and Sannikov (2006) and study how incentives are optimally provided by a
mix of monitoring and standard pay-for-performance. Monitoring can detect shirking, and the
agent faces a stigma (a continuation value below his outside option) if his shirking is detected.
In the optimal contract, termination does not occur if monitoring is inexpensive, the stigma
is sufficiently high, and the principal’s outside option is sufficiently low. The alternative to
termination, however, is not suspension but rather strong monitoring of the agent, where the
probability of detection of shirking is high enough to allow for pay-for-performance incentives
to be reduced to zero. Termination is still necessary in Piskorski and Westerfield (2016) if
monitoring is sufficiently costly or the stigma attached to detected shirking is low. In our
model, despite monitoring being very costly (i.e., not possible) and no stigma, termination is
not necessary because the agent can be suspended. Suspension does not require monitoring
because incentives are withdrawn in suspension. In Piskorski and Westerfield (2016), incentives
remain switched on at all times and, thus, strong monitoring is necessary in any contract that
does not terminate after poor performance.

Termination after poor performance is necessary in many optimal contracting environments
with additional frictions. This is the case, e.g., in MacLeod and Malcomson (1989), where
the agent’s performance is not contractible, in Levin (2003), Fuchs (2007), and Zhu (2018),
where the agent’s performance can only be subjectively evaluated by the principal, or in Halac
(2012), where the principal’s outside options are private information.

Organization Section 2 lays out the model. Section 3 considers a baseline case in which
the firm’s outside option is zero. Section 4 considers the general case. Section 5 considers
renegotiation-proof contracts. Section 6 concludes. The Appendix contains the proofs.

In particular, the super-contact condition between the two component HJB solutions does not hold in our
model. In Zhu (2013), the super-contact condition typically holds at an interior point, above the agent’s outside
option, which determines the point of suspension in his model.



2 A dynamic principal-agent problem with moral hazard

Consider the canonical dynamic moral hazard principal-agent problem formulated in Sannikov
(2008). A principal/firm owns a project that can produce a stream of output if operated by
an agent. The firm can hire an agent who has an outside option with value B. While under
contract to operate the project, the agent takes private actions that influence the project’s
output. In particular, cumulative output produced up to date t, X;, follows

dXt = A?dt + O'dZt,

where A? € A is the agent’s action (effort), Z; is a standard Brownian motion on (2, F, P),
and o > 0 is a constant. We assume that the set of feasible actions A is a compact interval
[0, A] for some A > 0.7

The firm’s outside option is its project’s residual value R > 0, which the firm collects when the
agent is terminated (i.e., fired) or retired.® If the agent is terminated, he collects his outside
option B. Let 73, be a stopping time denoting the time of the agent’s termination. If the agent
is retired, the firm delivers to him some retirement value W, > B Let Tgp be a stopping
time denoting the time of the agent’s retirement. We assume a retired agent does not collect
the outside option value B.10

Remark 1 One possible interpretation of B and R comes from a simple search and marching
environment similar to Pissarides (1985) and Mortensen and Pissarides (1994). In that en-
vironment, B represents the agent’s value of unemployment and job search, and R represents
the firm’s value of searching for a new agent. Let Wy denote the agent’s value at the onset of a
contract and V. (Wy) the corresponding profit for the firm. In reduced form, search frictions can
be thought of as driving a wedge between B and Wy for the agent, and between R and V(W)
for the firm. Let the agent’s and the firm’s search costs be denoted by, respectively, ko, and
kg. Then, the outside option values B and R are determined, jointly with Wy and the value
function V', as solutions to

B=(1-ka)Wy and R=(1-ks)V(Wy). (1)
A contract specifies stopping times 74, and 74,, the agent’s retirement value Wy,, and a pair

of progressively measurable processes {(Ct, A;); 0 < ¢t < min{r,, 74} }, where A; is the action
recommended for the agent to take at t, and Cy is his compensation. At each t < min{r,, 7gp},

"Our analysis can be extended to allow A to be an arbitrary compact subset of R.

8The residual value R could be coming from liquidation or from replacement of the agent with a new one
after incurring some search costs, as in Remark 1. We assume the firm has the option to not hire an agent and
has free disposal of the project, i.e., R is nonnegative.

Tt is without loss of generality to restrict attention to contracts in which Wy, is constant. If we allow Wy,
to be an arbitrary adapted process, we can show, similar to Sannikov (2008), that it is optimal to promise the
same Wy, in all histories in which the agent is retired.

10The alternative assumption would not change the trade-off between termination and suspension at B, as
captured by condition (21). In fact, it would make this condition easier to satisfy, making suspension dominate
termination on a larger set of cases. In the framework of Remark 1, our assumption means a retired agent does
not rejoin the labor market, i.e., does not search for a new match.



the agent chooses privately his action Af € A to maximize his utility. A contract is incentive
compatible if A} = Ay at all ¢, i.e., the actual action chosen by the agent is that recommended
by the contract.

The agent’s expected value from an incentive compatible contract is
min{7n,7gp } - - o
E|r /0 e (u(Ch) — h(AD) dE+ sy, cr, 1€ B + Ls, crge ™ Wop |

where » > 0. The agent’s utility function u : Ry — R4 has a continuous second derivative
with v/ > 0, u” < 0, u(0) = 0, lim.—c u(c) = 00, lim.0u'(c) = 0o, and lim._, u'(c) = 0.
The function h : A — R, represents the agent’s disutility from effort. We assume that its
second derivative h” is continuous, A’ > 0, b’ > 0, h(0) = 0, and lim, 0 h'(a) =: v > 0.

More generally, for any ¢ < min{7,, 74}, an incentive compatible contract defines the agent’s
continuation value process as

min{7¢n,7gp }
W, = E, [7“/ e T(s—t) (w(Cy) — h(Ay)) ds + 1{Tm<Tgp}e—r(Tm—t)B + 1{rgp<rm}€_r(Tgp_t)ng )
t

A contract satisfies the agent’s participation constraint if
Wy > B atallt>0. (2)

The retirement value Wy, > 0 is (optimally) delivered to the agent by constant compensation,
cgp > 0, at all t > 74, where ¢, satisfies

o
Wyp = 'r/ e "u(cgp)dt = u(cgp).
0
The firm’s profit from delivering to the agent the retirement value Wy, > 0, therefore, is
R+ Fy(Wyp), where
Fo(Wep) = —u™ (Wyp) = —cgp < 0. (3)

The firm’s ex ante expected profit from an incentive compatible contract is
min{7¢n,7gp }
E T/ e_rt(At — Cy)dt + 1{7_m<7.gp}6_r7mR + 1{Tgp<7_tn}€_7'7—gp (R+ Fo(Wgp))
0

An optimal contract maximizes the firm’s ex ante expected profit subject to incentive com-
patibility and the agent’s participation constraint (2). Note that a degenerate contract with
Wy = B and 73, = 0 satisfies these constraints, i.e., the firm has the option to not hire the
agent and collect the project’s residual value R immediately at ¢t = 0.

2.1 Recursive formulation of the contracting problem

Outside of Section 5, where we discuss renegotiation-proof contracts with stochastic termina-
tion, it is without loss of generality in our model to exclude jumps in the agent’s continuation



value at termination or retirement. Thus, we restrict attention to termination policies such
that 74, < oo implies W7, = B and retirement policies such that 74, < oo implies W = = W,.

Following Sannikov (2008), we will use the agent’s continuation value W; as the state variable
with a diffusion representation at all t < min{r,, 7gp}:

dW; = ’I“(Wt — U(Ct) + h(At))dt + Tn(dXt — Atdt), (4)

where dX; — A;dt is the agent’s performance relative to the benchmark A;dt, and {Y;;0 <t <
min{7y,, 7gp}} is a progressively measurable performance-sensitivity process. ! It is a standard
result that a contract is incentive compatible if

A; € argmax{Y;a — h(a)} (5)

acA

at all t < min{7,,7}. Note that this condition implies that action A; = 0 is incentive
compatible if and only if ¥; < 49, 4¢ € (0, A) is incentive compatible if and only if ¥; =
h'(A¢) > 0, and A; = A is incentive compatible if and only if ¥; > h/(A).

Using the state variable W}, Sannikov (2008) has expressed termination and retirement policies
as first passage times of W} to, respectively, B and Wy,. While focusing on 74, = min{t : W} =
Wyp} for retirement policy is without loss of generality, focusing on 74, = min{t : W; = B} is.
In fact, we will verify that for a generic set of values of B and R, 74, = 0o is optimal, i.e., the
agent is never terminated.

For given 74, and 74,, standard dynamic programming arguments imply the existence of a
concave value function V' : [B,00) — R, which represents the firm’s continuation profit under
an optimal contract at all t < min{r,, 7gp}. This V satisfies the following HJB equation:

V(W) = czcﬁiﬁ,y{a —c+ V(W) (Wi — u(c) + h(a)) + %V”(Wt)mQYz}, (6)

where controls a and Y jointly satisfy the incentive compatibility constraint (5).!2

To find an optimal contract, we follow a standard three-step approach. First, we solve the
HJB equation (6) to obtain a candidate, v, for the value function V. In doing so, we impose
appropriate boundary conditions at the agent’s participation and retirement thresholds. In
particular, since terminating the agent is an option when W = B, v(B) > R. Since retiring the
agent is always an option, v(W) > R+ Fy(W) for all W. Second, from the candidate solution v,
we construct a contract using the policy functions ¢(-), a(+), and Y (-) that attain the solution v
in the HJB equation (6). In particular, the agent’s continuation value process associated with
the candidate solution v is given as a (weak) solution to the stochastic differential equation

AW, = 1 (W; — u(c(Wy)) + h(a(Wy))) dt + rY (Wy) (dX; — a(W;)dt) (7)

for 0 < t < min{r,, 74p}, with some fixed initial value Wy € [B, Wg,]. Third, we verify that
this contract is optimal, i.e., v(Wy) = V(W) for all Wy € [B, Wy).

"Tn Section 5, we allow for a jump in W; at termination and modify the representation (4) accordingly.
12Note this HJB is simplified by dividing through by r.



