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Abstract

Although the canonical dynamic moral hazard model (Sannikov 2008) can generate

endogenous job separations, they are extremely rare: in a standard parametrization,

the expected job duration exceeds 400 years. To generate a much shorter expected

job duration consistent with the data, we extend the model by adding exogenous sep-

arations modeled as Poisson job destruction shocks. We study the implications of job

destruction risk for an optimal incentive contract, the firm’s profit, the agent’s com-

pensation, and severance. At job destruction, the firm always loses but the agent may

gain. With sufficient risk aversion, the optimal contract has exactly two regions. If

the agent’s continuation value is below a threshold, the agent faces negative jump risk

at job destruction. Above this threshold, the jump in the agent’s continuation value

at job destruction is positive. The risk of exogenous job destruction changes the qual-

itative properties of the optimal contract: it completely displaces the risk of “golden

parachute” separations, where the agent becomes too rich to respond to incentives. We

show that job destruction risk exacerbates the moral hazard friction by limiting the

scope for incentive backloading. This generates a new channel for explaining positive

wage-tenure profiles observed in the data.
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1 Introduction

The existence of two endogenous termination points is an important feature of an optimal

contract in the canonical dynamic moral hazard principal-agent problem solved in Sannikov

(2008). At these two points, the agent becomes, respectively, too poor and too rich to

respond to incentives. In an optimal contract, thus, the firm and the agent separate when

either one of these points is reached. However, these endogenous separations are extremely

rare. With standard parameter values, the model generates an endogenous separation once

every 430 years on average (see Section 4.1).

To generate much shorter expected job durations consistent with the data, we extend the

model by adding exogenous separations. In particular, following the labor-search literature

(e.g., Pissarides (1985) and Mortensen and Pissarides (1994)), we add to the model a job

destruction shock: a Poisson shock that makes the match between the firm and the agent

permanently unproductive.

We examine how the risk of job destruction affects the optimal contract and the agent’s

severance pay at separation. Assuming sufficient agent risk aversion, we obtain two main

characterization results. First, the optimal contract has exactly two regions characterizing

the jump in the agent’s value at separation. If the agent’s continuation value in the contract

is below a threshold, the agent faces negative jump risk, i.e., his severance value is strictly

below his expected continuation value in the contract. Above that threshold, the jump in

the agent’s continuation value at job destruction is positive. This structure of the agent’s

severance pay is optimal because the jump at job destruction is inversely related to the

drift in the agent’s continuation value prior to job destruction, i.e., when the relationship

is productive. By decreasing the drift when the agent’s value is high and increasing it

when the agent’s value is low, the optimal severance pay “slows down” the dynamics of

the contract and thus helps it stay away from the two endogenous separation points, which

allows for higher average agent effort and, thus, higher ex ante profit.

Second, we show that the risk of exogenous job destruction displaces the risk of endogenous

separation at the high separation point, where the agent is too rich to respond to incentives.

The intuition for this result also comes from the “slowing down” of the contract dynamics

in the middle area between the two endogenous separation points. When the Poisson rate

of arrival of job destruction is sufficiently fast, the expected contract duration is short,

which makes the agent’s ex ante value low. With slow contract dynamics between the two

endogenous separation points, the chance of a transition from the agent’s ex ante value to

the high separation point goes to zero, while the chance of a transition to the low separation

point remains positive despite the short expected job duration. This result holds not only

in the limit as the expected job duration goes to zero but also at much longer expected job

durations consistent with the data.

Comparative statics with respect to the rate of arrival of job destruction show that the
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value of the relationship decreases when the expected contract duration is shorter. Further,

job destruction risk reinforces the moral hazard friction. That is, although higher job

destruction risk decreases the value of the principal-agent relationship both under moral

hazard and in the first best (i.e., with the agent’s actions publicly observable), the loss of

value is more pronounced under moral hazard. In particular, as the expected job duration

declines, the firm’s profit under moral hazard becomes a smaller and smaller fraction of

its first-best profit. This is intuitive because backloading of incentives improves efficiency

under moral hazard, and faster job destruction limits the scope for backloading.

As a testable implication, our model predicts a positive correlation between worker tenure

and wage, as well as between worker tenure and severance. This prediction is consistent

with the data.1 But in our model positive wage- and severance-tenure profiles arise in the

absence of any worker productivity differences. Instead, they are an implication of job

heterogeneity with respect to exogenous job destruction risk. This mechanism is novel to

the literature.

In the main body of the paper, we normalize to zero the post-separation values that the firm

and the agent can obtain outside of the present relationship. This assumption is consistent

with the standard moral hazard model of Sannikov (2008), which makes our results directly

comparable. On the firm side, it is also consistent with the free entry equilibrium condition

of the standard labor-search model, e.g., Mortensen and Pissarides (1994), where vacancy

posting costs offset the firm’s expected profit from a new match. In Section 9, we consider

more general specifications, in which the agent’s post-separation outside value is positive.

We provide a sufficient condition under which the results obtained in the main body of the

paper continue to hold with such more general specifications.

Related literature The optimality of endogenous contract termination in principal-agent

models with moral hazard is shown in Stiglitz and Weiss (1983) for a risk neutral agent and

in Spear and Wang (2005) for a risk averse agent. Wang (2011) adds exogenous agent death

shocks, and Tsuyuhara (2016) and Lamadon (2016) consider exogenous job destruction

shocks. In a model with both exogenous and endogenous terminations, Golosov and Menzio

(2020) generate aggregate fluctuations in an equilibrium in which contract terminations are

correlated across firms. None of these studies, however, allow for payments between the

principal and the agent after an exogenous separation. In contrast, we allow for severance

payments after both endogenous and exogenous separations. We show that a promise of

severance after exogenous job destruction is an important means of providing incentives

to the agent prior to separation. In particular, severance payments allow the contract to

control the degree to which separation punishes the agent. In fact, we show that when the

agent’s continuation value is high, it is optimal to reward the agent at separation.

Several studies explore the impact of jump risk on the optimal provision of incentives in

1E.g., Topel (1991) and Boeri et al. (2017).
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risk-neutral environments with impatient agents, e.g., Hoffmann and Pfeil (2010), Piskorski

and Tchistyi (2010), DeMarzo et al. (2014), and Anderson et al. (2018). We share with

these studies an optimality condition that equates, whenever possible, the firm’s marginal

value before and after the jump shock. With agent risk aversion and equal impatience, our

model captures the impact of jump risk on the degree of compensation backloading and

provides testable implications for wage- and severance-tenure profiles.

Allowing for risk aversion and a recurrent match-productivity shock, Li (2017) studies jump

risk and provides a recursive procedure for computing an optimal contract numerically.

We study a permanent job destruction shock and provide analytical characterization of the

optimal contract. Our analytical results can be extended to allow temporary, recurrent

spells of zero productivity.

Organization The rest of this paper is organized as follows. Section 2 lays out the

model environment. Section 3 derives a recursive formulation of the model. Section 4

shows quantitatively the long duration of the standard moral hazard model and provides a

simple calibration of the rate of arrival of job destruction. Section 5 characterizes optimal

jumps at job destruction in the agent and the firm value. Section 6 provides comparative

statics with respect to the arrival rate of job destruction. Section 7 studies the limit when

the arrival rate of the job destruction shock goes to infinity, with particular attention to

exits. Section 8 discusses testable implications of our model. Section 9 discusses more

general outside options. Section 10 concludes.

2 A dynamic incentive problem with job destruction risk

We study the canonical dynamic principal-agent model of Sannikov (2008) extended to

allow for exogenous job destruction. Upon arrival of a job destruction shock, the produc-

tivity of the match jumps to zero permanently, i.e., the job is destroyed and the parties

separate. The exogenous job destruction shock will be modeled as a Poisson time θ arriving

with intensity λ ≥ 0.

We also allow for endogenous separations. In particular, it is without loss of generality in

our model to restrict attention to a particular class of endogenous separations that take

place when the agent becomes either too poor or too rich to respond to incentives.2 The

time at which such an endogenous separation takes place will be denoted by τ .

After separation (exogenous or endogenous), the agent can still be compensated by the

firm, i.e., can collect severance. The value owed to the agent by the principal/firm upon

separation at time t is denoted by Jt.
3 The firm’s profit upon separating from an agent

2Formally, a separation of this kind takes place when the agent’s continuation value process reaches either

0 or Wgp, where Wgp is defined in (17). Sannikov (2008) refers to these separations as agent retirement.
3That is, Jt is the continuation value that the firm must deliver to the agent in the event of separation
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who is owed value J is denoted by Fsep(J). We assume that the function Fsep(·) is the

same for endogenous and exogenous separations.4

Let τ̂ ≡ min{τ, θ} denote the time of separation. Let Xt denote the cumulative output up

to date t produced in the match between the firm and the agent. Before separation, i.e.,

for t < τ̂ , as in the standard model, Xt follows

dXt = Aat dt+ σdZt,

where Aat ∈ A is the agent’s action (effort) at date t, and Zt is a standard Brownian motion

on (Ω,F , P ) independent of the job destruction shock θ. We assume that the set of feasible

actions A is a compact interval [0, Ā] for some Ā > 0.5 After separation, i.e., for all t ≥ τ̂ ,

the process Xt follows

dXt = 0,

i.e., no further output is produced in the match.

A contract C consists of a stopping time τ and three progressively measurable processes:

C ≡ (τ ≥ 0, {(Ct, At, Jt), 0 ≤ t ≤ ∞}) ,

where At is the action recommended for the agent to take at t, Ct is the agent’s flow

compensation, and Jt is the agent’s severance value upon separation. At each t, the agent

chooses privately his action Aat ∈ A to maximize his utility. A contract is incentive com-

patible if Aat = At at all t, i.e., the actual action chosen by the agent is that recommended

by the contract.

The agent’s expected payoff from an incentive-compatible contract is

E
[
r

∫ τ̂

0
e−rt (u(Ct)− h(At)) dt+ e−rτ̂Jτ̂

]
,

where r > 0. The agent’s utility function u : R+ → R+ is C2 with u′ > 0, u′′ < 0,

limc→0 u
′(c) = ∞, and u(0) = 0. The function h : A → R+, representing the agent’s

disutility from effort, is C2 with h′ > 0, h′′ > 0, and h(0) = 0. In addition, we follow

Sannikov (2008) in assuming that6

lim
a→0

h′(a) =: γ > 0. (1)

occurring at t. As long as separation does not occur, the value Jt remains a conditional contractual promise

made to the agent.
4It is therefore without loss of generality to define a single post-separation continuation value for the

agent, Jt, the same for endogenous and exogenous separations.
5Our analysis can be extended to allow A to be any compact subset of R+.
6This assumption is convenient technically, as it implies that the volatility of the agent’s continuation

value remains bounded away from zero at all times prior to separation.
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Under an incentive compatible contract, at any t < τ̂ , the agent’s continuation value

process is

Wt ≡ Et
[
r

∫ τ̂

t
e−r(s−t) (u(Cs)− h(As)) ds+ e−r(τ̂−t)Jτ̂

]
.

In general, Jτ̂ 6= Wτ̂ , i.e., the agent’s continuation value may be discretely adjusted upon

separation. In particular, in an exogenous separation caused by a job destruction shock,

the agent’s continuation value will jump almost surely, i.e., Jθ 6= Wθ a.s. We study this

jump in detail in Section 5. In an endogenous separation, however, as in Sannikov (2008),

no jump in the agent’s continuation value is optimal, i.e., Jτ = Wτ .7

The firm’s ex ante expected profit from an incentive compatible contract is

E
[
r

∫ τ̂

0
e−rt(At − Ct)dt+ e−rτ̂Fsep(Jτ̂ )

]
.

Baseline case Outside of Section 9, we will focus on the baseline case that makes our

analysis directly comparable to the standard dynamic moral hazard model of Sannikov

(2008). That is, we will assume that Fsep = F0, where

F0(J) ≡ −b such that u(b) = J. (2)

Here, b can be interpreted as a constant severance benefit paid out to the agent at all times

after termination.8 Note that F0 is negative, strictly decreasing, and strictly concave.

The advantage of using this specification for the firm’s separation profit function as the

baseline is that it nests the standard model of Sannikov (2008) as a special case with λ = 0.

This specification allows us to identify cleanly the impact of job destruction shocks on the

optimal contract. It also improves the analytical tractability of the model.

The assumption of J = u(b) in (2) is consistent with the agent’s outside option value of

zero, as if the agent were to permanently leave the labor force after job destruction or look

for a new job subject to search costs high enough to offset the whole surplus the agent

can obtain in a new match. Clearly, this assumption is not without loss of generality. The

solution of the baseline case, however, is very useful in solving more general models with

much more flexible outside options. We discuss such generalizations in Section 9.

3 Recursive formulation and preliminary analysis

In this section, we formulate the problem recursively and discuss the existence and com-

putation of the solution.

7See Remark 1 for an additional comment.
8Indeed, a permanent flow benefit b delivers the value J to the agent because r

∫∞
0
e−rtu(b)dt = u(b) = J .

