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Abstract

The literature on the government spending multiplier has implicitly assumed that an

increase in government spending has the same (mirror-image) effect as a decrease in gov-

ernment spending. We show that relaxing this assumption is important to understand the

effects of fiscal policy. Regardless of whether we identify government spending shocks from

(i) a narrative approach, or (ii) a timing restriction, we find that the contractionary mul-

tiplier —the multiplier associated with a negative shock to government spending— is above

1 and even larger in times of economic slack. In contrast, the expansionary multiplier —the

multiplier associated with a positive shock— is substantially below 1 regardless of the state

of the cycle. These results help understand seemingly conflicting results in the literature.
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1 Introduction

Understanding the impact of changes in government purchases on output is a key part of fiscal

policy analysis, and the question periodically takes center stage as economies move through

stages of business and political cycles. The implementation of fiscal stimulus packages across

OECD countries in the early phase of the 2008-2009 crisis spurred a lot of work on the size

of the government spending multiplier associated with increases in government purchases.1 A

few years later, the mirror-image question —the effect of contractionary fiscal policy— became

the center of attention as the rapid rise in government debt levels led to a swift shift to fiscal

consolidation, particularly in continental Europe.2 Unfortunately, despite intense scrutiny, the

range of estimates for the government spending multiplier remains wide, with estimates lying

between 0.5 and 2.

Perhaps surprisingly, the literature has so far treated the effects of government intervention

symmetrically: a contractionary policy is assumed to have the same (mirror-image) effect

as an expansionary policy, and the size of the multiplier does not depend on the sign of

the government spending shock. However, with occasionally binding borrowing constraints,

households’ marginal propensity to consume (MPC) out of temporary income changes may be

asymmetric, i.e., the MPC may depend on the sign of the change in income.3 Since the MPC

is a key determinant of the size of the multiplier (e.g., Gali et al., 2007), asymmetry in the

MPC raises the possibility of an asymmetric government spending multiplier.4

In this paper, we relax the assumption of symmetric government spending multipliers us-

ing a novel econometric procedure —Functional Approximation of Impulse Responses (FAIR)—

that consists of directly modeling and estimating the economy’s impulse responses to structural

shocks. We find that treating separately expansionary and contractionary spending shocks is

1See e.g., Hall (2009), Mountford and Uhlig (2009), Ramey (2009), Mertens and Ravn (2010), Uhlig (2010),

Barro and Redlick (2011), Parker (2011), Ramey (2011, 2012a, 2012b), Auerbach and Gorodnichenko (2012,

2013), Bachmann and Sims (2012), Owyang, Ramey and Zubairy (2013) and Ramey and Zubairy (2016),

Caggiano, Castelnuovo, Colombo and Nodari (2015), Caldara and Kamps (2017).
2See e.g., Alesina and Ardagna (2010), Guajardo, Leigh, and Pescatori (2011) and Jorda and Taylor (2016).
3 Interestingly, Bunn et al. (2017) and Christelis et al. (2017) recently found evidence of asymmetric MPCs.

For instance, Bunn et al. (2017) found evidence that the MPC out of negative income shocks is above 0.5 but

that the MPC out of positive shocks is only about 0.1.
4This is easy to see in a basic Keynesian framework, where the spending multiplier is given by 1/(1-MPC)

if interest rates are held constant. In a model with forward-looking rational agents, if some households cannot

borrow more but can save more, the economy may behave in a more Ricardian fashion (and thus feature a smaller

multiplier) following an increase in government spending (where households can save more to smooth the drop

in permanent income caused by future higher taxes) than following a decrease in government spending (where

financially constrained households cannot borrow more to consume out of their higher permanent income).

2



crucial to understanding the size of the government spending multiplier. The government

spending multiplier is substantially below 1 for expansionary shocks to government spending,

but the multiplier is above 1 for contractionary shocks. Importantly, we reach the same con-

clusions regardless of whether we identify government spending shocks from —(i) a narrative

identifying assumption (Ramey, 2011, Ramey and Zubairy, 2016), or (ii) a recursive identifying

assumption (Blanchard and Perotti, 2002, Auerbach and Gorodnichenko, 2012)—, which have

been the two main approaches to identifying government spending shocks and their effects on

the economy.