2.2 High- and low-action ODEs

Following the approaches of Sannikov (2008) and Zhu (2013), it will be useful for us to write
the HJB equation (6) as follows

V) = max{_max o=+ VOV = u(e) + hla)) + 3V (W) (W)}, (9

masc{ —c + V/(W)(W — u(c))} }. ()

Here, we are writing out separately the option of using high volatility ¥ > g, in line (8),
and the option of using low volatility Y € [0,70), in line (9). The outside maximization over
these two options makes this formulation equivalent to (6). Furthermore, note that in (8) we
have used the incentive compatibility constraint (5) to substitute Y with h'(a) > ~. Similarly,
in (9) we have used the fact that incentive compatibility requires a = 0 when Y < 7y, and,
further, that, with a concave V, zero volatility Y = 0 dominates any volatility Y € (0,7o).'3

Following Zhu (2013), we will study the two options in (8) and (9) as two separate ordinary dif-
ferential equations (ODESs), whose solutions, denoted respectively as F' and L, will be combined
to derive an optimal contract:

FW) = CZ%I%A{OL —c+ F'(W)(W — u(c) + h(a)) + %F"(W)rag(h’(a))Q}, (10)
L(w) = rggg{—c + L'(W)(W = u(e))}- (11)

The first ODE, (10), is exactly the equation studied in Sannikov (2008). Contracts derived
from solutions to this equation, due to the restriction Y = h'(a) > vy > 0 have strictly positive
volatility of W; at all ¢ < min{7,, 7, }.** Although it could be natural to call (10) positive-
volatility ODE, in order to emphasize the analogy with Zhu (2013), we will refer to (10) as the
high-action ODE.

The second ODE, (11), forces the volatility Y to be zero and uses the no-effort action a = 0
at all times. We will call this ODE low-action ODE. The advantage of having ¥ = 0 is that
along any solution to the low-action ODE, the dynamics of W; are deterministic, i.e., W; is not
sensitive to output. This property is used in Section 3.2, where we construct the suspension
phase of the contract.

3 Termination versus suspension with R =0

To examine the optimal use of termination and suspension after poor performance, we start
with a special case in which the project has no residual value, and, thus, the firm’s outside

13Indeed, volatility Y € (0,70) is inefficient, as it does not induce the agent to exert any effort but is costly
to the firm because V" < 0.

Note that action a = 0 is allowed in (10) but only with positive volatility Y = h’(0) = 7o > 0. The pair
(a,Y) = (0,7), although incentive compatible, is never used in the optimal contract. Instead, Lemma A.3
in the Appendix implies that action a = 0 is used only with volatility Y = 0, when the optimal contract is
determined by a solution to the other component ODE, (11). The pair (a,Y) = (0,70) is allowed in (10) merely
for technical reasons.



option is zero. This case is important for two reasons. First, it is consistent with equilibrium
in models with search frictions, e.g., Pissarides (1985) and Mortensen and Pissarides (1994),
where vacancy creation costs and competition from other firms reduce to zero the ex ante
value of creating a new vacancy. Second, it is instructive to examine the optimal provision of
incentives via termination or suspension in isolation from the firm’s concern for delaying the
receipt of R > 0, which we examine in the general case in Section 4.

In this section, thus, we fix R = 0 and allow the agent’s outside option B to be any number,
including negative.'® Clearly, if the agent’s outside option B is sufficiently high, the relationship
will not form because the productivity of the project is not sufficient to meet the agent’s outside
option and turn in a profit. We therefore restrict attention to B < B, where B is a loose upper
bound defined in Appendix A.1.

In Section 3.1, we follow Sannikov (2008) in assuming termination at B. In Section 3.2, we
show that this assumption is restrictive: in every profitable relationship, suspension of the
agent after poor performance dominates termination so long as suspension is feasible. In
Section 3.3, we characterize the level of premium afforded by suspending the agent at B rather
than terminating. Section 3.4 gives a formal statement and verification of the optimal contract.
Section 3.5 discusses the dynamics of the reflection of the agent’s continuation process at B
under the optimal contract.

3.1 Optimal contract with termination

In this subsection, we follow Sannikov (2008) in assuming termination after poor performance,
i.e., when the agent’s continuation value has reached B. The optimal contract with termination
at B is constructed from a solution F' to high-action ODE (10) obtained with two specific
boundary conditions. The first boundary condition is a value-matching condition at B. Since
the contract terminates at B and the residual value of the project is zero, we have

F(B) =0. (12)

The second condition is a free-boundary condition for retirement of the agent. It requires that
F(W) > Fy(W) for all W > B, and

F(Wyp) = Fo(Wgp) and F/(ng) = Fé(ng) (13)

for some Wy, > B. Let us denote the solution to the high-action ODE (10) with boundary
conditions (12) and (13) by F' and refer to it as the firm’s profit function with termination at
B.

Lemma 1 For each B < B, there exists a unique solution F~t0 the high-action ODE (10) with
boundary conditions (12) and (13). The initial slope of F, F'(B), is a continuous function of

5Negative B can arise if being fired carries a stigma (negative utility). Also, if minimum wage laws impose
a strictly positive lower bound on compensation, being fired can make the agent worse off than earning the
minimum wage and providing zero effort.

10



B. There exists a unique B € (0, B) such that

R >0 for B< B,
F'(B){ =0 for B= B,
<0 for B> B.

Proof The first two statements follow by setting R = 0 in Lemma 2. The last statement
follows by setting R = 0 in part 1 of Proposition 2. =

For B > B, the termination profit function F' is decreasing. In these cases, despite R = 0,
the firm does not offer a contract to the agent because the agent is too expensive to hire, i.e.,
the project the firm owns is not productive enough to deliver at least B to the agent and a
positive profit to the firm.'6

For B < B, the termination profit function F is first increasing then decreasing, i.e., it has
an interior peak.'” The optimal contract with termination is constructed from the policy
functions ¢, a,Y that attain F in the high-action ODE (10). The agent’s promised value
process starts at the peak of F, i.e., Wy = argmaxyys g F(W) > B, and evolves according to
(7). In particular, the agent’s effort A, = a(W;) is strictly positive and, correspondingly, the
volatility of the agent’s continuation value is strictly positive (bounded below by o > 0) at all
t < min{7y,, 7gp}. The support of the state variable W; is [B, Wy,]. When W; hits either end
of the interval [B, Wy,], the contract ends, and the firm collects the residual value, R, which
in this section is assumed to be zero. The agent is fired or retired, depending on which end
of the interval was reached. Under this contract, thus, we have 7, = min{t : W; = B} and
Tgp = min{t : Wy = Wy}

Relative to the firm’s first-best profit levels, which are attainable in the absence of moral
hazard, termination of the relationship when W; = B is more costly than it is when W; = Wy,
because at B the agent is owed little.!® Therefore, it is intuitive that the firm should want
to avoid terminating at B and should prefer a contract that preserves the relationship at that
point. Indeed, we show in the next section that a fully optimal contract never terminates at B
so long as a temporary suspension can be used to lift the agent’s continuation value above B.

3.2 Optimal contract with suspension

We now relax the assumption that the agent is terminated at B. We discuss how, for any
B € (0, B], a low-action ODE solution can be used to obtain a boundary condition for the
high-action ODE solution that dominates the terminating boundary condition (12). As in
Zhu (2013), the contract obtained from this superior boundary condition suspends the agent
temporarily at B, without terminating. In suspension, the agent is asked for no effort and
given no compensation. Our discussion here is informal with the objective of providing a guess
for the optimal contract, which we formally verify in Theorem 1.

It is easy to verify that for any constant o > 0, the ray out of the origin,

L(W) = aW, (14)

16We have B < B because the loose upper bound B derived in Appendix A.1 assumes no moral hazard.
"Figure 1 shows the solution I for one B < B. The retirement point Wy, is not shown.
181t is easy to verify that the gap between the firm’s first-best profit function and Fy is decreasing in W.
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is a solution to the low-action ODE (11).!? Because the policies that achieve L are a = Y =
¢ = 0, we refer to the contract that implements L as suspension: the agent is not asked to
work and is not paid any compensation. Substituting a =Y = ¢ = 0 into (7) shows that the
agent’s continuation value in suspension satisfies

th = ’I“Wtdt. (15)

With B > 0, constraint (2) implies W; > 0 at all £. Thus, the dynamics of W; in suspension
are very simple: W, grows exponentially at the rate r. Intuitively, in the absence of volatility,
the firm’s obligation toward the agent is akin to a bond with the required rate of return of r.
Since no payments are made to the agent in suspension, the balance owed to the agent must
be increased at the rate r.

Next, we show how a low-action ODE solution in (14) can be used to construct an optimal
contract, in which the agent is suspended rather than terminated at the lower bound B €
(0, B]. Figure 1 depicts the solution curve F representing the firm’s profit function assuming
termination of the agent at B, and a low-action ODE solution, labeled as L, that is tangent
to F at some W* > B. Since their levels and slopes are the same at W?¥, the two solutions
paste smoothly at that point. Consider now a contract (C, A) constructed by using the optimal
controls from the low-action ODE solution L at all W € [B, W*] and the optimal controls from
the high-action ODE solution F at all W € (W, W,,].2° This contract delivers to the firm
profit L(W) if W € [B,W?] and F(W) if W € (W*, W,,]. Because L(W) > F(W) for all
W € [B,W?#), the new contract constitutes a Pareto improvement over the optimal contract
that terminates at B.

By (15), the process W; implied by this contract is deterministic in the interval [B, W*]. If
initiated at some Wy < W¥, the agent’s continuation value W; grows exponentially until it
moves out of [B,W?*]. Once W; leaves [B,W?), it never drops below W* again because it
grows deterministically, as in (15), in every future visit to W#*. This generates reflection off
W+ whenever W; reaches W* from above.

Note also in Figure 1 that the second derivatives of L and F' are not equal at W*.21 With W* >
B, the contract obtained by splicing L and F at W* is not optimal, as better combinations of
low- and high-action ODE solutions exist. One such combination is provided in Figure 1 with
ODE solutions L; and Fj spliced at W}, where B < W7 < W#. The low-action solution L is
steeper than l~l, and the high-action solution F} is everywhere above F.

The intuition for why a lower splicing point W*¢ allows the firm to attain a higher profit curve
follows from the fact that the (endogenous) support [W?* Wg,] for the state variable W; is
larger when W* is lower.?? Clearly, any feasible contract (C, A) remains feasible if the support
for W; is enlarged, so the firm cannot do worse with a lower W¥. In fact, the firm can do
strictly better. At W? the contract must ask for zero effort, and at Wy, the project ends.
With more distance between W?* and Wy, the contract can sustain positive effort for longer

YIndeed, with L'(W) = a > 0, the maximum in (11) is attained by ¢ = 0. Thus, the right side of (11) reduces
to alV.

