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Abstract

We study trading in over-the-counter (OTC) markets where agents have hetero-

geneous and private valuations for assets. We develop a quantitative model in which

assets are issued through a primary market and then traded in a secondary OTC

market. Then we use data on the US municipal bond market to calibrate the model.

We find that the effects of private information are large, reducing asset supply by

20%, trade volume by 80%, and aggregate welfare by 8%. Using the model, we

identify two channels through which the information friction harms the economy.

First, the distribution of the existing stock of assets is inefficient because some of

the efficient trades, which should occur, do not. Second, the total stock of assets is

inefficiently low because resale value and liquidity go down due to the information

friction. We investigate how much a simple tax/subsidy scheme that spurs issuance

of new assets can help mitigate the cost associated with private information and find

that it lowers the welfare cost from 8% to approximately 1%.
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1 Introduction

A key feature of over-the-counter (OTC) markets is that trade is bilateral. It is well-

known that efficiency in bilateral trade is not easy to obtain when both parties posses

private information. What is less known is how and to what extent this friction, at the

bilateral level, impacts aggregate trading dynamics and market efficiency. Is private in-

formation quantitatively important in terms of impacting welfare and market outcomes,

such as trade volume and yields? What can a policymaker do in order to mitigate the

implied inefficiencies? To address these questions, we build a novel model of OTC trade

with private information and use data on the US municipal bond market to quantify the

importance of private information in OTC markets. We find that private information

creates a large distortion in financial markets, reducing asset supply, trade volume, and

liquidity. However, the introduction of a simple policy that subsidizes asset issuance can

regain a significant portion of the welfare losses induced by the information frictions,

despite private information continuing to affect asset trade after issuance.

To be consistent with many features of OTC markets, we develop a model in which

trade occurs in both a primary market, where issuers sell assets with a known and com-

mon dividend to investors, and in a secondary market, where investors trade assets

amongst themselves. Both markets are decentralized in the sense that agents trade in

bilateral meetings that are subject to search frictions. As in Hugonnier et al. (2014), we

allow for a general form of heterogeneity in the trading motives of individuals. Hetero-

geneity in trading motives reflects differences in opportunity costs for buying and selling

the asset. In the primary market, issuers are heterogenous with respect to the cost of cre-

ating and issuing a new asset. In the secondary market, investors are heterogenous in

the utility flow of holding the asset. These forms of heterogeneity are meant to capture a

wide range of differences that lead to gains in trade, such as different tax and regulatory

advantages or funding and liquidity costs. We assume, as in the static model analyzed

in Myerson (1981), that trading motives are private information. Therefore, as famously

described in Myerson and Satterthwaite (1983), the lack of common knowledge about the
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gains from trade implies that there is no trading arrangement that guarantees ex-post

efficient outcomes in a meeting between a seller and buyer of an asset.1

Private information regarding trading motives affects the market outcome in two

ways: it creates a distortion in the efficiency of individual trades and reduces total asset

supply. Under complete information, agents engage in trade whenever the potential

seller of the asset values it less than the potential buyer. However, trade under private

information requires the buyer’s valuation to be larger than the seller’s valuation plus

a term that captures the informational rents possessed by the buyer. Hence, when the

gains from trade in a meeting do not exceed the informational rent, no trade occurs. This

mechanism was first studied by Myerson (1981) in a static setup, and we incorporate it

into our dynamic general equilibrium setting. Moreover, private information decreases

asset issuance as the value to investors of holding an asset in the secondary market falls.

This decrease in valuation happens because (i) the resale value of the asset falls because

a seller must give up informational rents; and (ii) the value of waiting and buying the

asset in the future becomes higher because the investor can acquire informational rents

when he buys the asset in the future.

We calibrate our model to match features of the US municipal bond market, as stud-

ied in (Green et al., 2007). This data is ideal for our purposes as trade in this market is

performed in a decentralized fashion, both in its primary and secondary markets. In-

terestingly, there is a large amount of dispersion in yields for assets issued by a given

municipality, a feature that directly maps to our setting with search and information

frictions. The municipal bond market in the US is large, with an average of $400 billion a

year in new issuance, and features an active OTC secondary market that averages 40,000

1 We focus on private information regarding individuals’ opportunity costs in trade. The lack of
complete information in our model has a similar flavor to models in which inefficiency arises from a lack
of information about the common value component of the trade (e.g. Chiu and Koeppl, 2015). However, in
our model, the inefficiency arises from lack of information about the private value component of the trade.
As posed in Duffie (2012), both sources of private information are important frictions in decentralized
asset markets, and both require attention. However, for the most part, the literature has focused only on
the common component aspect of private information.
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trades per day at an average par value of $14 million.2

With the calibrated version of the model, we find private information leads to a

fall in aggregate welfare of 8% relative to the model with no private information. The

effect on welfare is due to a sharp decline in trade volume and asset supply. Lower

trade volume implies a larger extent of misallocation of assets and lower asset supply

implies that fewer investors can satisfy their trading needs. Both these measures are

depressed under private information because of the large informational rents implied

by the model and the low value that owners of the asset obtain in the secondary market

by attempting to sell the asset to investors that are non-owners (i.e. a low resale value).

An interesting implication of these two forces is that chains of trade are shorter under

incomplete information than under complete information, as evidenced by the low share

of trade volume that involve investors with intermediate valuations. That is, the role of

middlemen is severely undermined under private information relative to its complete

information counterpart (Hugonnier et al., 2014).

Quantitatively, the aggregate welfare effects of private information crucially depend

on the existence of private information in trade in the secondary market. If the secondary

market were to run under complete information, the welfare losses in the economy

would be small. If the primary market were to run under complete information, the

welfare losses in the economy would continue to be large, close to those obtained when

both markets operate under private information. However, this does not imply that the

primary market is not an important channel in which private information affects welfare.

As a result of private information in secondary markets, the resale value (and liquidity)

of assets is lower, thereby reducing issuance in the primary market. This distinctive

feature of our environment, not present in the OTC literature that largely abstracts from

asset creation, allows us to uncover a prominent way by which informational frictions

harm the economy: by generating an inefficiently low level of assets.

2Data on aggregate trading activity in the municipal bond market are available through the Mu-
nicipal Securities Research Board’s (MSRB) Electronic Municipal Market Access (EMMA) website,
http://emma.msrb.org.
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The asset supply channel is not only theoretically interesting, but also has policy im-

plications. A policy that increases asset supply can undo some of the harm caused by the

information friction. Indeed, we study a simple policy that taxes lump sum issuers and

uses the revenue to subsidize asset issuance. We find that this policy reduces the welfare

cost of private information from about 8% to close to 1%. Note that policies aimed at

increasing asset issuance are not rare. During the last financial crisis, for example, the

Federal Reserve created the Term Asset-Backed Securities Loan Facility (TALF) with the

goal of spurring the issuance of asset-backed securities (ABS) collateralized by loans of

various types to consumers and businesses.3

Our paper is related to both the micro and macro literature on trade with private

information. At a micro-level, our trading mechanism follows early work by Myerson

(1981) and Myerson and Satterthwaite (1983) that models trade of an indivisible asset

under private information about agents’ valuations. These papers, and the literature

that followed, are largely interested in trade efficiency while taking the distribution of

valuations as exogenous. Alternatively, we provide a framework where the distribu-

tion of valuations is endogenous and responds to frictions, both at a bilateral level (e.g.

information frictions) and at an aggregate level (e.g. search frictions, supply/demand

effects). The macro-finance literature on trade under private information has largely

focused on uncertainty about common values, such as asymmetric information and ad-

verse selection problems. Adverse selection has been used to understand asset market

liquidity in both centralized markets (e.g. Eisfeldt, 2004; Chari et al., 2014; and Bigio,

2015) and decentralized markets (e.g. Guerrieri et al., 2010; Chang, 2014; and Chiu and

Koeppl, 2015). Alternatively, we consider private information about private values, a

relevant component of the valuation of assets in which the quality of the asset is easily

verified, and analyze the effects on both secondary market liquidity and primary market

issuance. Cujean and Praz (2015) study an environment with asymmetric information

about private values in which asset holdings are unrestricted. Finally, Zhang (2016) also

3See https://www.federalreserve.gov/monetarypolicy/talf.htm
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considers asymmetric information about privates values but in an environment in which

traders can form long-term relationships. We abstract from long-term relationships.

The paper is structured as follows. Section 2 introduces the general environment,

defines the steady state equilibrium, and proves its existence. Section 3 describe our

benchmark with complete information. Section 4 describes the calibration and contains

our main experiments. Section 5 provides a simple policy to mitigate the losses due to

private information. Finally, Section 6 concludes.

2 Model

In this section, we introduce the environment, define an equilibrium, and provide a

proof of equilibrium existence.

2.1 Environment

Time is continuous and infinite. There is a unit measure of infinitely lived and risk-

neutral investors, and a unit measure of infinitely lived and risk-neutral issuers, who

all discount the future at rate r > 0. Investors’ asset holdings are discrete, either zero

or one. We label investors holding the asset as owners, and those not holding the asset

as non-owners. There is transferable utility across all agents. An investor receives utility

flow ν from holding an asset. We refer to ν as the investor’s type, which is private

information and follows a distribution F. We assume that F has support [
¯
ν, ν̄], density f ,

and f (ν) > 0 for all ν in the support.4 It is straightforward to extend the setup to allow

for time-varying types, in the style of Duffie et al. (2005). In their setup, as in many in

the literature, preference shocks are important in order to guarantee that trade occurs in

the steady state. In our setup, since assets mature and are created, we do not need this

4This is a model of private values. Private values for an asset are distinguished from common values, in
which the types of some agents convey information about the valuation of other agents. See Fundenberg
and Tirole (1991), Chapter 7, for a discussion of how the information structure affects the mechanism de-
sign problem and Krishna (2010) for a detailed analysis of auctions under differing information structures.
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assumption to generate trade in steady state. Investors meet each other with Poisson

arrival rate λb/2, and they can trade assets.