Our findings of an asymmetric multiplier are also robust to using a different econometric

method —Local Projections (Jorda, 2005)—, using a longer sample period with historical data

over 1890-2014, or using alternative identification schemes as in the works of Jorda and Taylor

(2016) and Blanchard and Leigh (2013).

We then study to what extent the expansionary and contractionary multipliers depend on

the state of the cycle at the time of the shock. In doing so, we expand a recent literature that

reached conflicting conclusions on the effect of slack on the size of the multiplier: while studies

based on narratively-identified shocks find little evidence for state dependence,5 VAR-based

studies find that the multiplier is largest in times of slack.6 We find that the contractionary

spending multiplier is state-dependent —being largest and around 2 in recessions—, but we find

no evidence of state dependence for the expansionary multiplier —being always below 1 and

not larger in recessions—. Thus, while Auerbach and Gorodnichenko (2012)’s findings have

sometimes been interpreted as supporting the case for fiscal stimuli in recessions, our results

caution against such a conclusion. We find no evidence that increases in government spending

have larger multipliers during a recession (in fact, the multiplier is consistently below 1) and

thus no support for stimulus programs in times of recession. However, we find that decreases

in government spending during recessions have the largest multiplier, which suggests that

austerity measures during recessions can be especially harmful.

Our results provide a simple explanation for the wide range of state dependence estimates

reported in the literature: the relative frequency of expansionary and contractionary shocks

differs markedly across the two main identification schemes. Results obtained from a narra-

tive identifying assumption are driven primarily by positive shocks —unexpected increases in

government spending—, because the narratively-identified shock series (Ramey, 2011, Ramey

and Zubairy, 2016) contains larger and more numerous positive shocks than negative shocks.

As a result, narrative multiplier estimates mostly reflect the effects of positive shocks, which

5Owyang, Ramey and Zubairy 2013, Ramey and Zubairy 2016.
6Auerbach and Gorodnichenko 2012, 2013, Bachmann and Sims 2012, Caggiano et al. 2015, Fazzari, Morley

and Panovska 2015.
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(according to our results) do not depend on the state of the business cycle. In contrast, the

spending shocks identified in VARs are (by construction) evenly distributed between positive

and negative values. As a result, the average multiplier is mildly state dependent, driven by

the state dependence of the contractionary multiplier.

An important reason for the lack of studies on the possibly asymmetric nature of the gov-

ernment spending multiplier is methodological. Standard techniques are linear and make the

exploration of non-linearities, in particular the asymmetric effect of spending shocks and their

state dependence, difficult. In particular, structural VARs, as used by Blanchard and Perotti

(2002) and Auerbach and Gorodnichenko (2012) cannot allow the impulse response function of

a shock to depend on the sign of that shock.7 The narrative approach to government spending

shocks, pioneered by Ramey and Shapiro (1998) and Ramey (2011), relies on autoregressive

distributed lags models (ADL) or Local Projection (LP, Jorda, 2005), and these methods can

allow for some non-linearities, as illustrated by Ramey and Zubairy (2016) and Auerbach and

Gorodnichenko (2013) for state dependence. However, because of their non-parametric nature,

these methods are limited by efficiency considerations, and simultaneously allowing for asym-

metry and state dependence is difficult.8 Moreover, to explore the non-linear effects of shocks,

ADL or LP requires a series of previously identified structural shocks, which limits their use

to narrative identification schemes.

To overcome these technical challenges, we use a new method —Functional Approximation of

the Impulse Responses—, which consists in (i) directly estimating a structural moving average

model of the economy, i.e., directly estimating the impulse response functions to structural

shocks (unlike the VAR approach, which first estimates a reduced-form VAR and thus requires

the existence of a VAR representation),9 and (ii) approximating the (high-dimensional) impulse

7Regime-switching VAR models can capture certain types of non-linearities such as state dependence

(whereby the value of some state variable affects the impulse response functions), but they cannot capture

asymmetric effects of shocks (whereby the impulse response to a structural shock depends on the sign of that

shock). With regime-switching VAR models, it is assumed that the economy can be in a finite number of

regimes, and that each regime corresponds to a different set of VAR coefficients. However, if the true data

generating process features impulse responses that depend on the sign of the structural shock, a new set of VAR

coefficients would be necessary each period, because the (non-linear) behavior of the economy at any point in

time depends on the whole history of shocks up to that point. As a result, such asymmetric data generating

process cannot generally be approximated by a small number of state variables such as in threshold VARs or