20The stopping times associated with this contract are 7, = oo and 7,, = min{t : Wy = W, }.

21That is, L and F paste smoothly at W* but violate the so-called super-contact condition.

221y, also depends on W*. Tt is higher for lower W*.
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Figure 1: Suspension dominates termination at B € (0, B]. The high-action ODE solution F represents
the optimal contract with termination at B. The low-action ODE solution Lo is flatter than F' at (B,0)
showing that an improvement on F is possible. The low-action solution L improves on F by splicing
at W?. Solutions L; and F; move the splicing point closer to B. The optimal contract is represented
by L* spliced with F* at (B, y*(B)). In this example, u(c) = /¢, h(a) = 0.5a% + 0.4a, r = 0.1, 0 = 1,
and B = 0.1.

and/or ask for higher levels of effort because the volatility of W, necessary to induce high effort
does not cause W; to hit W* or Wy, as quickly. Equivalently, we can say that a lower W?*
allows suspension to be postponed, as W?¢ is reached later, which makes suspension less costly
to implement ex ante.

Consistent with this intuition, the optimal contract is obtained when the splicing point W?*
is set as low as possible, i.e., when W* coincides with the lower bound B.?? In this case,
the splicing point cannot be moved further to the left, i.e., the endogenous support [W?*, W]
cannot be made any larger or, equivalently, suspension cannot be delayed any further. In
Figure 1, this solution is denoted by L* spliced with F* at the point (B, y*(B)).

238plicing points W* < B are inconsistent with the agent’s participation constraint (2).
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3.3 Finding the maximum boundary premium y*

In the previous section, we showed that an optimal contract with suspension is generated by
splicing a low-action ODE solution and a high-action ODE solution at W* = B. In this section,
we describe a procedure for finding the profit level at which the two ODE solutions are spliced,

y*(B).

Let us fix B € (0, B] and take some y > 0. The solution L = aW to the low-action ODE that
goes through the point (B,y) has slope a = %. We look for y such that the high-action ODE
solution F' that splices smoothly with L at the point (B, y) also satisfies the optimal retirement
condition (13). The smooth splicing conditions at the point (B,y) are

F(B)=L(B)=y and F(B)=L'(B)= % (16)
We search for the splicing level y as follows. For each y > 0, the initial condition F(B) =y
and the optimal retirement condition (13) pin down a unique solution F' to the high-action
ODE by the forward-shooting argument of Sannikov (2008). Let us denote the initial slope of
this solution, F'(B), by (B, y).2* We look for y at which the second condition in (16) is met
as well, i.e., such y that z(B,y) = 4.

Proposition 1 (Positive boundary premium from suspension) For each B € (0, B], i)
x(B,y) is continuous and strictly decreasing in y, and ii) there exists a unique y* > 0 such
that .
* Y
B = .
If B= B, then y* =0. For B € (0,B), y* > 0.
Proof Follows by setting R = 0 in Proposition 2. =

If y = 0, then the low-action solution L through the point (B, y) is flatter at that point than
the high-action solution F' = F because the slope of this L is zero and Lemma 1 implies
x(B,0) > 0 for all B < B, with a strict inequality for all B < B.?> As we increase y, the
low-action solution L through the point (B,y) becomes steeper, i.e., % increases, and the
optimal retirement condition (13) forces the high-action solution F' through the point (B, y) to
become flatter, i.e., x(B,y) decreases. If y = Bx(B,0), then the low-action solution L through
the point (B,y) is steeper at (B,y) than the high-action solution F' satisfying the optimal
retirement condition (13).2% By continuity and monotonicity, the slopes of L and F are equal

at (B,y*) for some unique y* < Bx(B,0).%

We will denote this unique y* by y*(B) and the two solutions spliced at (B, y*(B)) by, respec-
tively, L* and F*. By Wy,(B), we will denote the optimal agent retirement threshold Wy,
pinned down by the solution F*. For each B € (0, B], we have F(B) = y*(B) > 0. Since

%Note that =(B,0) = F'(B).

25In Figure 1, this low-action solution is denoted by Lo.

26Indeed, if y = Bx(B,0), then ¥ = @ = z(B,0) > z(B,y), where the inequality follows from the strict
monotonicity of x in y.

2"Note that the case B = B is special in that x(B,0) = 0, so the two slopes are equal already at the point
(B,0), i.e., ¥* = 0 in this special case.
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termination at B yields F'(B) = 0, we refer to y*(B) as the boundary premium that suspension
generates over termination.

Proposition 1 does not apply to B < 0 or B > B. If B < 0, suspending the agent at B would
violate the agent’s participation constraint (2), as (15) implies that the agent’s continuation
value W; would move downward from B.?® At all B < 0, thus, suspension is infeasible, which
makes termination trivially optimal.?? If B > B, suspension moves the agent’s continuation
value upward, but doing so is not useful because hiring (or continuing a relationship with)
an agent whose continuation value exceeds B is not profitable for the firm. In sum, in any
profitable relationship, suspension dominates termination so long as suspension is feasible.

3.4 Optimal contract: formal statement and verification

Following Zhu (2013), we will define a function v : [B,00) — R by splicing at B the low-action
ODE solution L* with the high-action ODE solution F*. That is, let

L*(W) for W =B,

v(W) = { F*(W) for W > B. (17)

Theorem 1 (Verification) Suppose B € (0,B] and Wy € [B,Wy,(B)]. Then v(Wp) =
V(Wh), i.e., v is the firm’s value function in the contracting problem with the agent’s outside
option B and the initial value Wy. The optimal controls c,a,Y attaining v define an optimal
contract with Cy = ¢(Wy), Ay = a(Wy), and Y = Y (W), where {W;;0 <t < oo} is a weak
solution to (7), with stopping times Ty, = 00 and Tgp, = min{t : Wy = Wy, (B)}.

Proof Follows by setting R = 0 in Theorem 2. m

3.5 Reflective dynamics of the optimal contract

Similar to Zhu (2013), the suspension phase of the optimal contract generates an upward reflec-
tion of the agent’s continuation value process W; at the lower bound B. Indeed, in the optimal
contract of Theorem 1, policies ¢, a, and Y are taken from the low-action solution L* when
Wi = B, ie., ¢(B) = a(B) = Y(B) = 0. Thus, by (15), W; moves upward deterministically
(with no volatility) whenever W; = B. With sample paths of W; being continuous, W; can
never drop below B, i.e., (2) holds. Also, using W; = B on the right side of (15), we have
dW; = rBdt, i.e., the drift of W; at the lower bound B is stronger (more positive) when B is
higher.

Furthermore, since the high-action solution F* has Y/ (W) > vy > 0 for all W € (B, W,(B)),
the process W; is similar to sticky Brownian motion around its lower bound B, as in Zhu
(2013). After hitting B, W; moves out of B immediately but then returns to B frequently. As
a consequence of these frequent revisits, although each visit to B has zero duration, the total

288trictly so if B < 0. If B = 0, W; would stay at B forever.
29 As discussed in Section 3.2, suspending the agent before W, reaches B is never optimal in our model. By
contrast, such early suspensions are optimal in Zhu (2013), where the principal is more patient than the agent.
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expected amount of time that W; spends at B is strictly positive. This kind of reflection is
known as slow reflection in the literature.3°

4 Termination versus suspension with positive residual value

In this section, we study how the project’s residual value, R, affects the use of termination and
suspension in an optimal contract. The project’s residual value could be coming from replacing
the agent and continuing the project’s operation, as in Sannikov (2008), or from liquidating
the project, as in DeMarzo and Sannikov (2006) or Zhu (2013).

The residual value R is the opportunity cost of suspension, as the firm passes on the option
to collect R whenever it chooses to suspend the agent instead of terminating. With higher R,
naturally, the firm is more willing to terminate or retire the agent. The agent’s outside option
B, however, has a nonmonotonic impact on the trade-off between termination and suspension.

In Section 4.2, we derive a condition that determines if, for a given B and R, suspending the
agent at B dominates the option to terminate the relationship and collect R. In Section 4.4, in
Proposition 2, we characterize the set of pairs (B, R) for which this condition is met. Section
4.6 illustrates the impact of B and R on the optimal contract using three numerical examples.
Sections 4.1, 4.3, and 4.5 are more technical, as they deal with, respectively, the boundary
conditions, the existence and classification of high-action ODE solutions, and verification of
the optimality of suspension.

Due to the firm’s free disposal of its project, we restrict attention to R > 0. On the high end,
we restrict attention to R that satisfy a loose upper bound given in equation (24) in Appendix
A.1 because the relationship will not form, i.e., the agent will not be hired, if R exceeds this
bound.

4.1 Boundary conditions for termination and suspension

To construct optimal contacts for various levels of the firm’s residual value R, we will use the
same approach as in Section 3, which combines solutions to the low- and high-action ODEs,
(10) and (11). The two ODEs are independent of R. In particular, the low-action ODE
solutions, given in (14), are unaffected by R. However, since the residual value R enhances
the firm’s profit at agent termination and retirement, the level of R matters for the boundary
conditions used with the high-action ODE at termination, retirement, and suspension.

Generalizing (12), the firm’s payoff upon terminating the agent at W = B is
F(B)=R. (18)

Generalizing (13), the agent’s retirement threshold, W, is determined by the requirement
F(W)> R+ Fy(W) for all W > B, and the smooth-pasting conditions

F(Wgp) = R+ Fo(Wgp) and F/(ng) = Fé(ng)- (19)

30See, e.g., Harrison and Lemoine (1981), Bou-Rabee and Holmes-Cerfon (2020).
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An optimal contract with termination at B, as in Section 3.1, is obtained from a unique high-
action solution satisfying (18) and (19). As before, we will denote this solution by F and refer
to it as the firm’s profit function with termination at B. As in Lemma 1, two cases are possible.
If the initial slope of this profit function, F'(B), is strictly positive, the optimal terminating
contract starts at Wy = argmaxy, F(W) > B and ends when the agent’s continuation value
exits the interval (B, Wy,). If the initial slope of F is not strictly positive, the firm does not
offer a contract to the agent but rather collects R immediately.