Outstanding assets mature every period with Poisson arrival rate µ, and new assets

are created by issuers. Issuers receive i.i.d. issuance opportunities (i.e. the opportunity

to create an asset) at Poisson rate λa > 0. Creating an asset entails incurring in a cost

c, which is drawn from a distribution G. A new issuance cost c is drawn each time an

issuer has an issuance opportunity and is i.i.d. across issuers and over time. We assume

that G has density g, support [
¯
c, c̄], and g(c) > 0 for all costs c in the support. Upon

the realization of an investment opportunity, an issuer contacts an investor randomly.5

If the issuer decides to create the asset, they incur cost c. Issuers cannot hold assets.

Note, however, that the issuers always have the option not to issue the asset, in which

case no cost is incurred. For instance, this would happen if the issuer does not reach an

agreement to sell the asset to the investor he is in contact with.

We restrict our attention to steady-state analysis so we do not include time t in the

set of states of the economy. Let s denote the fraction of investors holding an asset,

let Φo(ν) denote the measure of owners with type ν or below, and Φn(ν) denote the

measure of non-owners of type ν or below. Let Vo(ν) and Vn(ν) be the value function

of an owner and a non-owner of type ν, and let ∆(ν) = Vo(ν)− Vn(ν) be his reservation

value. The reservation value is the minimum/maximum price an investor is willing to

sell/buy the asset for. Finally, let Vc denote the value function of an issuer before the

issuance opportunity and before knowing his cost of producing the asset.

2.2 Primary-market trade mechanism

The primary market consists of trades between issuers and investors. We consider trad-

ing mechanisms that maximize the seller’s (in this case the issuer’s) expected gains

from trade.6 Without loss of generality with respect to characterizing payoffs and al-

5It is easy to extend this assumption so that the issuer can contact several investors at once, in which
case he runs an auction instead of trading bilaterally.

6The model can easily be generalized in order to allow for different Pareto weights.
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locations, we restrict attention to direct mechanisms. A direct mechanism is a pair of

functions ma = (pa, xa) : [
¯
c, c̄] × [

¯
ν, ν̄] → R× [0, 1], where, for a given issuance cost c

and non-owner type νn, pa(c, νn) is the probability of the issuer transferring the asset to

the non-owner, and xa(c, νn) is the transfer of utility from the non-owner to the issuer.

Define the functions

p̄a
n(νn) =

∫
pa(c, νn)dG(c), x̄a

n(νn) =
∫

xa(c, νn)dG(c)

p̄a
c(c) =

∫
pa(c, νn)d

Φn(νn)

1− s
, and x̄a

c(c) =
∫

xa(c, νn)d
Φn(νn)

1− s
.

The first term, p̄a
n(νn), is the investor’s expected probability of receiving the asset if he

announces type νn. The second term, x̄a
n(νn), is the investor’s expected transfer if he

announces type νn. The third and fourth terms, p̄a
c(c) and x̄a

c(c) are analogous but from

the perspective of an issuer announcing cost c. Since the mechanism maximizes the

issuer’s gains from trade, it must solve

max
ma

∫ ∫
[xa(c, νn)− pa(c, νn)c] d

Φn(νn)

1− s
dG(c) (1)

subject to

IR : p̄a
n(νn)∆(νn)− x̄a

n(νn) ≥ 0 (2)

IC : p̄a
n(νn)∆(νn)− x̄a

n(νn) ≥ p̄a
n(ν̂n)∆(νn)− x̄a

n(ν̂n) (3)

for all c, νn, and ν̂n. The first constraint, given by equation (2), is the non-owner’s

individual rationality constraint—it guarantees that he has an incentive to participate

in the mechanism. The second constraint, given by equation (3), is the non-owner’s

incentive compatibility constraint—it guarantees that he has an incentive to truthfully

reveal his type to the mechanism. Note that we do not state the individual rationality nor

the incentive compatibility constraints of the issuer. One can show that these constraints

are going to be satisfied because the mechanism maximizes the issuer gains from trade.
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The expected gains from trade for an issuer and a non-owner in the meeting, for a

given a direct mechanism ma = (pa, xa), are

πa
c (c) = x̄a

c(c)− p̄a
c(c)c and (4)

πa
n(νn) = p̄a

n(νn)∆(νn)− x̄a
n(νn). (5)

The first equation is the expected gains from trade of an issuer with cost c conditional

on meeting a non-owner. It takes expectation, with respect to νn, of the transfer from the

non-owner, xa(c, νn), minus the expected cost of issuance, pa(c, νn)c. The second equa-

tion is the expected gains from trade of a non-owner with type νn conditional on meeting

with an issuer. It takes expectation, with respect to c, of the expected gain of obtaining

the asset, pa(c, νn)∆(νn), minus the transfer to the issuer, xa(c, νn). The gains from trade

are evaluated under the assumption that issuers and non-owners truthfully reveal their

types to the mechanism. The constraints (2) and (3) ensure that an equilibrium in truth-

telling strategies exists. In order to keep the presentation simple, we assume that the

truth-telling equilibrium is being played instead of explicitly writing the strategic game

associated with the mechanism.

2.3 Solution to the primary-market trade mechanism

In this subsection, we assume that the distribution of valuations, Φn
1−s , and the reserva-

tion value function, ∆, are differentiable, and ∆′ is positive and bounded away from zero.

Then we solve for the optimal trade mechanism following Myerson (1981) and discuss

some of its properties. Note, however, that both Φn
1−s and ∆ are endogenous objects—

they depend on how people trade. As a result, one cannot make direct assumptions over

them. When describing our existence results we discuss why Φn
1−s may not be differen-

tiable in equilibrium and argue that the intuition derived here still holds. Moreover, we

use the results in this subsection to prove the existence of a steady-state equilibrium in

our economy, where a steady-state equilibrium is defined later in this section.
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Let haz(νn) = φn(νn)
1−s

/[
1− Φn(νn)

1−s
]

be the hazard function of the distribution of non-

owners, Φn(νn)
1−s , where φn is the derivative of Φn. The following proposition simplifies

problem (1)-(3). All the proofs are in the appendix.

Proposition 1. Let the distribution of non-owners, Φn
1−s , and the reservation value, ∆, be dif-

ferentiable and ∆′ strictly positive and bounded away from zero. Then, a direct mechanism

ma = (pa, xa) solves problem (1)-(3) if, and only if, it solves

max
ma

∫ ∫
pa(c, νn)

[
∆(νn)−

∆′(νn)

haz(νn)
− c
]

d
Φn(νn)

1− s
dG(c) (6)

subject to p̄a
n(νn) being increasing and πa

n(νn) =
∫ νn

¯
ν p̄a

n(ν)∆
′(ν)dν.

A proof of the proposition is available in the appendix. The probability of trade is

determined by the investor’s true utility gain from holding the asset, ∆(νn), minus an

informational rent, ∆′(νn)
haz(νn)

, minus the issuance cost, c. The term ∆(νn)− ∆′(νn)
haz(νn)

is labeled

in the mechanism design literature as the virtual valuation of the buyer. It measures

how much the seller, in this case the issuer, values selling the asset to type νn investors.7

The informational rent, ∆′(νn)
haz(νn)

, depends on the underlying distribution of non-owner

investors Φn(νn)
1−s . A high hazard, haz(νn), at νn implies a high virtual valuation of type

νn investors, which occurs because either the density of investors at νn, φn(νn)
1−s , is high,

or because the measure of investors with valuation above νn, 1− Φn(νn)
1−s , is low. A high

value of φn(νn)
1−s leads to a high virtual valuation because it implies that there is a large

amount of investors at νn, so that being able to sell to these investors is highly desirable

for the issuer. However, selling to investors of type νn implies giving informational rents

to investors of type above νn that have measure 1− Φn(νn)
1−s .

When the virtual valuation, ∆(νn)− ∆′(νn)
haz(νn)

, is increasing, we can define a cutoff ν∗n(c)

7With complete information there is no need for the issuer to give up informational rent, so we can
think of the virtual valuation in a complete information model as being simply ∆(νn). Note, however, that
∆(νn) differ under complete versus incomplete information.
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implicitly by the equation

∆(ν∗n(c))−
∆′(ν∗n(c))
haz(ν∗n(c))

= c.

In this case, the solution to problem (6) is

pa(c, νn) =

1 if νn ≥ ν∗n(c)

0 otherwise
and xa(c, νn) =

∆(ν∗n(c)) if νn ≥ ν∗n(c)

0 otherwise.
.

This solution implies that (i) transfers only occur upon trade and (ii) every non-owner

investor of type νn above the cutoff ν∗n(c) buys the asset and pays the reservation value

of the investor at the cutoff ν∗n(c). Note that p̄a
n(νn) is weakly increasing because ∆(νn)−

∆′(νn)
haz(νn)

is increasing, so the constraint is satisfied.

When the virtual valuation is not increasing, the solution involves a procedure to flat-

ten the nonmonotone regions—producing an adjusted virtual valuation that is increasing.

However, the same result applies to this adjusted virtual valuation. Namely, trade occurs

whenever the adjusted virtual valuation is greater or equal to the issuance cost and in-

vestors above the associated cutoff pay the reservation value of the investor at the cutoff.

In order to state the general solution, it is useful to define the functions

h(q) = ∆[Φ−1
n ((1− s)q)]− 1− s− q

φ(Φ−1
n ((1− s)q))

∆′[Φ−1
n ((1− s)q)], H(q) =

∫ q

0
h(r)dr

G(q) = min{ωH(r1) + (1−ω)H(r2); ωr1 + (1−ω)r2 = q}, and g(q) =
dG(q)

dq
.