The total cost to the firm of delivering this benefit flow to the agent is r
∫∞
0
e−rtbdt = b.
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3.1 Contract dynamics prior to job termination

Before separation, the dynamics of the agent’s continuation value are

dWt = r(Wt − u(Ct) + h(At))dt+ rYt(dXt −Atdt) + ∆t(dNt − λdt), (3)

where dXt−Atdt is the agent’s observed performance relative to the benchmark Atdt, rYt
represents the sensitivity of the agent’s continuation value to his performance,

∆t ≡ Jt −Wt (4)

represents the sensitivity to the job destruction shock, and Nt is the counting process

stopped at 1. That is, ∆t is the jump in the agent’s continuation value at arrival of the

job destruction shock.9

As in Sannikov (2008), a contract C is incentive compatible if and only if

At ∈ argmax
a∈A

Yta− h(a) at all t < τ̂ . (5)

Note that interior effort At ∈ (0, Ā) is incentive compatible if and only if

Yt = h′(At). (6)

At all t < θ, we have dNt = 0. Thus, under an incentive compatible contract, the dynamics

of the agent’s continuation value before separation, given in equation (3), are reduced to

dWt = (r(Wt − u(Ct) + h(At))−∆tλ) dt+ rσYtdZt. (7)

This shows how the risk of job destruction affects the dynamics of the contract while the

job continues to survive. As we see, the promised jump in the agent’s continuation value

upon job destruction, ∆t, enters the drift of Wt prior to job destruction (with a negative

sign). Thus, by making the agent’s severance value Jt state-contingent, the firm can better

control the position of Wt while the job remains productive.

3.2 The contracting problem in recursive form

The firm designs a contract C to maximize its profit subject to the requirements of incentive

compatibility and the agent’s participation. We assume that the agent’s reservation value

is 0, so the ex ante value the contract must deliver to the agent can be any W0 ≥ 0.

In the recursive form, the firm’s problem is to maximize the profit value that it can attain

in the relationship with the agent, when the agent is owed the continuation value W . Let

9The possibility of an endogenous separation does not affect the dynamics of Wt. See Remark 1 for an

additional comment.
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us use F (W ) to denote this profit function. The controls in this problem are c, a, Y,∆, and

the HJB equation that the solution F must satisfy is

rF (W ) = max
c,a,Y,∆

ra− rc+ F ′(W )r
(
W − u(c) + h(a)− λ

r
∆
)

+
1

2
F ′′(W )r2σ2Y 2

− λ(F (W )− F0(W + ∆)), (8)

where the state variable W must remain nonnegative because u and h are nonnegative,

i.e., no incentive compatible contract can deliver a negative value to the agent. This HJB

equation is standard except for the ∆ term in the drift of the agent’s continuation value

process and the last term, which reflects the switch to separation payoffs, as in (2), upon

job destruction.

3.3 Existence, regularity, and computation

We will now use the first-order conditions of the recursive problem to show that the optimal

severance payment is equal to the agent’s compensation at separation. This equality then

allows us to reduce the HJB equation to a straightforward extension of the HJB equation

in Sannikov (2008), and hence to obtain the existence of an optimal contract as a simple

extension of the existence result in Sannikov (2008).

The first-order condition with respect to ∆ in the HJB equation (8) is

− F ′(W )λ+ λF ′0(W + ∆) ≤ 0 (9)

with strict equality if W +∆ > 0. This condition reflects a trade-off between the severance

costs at job destruction and the drift of the agent’s continuation value prior to job destruc-

tion. By increasing the agent’s severance value J = W +∆, the firm increases its severance

costs at job destruction (i.e., reduces its separation profit) marginally at the rate −F ′0(J).

This cost is realized at the rate of arrival of job destruction, λ. Concurrently, conditional

on the job’s survival, by increasing J the firm reduces the drift in the continuation value

owed to the agent, also at the rate λ, and a lower drift changes the firm’s profit at the rate

F ′(W ).

The first-order condition for c in the HJB equation (8) is

− F ′(W )u′(c) ≤ 1 (10)

with equality if c > 0. In setting c, the firm compares the cost of compensating the agent

against the benefit of lowering his continuation value. A marginal unit of additional com-

pensation for the agent costs the firm 1 and decreases the drift of the agent’s continuation

value at the rate u′(c), which increases the firm’s profit at the rate F ′(W ). Clearly, the op-

timal compensation level is zero when F ′(W ) ≥ 0, as in this case the firm’s profit increases

with the agent’s promised value.

Our first lemma connects the agent’s severance value Jt to his current compensation Ct.
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Lemma 1 In an optimal contract,

Jt = u(Ct) for all 0 ≤ t ≤ τ̂ .

After separation at time τ̂ , severance paid to the agent satisfies

bs = Cτ̂ for all s ≥ τ̂ .

Proof In Appendix A.1.

The intuition for this result comes from consumption smoothing. The arrival of a job

destruction shock implies a jump in the agent’s effort from the current level to zero but gives

no reason to expose the agent to risk in consumption. Further, since no effort incentives

are needed after separation, the severance benefit takes the form of a constant payment.

Using Lemma 1, we can simplify the dynamics of Wt and the HJB equation by eliminating

the control variable ∆. Indeed, we have

∆ = J −W = u(b)−W = u(c)−W (11)

and

F0(W + ∆) = F0(J) = −b = −c. (12)

Using (11) in (7), we have that Wt follows

dWt = ((r + λ)(Wt − u(Ct)) + rh(At)) dt+ rσYtdZt. (13)

Substituting (12) into the HJB equation (8) yields

(r + λ)F (W ) = max
c,a,Y

ra− (r + λ)c+ F ′(W ) ((r + λ)(W − u(c)) + rh(a))

+
1

2
F ′′(W )r2σ2Y 2. (14)

Note now that (14) takes the same form as the standard HJB equation studied in Sannikov

(2008), except that three terms are multiplied by a constant, the job destruction arrival

rate λ. Gathering these terms, we define10

S(W ) ≡ F (W )−max
c≥0

{
F ′(W )(W − u(c))− c

}
. (15)

Solving the HJB equation (14) for F ′′(W ), we can now express it as

F ′′(W ) = min
a≥0

(1 + λ
r )S(W )− a− F ′(W )h(a)

1
2rσ

2(h′(a))2
. (16)

10Note that, in addition to W , S depends on F (W ) and F ′(W ), which we leave implicit in the notation.
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This equation can be solved forward from W = 0 using the boundary condition F (0) = 0

and a conjectured initial slope F ′(0).11 As in (14), the constant factor (1 + λ
r ) is the

only difference between this equation and the standard HJB equation studied in Sannikov

(2008).

In Sannikov (2008), the optimal profit curve, i.e., the firm’s value function, is obtained by

searching for the initial slope F ′(0) such that i) the solution curve F satisfies F (W ) ≥
F0(W ) for all W ≥ 0, and ii) there exists Wgp > 0 such that

F (Wgp) = F0(Wgp) and F ′(Wgp) = F ′0(Wgp). (17)

Sannikov (2008) shows that the contract constructed from the policy functions that attain

this solution curve F is optimal, and, thus, F (W ) is the firm’s value function in this

contracting problem. With the constant factor (1 + λ
r ) multiplying the terms denoted as

S(W ) in the HJB equation (16), this result continues to hold in our contracting problem

with job destruction risk.12 Thus, the same forward-shooting procedure characterizes the

optimal contract in our model.13

As in Sannikov (2008), the firm’s profit function F is strictly concave with a unique maxi-

mum at W ∗ ≡ argmaxF (W ), where 0 < W ∗ < Wgp. Also, with the assumption of strictly

positive marginal disutility of effort, (1), the volatility Yt = Y (Wt) of the agent’s continu-

ation value process and the agent’s effort At = a(Wt) remain bounded away from zero at

all times prior to separation. Allowing for Ā sufficiently large, this implies that the agent’s

effort is interior, i.e., volatility Yt and effort At are related by the first-order condition (6)

as long as 0 < Wt < Wgp and t < θ.

Since the firm’s profit is maximal at W = W ∗, the contract starts with W0 = W ∗. At

W = 0 and W = Wgp, we have F (W ) = F0(W ), which implies that it is optimal for the

agent and the firm to separate. Thus, the endogenous separation time τ is when Wt exits

the interval (0,Wgp) for the first time. The severance benefit b the agent receives in an

endogenous separation satisfies u(b) = W . In particular, at the low endogenous separation

11The boundary condition F (0) = 0 follows from the fact the firm’s profit is always zero atW = 0, whether

the firm endogenously separates from the agent or not. With endogenous separation, F (0) = Fsep(0) = 0.

Without it, a static contract with c = a = 0 is the only incentive compatible contract that delivers the

value of W = 0 to the agent until arrival of an exogenous separation, in which the continuation profit for

the firm is again 0.
12In particular, Lemma 1, 2, 3, Proposition 3, Lemma 4, and Proposition 4 of Sannikov (2008) go through

with only minor changes necessary to account for the factor (1 + λ
r

).
13Note that higher λ reduces the curvature of F , i.e., makes F ′′(W ) less negative in (16). In the forward-

shooting procedure, therefore, higher λ makes it harder for the solution curve F to return to F0. With

very high λ, it is possible that for any initial slope F ′(0) > 0 the solution curve F (W ) stays strictly above

F0(W ) for all W > 0. In this case, the forward-shooting procedure still works but the optimal contract is

degenerate, i.e., F ′(0) = 0, Wgp = 0, and immediate separation is optimal. See Lemma 3 in Section 7 for

additional analysis.

10



point W = 0, the severance is 0. At the high separation point W = Wgp, the severance is

the maximum of what the contract would offer after an exogenous job destruction.

Remark 1 Two properties of endogenous separations warrant further comment. First,

because endogenous separations occur with probability zero for as long as Wt remains in

(0,Wgp), they have no impact on the law of motion of Wt inside of (0,Wgp), as shown in (3).

By contrast, exogenous separations do impact the dynamics of Wt inside of (0,Wgp) because

their arrival rate is strictly positive at all times. Second, when an endogenous separation

occurs as Wt hits 0 or Wgp, there is no jump in the agent’s continuation value, i.e., Jτ = Wτ .

Indeed, the first-order condition for an optimal jump in the agent’s continuation value at

an endogenous separation would be identical to (9). From this condition, it is easy to see

that the optimal jump at W = 0 is zero. Using the smooth-pasting condition in (17), it is

also easy to see that the optimal jump is zero at W = Wgp. At an exogenous separation,

by contrast, a non-zero jump in the agent’s continuation value will typically be optimal,

as these separations can occur at any W ∈ (0,Wgp).

3.4 The option value of effort

The variable S defined in (15) has an economic interpretation. It represents the firm’s

option value of inducing effort from the agent, i.e., the surplus of profit that the firm can

earn relative to the separation profit function F0. To see this, use (11) and (12) to express

S as

S(W ) = F (W )−max
J≥0

{
F ′(W )(W − J) + F0(J)

}
. (18)

Prior to job destruction, the firm’s profit in the relationship with an agent who is owed

continuation value W is F (W ). When the job destruction shock hits, i.e., when inducing

further effort is no longer possible, the firm’s profit is F0(J), where J is the agent’s con-

tinuation value after the jump at job destruction. With the marginal cost of delivering

utility to the agent being −F ′(W ), the firm’s cost of adjusting the agent’s continuation

value from W to J is −F ′(W )(J −W ). Thus, S indeed represents the difference between

the firm’s profit before and after job destruction.

The HJB equation accounts for the sources of the surplus S. Rewriting (14) as

(r + λ)S(W ) = max
a

{
ra+ F ′(W )rh(a) +

1

2
F ′′(W )r2σ2h′(a)2

}
(19)

shows that S is equal to the expected flow output from the agent’s effort a, less the firm’s

cost of compensating the agent for his disutility of effort h(a), less the firm’s cost of having

to induce volatility Y = h′(a) in the state variable.14 The factor (r + λ) accounts for the

risk of job destruction.

14Volatility is always costly to the firm because F ′′ < 0. Whether compensating the agent for the level

of effort is costly depends on the sign of F ′.
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Since the firm can always ask for no effort from the agent, S is always non-negative. Indeed,

writing (18) as

S(W ) = min
J≥0

{
F (W ) + F ′(W ) (J −W )− F0(J)

}
(20)

we see that, geometrically, S(W ) measures the minimal vertical distance between F0 and

the straight line tangent to F at W . By the concavity of F , the tangent to F is always

above F , i.e., F (W ) + F ′(W ) (J −W ) ≥ F (J) for all W and J . Therefore,

S(W ) = min
J≥0

{
F (W ) + F ′(W ) (J −W )− F0(J)

}
≥ min

J≥0
{F (J)− F0(J)} ≥ 0,

where the last inequality uses F ≥ F0.

Further, since the tangent line to F at W touches F0 whenever F (W ) = F0(W ), we have

S(0) = S(Wgp) = 0. (21)

Indeed, using J(W ) = W and F (W ) = F0(W ) for W ∈ {0,Wgp}, we obtain (21) directly

from (20). In fact, S(W ) > 0 for all W ∈ (0,Wgp).
15 This implies that separating

endogenously from the agent while Wt remains in (0,Wgp) would be strictly suboptimal

for the firm. Thus, restricting attention to the class of endogenous separations triggered

by an exit of Wt from (0,Wgp) is indeed without loss of generality in our model.

4 Contract dynamics, duration, and exit probabilities

In this section, we show that the standard model with no job destruction implies a very

unrealistically long contract duration. We then calibrate the arrival rate of the job de-

struction shock to match the average job duration in the data. We show that exogenous

job destruction eliminates endogenous separations at W = Wgp but not at W = 0.

Denote the drift of the agent’s continuation value process under the optimal contract by

µ(W ) and its volatility by ν(W ). From (13), we have

µ(W ) = (r + λ)
(
W − u(c(W ))

)
+ rh(a(W )), (22)

ν(W ) = rσY (W ), (23)

where c(W ), a(W ), and Y (W ) are the policy functions from the optimal contract.