Markov-switching models.
8Riera-Crichton et al. (2015) use Jorda’s local projection method to study the state dependent response of

output growth to positive and negative government spending shocks. However because of efficiency considera-

tions, they can only consider two states (expansion vs recession, whereas we use a continuous indicator of slack

in the economy) and they must bring in additional information from cross-country data (30 OECD countries)

while imposing that responses are the same across countries.
9A promising approach related to ours is Plagborg-Moller (2016), who proposes a Bayesian method to directly

estimate the structural moving-average representation of the data by using prior information about the shape

and the smoothness of the impulse responses.
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response functions with a (small) number of Gaussian basis functions, which offers efficiency

gains and allows for the exploration of a rich set of non-linearities (in contrast to the non-

parametric ADL and LP approaches). While different families of basis functions are possible,

Gaussian basis functions are particularly attractive for two reasons: (i) any mean-reverting

impulse response function can be approximated by a sum of Gaussian basis functions, and

(ii) a small number (one or two) of Gaussian functions can already capture a large variety of

impulse response functions, and in fact capture the typical impulse responses found in empirical

or theoretical studies. For instance, the impulse response functions of macroeconomic variables

to government spending shocks are often found (or predicted) to be monotonic or hump-shaped

(e.g. Ramey, 2011, Gali et al., 2007). In such cases, a single Gaussian function can already

provide an excellent approximation of the impulse response function. Thanks to the small

number of free parameters allowed by our functional approximation, it is possible to directly

estimate the impulse response functions from the data using maximum likelihood or Bayesian

methods. The parsimony of the approach in turn allows us to estimate more general non-linear

models.

Our use of basis functions to approximate impulse response functions relates to a large

literature in statistics that relies on basis functions (of which Gaussian functions are one

example) to approximate arbitrary functions (e.g., Hastie et al., 2009). In economics, our

approximation of impulse responses relates to an older literature on distributed lag models

and in particular on the Almon (1965) lag specification, in which the successive weights, i.e.,

the impulse response function in our context, are given by a polynomial function. In Barnichon

and Matthes (2017), we used FAIR to study the asymmetric effects of monetary shocks, and

the present paper expands the methodology in a number of dimensions, notably by showing

how to estimate FAIR models with both asymmetric and state dependent effects of shocks.

Section 2 presents the empirical model, our method to approximate impulse responses

using Gaussian basis functions and the two main structural identifying restrictions used in the

literature, Section 3 describes our asymmetric model and presents our results on the asymmetric

effects of shocks to government spending as well as a number of robustness checks; Section 4

provides additional supporting evidence; Section 5 describes a model with asymmetry and

state dependence, presents the results and discusses how the asymmetric effects of government

spending shocks help reconcile the seemingly contradictory findings in the literature; Section

6 discusses how one might rationalize our empirical findings and provides avenues for future

theoretical work, Section 7 concludes.
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2 Empirical model

Our goal in this paper is to study how the size of the government spending multiplier, and

more generally the effects of government spending on the economy, depends on the sign of the

policy intervention and on the state of the business cycle at the time of the policy intervention.

To capture these possibilities, we need a model that allows the impulse response functions

to depend on the sign of the shock as well as on the state of the economy at the time of

the shock.10 Our empirical model is thus a (non-linear) structural moving-average model, in

which the behavior of a vector of macroeconomic variables is dictated by its response to past

and present structural shocks. Specifically, denoting y a vector of stationary macroeconomic

variables, the economy is described by

y =

X
=0

Ψ(ε− −)ε− (1)

where ε is the vector of i.i.d. structural innovations with ε = 0 and εε
0
 = I,  is the

number of lags, which can be finite or infinite,  is a stationary variable that is a function

of lagged values of y or a function of variables exogenous to y. Ψ is the matrix of lag

coefficients —i.e., the matrix of impulse responses at horizon —.