The following proposition characterizes the solution in general, whether or not the

virtual valuation is increasing.

Proposition 2. Let the distribution of non-owners, Φn
1−s , and the reservation value, ∆, be both
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differentiable and ∆′ strictly positive and bounded away from zero. Define the functions

cn(ν) = g
(

Φn(ν)

1− s

)
and c−1

n (c) =

inf{νn; cn(νn) ≥ c} if cn(νn) ≥ c for some νn

ν̄ otherwise
.

Then the direct mechanism ma = (pa, xa), defined as

pa(c, νn) =

1 if cn(νn) ≥ c

0 otherwise
and xa(c, νn) =

∆(c−1
n (c)) if cn(νn) ≥ c

0 otherwise.
,

achieves the maximum in problem (6).

There are two important aspects of this solution. First, issuance is always distorted

within a meeting. It is efficient to issue an asset whenever the reservation value of the

investor, ∆(νn), is greater than the issuance cost c. However, due to the informational

rent, ∆′(νn)
haz(νn)

, this policy is not implemented and some efficient issuance does not occur.

The second aspect regards the split of the gains from trade among the issuer and the

investor. In the complete information analogue of problem (1)-(3), it is optimal for the

issuer to issue whenever ∆(νn) is greater than the issuance cost c and charge exactly the

reservation value of the investor, ∆(νn). As a result, the issuer captures all the gains

from trade. However, under incomplete information, the expected gains from trade for

investors are

E

[
pa(c, νn)

∆′(νn)

haz(νn)

]
=
∫ ∫

pa(c, νn)
∆′(νn)

haz(νn)
d

Φn(νn)

1− s
dG(c), (7)

which can be shown to be strictly positive. In the model, trade inefficiencies and the

informational rent play an important role, shaping aggregate outcomes; we explore this

in detail later once we calibrate our model. For now, to illustrate these two forces, it

is worth studying a particular example. Below, we consider a static partial equilibrium

example where Φn(νn)
1−s is assumed to be Pareto, ∆ is the identity, and G is degenerate.
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Example 1. Let ∆(ν) = ν, Φn(νn)
1−s = 1−

(
¯
ν
νn

)α
and G be degenerated at c =

¯
ν.

¯
ν > 0 is the

scale parameter (and also the lower bound of the support), and α > 2 is the shape parameter. The

assumption that α > 2 guarantees that the results from this section hold even though the Pareto

distribution is not defined in a compact support. The hazard function of Φn(νn)
1−s is haz(νn) =

α
νn

,

and the investor’s virtual valuation is ∆(νn)− ∆′(νn)
haz(νn)

= α−1
α νn, which is linear in the investor’s

type. The cut-off value is ν∗n(c) =
α

α−1 c. Asset issuance is given by

Issuance =
∫ ∫

1{νn≥ α
α−1 c}d

Φn(νn)

1− s
dG(c) =

(
α− 1

α

)α

∈
(

1
4

,
1
e

)
,

and the share of the total gains from trade accrued by issuers is given by

1−

∫ ∫
pa(c, νn)

∆′(νn)
haz(νn)

d Φn(νn)
1−s dG(c)∫ ∫

pa(c, νn) [∆(νn)− c] d Φn(νn)
1−s dG(c)

=
α− 1

2α− 1
∈
(

1
3

,
1
2

)
.

From the example above we see that (i) issuance is always distorted and (ii) issuers

give up a substantial fraction of the total gains from trade to the investor due to the

informational rents. Regarding the distortion on issuance, note that under complete in-

formation every meeting ends up in issuance because investors’ valuations are always

above the issuance cost c =
¯
ν. Therefore, IssuanceCI =

∫
d Φn(νn)

1−s = 1. But with incom-

plete information, issuance is always smaller than 1
e ≈ 0.37. Regarding the informational

rents, the share of gains from trade captured by issuers is one under complete informa-

tion, but it is bounded by 0.5 under incomplete information.

2.4 Secondary-market trade mechanism

The secondary market consists of trades between owners and non-owners. As in the

primary market, we consider mechanisms that maximize the expected gains from trade

of owners in the secondary market. A direct mechanism in the secondary market is

a pair of functions mb = (pb, xb) : [
¯
ν, ν̄]2 → [0, 1] ×R, where pb(νo, νn) represents the

probability of transferring the asset when the owner has type νo and the non-owner has
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type νn, and xb(νo, νn) represents the transfer from the non-owner to the owner when

the owner has type ν̄ and the non-owner has type νn. Define the functions

p̄b
n(νn) =

∫
pb(νo, νn)d

Φo(νo)

s
, x̄b

n(νn) =
∫

xb(νo, νn)
Φo(νo)

s

p̄b
o(νo) =

∫
pb(νo, νn)d

Φn(νn)

1− s
, and x̄b

o(νo) =
∫

xb(νo, νn)d
Φn(νn)

1− s
.

The interpretations for p̄b
n(νn), x̄b

n(νn), p̄b
o(νo), and x̄b

o(νo) are the same as in the primary

market. The mechanism that maximizes the owner’s expected gains from trade solves

max
mb

∫ ∫ [
xb(νo, νn)− pb(νo, νn)∆(νo)

]
d

Φn(νn)

1− s
d

Φo(νo)

s
(8)

subject to

IR : p̄b
n(νn)∆(νn)− x̄b

n(νn) ≥ 0 (9)

IC : p̄b
n(νn)∆(νn)− x̄b

n(νn) ≥ p̄b
n(ν̂n)∆(νn)− x̄b

n(ν̂n) (10)

for all νo, νn, and ν̂n. Problem (8)-(10) is closely related to problem (1)-(3) in the simple

model and it can be solved in a similar fashion. However, it has two important differ-

ences. First, the seller’s opportunity cost in the primary market is just the issuance cost,

while in the secondary market, the opportunity cost reflects the value of holding onto

the asset and potentially selling it later, which equals the reservation value ∆. Second,

in the primary market, the distribution of sellers’ types, G, is exogenous. While in the

primary market it is Φo
s , which is endogenous.

Given a mechanism mb = (xb, pb), the expected gains from trade of an owner and a

non-owner in a meeting in the secondary market are given by

πb
o(νo) = x̄b

o(νo)− p̄b
o(νo)∆(νo) and (11)

πb
n(νn) = p̄b

n(νn)∆(νn)− x̄a
n(νn). (12)
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The first equation is the expected gains from trade of an owner with type νo conditional

on meeting with a non-owner. It takes expectation with respect to νn of the transfer

from the non-owner, xb(νo, νn), minus the expected opportunity cost of selling the asset,

pb(νo, νn)∆(νo), plus his continuation value if the asset is not sold, ∆(νo). The second

equation is the expected gains from trade of a non-owner with type νn conditional on

meeting with an owner. It takes expectation with respect to νo of the expected gain of

getting the asset, pb(νo, νn)νn, minus the transfer to the owner, xb(νo, νn). As before, the

gains from trade are evaluated under the assumption that owners and non-owners are

truthfully revealing their types to the mechanism.

2.5 Solution to the secondary-market trade mechanism

The secondary market can be solved in a similar fashion to the way we solve the mecha-

nism in the primary market. We assume that the distribution of types of owner investors,
Φo
s , the distribution of types of non-owner investors, Φn

1−s , and the reservation value func-

tion, ∆, are differentiable, and ∆′ is positive and bounded away from zero. Define the

functions

p̄b
n(νn) =

∫
pa(c, νn)dG(c), and x̄b

n(νn) =
∫

xa(c, νn)dG(c).

The terms p̄b
n(νn) and x̄b

n(νn) are analogous to the primary market. Then we have the

following characterization of the problem.

Proposition 3. Let the distribution of owners, Φo
s , of non-owners, Φn

1−s , and the reservation value,

∆, be differentiable and ∆′ strictly positive and bounded away from zero. Then a direct mechanism

mb = (pb, xb) solves problem (8)-(10) if, and only if, it solves

max
mb

∫ ∫
pa(c, νn)

[
∆(νn)−

∆′(νn)

haz(νn)
− ∆(νo)

]
d

Φn(νn)

1− s
d

Φo(νo)

s
(13)

subject to p̄b
n(νn) being weakly increasing in νn, and πb

n(νn) =
∫ νn

¯
ν p̄b

n(ν)∆
′(ν)dν.
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The proof of the proposition is analogous to the proof of Proposition 1, and thus we

omit it. The following proposition characterizes the solution.

Proposition 4. Let the distribution of non-owners, Φn
1−s , and the reservation value, ∆, be both

differentiable and ∆′ strictly positive and bounded away from zero. Define the functions

cn(ν) = g
(

Φn(ν)

1− s

)
and

c−1
n (ν) =

inf{∆(νn); cn(νn) ≥ ∆(ν)} if cn(νn) ≥ ∆(ν) for some νn

ν̄ otherwise
.

Then the direct mechanism ma = (pa, xa), defined as

pb(νo, νn) =

1 if cn(νn) ≥ ∆(νo)

0 otherwise
and xb(νo, νn) =

c−1
n (νo) if cn(νn) ≥ ∆(νo)

0 otherwise.
,

achieves the maximum in problem (13).

The proof of the proposition is analogous to the proof of proposition 2, and thus we

do not provide it.

2.6 The value functions of investors and issuers

The value function of an owner is given by

rVo(ν) = ν + µ
[
Vn(ν)−Vo(ν)

]
+ λb(1− s)πb

o(ν) . (14)

This equation states that the value of owning an asset, discounted at rate r, equals the

sum of three terms. The first term accounts for the flow utility of holding the asset, ν.