Denote by T (W ) the expected remaining job duration, i.e., the expected amount of time

until endogenous separation or exogenous job destruction:

T (W ) ≡ E
[∫ τ̂

0
dt

]
, W0 = W. (24)

15See Corollary 1.
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In all, the job can end in three ways: endogenous separation at W = 0 with zero severance,

endogenous separation at W = Wgp with severance b = −F0(Wgp), or exogenous separation

at the time of arrival of job destruction, θ, with severance b = −F0(J(Wθ)). Let P0(W )

denote the probability that a job starting from W eventually ends at 0, i.e., the process

Wt “exits” at the lower bound, 0. Similarly, let Pgp(W ) denote the probability that the

job exits at Wgp. The probability that the contract ends with job destruction, i.e., that a

shock θ arrives before Wt reaches either 0 or Wgp, will be denoted by PJD(W ). Clearly,

P0(W ) + Pgp(W ) + PJD(W ) = 1 for all W ∈ [0,Wgp].

To compute the expected duration T (W ) and exit probabilities P0(W ), Pgp(W ), and

PJD(W ) for all W ∈ [0,Wgp], we find an ordinary differential equation (ODE) for each

of these functions along with the associated boundary conditions. These ODEs can then

be easily solved numerically using policy functions from the optimal contract.

Lemma 2 Suppose for some constants k, g0, and g1, function g : [0,Wgp] → R satisfies

the following ODE:

λg(W ) = k + g′(W )µ(W ) +
1

2
g′′(W )ν(W )2 (25)

with boundary conditions g(0) = g0 and g(Wgp) = g1. Then,

k = 1, g0 = 0, g1 = 0 =⇒ g = T,

k = 0, g0 = 1, g1 = 0 =⇒ g = P0,

k = 0, g0 = 0, g1 = 1 =⇒ g = Pgp,

k = λ, g0 = 0, g1 = 0 =⇒ g = PJD.

Proof In Appendix A.2.

4.1 Parametrization

In our parametrization, we use the same utility functions as in Sannikov (2008): u(c) =
√
c,

so F0(W ) = −W 2, and h(a) = 0.5a2 + 0.4a. To match the standard annualized rate of

time preference of 5 percent, we take r = 0.0488. Following Sannikov (2008), we take

σ = 1. Using Compustat data, Comin and Mulani (2006) estimate the volatility of the

growth rate of sales at the firm level to be about 0.25. Although the mapping between the

volatility measure they estimate and our volatility parameter σ is not exact, our value of

σ = 1 probably overstates the volatility of shocks to an individual worker’s output. The

quantitative results in this section, therefore, understate the expected job duration implied

by the model with no job destruction shocks.

We solve the model using the procedure described in Section 3.3. Figure 1 plots the

expected duration function T (W ) for all W in the domain [0,Wgp]. In the left panel,
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Figure 1: Expected contract duration T (W ), in years. Left panel: standard model with no job

destruction. Right panel: model with job destruction calibrated to match T (W ∗) = 2.5 years.

the model is solved assuming λ = 0, as in the standard model with no job destruction

shocks. As we see, the standard model implies extremely long expected job durations.

In particular, at the beginning of the contract, i.e., at W ∗, the expected duration of the

contract, T (W ∗), exceeds 400 years.16 Thus, although the standard model implies that

endogenous separations do occur, the model does not generate quantitatively reasonable

job durations.17 In US data covering 1951-2003, Shimer (2005) finds the average job

duration of about 2.5 years.

To help us understand the long job duration in the standard model, the left panel of Figure

2 depicts the drift and volatility functions µ and ν for an optimal contract. Starting from

W ∗, the contract has an initial strong positive drift and sizable volatility. Conditional on

not reaching 0, thus, the contract moves up quickly into the middle of the interval [0,Wgp],

where it “slows down” very significantly. Indeed, in the middle area, as well as at high

W , the process Wt has near zero drift and reduced volatility. This means the contract is

expected to spend a lot of time in this area upon reaching it. Further, the left panel of

Figure 3 shows that, once the contract reaches the middle area, it is not likely to eventually

exit at W = 0.

16As mentioned earlier, for lower σ the expected duration T (W ∗) is even higher.
17This quantitative feature of the model is robust to perturbations of the utility functions u and h.
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Figure 2: Drift µ and volatility ν under an optimal contract. Left panel: standard model with no

job destruction. Right panel: model with job destruction calibrated to match T (W ∗) = 2.5 years.

4.2 Calibration of λ

Next, we calibrate λ to match the average job duration of 2.5 years, in line with Shimer

(2005). Solving the model parametrized as in Section 4.1 but with λ > 0, we obtain

T (W ∗) = 2.5 for λ = 0.341.

The right panel of Figure 1 plots the expected job duration, T (W ), and the expected time

till job destruction, which is 1/λ = 2.93 years. Starting from W ∗, the expected duration

is noticeably shorter than 1/λ, which means that the contract has a positive chance of

endogenous termination. However, in the middle area of the domain [0,Wgp] duration

T (W ) is extremely close to 1/λ, which means that once the contract enters this area, the

chance of an endogenous exit at either 0 or Wgp is practically zero.

The right panel of Figure 2 shows that, with a job destruction shock calibrated to the

data, the dynamics of the optimal contract remain consistent with the intuition of “slowing

down” in the middle part of the contract’s domain interval [0,Wgp]. When the contract

slows down and remains in the middle of [0,Wgp] for a while, an exogenous job destruction

shock arrives and terminates the contract.

Further, we note that the area of slow dynamics separates the contract’s starting point,

W ∗, from the high separation point, Wgp. This suggests that the chance of observing

a transition from W ∗ to Wgp is low. Indeed, the right panel of Figure 3 confirms this

observation. While the job destruction shock decreases the ex ante chance of endogenous

separation at 0, it practically eliminates the possibility of separation at Wgp.

In sum, the standard moral hazard model with no exogenous job destruction shocks does
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Figure 3: Exit probabilities P0(W ), Pgp(W ), and PJD(W ). Left panel: standard model with no

job destruction. Right panel: model with job destruction calibrated to match T (W ∗) = 2.5 years.

not generate separations that occur within a reasonable time frame. When we add ex-

ogenous separations arriving at a rate sufficiently high to match the average duration of

jobs in the data, the contract changes qualitatively: endogenous separations at the high

separation point Wgp are eliminated from the equilibrium path with near-one probability.18

In the remainder of the paper, we study the general properties of the optimal contract

subject to the risk of job destruction.

5 The jump at job destruction

In this section, we examine in detail what happens at the moment of arrival of a job

destruction shock. We characterize the jump in the agent’s value, ∆(W ), and the loss of

the firm’s value, F (W )− F0(J(W )). We examine the role of this jump, and the severance

payment that implements it, on the agent’s incentives and the firm’s profit.

Before we start, we note that absent moral hazard, i.e., under a first-best contract, the agent

always gains and the firm always loses value at job destruction. Indeed, (2) implies that

a first-best optimal contract would deliver constant consumption to the agent before and

after job destruction. Also, the agent would provide constant effort until job destruction.

This means, obviously, that the jump in the agent’s continuation value at job destruction

would be always positive, and the jump in the firm’s continuation profit always negative

18In Section 7, we show that this qualitative change of the optimal contract is not specific to the value

of λ used in this calibration, but rather holds for all λ sufficiently high.
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Figure 4: Optimal jump of the agent’s continuation value at job destruction.

in the first best. The first-best ex ante profit function is

Ffb(W ) ≡ max
c,a

{
r

r + λ
a− c : u(c)− r

r + λ
h(a) = W

}
. (26)

Note that Ffb(W ) > F0(W ) for all W < W ∗gp, where W ∗gp solves

F ′0(W ∗gp) = −1/γ. (27)

5.1 The jump in the agent’s continuation value

The optimal jump in the agent’s continuation value at job destruction, ∆(W ) = J(W )−W ,

is determined by the first-order condition (9), which covers two cases. When F ′(W ) ≥ 0,

it is optimal to promise the agent no severance at job destruction, i.e., J(W ) = 0, so the

agent loses his entire continuation value. The intuition for this property comes from the

firm’s desire to keep the contract away from the inefficient endogenous separation point

W = 0. When the slope of the profit function is positive, the firm wants to maximize the

drift of the agent’s continuation value process Wt, as shown in the HJB equation (8), which

means the maximally negative jump ∆(W ) = −W is optimal. Thus, J(W ) is constant, at

zero, for all W such that F ′(W ) ≥ 0.

When F ′(W ) < 0, the agent is promised a positive severance value J(W ) > 0 such that

F ′(W ) = F ′0(J(W )). This first-order condition balances the firm’s preference for a lower
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drift of Wt prior to job destruction, keeping Wt away from the inefficient endogenous

separation point W = Wgp, against its preference for owing a lower value to the agent

in the event of job destruction. By the strict concavity of F and F0, both F ′ and F ′0
are strictly decreasing. This means that J(W ) is strictly increasing at all W such that

F ′(W ) ≥ 0.

Figure 4 illustrates these properties of the optimal contract using a numerical example.

The left panel illustrates the first-order condition (9). The optimal jump ∆ is given by

the horizontal distance between F ′ and F ′0 (or the vertical axis if F ′ > 0). Note that,

as a consequence of F ′ and F ′0 being strictly decreasing, ∆ and F ′ − F ′0 are of opposite

signs. That is, the optimal jump ∆(W ) is negative if F ′(W ) is above F ′0(W ) and positive

if F ′(W ) is below F ′0(W ).

The right panel of Figure 4 plots the shape of optimal J(W ), which is initially flat and then

strictly increasing. In that panel, ∆(W ) is represented by the vertical distance between

J(W ) and the 45-degree line.

In sum, the monotonicity properties of J(W ) are gathered in the following proposition.

Proposition 1 In the optimal contract, J(W ) = 0 for all W ≤ W ∗, J(W ) is strictly

increasing on (W ∗,Wgp), and J(Wgp) = Wgp.

Proof In Appendix A.3.

Further, Figure 4 suggests that the sign of ∆(W ) = J(W )−W changes only once. That is,

agents with relatively small W are hurt by job destruction while agents with high W gain

from it. We will show that this indeed is the case using the following sufficient condition.

Assumption 1 F ′0 is weakly concave.

In terms of the model’s primitives, this assumption restricts the shape of the agent’s utility

function u. If u is trice differentiable, the assumption is equivalent to the condition that

u′′′(c)u′(c) ≤ 3u′′(c)2 at all c. All utility functions with constant absolute risk aversion

satisfy this condition. Among the utility functions with constant relative risk aversion,

those with relative risk aversion weakly higher than 1/2 satisfy it as well.

We maintain Assumption 1 in the remainder of this paper.

Proposition 2 There exists a unique Wnj ∈ (W ∗,Wgp) such that

∆(W ) < 0 for W ∈ (0,Wnj),

∆(W ) = 0 for W = Wnj ,

∆(W ) > 0 for W ∈ (Wnj ,Wgp).

Proof In Appendix A.5.
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Since the sign of ∆(W ) is determined by the ranking of F ′(W ) and F ′0(W ), showing that

∆(W ) changes its sign exactly once on the interval (0,Wgp) is equivalent to showing that

functions F ′ and F ′0 cross on that interval exactly once. From the smooth-pasting condition

F ′(Wgp) = F ′0(Wgp), clearly, we have that F ′ and F ′0 cross at Wgp. They must also cross at

least once on (0,Wgp) because F ′(0) > 0 = F ′0(0) and F (W ) = F0(W ) at both W = 0 and

W = Wgp.
19 The proof that only a single crossing between F ′ and F ′0 exists on (0,Wgp)

would be immediate if F ′ were convex and F ′0 concave on (0,Wgp). Assumption 1 provides

the concavity of F ′0, but the convexity of F ′ on the whole interval (0,Wgp) cannot be

guaranteed.

However, by differentiating the HJB equation we can show that F ′ is strictly convex when-

ever F ′ is above F ′0, which is enough to eliminate the possibility of a second crossing

between F ′ and F ′0 on (0,Wgp). Indeed, if a second crossing between F ′ and F ′0 were to

fall at some Ŵ < Wgp, then on the interval (Ŵ ,Wgp) we would have F ′ above F0 and

bending upward (because F ′ is strictly convex), while F ′0 is bending (weakly) downwards.

This would mean that, on the interval (Ŵ ,Wgp), F
′ moves farther and farther away from

F ′0, contradicting the smooth-pasting condition F ′(Wgp) = F ′0(Wgp).

Assumption 1 is a very convenient sufficient condition for a single crossing between F ′ and

F ′0, but it is not necessary. In the left panel of Figure 4, we can change F ′0 slightly to make

it slightly convex without substantially changing the shape of F ′, thus preserving the single

crossing between these two curves inside the interval (0,Wgp).

Proposition 2 shows that at arrival of a job destruction shock it is optimal to widen the

spread of the continuation value: agents with high W (higher than Wnj) see their continu-

ation value increase, i.e., ∆(W ) > 0, while agents with low W (lower than Wnj) experience

a drop in their continuation value, ∆(W ) < 0. Thus, the dispersion of the continuation

value is increased at the moment of job destruction. This increase in dispersion at job

destruction is optimal because ∆ has an inverse impact on the drift of Wt prior to job de-

struction: positive ∆ decreases the drift of Wt and negative ∆ increases it. By suppressing

the growth of Wt when Wt is high and boosting the growth of Wt when Wt is low, the

optimal policy ∆ decreases the chance of hitting either of the two inefficient separation

points, 0 and Wgp, while the match remains productive. Proposition 2 shows that this

intuition holds not only when Wt is close to 0 or Wgp but everywhere in the support of Wt.