Similarly, generalizing (16), suspension of the agent at B > 0 requires smooth splicing between
high- and low-action ODE solutions at W = B and at some level R 4 y. The low-action ODE
solution L through the point (B, R + y) has slope %. The boundary conditions for smooth
splicing at that point, therefore, are

R+y

F(B)=L(B)=R+y and F/(B)=L(B)=-—%". (20)

4.2 Criterion for the optimal use of suspension

A critical test for whether suspension after poor agent performance dominates termination
comes from comparing the slopes of the low-action solution L and the termination profit
function F' at (B, R). If L is flatter than F at (B, R), we can find a positive boundary premium
y with which a high-action solution F' exists that satisfies both the optimal retirement condition
(19) and the condition for smooth splicing with L at the point (B, R + y), (20). This F' lies
above the termination profit function F and, hence, suspension of the agent at B dominates
termination. If L is steeper than F' at (B, R), however, no such F exists and, hence, termination
at B is optimal.

That the ranking of the slopes of L and F is critical for the use of suspension versus termination
at B can be seen directly from the following approximation. Suppose the agent’s suspension
has to last A units of time, where A is small but strictly positive. We want to see if the firm
can benefit from suspending instead of terminating when W; = B, i.e., if such a deviation from
F can yield higher profit at B than F(B) = R. From the law of motion (15), we know that the
agent’s continuation value at the end of suspension will be Wiy, = "W, = "2 B. The firm’s
profit at the end of suspension, thus, will be F (e"® B). Since the firm’s expected profit flow
is zero during suspension (no effort, no compensation), the profit at the start of suspension
is simply e~"2F(e" B), which to a first-order approximation is F'(B) + (F'(B)B — F(B))rA.
This profit dominates the value of termination at B, F(B), if and only if F'(B)B — F'(B) > 0,
i.e., B

S (B) _R

F'(B) > 5 =5 (21)
Since % is the slope of the low-action solution L passing through the point (B, R), the above
condition is equivalent to

F'(B) > L'(B),

i.c., suspension dominates termination if and only if L is flatter at (B, R) than F.



Condition (21), indeed, captures the cost and benefit of suspending the agent at B. In this
condition, R represents the flow opportunity cost of suspension.3! During suspension, the
firm’s profit flow is zero, i.e., less than R, which makes suspension costly. The total cost of
suspension depends on the magnitude of this flow cost and the duration of suspension. By
(15), the drift of W; at B is rB. The factor 4 on the right side of (21), thus, represents
the duration of suspension.?? Consequently, the right side of (21) represents the total cost of
suspension: the flow opportunity cost times duration. The benefit of using suspension is that
it moves the agent’s continuation value away from B, so incentives can be restored and the
project can become productive again yielding profit flows higher than R. Since F (B) = R,
the slope F (B) shows how much more profitable than termination the relationship is out of
suspension. Consequently, the left side of (21) represents the benefit of suspension.

If R = 0, then, as shown in Section 3, for any B € (0, B], the low-action solution L is flatter
at the point (B,R) = (B,0) than the termination profit function F, i.e., condition (21) is
met, simply because the slope of L is % = 0 and F'(B) > 0 for any B < B. Clearly,
since suspension carries no opportunity cost when R = 0, suspension dominates termination
whenever suspension is feasible (i.e., B > 0) and the relationship is profitable (i.e., B < B).
If R > 0 and B > 0, however, whether condition (21) is met depends on the values of R and
B. We study this question in Section 4.4.

4.3 Classification of solution curves

In this section, we show the existence and uniquness of a solution to the high-action ODE
equation with a fixed boundary condition at B and a free-boundary condition pinning down
the point of the agent’s retirement. We show the continuity and monotonicy of the initial slope
of this solution with respect to its boundary value.

In Appendix A.1, we define a set A/ such that it is optimal for the firm to not run its project
if the outside options (B, R) and the boundary premium y are outside of N. We restrict
attention to (B, R,y) that belong to the closure of N, cl(N).

Lemma 2 1. For each (B,R,y) € cl(N), there exists a unique solution F to the high-
action ODE, (10), satisfying F(B) = R+y, F(W) > R+ Fo(W) for all W > B, and
the smooth-pasting conditions (19) at some W, € [max{B,0}, Wy |. The solution I is
strictly concave if (B, R,y) € N.

2. Denote the initial slope of F', F'(B), as (B, R,y). The function z(B, R,y) is continuous
on N.

3. If B > 0, then (B, R,y) is strictly decreasing in both R and y.
Proof In Appendix A.3. m

Sannikov (2008) uses a forward-shooting procedure to pin down a unique solution to the high-
action ODE that satisfies a level condition at the left boundary, B, and pastes smoothly with

31Indeed, a lump-sum value R is equivalent to receiving a constant profit flow of R forever: R = fooo re” "t Rdt.
32 As discussed in Section 3.5, the reflection of W; off B is slow and, hence, the total duration of suspension
is positive.
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Fp at an endogenous right boundary, ng.33 The first part of Lemma 2 verifies that for each
(B, R,y) € N the same procedure pins down a unique solution F' to the high-action ODE (10),
starting from the initial level F'(B) = R + y and pasting smoothly with R + Fj.

In the third part of Lemma 2, it is obvious that a higher boundary premium y forces the initial
slope of the solution F', (B, R,y), to be lower, for otherwise F' would remain strictly above
R + Fy. It is not obvious, however, that x(B, R,y) should also be decreasing in R, as both
the initial level F'(B) = R+ y and the retirement payoff curve R + Fj increase uniformly with
R. The intuition for why this is the case comes from the fact that higher R reduces the firm’s
aversion to the risk of early termination. This aversion is captured by the second derivative of
F, and higher R makes solutions F' less concave.>® Starting from F'(B) = R4y, a less-concave
solution curve is more likely to stay above R + Fp, which means the solution curve that goes
down to R + Fy (and pastes with it smoothly) must have a lower initial slope.

4.4 Regions of termination and suspension

For each (B, R,y) € N, we want to know if z(B, R,y) is positive because otherwise, as we
saw in Section 3, the optimal course of action is to not offer a contract but rather to collect R
without delay. Furthermore, we want to know if (B, R,0) is larger than %, the slope of the
low-action ODE solution through the point (B, R), because in these cases, as shown in (21),

suspension at B gives rise to a positive boundary premium y, thus dominating termination.

Proposition 2 1. (Region of no contract) For each R € [0, A), there exists a B(R) > 0
such that B
>0, if B< B(R);
z(B,R,0) { =0, if B=B(R); (22)
<0, if B> B(R).

In particular, B(0) = B, where B is defined in Lemma 1.

>0, if R€[0,R);

There exists R € (0, A) such that B(R) { _ 0. ifRe[R A)

On [0, R], the function B(R) is continuous and strictly decreasing. Let R(B) : [0, B] —

B
[0, R] denote the inverse of B on [0, B]. In particular, R(0) = R and R(B) = 0. The
function R(B) is continuous and strictly decreasing.

2. (Regions of termination and suspension) For any B € (0, B, there exists a unique
R*(B) € [0, R(B)] such that

R >0, if Re€[0,R*(B));
#(B,R,0)— 5 { =0, if R=R"(B);
<0, if R€ (R*(B),R(B)).

33Briefly, if a candidate solution remains everywhere strictly above Fp, the initial slope is too high. If a
candidate solution crosses Fp, its initial slope is too low.

34Mechanically, as higher R raises both boundary values F(B) and F(W,,), it also raises F(W) for all
W € (B,Wy;). In (25) in the Appendix, Ho(W, F(W), F'(W)) is decreasing in F(W), i.e., higher F(W) makes
F" (W) less negative.
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If B € (0, B), then R*(B) > 0. If B = B, then R*(B) = 0. In particular, R*(0) > 0
and R¥(B) < 0.

3. (Positive boundary premium from suspension) If B € (0,B] and R < R*(B),
i.e., & < x(B,R,0), then there exists a unique y* > 0 such that (B, R,y*) = R%. If
R = R*(B), then y* = 0. If R < R*(B), then y* > 0.

Proof In Appendix A.4. m

Proposition 2 identifies two critical boundaries, R(B) and R*(B), that separate all pairs
(B,R) > (0,0) into three regions. For (B, R) high enough, i.e., B > B or B < B and
R > R(B), we have (B, R,0) = F'(B) < 0, i.e., the termination profit function F' initiated
at (B, R) is monotonically decreasing, which means the option of collecting R immediately
dominates the option of offering a contract to the agent.3?

In the middle region, i.e., B < B and R*(B) < R < R(B), the termination profit function F' is
initially upward-sloping, which means the optimal contract starting at Wy = argmaxy, F(W) >
B and terminating at B dominates the firm’s outside option R. Suspension at B cannot
generate a positive boundary premium y because condition (21) is violated. Specifically, % >
x(B, R,0) = F’(B) implies that no high-action ODE solution exists that satisfies the boundary
conditions (19) and (20) with a positive boundary premium y > 0.36 For (B, R) in this region,
termination at B is optimal.

In the bottom region, B < B and R < R*(B), condition (21) is met, which means suspension
can generate a positive boundary premium y > 0. Indeed, the low-action ODE solution is
flatter at B than the terminating high-action ODE solution F, i.e., with y = 0 we have
% < (B, R,0) = F'(B). As we increase y above 0, similar to Proposition 1, the slope %
increases and the slope (B, R, y) decreases. We then find y* > 0 such that ng* =z(B,R,y").
With this level of the boundary premium, we have a unique high-action ODE solution, F™*,

such that the smooth splicing condition (20) holds:

R+ y*

F*(B)=R+y" and F*(B) = (B, R,y") = B

(23)
In fact, y* > 0 for all R < R*(B). This bottom region includes the case of R = 0 already
discussed in Section 3. We formally verify in the next section that an optimal contract, which
suspends the agent at B, can be constructed from the solution F™*.

Suspension cannot be implemented at any B < 0 because the agent’s flow value of suspen-
sion, u(0) — h(0) = 0, is above B in these cases, i.e., suspension could only push the agent’s
continuation value down, not up, which would violate (2). Termination at B, thus, is optimal
for all B < 0. Specifically, if B = 0, the termination profit function F has a strictly positive

35Reflecting the impact of moral hazard, the boundary R(B) lies strictly below the upper bound in inequality
(24), which is derived in Appendix A.1 in the absence of moral hazard.