The second term is the change in value when the asset matures and the owner becomes

a non-owner, which happens at rate µ. The third term accounts for the net gains of
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an owner meeting a non-owner. An owner meets a non-owner at rate λb(1− s), where

1− s is the fraction of investors that are non-owners. The value function of a non-owner

follows similarly,

rVn(ν) = λbsπb
n(ν) + λaπa

n(ν) . (15)

The value for a non-owner of type ν is the sum of two terms. The first term accounts

for the net gains for the non-owner meeting an owner. A non-owner meets an owner at

rate λbs, where s is the fraction of investors that are owners. The second term accounts

for the net gains accrued by the non-owner when meeting an issuer, an event that occurs

at rate λa. Using equations (14)-(15), we can compute the reservation value function for

investors, ∆(ν) = Vo(ν)−Vn(ν), according to

r∆(ν) = ν− µ∆(ν) + λb(1− s)πb
o(ν)− λbsπb

n(ν)− λaπa
n(ν) . (16)

Finally, the value function for an issuer is given by

rVc = λa(1− s)
∫

πa
c (c)dG(c) . (17)

This equation provides that the flow value of being an issuer equals the arrival rate

of an issuance opportunity times the probability of finding a non-owner investor times

the expected profits that the issuer would get if he produces and sells the asset to a

non-owner investor.

2.7 The distribution of assets

In this section, we provide equilibrium conditions for the distribution of owners’ types,

Φo(ν), the distribution of non-owners’ types, Φn(ν), and for the fraction of agents hold-
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ing assets in the secondary market, s. The law of motion for Φo(ν) is given by

Φ̇o(ν) = − µΦo(ν)− λb

∫ ν

¯
ν

∫ ν̄

ν
pb(νo, νn)dΦn(νn)dΦo(νo) + λa

∫ c̄

¯
c

∫ ν

ν
pa(c, νn)dΦn(νn)dG(c) .

(18)

This equation considers the change in the mass of owners with valuation below ν. The

first term on the righthand-side of the equation accounts for those owners with valuation

below ν that become non-owners because the asset matures. The second term accounts

for meetings in the secondary market where owners with valuation below ν sell the asset

to buyers with valuation above ν. Finally, the third term accounts for meetings where

issuers sell the asset to non-owners with valuation below ν. Given the law of motion for

Φo(ν), we can easily obtain an expression for Φn(ν) using that

Φo(ν) + Φn(ν) = F(ν) , (19)

which simply states that the measure of owners of type below ν plus the measure of

non-owners of type below ν has to be equal to the total measure of investors of type

below ν. Finally, by definition, all issued assets must be held by owners, or

Φo(ν̄) = s. (20)

2.8 Equilibrium

In this section, we define an equilibrium and provide an existence result. We stress that

we do not impose conditions on the distributions Φo and Φn, nor on the reservation

value ∆, as we did in Propositions 2 and 4. We start with the definition of a symmetric,

steady-state equilibrium.

Definition 1. A symmetric, steady-state equilibrium is a family {∆, Vc, Φo, Φn, s, xa, pa, xb, pb}
satisfying the following conditions:
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(i) the value function of an issuer Vc satisfies equation (17) where πa
c is given by equation (4),

and the reservation value of investors ∆(ν) satisfies equation (16) where πa
n, πb

o and πb
n are

given by equations (5), (11), and (12);

(ii) the measure Φo is such that Φ̇o = 0, where Φ̇o is defined in equation (18), Φn satisfies

equation (19), and the amount of assets in the economy s satisfy (20); and

(iii) the mechanism in the primary market, xa and pa, solves problem (1)-(3), while the mecha-

nism in the secondary market, xb and pb, solves problem (8)-(10).

Notice that the definition of equilibrium does not include the value function Vo and

Vn. We do not include these two terms because we can solve for the equilibrium solely

with the reservation value function ∆ and then back out Vo and Vn using (14) and (15).

The existence of a solution to the problem that we analyze here can be complicated.

In a partial equilibrium sense, solving for the optimal trade mechanism reduces to find-

ing a solution to problem (6) and (13) but takes as given the distribution of valuations.

However, because the distributions, Φo and Φn, and reservation value, ∆, are endoge-

nous, existence also involves a fixed point in these objects.

Proposition 5. There exists a symmetric steady-state equilibrium.

The idea of the proof of the proposition is the following. We begin by constructing a

sequence of distribution functions, valuations, and mechanisms. The operator we use to

construct this sequence updates the measures Φk
o and Φk

n using polynomials (for exam-

ple, Chebyshev polynomials) of degree k for the associated densities. This guarantees

that the distributions are well behaved through the whole sequence, and thus we can

apply Proposition 2 and 4 to generate the k + 1 term from the k term in the sequence.

The next step is to show that the sequence {∆k, Φk
o, Φk

n}k is equi-continuous and then, by

the Arzelà-Ascoli theorem, it has a subsequence that converges uniformly.8 The conver-

gence of a subsequence of {∆k, xka, pka, xkb, pkb}k follows similar arguments. Hence, we

8Note, however, that even though for the entire sequence we have that Φk
o and Φk

n are continuously
differentiable, the limits do not have to be since the space C1 is not closed.
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conclude that, passing to a subsequence if necessary, our original sequence has a limit

{Φ∗o , Φ∗n, s∗, ∆∗, x∗a, p∗a, x∗b, p∗b}. The last step in the proof is to show that this limit satis-

fies the equilibrium conditions. For that, we use the Stone-Weierstrass theorem to argue

that the polynomials are a good approximation of the limit so that optimality must hold.

3 Complete information

An important benchmark for our model is a version where, in any meeting, investors’

valuations, ν, are observed. That is, there is complete information. In this case, the seller

can extract full surplus from the trade. The trade mechanisms are easy to characterize,

given by

pa,CI(c, νn) =

1 if ∆CI(νn) ≥ c

0 otherwise
, xa,CI(c, νn) =

∆CI(νn) if ∆CI(νn) ≥ c

0 otherwise
, (21)

pbCI(νo, νn) =

1 if νn ≥ νo

0 otherwise
and xbCI(νo, νn) =

∆CI(νn) if νn ≥ νo

0 otherwise
. (22)

Notice, under complete information, trade is always bilaterally ex-post efficient. Issuers

create assets if the seller they match with has a larger valuation than their cost and

investors trade in the secondary market whenever the non-owner values the asset more

than the owner. The equations for the reservation value and distribution of valuations

are the same as in the incomplete information model but replacing the mechanisms

(xa, pa, xb, pb) with (xaCI , paCI , xbCI , pbCI). That is,

Φ̇CI
o (ν) = − µΦCI

o (ν)

− λb

∫ ν

¯
ν

∫ ν̄

ν
pbCI(νo, νn)dΦCI

n (νn)dΦCI
o (νo) (23)

+ λa

∫ c̄

¯
c

∫ ν

ν
paCI(c, νn)dΦCI

n (νn)dG(c) , and (24)
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r∆CI(ν) = ν− µ∆CI(ν) + λb(1− s)πbCI
o (ν)− λbsπbCI

n (ν)− λaπaCI
n (ν) . (25)

The equilibrium definition also follows in the same fashion. We conjecture that a com-

plete information equilibrium always exists, as in the incomplete information case, and

it is also unique and implements the first best allocation (that is, the allocation that

maximizes aggregate welfare subject to the search frictions). We have partial results

suggesting this is the case, but the proof is still incomplete.

4 Quantitative Analysis

In this section, we quantitatively study the implications of private information in the US

municipal bond market. The US municipal bond market is (i) large, with nearly 40,000

transactions per day at an average par of $14 million, (ii) decentralized – all trades occur

bilaterally – and (iii) features low default risk. Low default risk is important in that

private information about the payoffs of municipal bonds are not a major friction in this

market.

4.1 MSRB data and sample description

We use data on municipal bond transactions collected and provided by the Munici-

pal Securities Rulemaking Board (MSRB). The MSRB requires securities dealers, issuers,

and those acting on their behalf to submit information on municipal bond trades and

disclosure documents for all transactions within 15 minutes of the time of trade. The

data are then released publically, with a lag, through the MSRB’s Electronic Municipal

Market Access (EMMA) portal, however we obtain historical data through Wharton Re-

search Data Services (WRDS). The dataset includes transaction-level information for all

trades of municipal bonds involving a securities dealer in which the municipal bond

was assigned a unique CUSIP identification number. This nearly covers the universe of

municipal bond trades. Our sample includes transactions from January 3, 2005, through

20



December 31, 2014.

For each transaction, we observe characteristics about the issue being traded, such

as the unique CUSIP identifier, maturity date, coupon rate, and the date when interest

began to accrue as well as trade characteristics such as the date and time the trade took

place, the price, the par value, and whether or not the trade was a purchase by a dealer

from an investor, a sale from a dealer to an investor, or an inter-dealer transaction. In

some instances, the yield is reported. We obtain other bond and issuer characteristics

from the CUSIP Global Services Master File including the geography and type of the

issuer (e.g. country, school district, development authority, etc.) as well as the bond’s

type (e.g. tax revenue or general obligation), its tax-exempt status, and whether or not

the bond is callable. Since the yield on the transaction is not reported for a significant

portion of the sample, we infer the yield on missing observations using information on

the coupon rate, price, and time to maturity. We further describe our process as well as

our sampling procedure in Appendix B.

Table 1 reports the descriptive statistics for our sample. Following Green et al. (2007),

we label all trades that take place within the first 90 days from issuance as ‘primary

market’ transactions and those occurring after as ‘secondary market’ transactions.9

Municipal bonds are actively traded after their initial issuance. From 2005-2014, we

observe 86.4 million transactions of 1.89 million bond issues, 78% of which occur in the

secondary market. The total value of all trades was $17.7 quadrillion (or $1.77 trillion

per year), of which 62% occur in the secondary market. Hence, primary market trades

tend to be larger; the average par on transactions in the primary market was $370,000

while only $160,000 in the secondary market. The average maturity of issues traded was

17.83 years at an average yield of 3.9%. There is not a significant difference between the

yield on trades in the primary market versus the secondary market, 3.97% and 3.90%,

respectively. Table 1 reports descriptive statistics.