Proposition 2 also implies that the firm’s option value of the agent’s effort, S(W ), is single-

peaked with a unique maximum at Wnj . Indeed, differentiating S(W ) we have

S′(W ) = F ′(W )− F ′′(W )(W − J(W ))− F ′(W )

= F ′′(W ) (J(W )−W )

19Indeed, since F ′(0) > 0 = F ′0(0) and F ′ and F ′0 are continuous, F ′(W ) ≥ F ′0(W ) for all W ∈ (0,Wgp)

would imply
∫Wgp

0
(F ′(W )−F ′0(W ))dW = (F (W )−F0(W ))|Wgp

0 > 0, i.e., we could not have F (W ) = F0(W )

at both W = 0 and W = Wgp.
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= F ′′(W )∆(W ), (28)

which means that ∆ and S′ are of opposite signs. Proposition 2, by pinning down the sign

of ∆(W ), implies the following:

Corollary 1 S′(W ) > 0 for all W ∈ (0,Wnj), S
′(Wnj) = 0, and S′(W ) < 0 for all

W ∈ (Wnj ,Wgp). Thus, Wnj is a unique peak point of S(W ).

This means that the jump in the agent’s continuation value at job destruction is zero only

at the single point at which the firm’s option value of the agent’s effort is maximal.20

Further, Figure 4 suggests that ∆ has a global minimum at W ∗. Indeed, the next propo-

sition confirms this by showing that ∆(W ) is strictly decreasing below W ∗ and strictly

increasing above W ∗. Therefore, the agent stands to lose the most from job destruction at

the very beginning of the contract.

Proposition 3 We have:

∆′(W ) < 0 for W ∈ (0,W ∗),

∆′(W ) > 0 for W ∈ (W ∗,Wnj).

Thus, W ∗ is a unique trough point of ∆(W ).

Proof In Appendix A.6.

5.2 The jump in the firm’s value

Next, we consider the impact of the job destruction shock on the firm’s continuation profit.

We show that the firm always losses when the job destruction shock arrives, i.e., that the

firm’s profit loss, F (W )− F0(J(W )), is positive for all W ∈ [0,Wgp].

Clearly, there is no loss of profit if the exogenous job destruction hits when the agent’s

continuation value is 0 or Wgp because the job is already rendered unproductive since the

firm and the agent endogenously separate at 0 and Wgp.

If job destruction occurs while the agent’s continuation value W is (weakly) below W ∗, by

Proposition 1, the agent receives no severance. Then, clearly, the firm’s loss of value at job

destruction is F (W )− F0(0) = F (W ), which is positive for all W ≤W ∗.

Above W ∗, by Proposition 1, the agent receives positive severance, and the profit value

prior to job destruction, F (W ), can be positive or negative. If we substitute (11) and (12)

into (15), we obtain S(W ) = F (W ) + F ′(W )∆(W )− F0(J(W )), i.e.,

F (W )− F0(J(W )) = S(W )− F ′(W )∆(W ). (29)

20Note that S(W ) does not have to be concave.
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This says that the firm’s loss of value at job destruction, F (W ) − F0(J(W )), comes from

the loss of the option on the agent’s effort, S(W ), and from the agent’s gain in continuation

utility, ∆(W ), valued at the marginal cost of delivering utility to the agent, −F ′(W ). The

option value S(W ) is always positive, and the marginal cost −F ′(W ) is also positive for

all W > W ∗.

For W > Wnj , by Proposition 2, the agent’s value jump ∆(W ) is positive as well, implying

S(W )− F ′(W )∆(W ) > 0. The firm is hurt by both losing the option value S(W ) and by

having to bump up the agent’s continuation value by ∆(W ) > 0 via severance.

For W ∈ (W ∗,Wnj), the agent gives up continuation value at job destruction, ∆(W ) < 0,

which partially offsets the firm’s loss of the option value, S(W ). The next proposition

shows that weak concavity of F ′0 is sufficient for this offset to be small relative to S(W ).

Proposition 4 The firm always loses value at arrival of a job destruction shock: F (W ) ≥
F0(J(W )), with strict inequality at all 0 < W < Wgp.

Proof In Appendix A.7.

6 Comparative statics for job destruction risk

In this section, we provide two comparative statics results. We examine how the firm’s

profit and the degree to which the agent’s compensation is front-loaded depend on the risk

of job destruction as measured by the arrival rate λ.

6.1 Sensitivity of profit to job destruction risk

Proposition 5 F ′(0), Wgp, and F (W ) for any W ∈ (0,Wgp) are all strictly decreasing in

λ. Further,

∂F (W )

∂λ
= −E

[∫ τ

0
e−(r+λ)tS(Wt)dt

]
< 0, (30)

where W0 = W ∈ (0,Wgp), and τ denotes the time of the first exit of Wt from (0,Wgp).

Proof In Appendix A.8.

It is intuitive that F (W ) should be decreasing in λ. Operating the same technology for a

shorter expected duration (i.e., under higher λ) gives the firm a smaller expected profit ex

ante. Geometrically, higher λ flattens out the hump-shaped function F (·), which implies

that both F ′(0) and −F ′(Wgp) are lower. Because Wgp is pinned by the smooth-pasting

condition in (17), lower −F ′(Wgp) also shifts Wgp to the left. The lower end of the domain

of F is unaffected by λ because the boundary condition F (0) = 0 is independent of λ.
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To understand the equality in (30), recall that S(Wt) consists of the terms in the HJB

equation (14) that are multiplied by λ. Thus, S(Wt) measures how fast higher λ reduces the

firm’s flow payoff at time t. The total impact of λ on the firm’s discounted payoff F (W ) is

therefore equal to the discounted sum of future S(Wt), accounting for the expected position

of the process Wt at all t ≥ 0. The discount factor in (30) contains the probability of job

survival till t, e−λt, because the firm’s option value of eliciting effort, S(Wt), is conditional

on job survival. The strict inequality in (30), which signs the impact of λ on F , follows

simply from the fact that the option value S is positive. Equation (30) shows not only the

sign of the partial derivative ∂F (W )/∂λ but also its magnitude.

Note that Wgp decreasing in λ means that with moral hazard some jobs can be non-viable

just because the anticipated job duration is too short. Indeed, consider two jobs in two

different occupations or industries with the same productivity and the same continuation

value owed to the worker, but with different arrival rates of the job destruction. It may be

profitable to continue with the worker in the longer-expected-duration job but endogenously

terminate the job that has lower expected duration, despite both workers being equally

productive and demanding the same compensation. That possibility does not arise in the

first best, i.e., in the absence of moral hazard, because the threshold W ∗gp, determined in

(27), is independent of λ.

Clearly, a shorter expected job duration also decreases the ex ante expected profit in the

absence of moral hazard, which we can confirm by differentiating with respect to λ the

first-best profit function Ffb, given in (26). Figure 5, however, shows that the sensitivity

of the firm’s profit to λ is higher with moral hazard than without it.

In Figure 5, we use the same parametrization as in Section 4.1. We compute the expected

profit with moral hazard, F (W ∗), and without it, Ffb(W ∗), for a few values of λ. These

values produce expected contract durations under moral hazard, T (W ∗) given in (24),

ranging from about 1 month to about 10 years.21 We then plot the fraction F (W ∗)/Ffb(W ∗)

against the expected contract duration T (W ∗). As we see, with a shorter expected contract

duration, the firm’s profit under moral hazard becomes a smaller and smaller fraction of

the profit the firm would be able to achieve in the first best for the same value delivered

to the agent. That is, the loss of profit due to moral hazard is larger when the arrival rate

of job destruction is faster. Thus, the risk of job destruction exacerbates the moral hazard

problem.22

This result is intuitive because efficient provision of incentives under moral hazard calls for

21Expected job durations in the first best, equal to 1/λ, are monotone in T (W ∗).
22In particular, the moral hazard losses accelerate in the empirically relevant region of λ, where the

expected contract duration is short. At low λ, implying long expected contract durations, the moral hazard

losses also increase in λ but only slowly. For λ = 0, with which T (W ∗) exceeds 400 years, we have

F (W ∗)/Ffb(W ∗) = 0.67.
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Figure 5: The fraction F (W∗)
Ffb(W∗) as a function of the expected job duration T (W ∗).

backloading of reward and punishment.23 In contracts with shorter expected duration, the

scope for backloading is more limited, which leads to a loss of efficiency per unit of contract

time. Next, we examine the impact of the job destruction arrival rate on the backloading

of incentives in more detail.

6.2 Backloading of reward and punishment

We now examine the impact of the risk of job destruction on the timing of the agent’s

rewards and punishment in an optimal contract.

Proposition 6 Let λ̃ > λ ≥ 0. There exists a unique W s ≤ W̃gp such that, for all

W ∈ [0, W̃gp], J̃(W ) ≥ J(W ) and c̃(W ) ≥ c(W ) if and only if W ≤W s.

Proof In Appendix A.9.

This result means that the agent’s rewards and punishment, implemented via both com-

pensation and severance, are more backloaded and spread out when the expected duration

23This point goes back to Townsend (1982) and Rogerson (1985).
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of the contract is longer. With λ = 0, the standard moral hazard model of Sannikov (2008)

maximally backloads and spreads out the agent’s rewards and punishment. Indeed, that

model only has endogenous separations with the agent’s continuation value either maxi-

mally low, Jτ = Wτ = 0, or maximally high, Jτ = Wτ = Wgp. With exogenous separations,

the expected job duration is shorter, and the agent’s separation value Jτ̂ is bounded below

by 0 and above by Wgp. The same bounds apply to the agent’s consumption utility flow

that the optimal contract delivers to the agent prior to separation.

More precisely, Proposition 6 implies that for any two job destruction arrival rates λ̃ > λ,

the dispersion in compensation and severance across agents with different output histories

is lower when the expected duration of the contract is shorter. To see this, suppose we start

with λ̃ = λ, which obviously means F̃ ′(W ) = F ′(W ) for all W . If we increase λ̃ slightly

above λ, it is easy to see in the left panel of Figure 4 that the curve F̃ ′ starts moving

away from F ′ and toward F ′0. Indeed, we know from Proposition 5 that F̃ ′(0) decreases

toward zero. We know from Proposition 6 that there can be only a single crossing between

F̃ ′ and F ′, at W s. Thus, F̃ ′ rotates counterclockwise as it approaches F ′0, meaning the

value of F̃ ′(W ) goes down at small W and goes up at large W , i.e., F̃ ′ becomes flatter as

λ̃ increases.24 By the first-order conditions (10) and (9), the slope of the first derivative of

the profit function determines the dispersion in the agent’s compensation and severance.

Thus, the dispersion is lower when the arrival rate of job destruction is higher, i.e., the

expected contract duration is shorter. Intuitively, job destruction puts a constraint on how

backloaded incentives can be.

7 Limit as job duration becomes short

In this section, we study the limit case as λ goes to infinity, i.e., as the expected job duration

becomes short. In particular, we examine the existence of a non-degenerate contract and

the survival of endogenous separations ahead of exogenous job destruction.

7.1 Existence of a non-degenerate contract

We first discuss the possibility that the expected job duration may be too short to in-

centivize any effort at all. We will say that a non-degenerate contract exists if the firm’s

optimal profit function F satisfies F (W ) > F0(W ) for at least one W .

Define the following constant

κ ≡ −max
a∈A

a
1
2rσ

2h′(a)2
< 0. (31)

24This rotation of F ′ is consistent with the flattening of F shown in Proposition 5 because F is hump-

shaped. Indeed, for a hump-shaped function function F to flatten, the positive part of F ′ must be decreased

and the negative part of F ′ must be increased (made less negative).
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Lemma 3 If κ < F ′′0 (0), a non-degenerate contract exists for any λ ≥ 0. If κ > F ′′0 (0), a

non-degenerate contract does not exist for sufficiently large λ.

Proof In Appendix A.10.

Our analysis in Lemma 3 revolves around a particular solution to the HJB equation, Fflat.

This solution curve is initated at W = 0 with boundary conditions Fflat(0) = 0 and

F ′flat(0) = 0. Thus, Fflat and F0 have the same level and slope at W = 0. Lemma 3

examines two cases. If Fflat dips below F0 immediately after W = 0, then, with any fixed

λ, we can increase the initial slope slightly above zero and obtain a solution curve that also

dips below F0, not immediately but eventually. The forward-shooting method thus works,

as in Sannikov (2008), and a non-degenerate contract exists. If, however, Fflat does not dip

below F0 immediately after W = 0, then we can find λ sufficiently high that Fflat never

returns to F0, in which case the forward-shooting procedure does not have a non-degenerate

solution.

The constant κ defined in (31) represents the curvature, i.e., the second derivative, of Fflat

at W = 0. It is independent of λ because S(0) = 0 for any λ. Since Fflat and F0 have the

same level and slope at W = 0, the ranking of κ and F ′′0 (0) determines whether Fflat dips

below F0 after W = 0.

7.2 Endogenous termination when contract duration is short

Section 4 shows that when the job destruction shock is calibrated to match the average

job duration in the data, endogenous separation at Wgp occurs with near-zero probability.

We now show that this feature of an optimal contract is not specific to that calibration.

For any sufficiently short expected job duration, the transition from W0 to Wgp takes too

long relative to the arrival rate of exogenous job destruction. In the limit, as the expected

job duration becomes short, the ex ante probability of eventual separation at W = Wgp,

denoted by Pgp(W
∗), becomes zero. However, the ex ante probability of separation at

W = 0, P0(W ∗), remains positive.

Proposition 7 Suppose

κ < F ′′0 (0) < 0. (32)

Then,

lim
λ→∞

P0(W ∗) > 0 and lim
λ→∞

Pgp(W
∗) = 0.

Proof In Appendix A.11.

The left inequality in (32) ensures, as in Lemma 3, that a non-degenerate contract exists.

The right inequality in (32) is a convenient technical assumption that can be relaxed.25

25We conjecture that the same result holds in many cases with F ′′0 (0) = 0, but we do not offer a proof.
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Intuition for the results of Proposition 7 comes from two effects that the job destruction

arrival rate λ has on endogenous separations. First, higher λ increases the probability

of exogenous separation and hence decreases the probability of endogenous separation.