36Indeed, with y = 0, the high-action ODE solution F with boundary conditions F(B) = L(B) = R and
F'(B) = L'(B) > F'(B) stays above Fp for all W > B, so the retirement condition (19) is not met. A strictly
positive y > 0 will shift F' further upward by increasing both its initial level, R 4 vy, and slope, %. A contract
with suspension at B can be constructed with some negative boundary premium y < 0 such that R > R+y > 0,

which only confirms that termination dominates suspension at B.
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NO CONTRACT
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R(B)
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E® s
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Figure 2: Regions of no contract, termination, and suspension in the plane (B, R). Parameter values
as in Figure 1. Example Fy; = (By, Ry) has By = 0.9W,, where W, is the agent’s value at the start of
a contract, and Ry = 0. Example Fy = (B, R) has By = 0 and Rz = 0.9v3(Wy), where vy(W)) is the
firm’s value at the start of a contract.

initial slope if R < R and zero initial slope if R > R, i.e., it is optimal to not offer a contract
if the project’s residual value is sufficiently high.?” If B < 0, the termination profit function
F has a strictly positive initial slope for all R > 0, i.e., a nondegenerate terminating contract
is optimal.38

Figure 2 illustrates the results of Proposition 2 in a numerical example.?® The relationship
is not profitable, i.e., no contract is offered to the agent, if (B, R) belongs to the unshaded
region. The boundary of profitability of the relationship, R(B), is convex, which shows that
the two parties’ outside options, R and B, reinforce each other in reducing the value of the
relationship. Termination upon the first visit of W; to B is optimal if (B, R) belongs to
the light-shaded region. In the dark-shaded region, suspension at B is optimal. This region
contains many economically relevant cases, in which the firm’s outside option is low and the

agent’s outside option is moderate.** The boundary of the region of optimality of suspension,

3TWith R > R, the curvature of F is so low that, even with F’(0) = 0, F stays strictly above R + Fp for all
W >0, i.e., Wy, = 0. Sannikov (2008) also finds cases with low curvature of F' coming from a high discount
rate r or a high volatility o. Throughout our analysis, we exclude these cases, i.e., we assume that r and o are
not so high to imply Wy, = 0 under B = R = 0. In particular, this means that z(0,0,0) > 0.

38Indeed, with B < 0, the agent strictly prefers to be retired with the retirement value Wyp = 0 to being
fired, while the firm is indifferent to these two outcomes at contract completion. At least for a short while,
thus, the agent can be incentivized to exert maximum effort A just via the promise of retirement with W,, = 0
after good performance, without any other compensation. Since A > R for all R in N, this effort sufficiently
compensates the firm for delaying its collection of R.

39Parameter values in this example are the same as in Figure 1.

49Tn Remark 1, these cases correspond to the firm facing relatively high costs in the process of searching for
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R*(B), is hump-shaped in this example.

The shape of the boundary R* is determined by the two opposing effects that the agent’s
outside option B has on the value of using suspension versus termination. On the one hand,
higher B increases the drift of W; during suspension, as in (15), which reduces the total
duration of suspension, making suspension less costly, i.e., more useful. On the other hand,
higher B makes the relationship outside of suspension less profitable, as it tightens the agent’s
participation constraint, (2), which makes suspension less useful.*!

At low B, to the left of the peak of R*(-), the first effect dominates, which means R*(B) is
increasing. Indeed, an increase in B in this area reduces the duration of suspension by a lot
while reducing the profitability of the relationship out of suspension only by a little, which
increases the overall value of suspension. Thus, the level of R under which the firm remains
indifferent between suspending and terminating, R*(B), must increase.*?> To the right of the
peak of R*(-), by contrast, the second effect dominates. There, higher B does not reduce the
duration of suspension strongly, but it continues to reduce the profitability of the relationship
out of suspension, pushing it down to zero at B = B(R) < B.

Consistent with the intuition provided by this example, part 2 of Proposition 2 shows that the
boundary R*(-) is always initially increasing and eventually decreasing.*3

4.5 Optimal contract: formal statement and verification

For (B, R) such that B € (0, B] and R < R*(B), let y*(B, R) denote the boundary premium
y* identified in part 3 of Proposition 2, let F* denote the high-action ODE solution that
satisfies (23), and let W,,(B, R) denote the associated retirement threshold W,,. Let L*(W) =
%SB’R)W denote the unique low-action ODE solution through the point (B, R + y*(B, R)).
With these F* and L*, define v : [B,00) — R as in (17).

Theorem 2 (Verification) Suppose B € (0,B], R < R*(B), and Wy € [B,Wy,(B, R)].
Then v(Wy) = V(Wy), i.e., v(Wy) is the firm’s value function in the contracting problem with
the agent’s outside option B, the firm’s residual value R, and the agent’s initial value Wy. The
optimal controls c,a,Y attaining v define an optimal contract with Cy = c¢(Wy), Ay = a(Wy),
and Yy =Y (Wy), where {W;0 < t < oo} is a weak solution to (7), with stopping times T, = 00
and T4, = min{t : Wy = W, (B, R)}.

Proof In Appendix A.6 m

The proof follows Sannikov (2008) very closely with two exceptions. The technical argument
for the existence of a solution to (7) is modified to account for volatility of W; vanishing at B,
and the step verifying the optimality of the contract is modified to account for the reflection
of the process W; at B and 74, = 00,4

the agent’s replacement and the agent facing moderate costs in the process of searching for a new job.

“11n condition (21), the first effect is captured by B and the second by F'(B).

421f in particular, B = 0, the drift of W; in suspension is zero, i.e., the duration of suspension is infinite,
which makes suspension not useful at all, i.e., R*(0) = 0.

43We do not have a proof that R*(-) is always single-peaked, but neither do we have a counterexample.

“Tor pairs (B, R) for which termination at B is optimal, the statement and verification of the optimal contract
follows Theorem 3 in Sannikov (2008) with no significant changes.
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0 By Wy w,, 0 By Wiy W,
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Figure 3: Optimal solution curves and their associated effort policy functions in three examples. Baseline
example with B = R = 0: solution curve Fy; (left panel) and its effort policy function @ (right panel).
Example F4 with B = B; > 0 and R = 0: solution L; spliced with Fj, and the associated effort policy
function ay (discontinuous at By). Example Es with B =0 and R = Ry > 0: solution F» and its effort
policy as. Parameter values as in figures 1 and 2.

4.6 The impact of B and R on the optimal contract

In this section, we illustrate the impact of the agent’s outside option B and the firm’s residual
value R on the optimal contract using three numerical examples. As our baseline, we take the
main example of Sannikov (2008), where B = R = 0. We compare the optimal contract from
this baseline against optimal contracts obtained in two examples. Example F; has a relatively
high B, and example Fs has a relatively high R. In example Fj, the agent’s outside option
satisfies By = 0.9Wy € (0, B), where Wy = argmaxy,~ g, v1(W), and the firm’s residual value is
R = 0. In example E2, B = 0 and Ry = 0.9v2(Wj) € (0, R), where Wy = argmaxyy~q ve(W).4°
Other than B and R, parameters used to compute the optimal contract in the baseline and in
the two examples are the same as in figures 1 and 2.

Figure 3 shows the optimal low- and high-action ODE solution curves used to construct the
respective value functions v in the three examples (left panel) along with their associated
optimal effort policy functions a (right panel). Relative to baseline, the firm achieves a lower
profit in example E7, where the agent’s participation constraint (2) is tighter. Consistent with
Section 3, the optimal contract in E; is qualitatively different from the baseline: termination
of the agent after poor performance is not optimal. It is worth pointing out that, despite the
retirement threshold Wy, in F; being very close to that of the baseline, the ex ante expected
duration of the optimal contract is much longer in F; because the contract does not terminate
at the lower bound but only exits at the retirement threshold W,.

In example F», the optimal contract is qualitatively the same as in baseline: it terminates the

“*Tn equation (1), example E; corresponds to k, = 0.1 and x; = 1, while Ea corresponds to k, = 1 and
ty = 0.1. In Figure 2, the pairs (B, R) for these two examples are marked as points Eq and E», respectively.
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agent after sufficiently poor performance and retires him after strong performance. Although
the firm’s ex ante profit is much higher than in the baseline, most of this value comes from
the residual value Rj itself. The agent’s value, Wy, is lower than in baseline, while his effort,
marked as az in the right panel of Figure 3, is higher. The retirement threshold, Wy, is
much lower than the retirement threshold W, in the baseline. Consistent with high volatility
of the agent’s continuation value implied by high effort ao as well as with the low retirement
threshold Wy,2, the ex ante expected duration of the optimal contract in example Fs is very
short relative to the baseline.

It is worth pointing out that the low expected duration of the contract in example Fo follows
from the fact that the firm collects Re only after the completion of the contract. With Rs
being relatively high, the firm desires a quick termination of the contract in order to avoid
a long delay in its collection of this value. With quick termination desirable, the firm is less
averse to volatility in the agent’s continuation value Wy, as higher volatility increases the
chance of reaching either of the contract exit points, 0 or W2, quickly. Consequently, the
agent is exposed to steep incentives and supplies high effort. Intuitively, we can say that high
residual value R makes the firm more impatient and less risk averse, which makes the contract’s
duration short and the agent’s effort high.

5 Renegotiation

Thus far, we have assumed the contracting parties’ ability to commit at ¢ = 0 to not renegotiate
the terms of the contract at any future date. This assumption is binding whenever the resulting
profit function v(W) is hump-shaped, as both parties would benefit from a one-time shift of
the contract to the peak of v as soon as the agent’s continuation value W; enters the region in
which v is upward-sloping. If v is nonincreasing, the resulting contract is renegotiation-proof

(RP).

In this section, we briefly discuss how the requirement of renegotiation-proofness changes the
optimal contract. In addition to the standard RP contract of DeMarzo and Sannikov (2006)
with stochastic termination, we show that a suspension contract is RP if R = 0.

In our model, the standard RP contract of DeMarzo and Sannikov (2006) is optimal in all
cases in which the relationship is viable, i.e., for all R > 0 and B < B(R). This contract
uses stochastic termination at B(R). In particular, let ¢, a,Y denote the policy functions that
in the high-action ODE (10) attain the termination profit function F initiated at (B(R), R).
Note that, by part 1 of Proposition 2, this F is downward-sloping with £’ (B(R)) = 0. In the
RP contract of DeMarzo and Sannikov (2006), the agent’s continuation value W; evolves on

the interval [B(R), Wy,) according to
AWy = r(W — u(c(Wy)) + h(a(Wy)))dt + rY (We) (d Xt — a(Wy)dt) + dP;,

where P is an increasing process that satisfies (W, — B (R))dP, = 0 at all .46 This law of
motion for W, is the same as (4) whenever W; > B(R). At B(R), the agent is either terminated,

B 6By part 1 of Proposition 2, the interval [B(R), W,,) is nonempty for all R < R. For R > R, we have
B(R) = Wy, = 0, and the optimal RP contract retires the agent immediately at ¢t = 0.
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in which case his continuation value jumps down to B < B(R), or his continuation value is
reflected upward (i.e., W is increased by dP; > 0) and the relationship continues. The ex ante

probability that the agent is not terminated by time ¢ is exp (ﬁ). The reflection of W;
at B(R) achieved here by the process P; is stochastic, i.e., dP; is correlated with dX;, and fast,

i.e., the optimal RP contract spends zero total time at B(R).