9Alternatively, we could follow the MSRB in denoting all “new issue trades” as those occurring within
the first 30 days. However, we chose to be consistent with the literature for comparison.
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Table 1: Descriptive Statistics on Municipal Bond Transactions, 2005-14

All Transactions Primary Market Secondary Market
Observations (millions) 86.40 18.50 67.90
Issues (millions) 1.89 1.26 1.25
Total value (trillion $) 17,701.69 6,840.02 10,861.67
Average par (million $) 0.20 0.37 0.16
Coupon rate (%) 4.52 4.20 4.60
Yield-to-Worst (%) 3.91 3.97 3.90
Maturity (years) 17.83 15.34 18.51
Years until maturity 13.66 15.33 13.20
Note: Sample is all municipal bond transactions reported to the MSRB from 2005-14. We drop
observations on variable rate securities, if missing price, or if the par value traded is less than
$1,000. We winsorize the price and yield at 99%. If the yield-to-worst is not reported on the
transaction, we use the estimated yield-to-maturity.

4.2 Calibration

Using the moments above, we calibrate the model as follows. We assume that the dis-

tribution of investors’ valuations, F, is a truncated log-normal, with parameters µF and

σF. The lower limit of the truncation,
¯
ν, is kept at zero and the upper limit, ν̄, is set at

ν̄ = F−1(0.999). The issuance cost is c = c̃
r+µ , where c̃ is also truncated log-normal, with

parameters µG and σG, and the limits are the same as in the F distribution (that is,
¯
c =

¯
ν

and c̄ = ν̄). The above specification gives eight parameters: r, µ, λa, λb, µF, σF, µG,

and σG. We calibrate to an annual frequency and set the discount rate r = 0.05. We set

the maturity parameter so that the average maturity in the model matches the one in the

data, µ = 1.0/17.83.

This leaves us with six parameters to calibrate, the frequency of trade opportunities

in the primary and secondary market, λa and λb, and the mean and variance of the

value and cost distributions. We use the following moments in the data to discipline

these six parameters. In order to capture the importance of the secondary market for

municipal bonds, we the target the relative size of this market in the total value of trade

of 62%. This helps discipline the relative size of λb versus λa. As we illustrated using
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the simple version of the model, the shape of the distribution of investor valuations and

issuer costs are important in understanding the scope of informational rents that arise

from private information. To discipline the parameters of these distribution, we target

moments from the distribution of yields on transactions in the MSRB data. Specifically,

we target the mean and dispersion of yields across transactions for both the primary

and secondary market. The average yield on transactions in the primary and secondary

market is taken directly from Table 1. Yield dispersion in the model arises only due

to heterogeneity in valuations and costs for bonds with a known dividend (or coupon

rate) and maturity. However, in the data, yield dispersion arises for many reasons.

Yields vary within time and across issues because of differing observable characteristics,

such as coupon rates or taxable status. Yields vary within issues and across time due

to both aggregate effects, such as changing market conditions, as well as idiosyncratic

effects. The dispersion in yields that is most closely related to the one in our model is

dispersion within issues across time controlling for aggregate time effects. In order to

capture time-variant aggregate volatility, we de-mean the yield on each transaction by

a group-specific, daily average yield. We categorize issues into groups according tax-

exempt status, callable status, and the source of repayment (general obligation or tax

revenue). Then, we calculate the average, unweighted within group variance of the yield

over our entire sample, 2005-14. We do this separately for the primary and secondary

market. This gives us five moments to match six parameters. For the last moment, we

use data on the expected number of times an issue is traded on the secondary market as

a function of the amount of time since issuance. In the data, we observe that as issues

mature, they are less likely to be traded. The same is true in the model since, on average,

issues are allocated from low-valuation investors to high-valuation investors. Hence, the

path of the frequency of trade also helps us discipline the meeting rate in the secondary

market and the distribution of valuations.

Table 2 reports the calibrated parameters of the model, while Table 3 and Figure

1 depict the outcomes of the model in comparison with the data. In the general, the
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Table 2: Calibrated parameters

r µ λa λb µF σF µG σG
0.050 0.056 0.100 4.650 -0.001 0.970 -0.097 0.688

model does well matching the data, with the exception being the difference in average

yields between the primary and secondary market. The reason is that the model always

generates prices in the secondary market higher than those in the primary market since

investors who sell assets in the secondary market do not change valuation from when

they originally purchased the issue in the primary market. Hence, if they re-sell, it must

be at a higher price or lower yield. In the data, while the yield is lower in the secondary

market, quantitatively they are very close, and as a result the model cannot match it

exactly. However, the model matches the average yield well across all transactions; in

the data, average yield in both markets is 3.91% while in the model it is 4.00%.

Table 3: Moments

Variables Data Model
Average maturity 14.96 14.96
Primary/Total market 0.38 0.39
Primary market

Average yield 3.96 5.66
Yield std. deviation 0.30 0.31

Secondary market
Average yield 3.90 2.96
Yield std. deviation 1.10 1.10

Average yield 3.91 4.00

Figure 1: Trade after issuance

4.3 The pattern of trades

In the secondary market, trade occurs when two investors meet, one who owns the asset

and one who does not, and the virtual valuation of the non-owner of the asset is above
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the reservation value of the asset’s owner. Figure 2 depicts the reservation value and

the virtual valuation of investors given their type. The virtual valuation is strictly below

the reservation value, which implies that trade is inefficient. That is, for some meetings

between an investor who owns an asset and one who does not, trade will not occur in

situations where the reservation value of the non-owner of the asset is higher than the

one of the owner. Figure 3 illustrates this result. It depicts the region of asset owner

valuations, νo, and non-owner valuations, νn, in which meetings result in trade. For all

pairs of valuations (νo, νn) below the 45◦ line, trade is the efficient outcome. However,

trade only occurs in the purple trade region. The pink region depicts the loss of efficient

trades caused by private information.

Figure 2: Virtual valuation Figure 3: Trade region

Trade occurs in the primary market in the same way as the secondary market. In

a meeting between an issuer and an investor who does not own an asset, the issuer

issues an asset to the investor if the investor’s virtual valuation is above the issuing cost.

The fact that trade occurs only when virtual valuations are above the issuance cost, as

opposed to needing the reservation value to be above the issuance cost, generates an

inefficiency similar to the one in the primary market.
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4.4 Asset supply, trade volume, and welfare

There are two important channels in which the private information affects welfare. The

first one is a direct channel. Since virtual valuations are lower than reservation values,

some meetings do not end up in trade/issuance even though the reservation value of

the investor is higher than the reservation value/issuing cost of the potential buyer for

the asset. As a consequence, the total surplus in a meeting is not realized. This channel

is well explained in our simple version of the model.

The second channel in which private information affects welfare is an indirect channel

due to the dynamic nature of asset markets. How much an investor is willing to pay

for an asset (the reservation value) depends not only on his own valuation of the asset,

ν, but also on the expected surplus from selling the asset, πb
o(ν), his outside option of

buying the asset from another investor, πb
n(ν), and his outside option of buying the asset

from an issuer, πa
n(ν). The resale value of the asset goes down with private information

because the potential buyer can extract informational rents from the investor trying to

sell an asset. Moreover, the outside options go up because the investor can extract

informational rents when buying the asset from another investor or from an issuer. The

lower reservation value under incomplete information implies that investors are less

willing to pay issuers to issue an asset. As a result, issuance and asset level are both

inefficiently low due to private information.

To better understand what is going on in the model, it is worth comparing it with

a complete information benchmark. The difference between reservation values in the

complete and incomplete information models, using (14) and (25), is given by

∆CI(ν)− ∆(ν) =
λb[(1− sCI)πbCI

o (ν)− (1− s)πb
o(ν)]

r + µ︸ ︷︷ ︸
resale pro f its

+
λaπa

n(ν)

r + µ︸ ︷︷ ︸
primary
market
rents

+
λbsπb

n(ν)

r + µ︸ ︷︷ ︸
secondary

market
rents

, (26)

noting that πiCI
n = 0 for i = a, b or that non-owners receive zero gains from trade un-
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der complete information. Equation (26) provides a way to decompose the difference

in reservation values between the complete and the incomplete information models.

Figure 4 illustrates this difference in the calibrated version of the model, and Figure 5

decomposes this difference. For investors with low types, ν, the difference is mostly

due to losses in resale value. Resale value captures the expected gains from trade of

an owner reselling the asset in the secondary market. Under incomplete information, a

low-valuation owner is not able to seize all the gains from trade associated with meeting

a high-valuation non-owner, which implies that πbCI
o is larger than πb

o . The effect of

private information on resale values diminishes for larger investor types. For investors

with higher values of ν, the difference in reservation values is largely due to the outside

option of not owning the asset and collecting informational rents upon buying in the

future. The last two terms correspond to this option for the primary and secondary mar-

ket, respectively. Higher type investors collect larger informational rents and so posses

a larger outside option under complete information. This creates a hold-up problem,

leading to an inefficiently low reservation values for assets and reductions in liquidity.

In the calibrated model, the hold-up problem in the secondary market is more severe

than in the primary market, a feature we quantify later.

Figure 4: Reservation value Figure 5: Difference in ∆
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As illustrated in Figure 3, assets are not well allocated primarily because trade in the

secondary market is not efficient (affecting resale profits and secondary market outside

options). Additionally, the total level of assets is not efficient because trade in the pri-

mary market is also inefficient. This results in less issuance, leading to a lower asset

supply, lower trade volume, and lower total welfare.