Second, higher λ decreases the agent’s ex ante value of the job, W ∗. Both effects make a

transition from W ∗ to Wgp less likely. Our proof shows, however, that the second effect

is strong enough so that endogenous separation at W = 0 survives even in the limit as λ

goes to infinity.

Along with the calibrated example in Section 4, Proposition 7 shows how exogenous job

destruction shocks change qualitative properties of the contract. They not only add the

possibility of exogenous separation at any W but also eliminate the possibility of endoge-

nous separation at the high-severance point Wgp.

This result suggests that expected severance payment should be lower when λ is higher,

as faster arrival of job destruction makes transitions to higher levels of W less likely. We

investigate this conjecture numerically next.

8 Testable implications for compensation and tenure

In this section, we show that our model predicts a positive relationship between expected

job duration and average compensation. By adjusting the arrival rate of job destruction, λ,

we generate optimal contracts with expected job duration ranging from less than 2 months

to over 10 years. For each of these contracts, we compute two measures of compensation:

the ex ante expected average wage rate and the ex ante expected severance benefit. We

show that both are increasing in the ex ante expected job duration.

Denote by TC(W ) the expected total wage paid in the remainder of the contract:26

TC(W ) ≡ E
[∫ τ̂

0
c (Wt) dt

]
, W0 = W.

We define the expected average wage in an optimal contract, C̄, as the total expected wage

in the contract starting at W ∗ divided by the total expected duration of this contract:

C̄ ≡ TC(W ∗)

T (W ∗)
,

where the expected contract duration function T (W ) is defined in (24).

Similarly, denote by B(W ) the expected severance to be awarded at the job exit time, τ̂ ,

26Similar to Lemma 2, we compute TC(W ) by solving an ODE identical to (25) except with the constant

k replaced by the policy function c(W ), with boundary conditions TC(0) = TC(Wgp) = 0.
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Figure 6: Expected average wage C̄ and expected severance B̄ in optimal contracts with different

expected duration T (W ∗).

for a contract starting at W :27

B(W ) ≡ E [b(Wτ̂ )] , W0 = W.

The expected severance in an optimal contract is defined as

B̄ ≡ B(W ∗).

Figure 6 plots C̄ and B̄ as a function of T (W ∗). It shows that the expected average wage and

the expected severance are lower in jobs with shorter expected duration. The relationship

between expected job duration and expected agent compensation can be explained through

two effects. First, the agent’s ex ante value, W ∗, is lower when the expected job duration

is shorter. Second, recall from Proposition 5 that higher λ flattens out the hump-shaped

profit function F . That is, both the increasing segment and the decreasing segment of F

are less steep when λ is higher. The first-order condition (10) then implies that the agent’s

compensation flow, c, weakly decreases with λ: on the increasing segment of F , c is always

27We compute B(W ) by solving an ODE identical to (25) except with the constant k replaced by λb(W ),

with boundary conditions B(0) = 0 and B(Wgp) = b(Wgp) = −F0(Wgp).
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zero, i.e., is unaffected by λ; on the decreasing segment of F , c is strictly lower when F is

less steep. This flattening of F makes the agent’s average compensation C̄ lower, holding

the value delivered to the agent constant. The same intuition applies to the expected

severance B̄ because, by Lemma 1, compensation c and severance b are positively related.

The main testable implication of our model, therefore, is a positive correlation between

expected job duration and average wages and severance. There is a large literature on

the individual-level correlation between tenure and wages. This literature, generally using

PSID data, e.g., Topel (1991) and Buchinsky et al. (2010), finds a positive wage-tenure

profile, which is often attributed to the accumulation of unobservable human capital. This

channel is not present in our model, where agent productivity is iid. Our model suggests a

different channel for generating a positive wage-tenure profile: both tenure and wages can

be driven by job destruction risk, which can be heterogeneous across occupations, sectors,

localities, or demographic groups.

Our model also generates a positive severance-tenure profile, consistent with the empirical

finding documented in, e.g., Boeri et al. (2017). However, our model predicts severance as

an outsized proportion of average wages. In particular, for the calibration with the expected

job duration of 2.5 years, Figure 6 implies a lump-sum severance equivalent to about 17

years of average wages, which is an order of magnitude higher than what Boeri et al.

(2017) find in OECD data.28 Our model overstates the severance because it understates

the agent’s post-separation outside value. Under the baseline separation profit function,

F0, the agent’s post-separation outside value is normalized to zero, hence severance is the

only source of the agent’s continuation value after separation. In the next section, we

discuss generalizations of the separation profit function consistent with the agent having a

positive post-separation outside value.

9 More general post-separation options

Thus far, we have assumed a specific continuation profit function, F0, the same as in

Sannikov (2008). This specification is by no means general, as it normalizes the agent’s

post-separation outside value to zero. Our analysis can be extended to more general cases,

in which the agent has a positive outside value after separation. As the agent’s post-

separation outside value reduces the value the firm must provide to the agent at separation,

the firm’s separation profit function, Fsep, exceeds F0.29

28Indeed, the present value of a permanent severance benefit B̄ is r
∫∞
0
e−rtB̄dt = B̄, while the present

value of one year of average wage C̄ is r
∫ 1

0
e−rtC̄dt = (1 − e−r)C̄. At T (W ∗) = 2.5, we have in Figure 6

C̄ = 0.75 and B̄ = 0.6. With r = 0.0488, these values imply a ratio B̄/(1− e−r)C̄ of 16.8.
29Cases in which the agent has a negative outside value after separation (i.e., Fsep < F0) are not interesting

because the firm can always obtain a payoff equivalent to F0 by retaining the agent forever under a static

contract with constant c ≥ 0 and with a = 0 at all t. Since no output is produced, such static contracts are
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In this section, we allow for a general continuation profit function Fsep ≥ F0, and provide

a sufficient condition on Fsep under which most of our results obtained for F0 continue to

hold. We then provide two reduced-form examples of classes of functions Fsep in which the

sufficient condition is satisfied. Our sufficient condition can be useful in studying further

extensions with a post-separation outside environment specified explicitly, for example as

in a labor-search model.

With a general separation profit function Fsep(J), the HJB equation (8) becomes

rF (W ) = max
c,a,Y,∆

ra− rc+ F ′(W )r

(
W − u(c) + h(a)− λ

r
∆

)
+

1

2
F ′′(W )r2σ2Y 2

− λ(F (W )− Fsep(W + ∆)). (33)

Define, analogously to S,

Ssep(W ) ≡ F (W )−max
J≥0

{
F ′(W )(W − J) + Fsep(J)

}
. (34)

Using Ssep and S, the HJB equation (33) can be written as

F ′′(W ) = min
a≥0

S(W ) + λ
rSsep(W )− a− F ′(W )h(a)

1
2rσ

2(h′(a))2
. (35)

The following proposition generalizes our earlier results allowing for a large class of sepa-

ration profit functions Fsep.

Proposition 8 Assume Fsep and F ′sep are weakly concave and

F ′sep(W ) ≥ F ′0(W ) for all W ∈ [0,W ∗gp]. (36)

Then:

1. J(W ) = 0 for all W ≤W ∗, J(W ) is strictly increasing on (W ∗,Wgp), and J(Wgp) =

Wgp.

2. There exists a unique 0 < Wnj < Wgp such that ∆(W ) < 0 for all 0 < W < Wnj;

∆(Wnj) = 0; and ∆(W ) > 0 for all Wnj < W < Wgp. Also, Wnj > W ∗.

3. ∆′(W ) < 0 for W ∈ (0,W ∗) and ∆′(W ) > 0 for W ∈ (W ∗,Wnj), i.e., W ∗ is a

unique trough point of ∆(W ).

4. The firm always loses value at arrival of the job destruction shock: Fsep(J(W )) ≤
F (W ), with strict inequality at all 0 < W < Wgp.

uninterrupted by a job destruction shock.
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5. For any W ∈ (0,Wgp),

∂F (W )

∂λ
= −E

[∫ τ

0
e−(r+λ)tSsep(Wt)dt

]
< 0,

where W0 = W and τ denotes the time of first exit of Wt from (0,Wgp).

6. Let λ̃ > λ ≥ 0. There exists a unique W s ≤ W̃gp such that, for all W ∈ [0, W̃gp],

J(W ) ≤ J̃(W ) and c(W ) ≤ c̃(W ) if and only if W ≤W s.

Proof In Appendix A.12

To prove these results, we identify minimal changes needed in the proofs of Propositions

1 - 6, obtained earlier under F0, for these proofs to go through under Fsep. This approach

works under two assumptions on Fsep. First, analogously to Assumption 1, we need to

assume that Fsep and F ′sep are concave. Second, we require in (36) that F ′sep and F ′0 be

ranked. Clearly, (36) implies that Fsep is above F0. Additionally, the ranking between F ′sep

and F ′0 allows us to prove the convexity of F ′ everywhere above F ′sep, which is sufficient

for a single crossing between F ′ and F ′sep, and thus for the existence of exactly one region

with a negative jump at separation, ∆ < 0, and one with positive, ∆ > 0.

It can be easily verified that condition (36) is satisfied when Fsep(J) can be represented by

a shift of F0 or a scaling of F0 by a constant.

Example 1 (horizontal shift): Suppose the agent has some additional post-separation

outside value J > 0 that is independent of the severance pay from the current job. In

particular, suppose the severance benefit b and the agent’s separation value J satisfy J =

u(b) + J . For all J ≥ J , we have b = u−1(J − J) = −F0(J − J). Thus, we have

Fsep(J) = F0(J − J).

The sufficient condition is easy to verify.

Example 2 (vertical scaling): Suppose, in addition to providing the agent with a flow

of compensation, the severance from the previous job also helps the agent to obtain better

outcomes in the search process for a new job or in the bargaining process in a new match

with a new firm. In particular, for a constant α > 1, suppose b and J satisfy J = u(αb).

For all J ≥ 0, we have b = 1
αu
−1(J) = − 1

αF0(J). Thus, we have

Fsep(J) =
1

α
F0(J).

The sufficient condition is again easy to verify in this example.

These two reduced-form examples show that our results extend immediately to a class

of models in which the firm’s cost of delivering utility to the agent at separation can be

reduced to horizontal shifts and vertical scaling of F0.
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The ranking condition (36) is sufficient for an immediate generalization of our earlier proofs,

but other numerical examples we have computed suggest that it is far from necessary. The

results gathered in Proposition 8 hold for many specifications of the separation profit

function Fsep that do not satisfy (36).

10 Conclusion

In this paper, we show that the standard dynamic moral hazard model generates extremely

long expected contract durations. To bring those closer to the data, we add exogenous

job destruction risk and study its impact on the optimal long-term contract. We show

that post-job-destruction payments to the agent are an important source of incentives. In

particular, contractual severance payments help the firm control the drift of the agent’s

continuation value inside the contract. In an optimal contract, these payments are used

to keep the agent’s continuation value in the region where the firm’s option value of using

the agent’s effort is highest. The contract promises a positive jump in the agent’s value at

job destruction whenever the firm’s option value on the agent’s effort is decreasing in the

agent’s value, and a negative jump whenever the firm’s option value is increasing. These

promised jumps help keep the state variable near the peak of the firm’s option value.

In the model without job destruction risk, the optimal contract has two exit points: the

low and high endogenous separation (or agent retirement) points. Job destruction adds a

third contract exit possibility. We show that with job destruction, the high endogenous

separation point becomes unreachable as contract dynamics become very slow before the

contract can get there. Under standard calibration, with an expected job duration of 2.5

years, the ex ante probability of reaching the high endogenous separation point is negligible.

In this sense, allowing for realistic job destruction risk changes qualitative properties of an

optimal contract.

We show that job destruction risk exacerbates the moral hazard friction by limiting the

scope for backloading of incentives. Jobs with higher job destruction risk, i.e., with shorter

expected duration, pay lower average compensation to the agent, both in wages and in

severance. This prediction is consistent with the data. Importantly, however, this job-

destruction-risk channel can generate a positive wage-tenure profile in a population of

homogeneous agents whose productivity, or human capital, is constant, thus providing an

alternative explanation for the positive wage-tenure profile observed in the data.

In our analysis, we take the firm’s and the agent’s outside options parametrically. However,

our model can be embedded in a broader model of the labor market in order to study the

interaction between incentive costs and search frictions. In particular, in equilibrium,

profits and welfare could be non-monotonic in the level of search frictions because more

severe search frictions can give rise to longer expected job durations and, as we show in
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this paper, incentive costs are lower when expected job durations are longer.

Appendix

A.1 Proof of Lemma 1

Because F ′0(J) ≤ 0 for all J while F ′(W ) can be positive, we consider two cases.

Case 1. If F ′(W ) ≥ 0, then the first-order condition (9) does not have an interior solution,

which implies

J = W + ∆ = 0. (37)

By (2), u(b) = J . Since u−1(0) = 0, (37) implies b = 0. Similarly, in the first-order

condition (10), F ′(W ) ≥ 0 implies c = 0, which means u(c) = 0. Thus, J = u(c) and b = c.

Case 2. If F ′(W ) < 0, then the first-order condition (9) has an interior solution, i.e., J

satisfies

F ′0(J) = F ′(W ). (38)

Differentiating the two identities in (2) with respect to J and eliminating db/dJ , we obtain

F ′0(J)u′(b) = −1. Using (38), we thus have

F ′(W )u′(b) = −1. (39)

Similarly, with F ′(W ) < 0 the first-order condition (10) has an interior solution, i.e., c

satisfies −F ′(W )u′(c) = 1. With (39), this means b = c, which implies J = u(b) = u(c).

In sum, J = u(c) and b = c in all cases.