In addition to this standard contract with stochastic termination, if R = 0, the optimal contact
with suspension of the agent at B(0) = B is another optimal RP contract. On the interval
(B, Wyp), this contract uses the same policies as the standard contract with stochastic termi-
nation. When W; = B, however, it uses suspension instead of stochastic termination. Since
this contract never terminates the agent (i.e., 7, = 00), the outside value B is never used
to deliver the continuation value W; to the agent, which makes this contract feasible for any
B < B. Tt follows that the optimal contact with suspension of the agent at B is an optimal
RP contract for R = 0 and any B < B.47

6 Conclusion

In this paper, we examine boundary behavior of optimal contracts in a standard dynamic
principal-agent model with moral hazard. We find that existing literature overemphasizes the
necessity of terminating the relationship when the agent’s stake in the relationship runs out, i.e.,
when the agent’s binding participation constraint implies that standard pay-for-performance
incentives must be switched off. Rather, we find temporary suspension of the agent to be a
feasible and efficient alternative to termination in a robust set of cases.

We examine how the trade-off between termination and suspension depends on the firm and
the agent’s outside options. A higher firm outside option, predictably, increases the firm’s
desire to terminate. Specifically, we show that a higher outside option makes the firm more
impatient and less risk averse, which increases both agent effort and turnover. A higher agent
outside option has a nonmonotonic impact on this trade-off, as it simultaneously increases
the efficiency of suspension by making suspension shorter and decreases the firm’s desire to
suspend by reducing the overall profitability of the relationship. We show that this trade-off is
captured by a condition relating the slope of the firm’s profit function under the assumption
of termination to the ratio of the outside options of the firm and the agent. This condition
provides a simple test to determine the optimal boundary behavior of a contract.

Our analysis can be extended to examine additional interesting optimal contracting questions.
First, our standard model has only one action free of moral hazard, the action of exerting no
effort used in the suspension phase of the contract. If the set of moral-hazard-free tasks is
richer, we can ask which of these tasks produces the most efficient suspension. The trade-
off would involve the productivity of the task and the disutility it causes to the agent, with
both being desirable in agent suspension. Second, we can examine how other contract-exit
possibilities, in addition to the firing or retiring of the agent, would affect the trade-off between
termination and suspension. If the firm has more flexibility in separating from the agent after

“Mndeed, with R = 0, all high-action ODE solutions F' with F(B) > 0 and F'(B) < 0 violate both the
termination boundary condition (18) and the suspension boundary condition (20) for all y > 0.
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strong performance, for example by combining the agent’s outside option with a severance
payment, the value of suspending the agent after poor performance increases while the value
of terminating at that point remains the same. Such added flexibility would therefore increase
the incidence of suspension. Third, the intrinsic motivation of the agent, where the agent always
provides at least some minimum level of effort, can be captured as an additional constant term
in the high-action ODE equation to show that, ceteris paribus, intrinsic motivation enhances
the use of suspension. Furthermore, by imposing more structure in a model embedding our
contracting problem into an external labor market, our analysis can be extended to study the
links between labor market search or bargaining frictions and the optimal use of termination
as an incentive device under moral hazard.

Appendix

A.1  An upper bound on (B, R)

If outside option values B and R are sufficiently high, it is optimal for the firm to not start its
project but rather to collect its residual value R immediately. Based on this observation, in
this section, we derive an upper bound on B and R above which not starting the project, i.e.,
not offering a contract to the agent, is optimal. This bound is loose because we assume that
the agent’s action is observable and contractible, i.e., moral hazard is absent, in this section.

Suppose the firm does not run the project but rather collects its residual value R immediately.
Without running the project, the firm can still deliver any value W > B to the agent by
retiring him, terminating him, or using a lottery between retirement and termination. Define
Feav(W) as the concavification on the half-line W > B of the firm’s payoff from retiring the
agent with value W, which pays R + Fy(W) to the firm, and terminating him with value B,
which pays R to the firm. For any B and R > 0, there exists a unique straight line through
the point (B, R) that is tangent to R+ Fy(-). Denote by T'(B) the horizontal coordinate of the
point of tangency.*® The concavification of the firm’s payoff from retirement or termination of
the agent is given by

[ R+ Fy(T(B)) + F)(T(B)(W —T(B)), if W € [B,T(B)];
Fear(W) = { R+ FE(W), ’ if W > T(B).

Since Fe,ay (W) is decreasing and concave, its slope is the least negative at W = B, where it
is equal to the slope of the tangent line through (B, R), i.e., F., (B) = F/(T(B)). Figure 4
provides an illustration.

Now suppose the firm considers delaying its collection of R by an instant and asking for some
positive effort a from the agent during this short spell. In order to compensate the agent for
the effort a, the firm needs to increase his W by h(a).*® Under the value function F,,, the
cost to the firm of increasing the agent’s value by h(a) is —F_,,(W)h(a), where —F/ (W)

cav cav

“®Note that T(B) > B is independent of R, equal to zero for all B < 0, and strictly increasing in B for all
B > 0. For example, if u(c) = v/c, then T(B) = max{2B, 0}.

49This is simply compensation for the disutility of effort. There are no additional incentive costs because we
assume the absence of moral hazard in this section.
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(B, R)

R+ F(W)

0 B 7(5) W
w
Figure 4: The construction of Fg,,. The straight segment connecting (B, R) and (T(B), R+ Fo(T(B)))
has slope F}(T(B)).

represents the marginal cost of delivering utility to the agent. This cost is weakly larger than
—Fl,(B) = —F}(T(B)).

cav
The profit gain (in flow terms) resulting from such a deviation from Fi,y (W) is at most

— R+ max {a+ Fy(T(B))h(a)},
a€l0,4]

where the first term is the flow cost of delaying the collection of R, and the term under
maximization is the net gain from having the agent exert positive effort, assuming the cost
of compensating the agent for effort is the lowest possible, —Fj(T'(B)). If this profit gain is
nonpositive, then it is optimal for the firm to not run its project but rather collect its residual
value R immediately, even in absence of moral hazard. We can therefore restrict attention to
pairs (B, R) that satisfy

R < max {a+ F)(T(B))h(a)}. (24)

a€[0,A]

In particular, with R = 0 the above inequality is equivalent to T'(B) < W, where W, solves
Fy(W) = —=1/h'(0). Indeed, using the first-order condition with respect to a, it is easy to check
that the right side of (24) is positive if and only if 1 4+ Fj(T'(B))h'(0) > 0. Thus, with R =0
inequality (24) is equivalent to

B < B,
where B = T=H(W,).>" Note also that (24) rules out R > A because, with Fj(T(B)) < 0, the

right side of (24) is bounded above by A.

Furthermore, we can generalize (24) to allow for a boundary premium y > 0. Let T'(B,y)
denote the horizontal coordinate of the point at which the straight line from (B,y) is tangent
to Fy(+). Define R(B,y) = max,{a + F}(T(B,y))h(a)} and

N={(B,R,y): 0< R< R(B,y),y > 0}.

S0For example, if u(c) = \/c, then B = W
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If (B, R,y) is not in N, then, rather than offering a contract to the agent, it is optimal for
the firm to collect the value R + y immediately, even in the absence of moral hazard.®® The
closure of A/ can be easily shown to be

d(N)={(B,R,y) : T(B,y) <W;

g0 < R < R(T(B,y)),y > 0}.

A.2 Auxiliary lemma (order of solution curves)

We start with an auxiliary lemma that extends Lemma 2 in Sannikov (2008). For any four
numbers a, w, ¢, and p, define

a + ph(a) — ¢ + max, {p(w — u(c)) — c}.

Ho(w, ¢,p) =
('UJ QS p) %7’0’2}1/(@)2

Similar to Sannikov (2008), we can express the high-action ODE (10) as

F"(W) = — max Ho(W, F(W), F'(W)). (25)

acA

Lemma A.1 Consider two solutions Fy and Fs to the high-action ODE that satisfy F1 (W) <
Fy(W) and F{(W) < Fy(W). If at least one of these inequalities is strict, then

F{(W) < Fy(W) for all W > W. (26)
Proof This proof modifies the proof of Lemma 2 in Sannikov (2008). First, we show (26) in

a small neighborhood of W. This holds trivially if Fj(W) < Fy(W). If F{(W) = F3(W), then
Fi(W) < Fy(W), in which case

FY/(W) < —Ha(W, Fy(W), F{(W)) < —Ha(W, (W), F5(W)) = F5 (W),

where a attains Fy/ (W) in (25). It follows from F{(W) = Fi(W) and F{(W) < FY(W) that
(26) holds in a small neighborhood of W.

Second, we show (26) for all W > W by contradiction. Suppose (26) does not hold, then
there exists a smallest W > W at which FJ(W) = F5(W). Since F/(W) < Fy(W) for all
W e (W, W), we have F1 (W) < Fy(W) and again

F/(W) < —Ha(W, F\(W), F{(W)) < —Ha(W, F(W), F3(W)) = F (W),

where & attains Fy (W). It follows that F{(W —¢) > F(W — ¢) for all sufficiently small e > 0,
a contradiction. m

511t is easy to show that level sets of N, Ny = {(B,R) : 0 < R < R(B,y)} are nested, with ' > y implying
N, C Ny. Intuitively, with a higher boundary premium y, the set of pairs (B, R) for which the firm would pass
on collecting immediately the value R + y is smaller.
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A.3 Proof of Lemma 2

The following auxiliary lemma starts out by characterizing x(B, R, y) for (B, R, y) on the upper
boundary of cl(N).

Lemma A.2 If (B,R,y) € cl(N)\ N, then (B, R,y) = Fj(T(B,y)) < 0.
Proof If R= R(T(B,y)), F(B) = R+vy, and F'(B) = F}(T(B,y)), then

=0

because
min{R+y —(a —c+ Fy(T(B,y))(B — u(c) + h(a)))}
= min{R+Fo(T(B,y)) — (a—c+ Fo(T(B,y))(T(B,y) — u(c) + h(a)))}
= R—R(T(B,y)) =0.