Table 4: Asset level, trade volume, and total welfare

Asset level Trade volume Total welfare Avg. Yield
Complete information 0.56 2.68 24.19 -1.23%
Incomplete information 0.44 0.60 22.36 4.00%
Difference 21.43% 77.61% 7.56% 5.23%

Table 4 illustrates the magnitude of the loss in asset supply, trade volume, and welfare

for the US municipal bond market. Asset supply is 22% lower under incomplete infor-

mation, and secondary market trade volume is 77% lower. Note that volume falls more

than the level of assets because, besides a reduction in trade opportunities due to less

assets in the economy, there are also trades which are lost due to the information fric-

tion. In terms of welfare, agents are nearly 8% worse off in the incomplete information

economy than with complete information. Consistent with the fall in asset values, the

average yield of assets in our economy is significantly higher under private information.

4.5 Misallocation and the distribution of assets

The inefficiencies generated by the information friction affect the distribution of asset

holdings among owners and non-owners. Figures 6 and 7 depict these measures in

comparison with the analogous measures associated with complete information. Total

assets in the model with incomplete information is s = 0.44, while in the benchmark

with complete information it is sCI = 0.56. The difference in total assets, sCI − s, is

associated with the area between the curves in Figures 6 and 7.

The welfare cost associated with complete information is mostly due to investors
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Figure 6: Measure of owners Figure 7: Measure of non-owners

with intermediate valuations (between 0.5 and 2.5) holding less assets than in the com-

plete information benchmark. Investors with low valuations (ν close to zero) are not

likely to hold assets in either economy. Similarly, investors with high valuation acquire

assets in both economies. This pattern reflects a key feature of the trade mechanism: in

order to capture rents from high-valuation investors, owners and issuers sacrifice trade

with investors with average valuations, so that there fewer trades where investors with

intermediate valuations participate. Private information skews the distribution of non-

owners to the left resulting more high-valuation non-owners – both because of reduced

asset supply and because of the no-trade region. Likewise, the distribution of owners is

skewed to the right resulting in relatively more low-valuation owners.

Figures 8 and 9 illustrate the distribution of trades in the primary market between

issuers and non-owner investors (left panel) and in the secondary market between own-

ers and non-owners (right panel). The color indicates the mass of trades occurring

for a given issuer or investor type. Although most trade in the primary market in-

volves investors with low valuations in either the complete and incomplete information

economies, the way trade is handled by these investors in the secondary market is very

different between the two economies. Under complete information, owners sell their
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Figure 8: Complete information

Primary market Secondary market

Figure 9: Incomplete information

Primary market Secondary market

assets to non-owners with valuation close to theirs, so that assets flow to high valuation

investors slowly, involving intermediate valuation investors as middlemen—a feature

identified by Hugonnier et al. (2014). Under incomplete information, because an owner

wants to capture rents from trade from high-valuation investors, the role as middlemen

of intermediate valuation investors is hindered, so that assets flow to high-valuation in-
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vestors with fewer trades. Here, intermediate valuation investors have a more passive

role in trade, and thus a smaller role as middlemen.

4.6 Primary vs. secondary markets

Private information distorts trade in both primary and secondary markets. A natural

question is in which market are information frictions more severe. To answer this ques-

tion, we solve two alternative models. In the first one, there is complete information

in all meetings in the primary market but not in the secondary market. In the second

one, there is complete information in all meetings in the secondary market but not in the

primary market. Table 5 repeats the results from Table 4, decomposing the informational

effects between the two markets.

Table 5: Decomposition: primary vs secondary market

Asset level Trade volume Welfare Welfare loss
Incomplete 0.44 0.60 22.36 7.59%
Complete—primary 0.45 0.64 22.58 6.64%
Complete—secondary 0.53 1.92 24.02 0.07%
Complete—both markets 0.56 2.68 24.19 -

The effect of private information in the primary market for municipal bonds is small.

In this case, the welfare loss with respect to the complete information benchmark is

6.64%, while in the incomplete information version the welfare loss is 7.59%. Solving

informational problems in the primary market only increases welfare by 0.95%. On the

other hand, private information in the secondary market has substantial effects. Elimi-

nating private information in secondary market trades nearly implements the complete

information allocation. The welfare loss of only having private information in asset

issuance is 0.07%.

The fact that the welfare cost of private information comes mostly from the infor-

mation friction in the secondary market may lead some to think that primary market
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issuance has no role in generating the inefficiency, but that is not the case. The reason is

that the channel in which the information friction in the secondary market reduces wel-

fare works through asset supply, determined in the primary market. The information

friction in the secondary market allows non-owners of assets to extract informational

rents from owners. This reduces the value of having an asset, and as a result, issuance

goes down because the value of buying an asset is lower. We can see this by noticing

that even when there is complete information only in the primary market, asset supply

is still 19.49% below the level under complete information in both markets. However,

when there is complete information only in the secondary market, asset supply is only

5.61% lower.

5 Policy

In this section, we study a policy intervention with the aim of improving welfare in the

economy with private information. The type of policy intervention that we consider is

simple and restrictive. In particular, we restrict attention to a policy that subsidizes trade

in the primary market, financed by charging a participation fee to issuers that intend to

issue an asset in a given period. The restriction to only intervene in the primary market

is motivated by the fact that in many asset markets, secondary market intervention is

difficult given the market’s opacity and the anonymity of participants. For instance in

the municipal bond market, the MSRB requires dealers to report transactions (either

as the buyer or the seller) but does not require them to report the identities of their

counter-parties.10 Even if taxation of individual trades were introduced, it is unclear

if revealing the participants’ identity would be individually rational. Our policy, while

different, has a similar spirit to granting tax-exempt status to the interest payments

of municipal bonds, a feature that the municipal finance literature finds encourages

10See MSRB Rule G-14 for dealer guidelines in reporting transactions and the Real Time Reporting
System’s (RTRS) user guide for an explanation of the information required when reporting, both available
at www.msrb.org.
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issuance.11 Although the policy is simple, we show how the policy intervention in the

primary market greatly improves welfare, even though the main distortion, as show in

Section 4.6, occurs in the secondary market.

Let f denote the participation fee charged to issuers that intend to issue, and let τ

denote the subsidy provided to those issuers that end up issuing an asset. We present the

problem under the conjecture that { f , τ} are such that issuers are willing to participate

in the program (and we then check ex-post that this is the case). With a slight abuse of

notation, the value function for an issuer is given by

rVc(τ, f ) = λa

[
(1− s)

∫
πa

c (c; τ) dG(c)− f
]

where

πa
c (c; τ) =

∫
[xa(c, νn)− pa(c, νn; τ)(c− τ)] d

Φn(νn)

1− s

are the expected gains from trade for an issuer with cost c in face of an issuance op-

portunity. Notice that all other objects in the economy remain unchanged, as they only

depend on f and τ indirectly. The objective of the planner is

max
τ

Vc(τ, f ) +
∫

Vo(νo) dΦo(νo) +
∫

Vn(νn) dΦn(νn)

subject to

f
λa

= (1− s)
∫ ∫

τpa(c, νn; τ) d
Φn(νn)

1− s
dG(c) ,

0 ≤ Vc(τ, f ) .

The first restriction states that the budget constraint of the planner needs to be satisfied,

while the second restriction states that issuers need to be willing to participate in the

market. Using the budget constraint of the planner together with the expression for

11See for example Gordon and Slemrod (1983) and Fortune (1998).
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Vc(τ, f ), we obtain that the participation restriction reduces to

∫
[xa(c, νn)− pa(c, νn; τ)c] d

Φn(νn)

1− s
≥ 0 .

If τ were to be zero (so that there is no intervention by the planner), this equation is

immediately satisfied as this equation is simply the profits of an issuer with cost c, which

we know are positive. However, for τ > 0 the trade probability is distorted upwards,

and thus this equation might not be satisfied for some τ > 0.

We look for the optimal policy by a grid search method. Although slow, this method

is reliable and lets us circumnavigate potential issues with local maxima. We find that

the optimal subsidy is τ∗ = 3.12 with an implied participation fee f ∗ = 1.00. To put

things in perspective, the expected production cost is around 9.8, so that the optimal

subsidy accounts for about 1/3 of the production cost of the average issuer.

Table 6: Outcomes of policy

Asset level Trade volume Welfare Welfare loss
Incomplete 0.44 0.60 22.36 7.59%
Complete—primary 0.45 0.64 22.58 6.64%
Incomplete with policy 0.49 0.58 23.87 1.32%
Complete—secondary 0.53 1.92 24.02 0.70%
Complete—both markets 0.56 2.68 24.19 -

We learn an important result from this exercise. At least under our calibration, the

main cost of private information is not due to the inefficiency of individual trades—

though this cost is obviously still there. The main cost comes from the inefficiency in

issuance that is caused by the private information. So a simple tax/subsidy scheme that

spurs new issuance is able to reduce the welfare cost of private information from 7.59%

to just 1.32%, as we can see in Table 6.
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6 Conclusion

In this paper, we analyzed the effects of private information about idiosyncratic valua-

tions for assets. The environment nests workhorse models of trade in decentralized OTC

markets. Despite the fact that private information can easily lead to tractability prob-

lems, we can allow for a general distribution of valuations and prove that an equilibrium

exists. Further, our model lends itself easily to quantitative analysis. We calibrate to the

US municipal bond market and illustrate that private valuations are a significant source

of inefficiency; restoring information leads to a welfare gain of 7.6%. Additionally, pri-

vate information affects aggregate trade patterns. Assets are no longer reallocated by

small surplus, infra-marginal trades. It is precisely these trades that private information

eliminates.