QED

A.2 Proof of Lemma 2

For the expected duration T , define H =
∫∞

0 1s<θ1s<τds, where θ is the arrival time of

the job destruction shock and τ = min{t : Wt /∈ (0,Wgp)}. Define a martingale Ht as

Ht = Et[H] =
∫ t

0 Et[1s<θ]1s<τds + Et[1t<θ]Et[
∫∞
t 1s<θ1s<τds|t < θ] =

∫ t
0 e
−λs1s<τds +

e−λt1t<τT (Wt). For t < τ , the drift of Ht is

e−λt
(

1 + T ′(W )((r + λ)(W − u) + rh) +
1

2
T ′′(W )(rσY )2 − λT (W )

)
,

which must be zero. For the exit probability functions P , the proof is very similar.

QED
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A.3 Proof of Proposition 1

Below W ∗, the conclusion follows directly from (37). Above W ∗, differentiation of the

first-order condition (38) yields

F ′′0 (J(W ))J ′(W ) = F ′′(W ). (40)

That J ′(W ) > 0 for all W > W ∗ follows from the strict concavity of F and F0.

QED

A.4 Change of variable

In the remainder of the Appendix, we will be using the HJB equation (16) as well as its

transformation into the following system of two first-order equations. Let

x ≡ −F ′(W ) (41)

be treated as the independent variable and S and W as dependent variables. Let J(x) be

the solution to F ′0(J) = min{x, 0}. Then, the ODE system (S(x),W (x)) with

dS

dx
= W (x)− J(x), (42)

dW

dx
= min

a≥0

1
2rσ

2h′(a)2

a− xh(a)− (1 + λ
r )S(x)

, (43)

where x ∈ [−F ′(0),−F ′(Wgp)], is equivalent to the HJB equation (16). Indeed, differenti-

ating (41), we have dW
dx = 1

−F ′′(W ) , which, using (16), is equivalent to (43). Equation (42)

follows from dS
dx = dS

dW
dW
dx = F ′′(W )(J −W ) 1

−F ′′(W ) , where the second equality uses (28).

A.5 Proof of Proposition 2

We start by proving two auxiliary lemmas.

Lemma 4 For any W ∈ (0,Wgp), F
′(W ) ≥ F ′0(W ) implies ∆(W ) ≤ 0, µ(W ) > 0, and

F ′′′(W ) > 0.

Proof If F ′(W ) ≥ 0, then, by (37), J(W ) = 0. Thus, ∆(W ) = J(W ) −W = −W < 0.

If F ′(W ) < 0, we have F ′0(J(W )) = F ′(W ) ≥ F ′0(W ), where the equality comes from (38).

Since F ′0 is decreasing, J(W ) ≤W , i.e., ∆(W ) ≤ 0.

Using (11) in (22), we have

µ(W ) = −(r + λ)∆(W ) + rh(a(W )) > 0, (44)
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where the strict inequality follows from a(W ) > 0 for all W ∈ (0,Wgp).

Differentiating the HJB equation (8) and canceling out like terms, we obtain

0 = F ′′(W )µ(W ) +
1

2
F ′′′(W )ν(W )2, (45)

where ν(W ) > 0, as in (23). It now follows from (44) and F ′′ < 0 that F ′′′(W )ν(W )2 > 0.

Lemma 5 For any W ∈ (0,Wgp), F
′(W ) = F ′0(W ) implies F ′′(W ) < F ′′0 (W ).

Proof By contradiction, suppose F ′′(W ) ≥ F ′′0 (W ).

1. There exists ε > 0 such that

F ′(W̃ ) > F ′0(W̃ ) for all W̃ ∈ (W,W + ε]. (46)

The conclusion is obvious if F ′′(W ) > F ′′0 (W ). If F ′′(W ) = F ′′0 (W ), the conclusion

follows from F ′′′(W ) > 0 ≥ F ′′′0 (W ), where the first inequality follows from Lemma

4 and the second inequality follows from the weak concavity of F ′0.

2. Define W̄ ≡ min{W̃ > W : F ′(W̃ ) = F ′0(W̃ )}. Since F ′(Wgp) = F ′0(Wgp), the set

{W̃ > W : F ′(W̃ ) = F ′0(W̃ )} is nonempty, thus W̄ is well-defined. Equation (46)

implies W̄ > W+ε. The definition of W̄ implies F ′(W̃ ) > F ′0(W̃ ) for W̃ ∈ [W+ε, W̄ ).

Then, Lemma 4 implies that F ′ is convex on (W + ε, W̄ ). We thus have

F ′(W̄ ) ≥ F ′(W + ε) + F ′′(W )(W̄ −W − ε)
> F ′0(W + ε) + F ′′0 (W )(W̄ −W − ε) ≥ F ′0(W̄ ),

where the first inequality is the convexity of F ′, the second inequality follows from

F ′(W + ε) > F ′0(W + ε) and F ′′(W ) ≥ F ′′0 (W ), and the third inequality is the

concavity of F ′0. This strict inequality contradicts F ′(W̄ ) = F ′0(W̄ ).

The next lemma shows that F ′ and F ′0 cross once on (0,Wgp).

Lemma 6 There exists a unique Wnj ∈ (W ∗,Wgp) such that

F ′(W ) > F ′0(W ) for W ∈ (0,Wnj),

F ′(W ) = F ′0(W ) for W = Wnj ,

F ′(W ) < F ′0(W ) for W ∈ (Wnj ,Wgp).
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Proof The proof proceeds in three steps.

First, we define Wnj ≡ min{W : F ′(W ) = F ′0(W )}. It follows from F ′(0) > 0 = F ′0(0)

and F ′(Wgp) = F ′0(Wgp) that 0 < Wnj ≤ Wgp. We show Wnj < Wgp. By contradiction,

suppose Wnj = Wgp. Then, W > J(W ) for all 0 < W < Wgp. From (42), we then have

S(Wgp) =
∫ −F ′(Wgp)
−F ′(0) (W (x)− J(x))dx > 0, which contradicts (21).

Second, we show F ′(W ) < F ′0(W ) for all W ∈ (Wnj ,Wgp). Lemma 5 shows F ′′(Wnj) <

F ′′0 (Wnj), which implies that there exists ε > 0 such that

F ′(W ) < F ′0(W ) for all W ∈ (Wnj ,Wnj + ε]. (47)

We claim F ′(W ) < F ′0(W ) for all W ∈ (Wnj ,Wgp). By contradiction, suppose F ′ crosses

F ′0 for the first time at Ŵ ≡ min{W ∈ (Wnj ,Wgp) : F ′(W ) = F ′0(W )}. By (47), Ŵ >

Wnj + ε. If follows from F ′(W ) < F ′0(W ) for W ∈ (Wnj , Ŵ ) and F ′(Ŵ ) = F ′0(Ŵ ) that

F ′′(Ŵ ) ≥ F ′′0 (Ŵ ). But Lemma 5 implies F ′′(Ŵ ) < F ′′0 (Ŵ ), a contradiction.

Third, Wnj > W ∗ follows from F ′(W ∗) = 0 > F ′0(Wnj) = F ′(Wnj) and F ′ continuous and

decreasing.

The proof of Proposition 2 follows from Lemma 6 and the observation that the sign of

∆(W ) is the same as the sign of F ′0(W )− F ′(W ).

QED

A.6 Proof of Proposition 3

For W ∈ (0,W ∗), we have F ′(W ) > 0, which implies J(W ) = 0 for all W ∈ (0,W ∗), as in

(37). Thus, clearly, ∆′(W ) = J ′(W )− 1 = −1 < 0 for all W ∈ (0,W ∗).

For W ∈ (W ∗,Wgp), we have from (40) that J ′(W ) = F ′′(W )
F ′′0 (J(W ))

. Thus, ∆′(W ) = J ′(W )−
1 > 0 if and only if F ′′(W ) < F ′′0 (J(W )), which does hold for all W ∈ (W ∗,Wnj) because

F ′′(W ) < F ′′(Wnj) ≤ F ′′0 (Wnj) ≤ F ′′0 (J(W )).

The first inequality follows from the strict convexity of F ′ on (0,Wnj), which is implied by

Lemma 4. The second inequality follows from the fact that F ′ crosses F ′0 from above at

Wnj . The third inequality follows from the (weak) concavity of F ′0 and J(W ) < W < Wnj .

QED

A.7 Proof of Proposition 4

At W = 0 and W = Wgp, we have J(W ) = W and F (W ) = F0(W ). Then, clearly,

F (W ) = F (J(W )) = F0(J(W )) at either of these two points.
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That F (W ) − F0(J(W )) is strictly increasing on (0,W ∗) follows from J(W ) = 0 and

F ′(W ) > 0 for W ∈ (0,W ∗).

Next, we show that F (W )−F0(J(W )) is strictly increasing on (W ∗,Wnj). Differentiating

(29) and using (28), we have

d

dW

(
F (W )− F0(J(W ))

)
= −F ′(W )∆′(W ) > 0,

where the inequality follows from F ′(W ) < 0 and, by Proposition 3, ∆′(W ) > 0 for all

W ∈ (W ∗,Wnj).

Finally, F (W ) − F0(J(W )) > 0 for W ∈ [Wnj ,Wgp) follows directly from (29) because

S(W ) > 0 and −F ′(W )∆(W ) > 0 for W ∈ [Wnj ,Wgp).

QED

A.8 Proof of Proposition 5

First, we show (30). Differentiating the HJB equation (14) with respect to λ, we have

F (W ) + (r + λ)
∂F (W )

∂λ
= −c+

∂F ′(W )

∂λ

(
(r + λ)(W − u(c)) + rh(a)

)
+F ′(W )

(
W − u(c)

)
+

1

2

∂F ′′(W )

∂λ
r2σ2Y 2,

where the controls c, a, and Y are optimal for the value function F . Denoting ∂F (W )
∂λ by

G(W ) and collecting terms, we thus have the following second-order differential equation:

(r + λ)G(W ) = −F (W )− c+ F ′(W )
(
W − u(c)

)
+G′(W )

(
(r + λ)(W − u(c)) + rh(a)

)
+

1

2
G′′(W )r2σ2Y 2,

which, using (15), (22), and (23), we can write simply as

(r + λ)G(W ) = −S(W ) +G′(W )µ(W ) +
1

2
G′′(W )ν(W )2. (48)

At W = 0, we have G(0) = ∂F (0)
∂λ = 0 because F (0) = 0 for all λ. To obtain a boundary

condition for G at W = Wgp, differentiate the value-matching condition F (Wgp) = F0(Wgp)

totally with respect to λ:

∂F (Wgp)

∂λ
+ F ′(Wgp)

dWgp

dλ
= F ′0(Wgp)

dWgp

dλ
,

which gives us

G(Wgp) =
∂F (Wgp)

∂λ
= (−F ′(Wgp) + F ′0(Wgp))

dWgp

dλ
= 0,
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where the last inequality uses the smooth-pasting condition F ′(Wgp) = F ′0(Wgp).

To derive the equality in (30), let

Ht ≡ −
∫ t

0
e−(r+λ)sS(Ws)ds+ e−(r+λ)tG(Wt).

We have

dHt = −e−(r+λ)tS(Wt)dt− (r + λ)e−(r+λ)tG(Wt)dt+ e−(r+λ)tdG(Wt),

and so, applying Ito’s lemma to compute dG(Wt), we have

e(r+λ)tdHt = −S(Wt)dt− (r + λ)G(Wt)dt+

(
G′(Wt)µ(Wt) +

1

2
ν(Wt)

2G′′(Wt)

)
dt

+G′(Wt)ν(Wt)dZt.

The dt terms sum up to zero by (48), and E [Ht] is bounded, i.e., Ht is a martingale. Thus,

with τ being a stopping time, we have

G(W0) = H0 = E [Hτ ] = E
[
−
∫ τ

0
e−(r+λ)tS(Wt)dt+ e−(r+λ)τG(Wτ )

]
.

Using the boundary conditions G(Wτ ) = G(0) = G(Wgp) = 0, we obtain

∂F (W0)

∂λ
= G(W0) = E

[
−
∫ τ

0
e−(r+λ)tS(Wt)dt

]
.

The strict inequality in (30), i.e.,

∂F (W0)

∂λ
= G(W0) < 0 for all W0 ∈ (0,Wgp),

follows now from S(W ) > 0 for all W ∈ (0,Wgp).

Second, we show that Wgp is strictly decreasing in λ. Let λ̃ > λ, and denote by F̃ and

W̃gp, respectively, the firm’s value function and the upper separation point obtained in

the optimal contract with the job destruction shock arrival rate λ̃. We show W̃gp < Wgp.

Clearly, W̃gp ≤ Wgp because the first step implies that F > F̃ on (0, W̃gp). To show

W̃gp < Wgp, suppose by contradiction Wgp = W̃gp. This implies

F (Wgp) = F̃ (Wgp) = F0(Wgp) and F ′(Wgp) = F̃ ′(Wgp) = F ′0(Wgp). (49)

First-order conditions for c and a, and HJB equation (16) immediately imply c(Wgp) =

c̃(Wgp), a(Wgp) = ã(Wgp), and F ′′(Wgp) = F̃ ′′(Wgp).
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1. Differentiating the HJB equation (16) yields

F ′′′(W ) =
(1 + λ

r )(W − u(c)) + h(a)
1
2rσ

2(h′(a))2
(−F ′′(W )),

which implies F ′′′(Wgp) = F̃ ′′′(Wgp), because F ′′(Wgp) = F̃ ′′(Wgp) and Wgp −
u(c(Wgp)) = 0.

2. We show that a′(W ) = ã′(W ) at W = Wgp. The first-order condition for a is

(1 + F ′(W )h′(a))h′(a) +

(
(1 +

λ

r
)S(W )− a− F ′(W )h(a)

)
2h′′(a) = 0.