By Lemma 1 in Sannikov (2008), F”(B) = 0 implies F”(W) =0 at all W, i.e., F is a straight
line. From definition of T'(B,y), F is tangent to Fy+R, i.e., F' satisfies condition (19) with
Wep=T(B,y). m

In the remainder of this Appendix, we will denote by F{y, g4y the solution to the high-action
ODE, (10), initiated at W with boundary conditions F(W) = R+ y and F'(W) = p. Here,
R + y and p are some generic level and slope of F' at W.

Proof of part 1 of Lemma 2

Given Lemma A.2, it remains to prove part 1 of Lemma 2 for (B, R,y) € N'. We proceed in

three steps. Let
1+ h(a)+ W,
K = max 1 (@) 4> 0.
a sro?h/(a)?

First, we show that if F'(B) > AeX (Wgp—B) + A, then F is increasing on [B,W,,], and hence
stays strictly above Fy+R. By contradiction, suppose F' is not always increasing but reaches
zero slope on [B, W] Let W be the smallest W such that (W) = A. Since F'(B) > A>0
and F’ reaches zero on [B, V_V;p], continuity of F’ implies W < W,. Thus, on [B, W] we have
c=0, F(W)>0,and a <A< F'(W). Therefore, at each W € [B, W] we have

. F a h(a) + W
F' W) = - - F(W
") Tt { sro?h (a)?  iro?h(a)?  iro?h/(a)? ( )}

{_ (W) h<a>+W;pF,(W)}

>  min —
a %razh’(a)2 %ra2h’(a)2

= —KF(W),
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which implies dlogg{,(w)) = 2’,’((II//VV)) > —K. Integrating, we have log(F'(W)) — log(F'(B)) >

—K(W — B), or

log(F'(W)) — log(F'(B)) S log(A) — log(AeXWa=B) 1 A)
K = K

This contradicts the fact that W < W;p.

W —B>

> Wg*p—B.

Second, we show that F'(B) = F}(T(B,y)) implies that the solution curve F' goes under Fy+R.
Indeed, if F'(B) = Fj(T(B,y)), then

<0,

because
miny+R = (a = ¢ + FY(T(B,)) (B — u(e) + h(w)
= min Fy(T(B,y))+R — (a — ¢ + Fy(T(B,y))(T(B,y) — u(c) + h(a)))

a,c

= R-R(T(B,y)) < 0.
Since F' is strictly concave, it remains strictly below the straight line
Fo(T(B,y))+R + Fo(T(B,y))(W - T(B,y))

at all W > B. Therefore, F(T(B,y)) < Fo(T(B,y))+R.

Third, we show the existence of some z € (F}\(T(B, y)), Ae War=B) 1 A) such that FiB Riya) =
Fo+R and F(p pyy.) satisfies (19) at some Wy,. Let x = inf X', where

‘xz{fe(ﬂmeﬂmw%KW%fm+A);ﬂBﬂﬂjﬂW)zFaijranveLB&W@J}

The first step of this proof implies that X is nonempty, so x is well defined. Continuity of
the solution curve in Z implies F(g piyq) (W) > Fo(W)+R for all W € [BT, W], which
verifies that F(p gy, is always weakly above Fp+R. By the second step of this proof, we
have x > Fy(T(B,y)). Next, we verify (19) at some Wy, and show that F(g gy q) is strictly
concave. We consider two cases.

1. (B,y) # (0,0). First, take the sequence {x — % o 1, which converges to z from be-
low. Since z — % ¢ X, F(B’R+y7w_%) goes under Fy+R. Let W, be the smallest
point in [B¥, W] such that Fip ., . 1)(Wy) < Fo(Wy). By Lemma A.1, the curves
F(B,R+y,x—%) are ordered, i.e., Wy 41 Zan. The sequence (W,,)22, thus, converges
to some Wy, € [BY, W, ]. Taking the limit in F(B,Rer,:(:f%)(Wn) < Fo(Wp)+R yields
FiB,Riye) Wep) < Fo(Wyp)+R. Because F(p piy.) is always above Fp+R, we have
F(B,Rty,2) (Wep) = Fo(Wgp)+R, which shows the value-matching condition in (19).
Second, F(p Riyz) is strictly concave. If F(p piy,) is either a convex function or a
straight line, then x > F{(T(B,y)) implies that F(g pyy ) is strictly above Fy+R for all
W > B, violating F(g piy)(Wyp) = Fo(Wyp)+R at some W,
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Third, we will show Wy, > 0. If either B > 0or B =0 < y, then Wy, > B > 0. If

B < 0, we will show Wy, > 0 by contradiction. If W, = 0, then the strict concavity of

F(B,Rty,z) implies F(’B’Rer’x) 0) < F(B’R+y’gl(g)_(3+y) = =5 < 0 = F;(0), which means

F(B,R4y,z) goes under Fy+R immediately after Wy, = 0, a contradiction.
Finally, it follows from Wy, > 0 that Fy (Wyp) = F§(Wyp). So condition (19) is

(B,R+y,x)
verified.
2. (B,y) = (0,0). If z = 0 then (19) holds with W, =0, as Fy(0) + R=R =y + R and
Fj(0) =0 = .

If x > 0, then there exists € > 0 such that F(o g /2)(W) > Fo(W)+R for all W € [0, €]
because F(/O,R,m/2) (0) ==2/2 > 0= F}(0). Sincez—2 ¢ X, F(O,R,z—%) goes under Fy+R on
[e, W,,]. There is a smallest point W,, € [e, W] such that F(07R7x_%)(Wn) < Fo(Wy)+R.
By Lemma A.1, the curves F(O7R7I_%) are ordered, i.e., W,4+1 > W,. The sequence
(Wi)ply, thus, converges to some Wy, € [e, Wy ]. It follows from Wy, > e > 0 that
F(’07R7x)(ng) = F;(Wgp), which verifies (19).
Moreover, F(g g ) is strictly concave because
/!

. R—(a—c+z(0—u(c)+ h(a)))
Fo.r.)(0) = min ;mih/<a>§ )

<0,

which follows from

min R — (a — ¢+ x(0 — u(c) + h(a)))

a,c

< mainR—(a—O—l-x(O—O‘i‘h(a)))
= R-(1+2)A < 0.

Proof of part 2 of Lemma 2

We show that z(B, R,y) is a continuous function on cl(N). By contradiction, suppose x
is discontinuous at some (B°, R°,y%) € cl(N). Then, there exists ¢ > 0 and a sequence
(B, Ruyyn)2>y — (B% R%,4°) such that |z, — #(B° R%,4°)| > € for all n, where z, =
@(Bp, Rn, yn). Because (z,,)°2, belongs to the compact set [F}(T(Bn, yn)), AeXWar=Bn) 4 4] C
[Fo (W3, AKX Wap=minadBu}) L 4] and (Wyp.n)22, belongs to the compact set [0, W], there is a
subsequence (By, , Ry, , Yn, )7oq such that (x,, )2, converges to some limit 2o, and (Wyp n, )72
converges to some limit Wy, . Now we show that Fg g, ...) satisfies condition (19) at Wyp, o0-
By the continuity of F, taking the limit ¥ — oo in F(Bnk,Rnk+ynk71'nk)(W) > Fo(W)+R shows
that F(g piye.)(W) is always above Fo(W)+R. Similarly, by the continuity of ' and F,
taking the limit £ — oo in

F(Bnkank+ynk7Ink)(ngvnk) = Fo(Wgpn,)+R and F(/Bnk,Rnk+ynk,xnk)(ngynk) = Fo(Wyp,n)s
shows that
F(B,R+y,roo)(ng,OO) = Fo(Wyp,eo)+R and F(,B,R+y,:coo)(ng,OO) = F(;(ng,OO)-

This implies 2 is equal to 2(B% R°,3°). But |z, — z(B°, R°,4°)| > €, a contradiction.
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Proof of part 3 of Lemma 2

We now show that R; < Rp implies (B, R1,y) > z(B, R2,y). By definition of z(B, R, y),
the solution F(p p,1y «(B,R.,y)) Pastes smoothly with Fo+ Ry at some W > B. Denote this W
by Wyp,2. Lemma A.1 implies

F(B,R1+y,x(B,R2,y))(W) - (Rl + y) < F(B,R2+y,x(B,R2,y))(W) - (R2 + y) for all W > B.

In particular, at Wy, 2 > B we have

F(B,R1+y,:v(B,R27y))(WQP,Q) - (R +y) < F(B,R2+y,a:(B,R27y))(WQP,Q) —(R2+y) = FO(WQPQ)_%

which means the curve F(p g, 1y 2(B,R,,y)) 80€s under Fo+R;. Since the curve Fig g, 1y 2(B,R,y))
must stay above Fy+Ry, it follows from Lemma A.1 that z(B, R1,y) > z(B, Ra,y).

The proof of (B, R,y1) > (B, R, y2) for y1 < yo is similar, hence it is omitted.
QED

A.4 Proof of Proposition 2

1. (Region of no contract) We need to show the sign of z(B, R,0) for all (B, R,0) €
cl(N). We proceed in three steps. First, we consider B < 0, then B = 0, and finally
B > 0.

First, we show x(B, R,0) > 0 for all B <0 and R € [0, 4). Indeed, B < 0, y = 0, and
R < A= R(B,0) imply (B, R,0) € N. Thus, as shown in the proof of part 1 of Lemma
2, 2(B, R,0) > F}(T(B,0)). But B < 0 implies F},(T(B,0)) = F}(0) = 0. Thus,

2(B,R,0) > 0 for all B < 0. (27)

Second, we show x(B, R,0) > 0 for B = 0. In particular, there exists a R € (0, A) such

that B
>0, if R< R;
z(0, R, 0) { “0 iR>R (28)

If R approaches A, then Flo,r,0) has near-zero curvature. Indeed,

. R—(a—c+0(0—1ulc)+ hla . R—a A—R
o0 =min 0 LR iy 2 o
which converges to 0 as R approaches A from below. With near-zero curvature, Flo,r,0)
cannot return to Fo+R at any Wy, > 0. We thus define W, = 0, which implies
z(0,R,0) = 0. Define R = infg{R : (0, R,0) = 0}. By continuity, (0, R,0) = 0.
We have R > 0 because x(0,0,0) > 0. Clearly, for R < R, x(0,R,0) # 0. Since

2(0, R,0) > 0, we have (0, R,0) > 0 for R < R.