Model (1) is a non-linear vector moving average representation of the economy, because

the matrix of lag coefficients Ψ, i.e., the impulse responses of the economy, can depend on (i)

the values of the structural innovations ε and (ii) the value of the macroeconomic variable :

With Ψ a function of ε−, the impulse responses to a given structural shock depend on the
value of that shock at the time of shock. For instance, a positive shock may trigger different

impulse responses than a negative shock. With Ψ a function of −, the impulse responses
to a structural shock depend on the value of  at the time of that shock. For instance, the

impulse responses may be different depending on the state of the business cycle (e.g., the level

of unemployment) at the time of the shock.

Importantly, our starting point is not a structural Vector AutoRegression (VAR). While the

use of a VAR is a common way to estimate a moving-average model, it relies on the existence

of a VAR representation. However, in a non-linear world where Ψ depends on the sign of the

shocks ε as in (1), the existence of a VAR is severely compromised, because inverting (1) is

generally not possible. Thus, in this paper, we work with an empirical method that side-steps

the VAR and instead directly estimates the vector moving average model (1).

10As we argue in two paragraphs, a VAR is ill-suited to capture such non-linearities.
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2.1 Functional Approximation of Impulse Responses

Estimating moving-average models is notoriously difficult, because the number of free para-

meters Ψ in (1) is very large or infinite. To address this issue, we use a new approach

—Functional Approximation of Impulse Responses or FAIR—, which consists in representing the

impulse response functions as expansions in basis functions.

Since the intuition and benefits of our approach can be understood in a linear context, this

section introduces FAIR in a linear context, i.e., where Ψ(ε− −) = Ψ. We postpone

non-linear models to the next sections.

Denote () an element of matrix Ψ, so that () is the value of the impulse response

function  at horizon  A functional approximation of  consists in decomposing  into a

sum of basis functions, i.e., in modeling () as a basis function expansion (see e.g., Hastie et

al., 2009), with

() =

X
=1

(), ∀  0 (2)

with  : R → R the th basis function,  = 1   . Different families of basis functions are

possible, and in this paper we use Gaussian basis functions and posit

() =

X
=1


−(−


)2
, ∀  0 (3)

with , , and  parameters to be estimated. Since model (3) uses  Gaussian basis

functions, we refer to this model as a functional approximation of order  .11

While other families of basis functions are possible, Gaussian basis functions are particularly

attractive for studying the (possibly non-linear) effects of shocks, because only a very small

number of Gaussian basis functions are needed to approximate a large class of impulse response

functions —in fact most impulse responses encountered in macro applications—.

Intuitively, impulse response functions of variables are often found to be monotonic or

hump-shaped. In such cases, one or two Gaussian functions can already provide a very good

approximate description of the impulse response. To illustrate this observation, Figure 1 plots

the impulse response functions of government spending, taxes and output to a shock to govern-

ment spending estimated from a standard VAR specification with a recursive ordering,12 along

11The functional approximation of  may or may not include the contemporaneous impact coefficient, that

is one may choose to use the approximation (3) for   0 or for  ≥ 0. In this paper, we treat (0) as a free
parameter for additional flexibility.
12We describe the exact specification in the next section.
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with the corresponding FAIR with only one Gaussian function, i.e., using the approximation

() ' 
− (−)2

2 , ∀  0 (4)

We can see that a FAIR with only one Gaussian basis function already does a good job at

capturing the impulse responses implied by the VAR. With two Gaussian basis functions, the

impulse responses are very close to those of the VAR (Figure 1). For illustration, Figure 2

plots the Gaussian basis functions used for each impulse response in that case.

The small number of free parameters (only three per impulse response function in the

one-Gaussian case), has two important advantages. First, it allows us to directly estimate

the impulse response functions from the MA representation (1).13 Second, it will allow us to

later add more degrees of freedom and allow for asymmetric or non-linear effects of shocks to

government spending.

2.2 The structural identifying assumptions

Models like (1) are under-identified without additional restrictions. To identify government

spending shocks, the fiscal policy literature has mainly followed two approaches:14 (i) a re-

cursive identification scheme, and (ii) a narrative identification scheme. In this paper, we will

consider both alternatives, which is important to put our results in the context of the literature.