From (28) and ∆(Wgp) = 0, we have S′(Wgp) = F ′′(Wgp)∆(Wgp) = 0. By the implicit

function theorem, thus, da
dW |W=Wgp is independent of λ.

3. We now show that at W = Wgp,
d(u(c))
dW =

F ′′(Wgp)
F ′′0 (Wgp)

< 1. By contradiction, suppose

F ′′(Wgp) ≤ F ′′0 (Wgp) < 0. Because F ′′′(Wgp) > 0 ≥ F ′′′0 (Wgp), the Taylor expansion

of F ′(Wgp − ε) shows that F ′(Wgp − ε) > F ′0(Wgp − ε) for all small ε > 0, which

contradicts the fact that F (Wgp − ε) > F0(Wgp − ε) for small ε > 0.

4. We show F ′′′′(Wgp) < F̃ ′′′′(Wgp). We have

F ′′′′(W ) =
(1 + λ

r )(W − u(c)) + h(a)
1
2rσ

2(h′(a))2
(−F ′′′(W ))

+
∂

∂a

(
(1 + λ

r )(W − u(c)) + h(a)
1
2rσ

2(h′(a))2

)
a′(W )(−F ′′(W ))

+
(1 + λ

r )
1
2rσ

2(h′(a))2

d(W − u(c))

dW
(−F ′′(W )).

Because d(W−u(c))
dW = 1 − d(u(c))

dW > 0, we have F ′′′′(Wgp) < F̃ ′′′′(Wgp). The Taylor

expansion now shows that F (W ) < F̃ (W ) holds in a neighborhood of Wgp. This

contradicts the fact that F̃ (Wgp − ε) stays below F (Wgp − ε) for small ε > 0.

Third, we show that if λ̃ > λ, then F ′(0) > F̃ ′(0). That F ′(0) ≥ F̃ ′(0) follows from

F (0) = F̃ (0) = 0 and F > F̃ on (0, W̃gp). To show F ′(0) > F̃ ′(0), suppose by contradiction

F ′(0) = F̃ ′(0). Using the same proof as in the second step, we can show F ′′(0) = F̃ ′′(0),

F ′′′(0) = F̃ ′′′(0), and F ′′′′(0) < F̃ ′′′′(0). They imply that F (W ) < F̃ (W ) for W near 0,

which contradicts the fact that F > F̃ on (0, W̃gp).

QED
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A.9 Proof of Proposition 6

By the first-order conditions (9) and (10), it is sufficient to show that F̃ ′ and F ′ cross at

most once. If they do not cross, then F̃ ′ is always below F ′ because, by Proposition 5,

F̃ ′(0) < F ′(0). Then J(W ) ≤ J̃(W ) and c(W ) ≤ c̃(W ) for all W ∈ [0, W̃gp], and we define

W s ≡ W̃gp. If they cross, we show below that they cross only once. The proof consists of

two main steps.

First, we show that if F̃ ′(W ) ≥ F ′(W ) at some W ≥Wnj , then F̃ ′ > F ′ for all W̃ > W .

1. By contradiction, suppose F̃ ′(W2) < F ′(W2) at some W2 > W . Define

W1 ≡ inf{W̃ < W2 : F̃ ′(W̃ ) < F ′(W̃ )},
W3 ≡ sup{W̃ > W2 : F̃ ′(W̃ ) < F ′(W̃ )}.

W3 < W̃gp because F̃ ′(W̃gp) = F ′0(W̃gp) > F ′(W̃gp). F̃
′ = F ′ at both W1 and W3. It

follows from

(1 + λ̃
r )S̃(W1)− a− F̃ ′(W1)h(a)

1
2rσ

2(h′(a))2
= F̃ ′′(W1) ≤ F ′′(W1) =

(1 + λ
r )S(W1)− a− F ′(W1)h(a)

1
2rσ

2(h′(a))2

that (1 + λ̃
r )S̃(W1) ≤ (1 + λ

r )S(W1). Therefore, using (42),

(1 +
λ̃

r
)S̃(W3) = (1 +

λ̃

r
)S̃(W1) + (1 +

λ̃

r
)

∫ −F̃ ′(W3)

−F̃ ′(W1)
(W̃ (x)− J(x))dx

< (1 +
λ

r
)S(W1) + (1 +

λ

r
)

∫ −F ′(W3)

−F ′(W1)
(W (x)− J(x))dx

= (1 +
λ

r
)S(W3),

where the inequality follows from (1 + λ̃
r )S̃(W1) ≤ (1 + λ

r )S(W1), λ̃ > λ, and W̃ (x) <

W (x) < J(x). But F̃ ′′(W3) ≥ F ′′(W3) implies (1 + λ̃
r )S̃(W3) ≥ (1 + λ

r )S(W3),

contradicting the above inequality.

2. By contradiction, suppose F̃ ′(W2) = F ′(W2) at some W2 > W ≥ Wnj . Since part 1

shows F̃ ′ ≥ F ′ everywhere above W , we have F̃ ′′(W2) = F ′′(W2), which implies (1 +
λ̃
r )S̃(W2) = (1 + λ

r )S(W2). Because S̃′(W2) = S′(W2) < 0, we have (1 + λ̃
r )S̃′(W2) <

(1 + λ
r )S′(W2) and hence F̃ ′′′(W2) < F ′′′(W2). This implies F̃ ′(W ) < F ′(W ) for W

slightly above W2, contradicting part 1.

Second, define W as the first crossing point: W ≡ min{W : F̃ ′(W ) = F ′(W )}. We show

that the curves F̃ ′ and F ′ do not cross after W . If W ≥ Wnj , then the first step already
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shows that F̃ ′ > F ′ after W . If W < Wnj , we show below that F̃ ′(W ) > F ′(W ) for all

W ∈ (W,Wnj ], which, together with the first step, implies that F̃ ′(W ) > F ′(W ) for all

W > W .

1. F̃ ′(W ) > F ′(W ) for W slightly above W . If F̃ ′′(W ) > F ′′(W ), this property is

obvious. If F̃ ′′(W ) = F ′′(W ), then (1 + λ̃
r )S̃(W ) = (1 + λ

r )S(W ). Because S̃′(W ) =

S′(W ) > 0, we have (1 + λ̃
r )S̃′(W ) > (1 + λ

r )S′(W ) and hence F̃ ′′′(W ) > F ′′′(W ).

This implies F̃ ′(W ) > F ′(W ) for W slightly above W .

2. By contradiction, suppose F̃ ′(W ) ≤ F ′(W ) for some W ∈ (W,Wnj ], and define W̄

as the second crossing point: W̄ ≡ min{W ∈ (W,Wnj ] : F̃ ′(W ) = F ′(W )}. We have

F̃ ′ > F ′ for W ∈ (W, W̄ ). It follows from F̃ ′′(W ) ≥ F ′′(W ) that (1 + λ̃
r )S̃(W ) ≥

(1 + λ
r )S(W ). Therefore,

(1 +
λ̃

r
)S̃(W̄ ) = (1 +

λ̃

r
)S̃(W ) + (1 +

λ̃

r
)

∫ −F̃ ′(W̄ )

−F̃ ′(W )
(W̃ (x)− J(x))dx

> (1 +
λ

r
)S(W ) + (1 +

λ

r
)

∫ −F ′(W̄ )

−F ′(W )
(W (x)− J(x))dx

= (1 +
λ

r
)S(W̄ ),

where the inequality follows from (1 + λ̃
r )S̃(W ) ≥ (1 + λ

r )S(W ), λ̃ > λ, and W̃ (x) >

W (x). But F̃ ′′(W̄ ) ≤ F ′′(W̄ ) implies (1 + λ̃
r )S̃(W̄ ) ≤ (1 + λ

r )S(W̄ ), contradicting the

above inequality.

QED

A.10 Proof of Lemma 3

Let us denote by F λflat the solution to the HJB obtained from the initial condition F λflat(0) =

(F λflat)
′(0) = 0, where the superscript explicitly recognizes the dependence of the solution

curve on the parameter λ. For any λ ≥ 0, we have

(F λflat)
′′(0) = min

a

(1 + λ
r )Sλflat(0)− a− (F λflat)

′(0)h(a)
1
2rσ

2h′(a)2
= −max

a

a
1
2rσ

2h′(a)2
, (50)

where Sλflat is defined as in (18), i.e.,

Sλflat(W ) = F λflat(W )−max
J≥0
{(F λflat)

′(W )(W − J) + F0(J)}.

In particular, Sλflat(0) = 0.
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If κ = −maxa
a

1
2
rσ2h′(a)2

< F ′′0 (0), then (50) implies that, with any λ, F λflat has a larger

curvature at W = 0 than F0, i.e., (F λflat)
′′(0) < F ′′0 (0). Since F λflat and F0 have the same

level and slope at W = 0, the strict ranking of second derivatives at W = 0 implies that

there exists a small W̄ > 0 such that F λflat(W ) < F0(W ) for all W ≤ W̄ . Continuity now

implies that there exists a small ε > 0 such that any HJB solution F that has F (0) = 0

and a positive slope F ′(0) ≤ ε satisfies F (W̄ ) < F0(W̄ ). Increasing F ′(0) further, we

obtain a solution F that satisfies the smooth-pasting condition F ′(Wgp) = F ′0(Wgp) at

some Wgp > 0. Because F ′(0) > 0, this F is not a degenerate solution. Thus, a non-

degenerate solution to the contracting problem exists for any λ ≥ 0.

If κ = −maxa
a

1
2
rσ2h′(a)2

> F ′′0 (0), then (50) implies that, with any λ, F λflat has a smaller

curvature at W = 0 than F0, i.e., (F λflat)
′′(0) > F ′′0 (0). Since S ≥ 0, with a strict inequality

in the interior, λ increases (F λflat)
′′(·), which then implies that (F λflat)

′(W ) and F λflat(W ) are

increasing in λ for all W . Pick a sufficiently small W̄ > 0 such that

(F 1
flat)

′(W ) > F ′0(W ), ∀W ∈ (0, W̄ ). (51)

Such W̄ exists because F 1
flat and F0 have the same level and slope at W = 0, and

(F 1
flat)

′′(0) > F ′′0 (0). Since (51) implies F 1
flat(W̄ ) − F0(W̄ ) > 0, we can now pick a suf-

ficiently large λ̄ > 0 such that

(
1 +

λ̄

r

)(
F 1

flat(W̄ )− F0(W̄ )
)
> max

a
{a+ F ′0(W̄ )h(a)}. (52)

We claim that for any λ ≥ λ̄, F λflat(W ) > F0(W ) for all W > 0. For W ∈ (0, W̄ ),

F λflat(W ) > F0(W ) follows from (51). For W ≥ W̄ , we first show (F λflat)
′(W ) > F ′0(W̄ ). By

contradiction, suppose at some Ŵ ≥ W̄

(F λflat)
′(Ŵ ) = F ′0(W̄ ). (53)

Then,

(
1 +

λ̄

r

)
Sλflat(Ŵ ) =

(
1 +

λ̄

r

)(
F λflat(Ŵ ) + (F λflat)

′(Ŵ )(W̄ − Ŵ )− F0(W̄ )
)

≥
(
1 +

λ̄

r

)(
F λflat(W̄ )− F0(W̄ )

)
≥

(
1 +

λ̄

r

)(
F λ̄flat(W̄ )− F0(W̄ )

)
> max

a
{a+ F ′0(W̄ )h(a)}

= max
a
{a+ (F λflat)

′(Ŵ )h(a)},

where the first and the last line use (53), and the fourth line uses (52). This implies

(F λflat)
′′(Ŵ ) ≥ 0, which contradicts the strict concavity of F λflat. Therefore, (F λflat)

′(W ) >
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F ′0(W̄ ) for all W ≥ W̄ , which further implies F λflat(W ) > F0(W ) for all W ≥ W̄ . To

summarize, we have shown F λflat(W ) > F0(W ) for all W > 0.

Finally, we show that a non-degenerate solution to the HJB does not exist for λ ≥ λ̄. We

have shown that F λflat(W ) stays above F0(W ). Any solution with a strictly positive initial

slope stays above F λflat(W ); thus, it also stays above F0(W ) for any W > 0. This means no

non-degenerate solution to the HJB exists for λ ≥ λ̄.

QED

A.11 Proof of Proposition 7

We organize the proof into three lemmas. Lemma 7 starts out by providing auxiliary results.

Lemma 8 shows that limλ→∞ P0(W ∗) > 0. Lemma 9 shows that limλ→∞ Pgp(W
∗) = 0.

Notation: Denoting the inverse function of the utility function u by u−1, we have u−1(W ) =

−F0(W ). Let us denote by ϕ the value of the second derivative of u−1 at W = 0. That is,

ϕ ≡ (u−1)′′(0) = −F ′′0 (0). By assumption, we have ϕ > 0.

Lemma 7 1. limλ→∞ F (W ) = limλ→∞ Ffb(W ) = F0(W ) for all W ≥ 0.

2. Define m ≡
√

4rĀ
ϕ . Then W ∗ ≤ m√

λ
for sufficiently large λ, which implies

lim
λ→∞

W ∗ = 0. (54)

3. limλ→∞ F
′(0) = 0.

4. Wgp is decreasing in λ, but

M ≡ lim
λ→∞

Wgp > 0. (55)

5. There exists n > 0 such that the drift of Wt ∈ (0,Wgp), µ(Wt), satisfies

µ(Wt) ≤ n
√
λ (56)

for sufficiently large λ.