In summary, we show that private value problems are a relevant friction in decentral-

ized OTC markets. These problems are magnified in times of increased risk (dispersion

of valuations) or liquidity events (times of decreased demand) and can lead to large

welfare losses. Policies designed to address information problems in financial markets

are often targeted to eliminate private information about common payoffs, seeking to

address such problems as adverse selection. We emphasize that an environment with

no uncertainty about common payoffs can still suffer from the inefficiency caused by

private information.
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A Appendix: Proofs

A.1 Proposition 1

It is useful to begin by stating the following lemma.

Lemma 1. A mechanism ma = (pa, xa) satisfies the constraints

IR(issuer) : x̄a
c(c)− p̄a

c(c)c ≥ 0

IC(issuer) : x̄a
c(c)− p̄a

c(c)c ≥ x̄a
c(ĉ)− p̄a

c(ĉ)c

IR(investor) : p̄a
n(νn)∆(νn)− x̄a

n(νn) ≥ 0

IC(investor) : p̄a
n(νn)∆(νn)− x̄a

n(νn) ≥ p̄a
n(ν̂n)∆(νn)− x̄a

n(ν̂n)

if, and only if, p̄a
c(c) is decreasing, p̄a

n(νn) is increasing,

πa
c (c) = πa

c (c̄) +
∫ c̄

c
p̄a

c(c̃)dc̃, (27)

πa
n(νn) = πa

n(¯
ν) +

∫ νn

¯
ν

p̄a
n(ν)∆

′(ν)dν, (28)

πa
c (c̄) and πa

n(¯
ν) are greater or equal to zero.

Proof. Let us start showing the necessity part. We show the result for the IR(investor)

and IC(investor) of the investor since IR(issuer) and IC(issuer) follow the exact same
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steps. Note that we can write πa
n as

πa
n(νn) = p̄a

n(νn)∆(νn)− x̄a
n(νn).

The IC(investor) constraint implies that

πa
n(νn) ≥ p̄a

n(ν̂n)∆(νn)− x̄a
n(ν̂n) = πa

n(ν̂n) + p̄a
n(ν̂n)[∆(νn)− ∆(ν̂n)]

=⇒ πa
n(νn)− πa

n(ν̂n) ≥ p̄a
n(ν̂n)[∆(νn)− ∆(ν̂n)]

Analogously, the IC(investor) constraint implies that πa
n(ν̂n)− πa

n(νn) ≥ p̄a
n(νn)[∆(ν̂n)−

∆(νn)]. Reorganizing these equations, we have that

p̄a
n(νn)[∆(νn)− ∆(ν̂n)] ≥ πa

n(νn)− πa
n(ν̂n) ≥ p̄a

n(ν̂n)[∆(νn)− ∆(ν̂n)].

And we can conclude that p̄a
n is weakly increasing. Moreover, because p̄a

n is monotone,

it has at most countable many discontinuities. Therefore, we can use that

p̄a
n(νn)

∆(νn)− ∆(ν̂n)

νn − ν̂n
≥ πa

n(νn)− πa
n(ν̂n)

νn − ν̂n
≥ p̄a

n(ν̂n)
∆(νn)− ∆(ν̂n)

νn − ν̂n
.

and that p̄a
n is continuous almost everywhere to conclude that πa

n is differentiable almost

everywhere and it must satisfy

∂πa
n(νn)

∂νn
= p̄a

n(νn)∆′(νn) =⇒ πa
n(νn) = πa

n(¯
ν) +

∫ νn

¯
ν

p̄a
n(ν)∆

′(ν)dν.

Moreover, because ma = (pa, xa) satisfies the IR constraint, πa
n(νn) ≥ 0 for all νn. Hence,

we must have that πa
n(¯

ν) ≥ 0. The necessity part for issuers follow the same steps.

For the sufficient part we again only show it for investors, but the same logic applies

for issuers. Note first that, if πa
n(νn) satisfies (27) and πa

n(¯
ν) ≥ 0, then πa

n(νn) ≥ 0 for all

νn since (27) implies that πa
n(νn) is weakly increasing. Hence, the mechanism satisfies

individual rationality. For incentive compatibility note that, after changing variables as
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∆̃ = ∆(ν), we have that

πa
n(νn)− πa

n(ν̂n) =
∫ νn

ν̂n
p̄a

n(ν)∆
′(ν)dν =

∫ ∆(νn)

∆(ν̂n)
p̄a

n(∆
−1(∆̃))d∆̃.

Since p̄a
n is weakly increasing and ∆ is strictly increasing, we have that p̄a

n ◦∆−1 is weakly

increasing. Therefore,

πa
n(νn)− πa

n(ν̂n) ≥ p̄a
n(∆

−1(∆(ν̂n)))[∆(ν)− ∆(ν̂n)] = p̄a
n(ν̂n)[∆(νn)− ∆(ν̂n)]

=⇒ πa
n(νn) ≥ p̄a

n(ν̂n)∆(νn)− x̄a
n(ν̂n).

That is, the incentive compatibility constraint is satisfied. This concludes the proof of the

lemma.

Now we can prove proposition 1.

Proof. Using Lemma 1, we can rewrite the objective function in (1) as

∫ ∫
[xa(c, νn)− pa(c, νn)c] d

Φn(νn)

1− s
dG(c) =∫ ∫

pa(c, νn) [∆(νn)− c] d
Φn(νn)

1− s
dG(c)−

∫
πa

n(νn)d
Φn(νn)

1− s
=∫ ∫

pa(c, νn) [∆(νn)− c] d
Φn(νn)

1− s
dG(c)−

∫ ∫ νn

¯
ν

p̄a
n(ν)∆

′(ν)dνd
Φn(νn)

1− s
− πa

n(¯
ν).

We can then apply integration by parts in the following term

∫ ∫ νn

¯
ν

p̄a
n(ν)∆

′(ν)dνd
Φn(νn)

1− s
=
∫ νn

¯
ν

p̄a
n(ν)∆

′(ν)dν
Φn(νn)

1− s

∣∣∣∣ν̄
¯
ν

−
∫

p̄a
n(νn)∆′(νn)

Φn(νn)

1− s
dνn =

∫
p̄a

n(νn)∆′(νn)

[
1− Φn(νn)

1− s

]
dνn.

39



Combining the above equations, we have that the objective function is

∫ ∫
pa(c, νn)

[
∆(νn)−

∆′(νn)

haz(νn)
− c
]

d
Φn(νn)

1− s
dG(c)− πa

n(¯
ν),

For the last, by Lemma 1, for the mechanism to satisfy the IC constraint we must have

that p̄a
n(νn) is weakly increasing in νn. This concludes the proof of the proposition.

A.2 Proposition 2

Proof. Using proposition 1, we can write the objective function as

∫ ∫
pa(c, νn)

[
∆(νn)−

∆′(νn)

haz(νn)
− c
]

d
Φn(νn)

1− s
dG(c) =∫ ∫

pa(c, νn) [cn(νn)− c] d
Φn(νn)

1− s
dG(c) +

∫
p̄a

n(νn)

[
h
(

Φn(νn)

1− s

)
− g

(
Φn(νn)

1− s

)]
d

Φn(νn)

1− s

Let us consider the last term of the above equation. Using integration by parts, we have

∫
p̄a

n(νn)

[
h
(

Φn(νn)

1− s

)
− g

(
Φn(νn)

1− s

)]
d

Φn(νn)

1− s
=[

H
(

Φn(νn)

1− s

)
− G

(
Φn(νn)

1− s

)]
p̄a

n(νn)
∣∣∣ν̄
¯
ν
−
∫ [

H
(

Φn(νn)

1− s

)
− G

(
Φn(νn)

1− s

)]
dp̄a

n(νn)

Since G is the convex-hull of H, they coincide at the boundary points. Hence, the first

term of the final expression is equal to 0. Therefore, the objective function equals

∫ ∫
pa(c, νn) [cn(νn)− c] d

Φn(νn)

1− s
dG(c)−

∫ [
H
(

Φn(νn)

1− s

)
− G

(
Φn(νn)

1− s

)]
dp̄a

n(νn).

It is easy to see that our proposed mechanism maximizes the first term since, by con-

struction, pa(c, νn) = 1 whenever cn(νn) ≥ c. Also, the proposed mechanism maximizes

the second term. To see this, note that the second term is nonpositive for any pa that

satisfies the constraint that p̄a
n is weakly increasing. Moreover, for our proposed mecha-

nism, this term is exactly zero because whenever H
(

Φn(νn)
1−s

)
> G

(
Φn(νn)

1−s

)
the derivative
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g(q) = dG(q)
dq is constant and, as a result, dp̄a

n(νn) is zero. Thus, we can conclude that the

proposed mechanism achieves the maximum in problem (6).

A.3 Proposition 5

Proof. Given two direct mechanisms m = (ma, mb) = (pa, xa, pb, xb), define the operator

(Φ, ∆)
TD(m)7−−−→ ∆̂ as

∆̂(ν) =
ν + (λa + λb)∆(ν) + λb[(1− s)πb

o(ν)− sπb
n(ν)]− λaπa

n(ν)

λa + λb + µ + r
. (29)

In the same fashion, given two direct mechanisms m = (ma, mb) = (pa, xa, pb, xb), define

the operator (Φ, ∆)
TP(m)7−−−→ Φ̂ as

Φ̂(ν) =
∫ ν

¯
ν

φ̂(ν)dν, where φ̂(ν) =
λa p̄a

n(ν) + λbsp̄b
n(ν)

λa[1 + p̄a
n(ν)] + λb[sp̄b

n(ν) + (1− s) p̄b
o(ν)]

f (ν).

(30)

Our plan for this proof is to find (Φ, ∆, m) such that m = (ma, mb) solves the primary

and secondary market problems for (Φ, ∆), (Φ, ∆)
TD(m)7−−−→ ∆ and (Φ, ∆)

TP(m)7−−−→ Φ. Then

we use these three functions to backup the other equilibrium objects.