Third, we consider z(B, R,0) for B > 0. There are two cases:
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(a) R > R. With B > 0, Lemma A.1 implies that, with any p > 0, Fz g, (W) >
Fo,po)(W) for all W > B. Since F(groy > Fo+R, the solution curve Fip g,
cannot return to Fo+R at any Wy, > B. Therefore, z(B, R,0) < 0 whenever B > 0
and R > R. Defining B(R) = 0 for all R > R, with (27) and (28), we have shown
(22) for R > R.

(b) R < R. By (28), (0, R,0) > 0. Lemma A.2 implies z(B, R,0) = F}(T(B)) < 0,
where B > 0 satisfies R(T(B)) = R. Since z is continuous, the intermediate value
theorem implies that (B, R,0) = 0 for some B € (0,B). Let B(R) denote the
smallest such B. Clearly, (B, R,0) > 0 for all B € (0, B(R)). If B > B(R), then
F(p ro) stays above Fj3(g) po) and thus also above Fy+R, hence z(B, R,0) < 0.
With this B(R) for R < R, we have completed the proof of (22). In particular,
with R = 0 and B(0) = B, (22) implies the last statement of Lemma 1.

Since B(-) satisfies x(B(R), R,0) = 0 for all R, continuity of B(:) follows from the
continuity of . To show that B(-) is strictly decreasing on [0, R], pick 0 < Ry < Ry < R.
Part 3 of Lemma 2 (monotonicity in R) implies that #(B(R1), Rg,0) < 2(B(R;), R1,0) =
0, which, by (22), implies B(R;) > B(Rs). Finally, as the inverse of a continuous and
strictly decreasing function, R(B) is continuous and strictly decreasing on [0, B]. In
particular, B(R) = 0 implies R(0) = R, and B(0) = B implies R(B) = 0.

. (Regions of termination and suspension) Fix B € (0,B). If R = 0, then we
have (B, R,0) — £ = 2(B,0,0) > 0, where the inequality follows from (22) because

B < B(0) = B. If R = R(B), then we have x(B,R,0) — & = 0 — £8) < 0. By
the intermediate value theorem, the continuity of x(B, R,y) implies the existence of
R* € (0, R(B)) such that z(B, R,0)—% = 0. Part 3 of Lemma 2 implies that R* is unique.

For B = B, we have 2(B,0,0) = 0, which implies that x(B, R*(B),0) — %;B) = 0 holds
with R*(B) = 0.
Next, we evaluate the first derivative of the function R*(B) at B =0 and B = B.
First, we show R*(0) = x(0,0,0) > 0. Differentiation of Bz(B, R*(B),0) = R*(B) yields
Bdm(B, R*(B),0)
dB
At B =0, (29) becomes R*¥(0) = x(0,0,0) > 0.

Second, we show R¥(B) < 0. If B = B, then R*(B) = 0 and z(B,R*(B),0) =
z(B,0,0) = 0, and so equation (29) reduces to

+2(B, R*(B),0) = R"(B). (29)

~dx(B,0,0) ., -
B——= = B).
000 - p(B) (30)
Using
dx(B,R*(B),0) 0x(B,R*(B),0) 0x(B,R*(B),0) .,
dB N 0B + OR R7(B),
equation (30) becomes
Bax(é,o,o)
>, 0B

RY(B)= ——_ 9B
» 0z(B,0,0)
1-B=—55—
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Part 3 of Lemma, 2 implies 8x(aBé0,0) < 0. To finish the proof, it suffices to show % <
0.
Lemma A.1 implies z(B + ¢,0,0) < F(/E,O,O)(B + €). Then,
0z(B,0,0) . x(B+¢0,0) —x(B,0,0)
—————= = lim
0B e—0 €
Flo (B+4+¢—0
S 11m (B,0,0)
e—0 €
= Fipoo(B)
< 0,

where the last inequality follows from the strict concavity of F| (B.,0,0)-

3. (Positive boundary premium from suspension) If R = R*(B), then z(B, R,y*) =
RJFT@y* holds with y* = 0 by definition of the function R*. If R < R*(B), then with
y = 0 we have z(B, R,0) > £ again by definition of R*. With y = Bz(B, R,0), we
have % = w > z(B, R,0) > x(B, R,y), where the strict inequality follows
from part 3 of Lemma 2 (z is strictly decreasing in y). Since z is continuous in y,
the intermediate value theorem implies the existence of y* € (0, Bx(B, R,0)) such that
x(B,R,y*) = REy*. Part 3 of Lemma 2 also implies the uniqueness of y*.

QED

A.5 Auxiliary lemma (positive action)
Next, we provide an auxiliary lemma that verifies that the optimal action is strictly positive

whenever the optimal contract is derived from a solution to the high-action ODE (10). This
lemma will be useful in the proof of the verification Theorem 2.

Lemma A.3 For (B, R) such that % < z(B,R,0), let F' denote F* = F . Rty*\. For
~ (BvRJ’_y 7T)
(B, R) such that % > (B, R,0) >0, let F denote F. Then,

1. F satisfies
n1>1(1)1{F(W) +c+ F'(W)(u(c) = W)} >0 atall W > B. (31)

2. The optimal action a* is nonzero everywhere along the high-action ODE solution F.

Proof

1. We first show that all tangent lines to F' are weakly above Fy, i.e., that for all W > B
we have

F(W) + F' (W)W — W) > Fy(W) for all W > 0. (32)
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Since F is concave, we have F(W) + F'(W)(W — W) > F(W) for all W > B and all
W > B. This implies (32) for all W > B because F > Fy + R > F, on [B,0). If B <0,
this is all we need to show. If B > 0, we still need to show (32) for W € [0, B). For any
W < B < W, the left side of (32) is increasing in W because F is concave. It is thus
sufficient to show

F(B)+ F'(B)(W — B) > Fy(W) forall W € [0, B).
By construction of F, F is flatter at (B, F(B)) than the low-action ODE solution through
this point, i.e., F/(B) < @.52 We thus have:

F(B)+ F'(B)(W — B) > F(B) + @(VV - B)= FSEB)W > 0> Fy(W).

Inequality (31) follows now from (32) by changing the variable W € [0,00) to u(c) €
[0,00), where ¢ = —Fy(W).
2. It follows from

_a* + F'(W)h(a*) — F(W) + max. {F'(W)(W —u(c)) — c}
%Tazh’(a*)Q

=F"(W)<0

that a* + F'(W)h(a*) > mingso F(W) 4+ ¢ + F'(W)(u(c) — W) > 0, where the weak
inequality follows from (31). This implies a* # 0.

A.6 Proof of Theorem 2

First, we show that, for any (B, R) such that B € (0, B] and R < R*(B), the net profit achieved
by an arbitrary incentive compatible contract (74, 7gp, Wyp, {C, A}) is at most F™*(W)), where
Wo > B is the agent’s initial continuation value in this contract. If Wy > W, then, following
Lemma 4 in Sannikov (2008), we can show that the firm’s continuation profit is not larger
than R + Fo(Wp) < v(Wp). If Wy < W, denote the agent’s continuation value under the
arbitrary contract by Wy = W(C, A), which follows (4) until termination/retirement time
min{rs,, 7gp}. As in Sannikov (2008), it is without loss of generality to only consider contracts
such that u/'(Cy) > 7o at all ¢, with which we have that (C}, A;) belongs to the compact set

[0, (u)"(0)] x A at all t. Define

min{t,Ten,Tgp }
Gi=E|r [ e (Ar = At + Lycningrn mpy € (F* (W)
0

i <minftrgp 136 R A Lp cminft e (R+ Fo(Wgp)) |- (33)

52Strictly if F = F.
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By Ito’s lemma, the drift of Gy at all t < min{7,, 74y} is

re "t <At —Cy— F*(Wy) + F*’(Wt)(Wt —u(Cy) + h(Ay)) + TO_QY?F’*”éVVt)) |

Let us show that the drift of G; is always nonpositive. If A; > 0, then incentive compatibility
requires Y; = h'(A;). Then the fact that F* solves the high-action ODE (10) implies that
the drift of G is nonpositive. If A; = 0, then (31) and F*” < 0 imply that the drift of Gy is
nonpositive.

It follows that G is a bounded supermartingale until the stopping time 7 (possibly oo) defined
as the time when the worker either terminates at B (i.e., 7,), or retires at Wy, (i.e., 74p), or
Wi reaches W, Defining 7., = min{t : Wy = Wy}, we have 7 = min{7en, 7gp, 7 }- If 7 = 71y,
then the firm’s continuation profit is R < F*(B). If 7 = 7,4, then the firm’s continuation profit
is R+ Fo(Wyp) < F*(Wyp). If 7 = 74,, then, following Lemma 4 in Sannikov (2008), the firm’s
continuation profit is at most R + Fo(W,,) < F*(Wy,). Therefore, the firm’s expected profit
at time 0 is less than or equal to

E [7“/ e (A = Co)dt + 1 (=g, 1€ ™ R+ 1iper 17 (R + Fo(Wp))
0

Hlprmpe ye T FH(Wo) | = E[G] < Go = F*(Wp).

Second, we show that the contract (7u, Tgp, Wyp(B, R),{(C, A)}) described in the statement
of the theorem achieves profit v(Wy) for Wy € [B, Wy,(B, R)]. Existence of a weak solution
to (7) follows from Engelbert and Peskir (2014). In particular, a solution exists despite the
vanishing of the volatility of W; at B. Defining G; as in (33), but now specifically for the
stated contract, we have from Ito’s lemma that the drift of G; at all t < 7, is

re "t <At — Gy = F*(Wy) + F* (W) (W; — u(Ch) + h(Ar) + ’“"th(At)préWt)>

if W, > B, and

re= "t (—Ct — L*(Wt) + L*/(Wt)(Wt — U(Ct)))
if Wy = B. If W; > B, the drift of Gy is zero because F* solves the high-action ODE (10). If
W; = B, the drift of G; is zero because

R+y*(B,R)
B

It follows that G is a bounded martingale until the stopping time 7y,. At 7,4,, the agent is
retired and the firm’s continuation profit is equal to R + Fo(W,p) = v(Wy,). Therefore, the
firm’s expected profit at time 0 is equal to

— Gy = LY (W) + LY (Wi)(Wy — u(Ch)) = —(R+y*(B, R)) + (B—0)=0.

E [ / T e (A — Cdt+ eI u(Wp) | = E[Gy,,] = Go = v(Wh).
0

QED
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