Proof

1. Let cfb(W ) and afb(W ) denote the maximizers in (26). Directly from (26), we

have limλ→∞ Ffb(W ) = F0(W ) because the promise-keeping constraint u(cfb(W )) −
r

r+λh(afb(W )) = W implies limλ→∞ cfb(W ) = u−1(W ) for every W . Then, it follows

from F0(W ) ≤ F (W ) ≤ Ffb(W ) that limλ→∞ F (W ) = F0(W ).
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2. Pick a large λ̄ so that u−1( m√
λ

) > 1
4ϕ

m2

λ for all λ ≥ λ̄. This is feasible because

u−1(W ) ≈ 1
2ϕW

2 for small W . If λ ≥ λ̄, then

Ffb

( m√
λ

)
≤ r

r + λ
Ā− cfb

( m√
λ

)
≤ r

r + λ
Ā− u−1

( m√
λ

)
<

r

r + λ
Ā− 1

4
ϕ
m2

λ

=
r

r + λ
Ā− 1

4
ϕ

4rĀ

ϕλ
< 0.

On the other hand, Ffb(W ∗) > F (W ∗) > 0. The monotonicity of Ffb thus implies

W ∗ ≤ m√
λ

for all λ ≥ λ̄.

3. Because W (x) is convex in x for x ∈ [−F ′(0), 0],

W (x) ≥ W ′(−F ′(0))(x+ F ′(0))

= min
a≥0

1
2rσ

2h′(a)2

a− xh(a)
(x+ F ′(0))

≥ min
a≥0

1
2rσ

2h′(a)2

a+ Zh(a)
(x+ F ′(0)),

where Z equals F ′(0) under λ = 0. In particular, for x = 0, we have

W ∗ = W (0) ≥ min
a≥0

1
2rσ

2h′(a)2

a+ Zh(a)
F ′(0).

limλ→∞ F
′(0) = 0 now follows from (54).

4. Pick a small w such that maxa
a+F ′0(W )a
1
2
rσ2h′(a)2

> (u−1)′′(W ) for all W ∈ [0, w]. This is

feasible because we have assumed that maxa
a

1
2
rσ2h′(a)2

> ϕ = (u−1)′′(0) so a non-

degenerate solution F exists.

We show Wgp > w for all λ. It follows from F (Wgp) = F0(Wgp), F
′(Wgp) = F ′0(Wgp),

and F ′′(Wgp) ≥ F ′′0 (Wgp) that

F ′′0 (Wgp) ≤ F ′′(Wgp) = min
a

−a− F ′(Wgp)h(a) + (1 + λ
r )S(x)

1
2rσ

2h′(a)2
= −max

a

a+ F ′0(Wgp)h(a)
1
2rσ

2h′(a)2
,

which implies maxa
a+F ′0(Wgp)h(a)

1
2
rσ2h′(a)2

≤ (u−1)′′(Wgp). Therefore, Wgp > w.

43



5. By (22), the drift of Wt is µ(Wt) = r(Wt−u(Ct) +h(At)) +λ(Wt−J(W )). We have

r(Wt − u(Ct) + h(At)) ≤ r(W ∗gp − 0 + h(Ā)),

where the right-hand side is a constant. Proposition 3 shows that ∆(W ) = J(W )−W
has a global minimum at W = W ∗. We thus have

λ(Wt − J(Wt)) ≤ λ(W ∗ − J(W ∗)) = λW ∗ ≤ λ m√
λ

= m
√
λ.

We can therefore find a sufficiently large n such that (56) holds.

Recall that P0(W ) denotes the probability that a process Wt starting from W reaches 0

before a job destruction shock arrives and before Wt reaches Wgp. The next lemma shows

that P0(W ∗) remains positive even when λ converges to ∞. In particular, it shows P0(W )

stays above a lower bound p̃(W ), defined by

p̃(W ) ≡ p(W )− p(M), (57)

where M = infλWgp = limλ→∞Wgp > 0, as shown in (55), and where

p(W ) ≡ exp

(
−
n+

√
n2 + 2(rσγ)2

(rσγ)2

√
λW

)

with γ = h′(0) > 0, as defined in (1), and where n is a constant sufficiently large for (56).

Clearly, p̃ and p are strictly decreasing and strictly convex.

Lemma 8 P0(W ) ≥ p̃(W ) for all W ∈ [0,M ]. In particular, if W = W ∗, then P0(W ∗) ≥
p̃(W ∗) = p(W ∗)−p(M) > 0. Furthermore, limλ→∞ P0(W ∗) ≥ limλ→∞(p(W ∗)−p(M)) > 0.

Proof First, p(W ) satisfies p(0) = 1 and

λp(W ) = p′(W )n
√
λ+

1

2
p′′(W )(rσγ)2,

which can be confirmed by differentiation. By (57), thus, p̃ satisfies p̃(0) < 1, p̃(W = M) =

0, and

λp̃(W ) < p̃′(W )n
√
λ+

1

2
p̃′′(W )(rσγ)2. (58)

Second, we show that, for sufficiently large λ, e−λtp̃(Wt) is a submartingale. By Ito’s

lemma, the drift of e−λtp̃(Wt) is

−λp̃(Wt) + p̃′(Wt)µ(Wt) +
1

2
p̃′′(Wt)ν(Wt)

2,
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where µ(Wt) and ν(Wt) are the drift and volatility of Wt, given in, respectively, (22)

and (23). By (56), for sufficiently large λ, we have µ(Wt) ≤ n
√
λ. Also, ν(Wt)

2 =

(rσh′(a(Wt)))
2 ≥ (rσh′(0))2 = (rσγ)2. With p̃′ < 0, and p̃′′ > 0, these two inequalities

imply that

−λp̃(Wt) + p̃′(Wt)n
√
λ+

1

2
p̃′′(Wt)(rσγ)2

is a lower bound on the drift of e−λtp̃(Wt). By (58), this lower bound is strictly positive,

i.e., e−λtp̃(Wt) is a submartingale for sufficiently large λ.

Third, let τM denote the first exit of Wt from (0,M), a stopping time. Since, for sufficiently

large λ, e−λtp̃(Wt) is a submartingale, we have p̃(W0) ≤ E[e−λτM p̃(WτM )] < P0(W0).

Last, we show limλ→∞(p(W ∗)− p(M)) > 0. Indeed, since W ∗ ≤ m√
λ

, we have

lim
λ→∞

p(W ∗) ≥ lim
λ→∞

p
( m√

λ

)
= lim

λ→∞
exp

(
−
n+

√
n2 + 2(rσγ)2

(rσγ)2
m

)

= exp

(
−
n+

√
n2 + 2(rσγ)2

(rσγ)2
m

)
> 0,

while

lim
λ→∞

p(M) = lim
λ→∞

exp

(
−
n+

√
n2 + 2(rσγ)2

(rσγ)2

√
λM

)
= 0.

The last lemma in this proof shows the vanishing probability of an exit at Wgp.

Lemma 9 limλ→∞ Pgp(W
∗) = 0.

Proof Let W̃t be the solution to (7) for all t ≥ 0, i.e., Wt is defined both before and after

θ. First, we show that F ′(W̃t) is a martingale. Differentiating the HJB equation (8) with

respect to W yields

0 = F ′′(W )r
(
W − u(c) + h(a)− λ

r
∆
)

+
1

2
F ′′′(W )r2σ2Y 2,

which means the drift of F ′(W̃t) is zero.

Second, suppose W̃0 = W ∗. That F ′(W̃t) is a martingale implies F ′(W ∗) = P̃0(W ∗)F ′(0)+

P̃gp(W
∗)F ′(Wgp), where P̃0(W ∗) and P̃gp(W

∗) are the probabilities of W̃t reaching 0 and

Wgp, respectively. Then

P̃gp(W
∗) =

F ′(W ∗)− P̃0(W ∗)F ′(0)

F ′(Wgp)
=

0− P̃0(W ∗)F ′(0)

F ′0(Wgp)
.
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As λ → ∞, the limit of the above is 0 because limλ→∞ F
′(0) = 0 by Lemma 7.3, and

limλ→∞ F
′
0(Wgp) = F ′0(M) 6= 0.

Finally, limλ→∞ Pgp(W
∗) = 0 because Pgp < P̃gp.

This concludes the proof of Proposition 7.

QED

A.12 Proof of Proposition 8

1. This proof is the same as the proof of Proposition 1 except that we replace F0 with

Fsep.

2. To show that F ′ and F ′sep cross exactly once, we follow the proof of Proposition

2. As in Lemma 4, we show that F ′(W ) ≥ F ′sep(W ) implies ∆(W ) ≤ 0, µ(W ) >

0, and F ′′′(W ) > 0. Indeed, it follows from the first-order condition for J and

the concavity of Fsep that J ≤ W whenever F ′(W ) ≥ F ′sep(W ). The first-order

conditions for c and J also imply F ′0(u(c)) = F ′sep(J) at all W . It thus follows from

(36) that F ′sep(u(c)) ≥ F ′0(u(c)) = F ′sep(J), which implies u(c) ≤ J because Fsep

is concave. We thus have u(c) ≤ J ≤ W . Therefore, F ′(W ) ≥ F ′sep(W ) implies

µ(W ) = W − u(c) + h(a) − λ
r (J −W ) > 0 because a(W ) > 0 for all W ∈ (0,Wgp).

Differentiating the HJB equation (33) and canceling out like terms, we get (45), which

with µ(W ) > 0 and F ′′(W ) < 0 implies F ′′′(W ) > 0. The remaining steps of the

proof are the same as those in the proof of Proposition 2 except that we replace F0

with Fsep.

3. This proof is the same as the proof of Proposition 3 except that we replace F0 with

Fsep.

4. This proof is the same as the proof of Proposition 4 except that we replace F0 with

Fsep.

5. This proof is the same as the proof of Proposition 5 except that we replace F0 with

Fsep and S with Ssep.

6. This proof is the same as the proof of Proposition 6 except that we replace F0 with

Fsep, (1 + λ
r )S with S + λ

rSsep, and (1 + λ̃
r )S̃ with S̃ + λ̃

r S̃sep.

QED

46



References

Anderson, R. W., M. C. Bustamante, S. Guibaud, and M. Zervos (2018). Agency, firm

growth, and managerial turnover. Journal of Finance 73 (1), 419–464.

Boeri, T., P. Garibaldi, and E. R. Moen (2017). Inside severance pay. Journal of Public

Economics 145, 211–225.

Buchinsky, M., D. Fougere, F. Kramarz, and R. Tchernis (2010). Interfirm mobility, wages

and the returns to seniority and experience in the United States. Review of Economic

Studies 77 (3), 972–1001.

Comin, D. and S. Mulani (2006). Diverging trends in aggregate and firm volatility. Review

of Economics and Statistics 88 (2), 374–383.

DeMarzo, P. M., D. Livdan, and A. Tchistyi (2014). Risking other people’s money: Gam-

bling, limited liability, and optimal incentives. Stanford Working Paper No.3149 .

Golosov, M. and G. Menzio (2020). Agency business cycles. Theoretical Economics 15 (1),

123–158.

Hoffmann, F. and S. Pfeil (2010). Reward for luck in a dynamic agency model. Review of

Financial Studies 23 (9), 3329–3345.

Lamadon, T. (2016). Productivity shocks, long-term contracts and earnings dynamics.

University of Chicago Working Paper .

Li, R. (2017). Dynamic agency with persistent observable shocks. Journal of Mathematical

Economics 71, 74–91.

Mortensen, D. T. and C. A. Pissarides (1994). Job creation and job destruction in the

theory of unemployment. Review of Economic Studies 61 (3), 397–415.

Piskorski, T. and A. Tchistyi (2010). Optimal mortgage design. Review of Financial

Studies 23 (8), 3098–3140.

Pissarides, C. A. (1985). Short-run equilibrium dynamics of unemployment, vacancies, and

real wages. American Economic Review 75 (4), 676–690.

Rogerson, W. (1985). Repeated moral hazard. Econometrica 53 (1), 69–76.

Sannikov, Y. (2008). A continuous-time version of the principal-agent problem. Review of

Economic Studies 75 (3), 957–984.

Shimer, R. (2005). The cyclical behavior of equilibrium unemployment and vacancies.

American Economic Review 95 (1), 25–49.

47



Spear, S. E. and C. Wang (2005). When to fire a CEO: optimal termination in dynamic

contracts. Journal of Economic Theory 120 (2), 239 – 256.

Stiglitz, J. E. and A. Weiss (1983). Incentive effects of terminations: Applications to the

credit and labor markets. American Economic Review 73 (5), 912–927.

Topel, R. (1991). Specific capital, mobility, and wages: Wages rise with job seniority.

Journal of Political Economy 99 (1), 145–176.

Townsend, R. M. (1982). Optimal multiperiod contracts and the gain from enduring rela-

tionships under private information. Journal of Political Economy 90 (6), 1166–1186.

Tsuyuhara, K. (2016). Dynamic contracts with worker mobility via directed on-the-job

search. International Economic Review 57 (4), 1405–1424.

Wang, C. (2011). Termination of dynamic contracts in an equilibrium labor market model.

Journal of Economic Theory 146 (1), 74–110.

48


	Introduction
	A dynamic incentive problem with job destruction risk
	Recursive formulation and preliminary analysis
	Contract dynamics prior to job termination
	The contracting problem in recursive form
	Existence, regularity, and computation
	The option value of effort

	Contract dynamics, duration, and exit probabilities
	Parametrization
	Calibration of 

	The jump at job destruction
	The jump in the agent's continuation value
	The jump in the firm's value

	Comparative statics for job destruction risk
	Sensitivity of profit to job destruction risk
	Backloading of reward and punishment

	Limit as job duration becomes short
	Existence of a non-degenerate contract
	Endogenous termination when contract duration is short

	Testable implications for compensation and tenure
	More general post-separation options
	Conclusion
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 1
	Change of variable
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Lemma 3
	Proof of Proposition 7
	Proof of Proposition 8