Let a = λa+λb
λa+λb+µ+r , b = 1

λa+λb+µ+r , κ = 1
1−a and ε > 0 a small constant. Let P and D

be spaces of differentiable functions defined as

P=
{

Φ ∈ C1[
¯
ν, ν̄]

∣∣∣ ∀ ν : 0 ≤ Φ(ν) ≤ F(ν) and 0 ≤ φ(ν) ≤ f (ν) + ε
}

and

D=
{

∆ ∈ C1[
¯
ν, ν̄]

∣∣∣ ∀ ν : 0 ≤ ∆(ν) ≤ [κb + ε] ν̄ and b− ε ≤ ∆′(ν) ≤ κb + ε
}

where φ(ν) = dΦ(ν)/dν. Construct the two sequences {∆k, Φk, Hk}k and {∆̂k, Φ̂k}k in the

following way. Start with any (∆0, Φ0) = (∆̂0, Φ̂0) ∈ D×P and let H0 be any function.

Then construct the sequence recursively in the following way. For given {∆k, Φk, Hk}k,

let mk = (mak, mbk) be the solution described in propositions (2) and (4), and Hk+1 be

41



the H associated with those mechanisms, where ∆ = ∆k, Φo = Φk, Φn = F − Φo and

s = Φo(ν̄). Let ∆̂k+1 = TD(mk) · (∆k, Φk) and Φ̂k+1 = TP(mk) · (∆k, Φk). Let ∆k+1 be a

solution to the problem

min
pk+1∈Pk+1∩D

sup
ν
|∆̂k+1(ν)− pk+1(ν)|,

where Pk+1 is the space of non-negative polynomials of degree k + 1. Similarly, let the

measure Φk+1 be a solution to the problem

min
pk∈Pk∩P

sup
ν
|Φ̂1(ν)− pk(ν)|.

Note that {∆k, Φk, Hk}k is differentiable with uniformly bounded derivatives. Therefore,

the sequence is equicontinuous and, by the Arzelà-Ascoli theorem, it has a convergence

sub-sequence. Passing to a sub-sequence if necessary, let {∆∗, Φ∗, H∗} be the limit of

{∆k, Φk, Hk}k. We want to show that ∆̂k → ∆∗ and Φ̂k → Φ∗. To show that ∆̂k → ∆∗, it

suffices to show that, for k high enough,

min
pk∈Pk∩D

sup
ν
|∆̂k(ν)− pk(ν)| = min

pk∈Pk
sup

ν
|∆̂k(ν)− pk(ν)|.

That is, the constraint pk ∈ D does not bind in the limit. Note that

∆̂k+1(ν) =
ν + (λa + λb)∆k(ν)

λa + λb + µ + r

+
λb[(1− s)

∫ ν̄
ν p̄b

o(ν)∆
′k(ν)dν− s

∫ ν

¯
ν p̄b

n(ν)∆
′k(ν)dν]− λa

∫ ν

¯
ν p̄a

n(ν)∆
′k(ν)dν

λa + λb + µ + r
.

Because p̄b
o(ν), p̄b

n(ν), and p̄a
n(ν) and monotone, they are continuous almost everywhere.
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Hence, ∆̂k+1(ν) is differentiable almost everywhere with

∆̂
′k+1(ν) =

1 + (λa + λb)∆
′k(ν)− λb[(1− s) p̄b

o(ν) + sp̄b
n(ν)]∆

′k(ν)− λa p̄a
n(ν)∆

′k(ν)

λa + λb + µ + r
.

From the above formula, we can see that ∆̂
′k+1(ν) ≥ 1

λa+λb+µ+r = b > b− ε. Moreover,

∆̂
′k+1(ν) ≤ 1 + (λa + λb)∆

′k(ν)

λa + λb + µ + r
= b + a∆

′k(ν)

≤ b + a
(

b
1− a

+ ε

)
=

b
1− a

+ aε <
b

1− a
+ ε.

This shows that the constraint b− ε ≤ ∆′(ν) ≤ κb + ε is not binding. For the constraint

∆(ν) ≤ [κb + ε] ν̄, note that

∆̂k+1(ν̄) =
ν̄ + (λa + λb)∆k(ν̄)

λa + λb + µ + r

+
λb[(1− s)

∫ ν̄
ν̄ p̄b

o(ν)∆
′k(ν)dν− s

∫ ν̄

¯
ν p̄b

n(ν)∆
′k(ν)dν]− λa

∫ ν̄

¯
ν p̄a

n(ν)∆
′k(ν)dν

λa + λb + µ + r

≤ ν̄ + (λa + λb)∆k(ν̄)

λa + λb + µ + r
= [b + a∆k(ν̄)]ν̄ ≤

[
b + a

(
b

1− a
+ ε

)]
ν̄ <

[
b

1− a
+ ε

]
ν̄.

Again the constraint is not binding. Thus, since by the Stone-Weierstrass theorem the

space of polynomials is dense in C0, if k is high enough

min
pk∈Pk∩D

sup
ν
|∆̂k(ν)− pk(ν)| = min

pk∈Pk
sup

ν
|∆̂k(ν)− pk(ν)|

and we can conclude that ∆̂k → ∆∗. The argument to show that Φ̂k → Φ∗ is analogous.

The limit H∗ also define a mechanism as

G∗(q) = min{ωH∗(r1) + (1−ω)H∗(r2); ωr1 + (1−ω)r2 = q}, and g(q) =
dG(q)
dq+

.

Note that H∗ may not be continuously differentiable. Now we define the direct mecha-
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nisms m∗ = (m∗a, m∗b) in propositions (2) and (4). By continuity of the object functions,

the mechanisms m∗ = (m∗a, m∗b) solve the primary and secondary market problems

for (Φ∗, ∆∗). Moreover, (Φ∗, ∆∗)
TD(m∗)7−−−−→ ∆∗ and (Φ∗, ∆∗)

TP(m∗)7−−−−→ Φ∗. From ∆∗, Φ∗

and m∗ is standard to construct the equilibrium {∆∗, V∗c , Φ∗o , Φ∗n, s∗, m∗} with Φ∗o = Φ∗,

Φ∗n = F−Φ∗, s∗ = Φ∗(ν̄) and

Vc =
1
r

λa(1− s)
∫

π∗ac (c)dG(c).

Finally, it is easy to see that {∆∗, V∗c , Φ∗o , Φ∗n, s∗, m∗} must satisfy the equilibrium condi-

tions since (29) and (30) are just rewriting of the equilibrium equations (4) and (18).

B Appendix: Municipal Bond Data

MSRB Data and Sample Description. The Municipal Securities Rulemaking Board

(MSRB) requires securities dealers, issuers, and those acting on their behalf to submit

information on municipal bond trades and disclosure documents for all transactions of

municipal bonds within 15 minutes of the time of trade. The data are publicly available

through the MSRB’s Electronic Municipal Market Access (EMMA) portal, however we

obtain historical data through Wharton Research Data Services. Our dataset includes

transaction-level information for all trades of municipal bonds involving a securities

dealer in which the municipal bond was assigned a unique CUSIP identification num-

ber. This nearly covers the universe of municipal bond trades.12 Our sample includes

transactions from January 3, 2005, through December 31, 2014.

An observation in our dataset is a unique transaction of a municipal bond either

between a securities dealer and a customer (defined as any person or institution other

than a securities dealer) or between two dealers. We are able to observe characteristics

12For example, trades in 529 college savings plans that include municipal bonds, municipal fund securi-
ties, or municipal derivatives are not reported on EMMA. These make up only a fraction of all municipal
bond transactions.
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of the transaction, including the date and time of trade, trade price, par-value traded,

settlement date, and if the transaction was reported as a primary market sale executed

on the first day of trading a new issue. For some transactions the yield-to-worst is

reported. Additionally, we are able to observe characteristics about the bond being

traded, including its unique CUSIP identifier, a text description of the bond, the date

interest began to accrue, the maturity date, and the coupon rate (if applicable).13 In

addition to these variables reported through the MSRB, we merge bond information

from CUSIP Global Services’ Master File on the geography of the issuer, type of issuer

(county, school district, development authority, financial authority, housing authority,

sewer authority, or redevelopment authority), tax-exempt status, callable status, if the

bond is refunding existing debt, and the type of municipal bond (tax revenue bond or

general obligation, etc.).

In our main sample, we drop transactions that are missing a par value or price.

We also drop all variable rate securities since we do not see any information about the

current interest rate at the time of the transaction. In our data, 70% of all transactions

are fixed-rate or discount bonds (0-coupon bonds). We also drop transactions whose

par value is less than $1,000. In this sample selection, we are left with 86.4 million

observations on 1.89 million unique bond issues where we identify a bond issue by its

unique CUSIP identifier.14

A key variable in our analysis is the yield on the transaction. Seventy percent of

transactions in the data report the yield-to-worst, defined as the lowest of the yield

calculated to the call option, par option, or maturity. The relevant yield in terms of

our model is the yield-to-expected-redemption, or a weighted average of the yield-to-

call, yield-to-par, and yield-to-maturity, weighting by the respective probabilities of each

event occurring. Since we do not observe this yield in the data, our procedure for

calculating the yield is as follows. If the yield-to-worst is reported, we take that to

13Some municipal bonds do not pay regular interest payments.
14New issuance of municipal debt is typically done through a series of bonds with differing maturity

dates and coupon rates. Each bond within the series is given a unique CUSIP identification number which
serves as our definition of ‘issue’.
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be the yield generated in the model. When no yield is reported, we calculate a yield-to-

maturity. For discount bonds, the yield-to-maturity, i, is given by the formula price =

par/(1 + i)T, where T is the time until maturity. For other fixed-rate bonds, we use the

console formula i = c/(price− c), where c is the coupon rate.

Finally, we winsorize the price and yield in the estimation at the 99% level. The

descriptive statistics of the sample are reported in Table 1.
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