2.2.1 Identification from a recursive ordering

The first identification scheme was proposed by Blanchard and Perotti (2002) and consists of

a short-run restriction, i.e., a restriction on Ψ0, the matrix capturing the contemporaneous

impact of a shock. Government spending is assumed to react with a lag to shocks affecting

macro variables, so that in a system where y includes government spending, taxes and output,

government spending is ordered first andΨ0 has its first row filled with 0 except for the diagonal

coefficient. This identification scheme was recently challenged because of anticipation effects

(Ramey, 2011), as some innovations to government spending were found to be anticipated by

agents. We thus follow Auerbach and Gorodnichenko (2012), who addressed the anticipation

issue by augmenting the vector y with a professional forecast of the growth rate of government

spending in order to soak up the forecastable components of shocks to government spending.

13For instance, with 4 variables, we only have 3 ∗ 42 = 48 parameters (ignoring intercepts) to estimate to

capture the whole set of impulse response functions {Ψ}∞=1. In comparison, a corresponding VAR with 4 lags
has 64 parameters.
14See e.g., Perotti (2008) and Ramey (2011, 2012) for overviews of the main identification schemes used in

the literature.
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We now briefly describe how we use Bayesian methods to estimate multivariate FAIR

models identified with a short-run restriction. More details are available in the Appendix. The

key part to estimate (1) is the construction of the likelihood function (y |θ), where  is the
sample size, θ is the vector of parameters of model (1) and where a variable with a superscript

denotes the sample of that variable up to the date in the superscript.

We use the prediction error decomposition to break up the density (y |θ) as follows:15

(y |θ) =
Y
=1

(y|θy−1) (5)

Then, to calculate the one-step-ahead conditional likelihood function (y|θy−1), we assume
that all innovations {ε} are Gaussian with mean zero and variance one, and we note that the
density (y|y−1θ) can be re-written as (y|θy−1) = (Ψ0ε|θy−1) since

y = Ψ0ε +

X
=1

Ψε− (6)

Since the contemporaneous impact matrix is a constant, (Ψ0ε|θy−1) is a straightforward
function of the density of .

To recursively construct ε as a function of θ and y
, we need to uniquely pin down the

value of the components of ε, that is we need that Ψ0 is invertible. We impose this restriction

by only keeping parameter draws for which Ψ0 is invertible. It is also at this stage that we

impose the identifying restriction. We order variables in y such that the professional forecast

of the growth rate of government spending enters first and government spending enters second.

Then, our identifying restriction is that Ψ0 has its first two rows filled with 0 except for the

diagonal coefficients. Finally, to initialize the recursion, we set the first  values of ε to

zero.16 17

To explore the posterior density, we use a Metropolis-within-Gibbs algorithm (Robert and

Casella, 2004) with the blocks given by the different groups of parameters in our model; , ,

and . The elicitation of priors is described in the Appendix.

15To derive the conditional densities in decomposition (5), our parameter vector  thus implicitly also includes

the  initial values of the shocks: {− 0}. We will keep those fixed throughout the estimation and discuss
the initialization below.
16Alternatively, we could use the first  values of the shocks recovered from a structural VAR.
17When , the lag length of the moving average (1), is infinite, we truncate the model at some horizon

, large enough to ensure that the lag matrix coefficients Ψ are "close" to zero. Such a  exists since the

variables are stationary.
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2.2.2 Identification from a narrative approach

The second main identification scheme is based on a narrative approach and was proposed by

Ramey (2011), building on Ramey and Shapiro (1998).

In Ramey and Shapiro (1998), wars provide exogenous variations in government spending,

because the entries into war (such as World-War II or the Korean war) (i) were exogenous

to domestic economic developments, and (ii) led to large increases in defense spending. Gen-

eralizing this idea, Ramey (2011) identifies unexpected changes in anticipated future defense

expenditures by using news sources to measure expectations and expectation surprises.

Incorporating narratively identified shocks into FAIR models is relatively straightforward.

Indeed, in that case, it is no longer necessary to specify a self-contained model capturing the

relevant features of the economy (and thus a multivariate moving average model), and one can

directly estimate a univariate model —a univariate FAIR— capturing the impulse response of

any variable of interest to the independently identified structural shocks.

Taking  to be one of the variables of y, (1) implies that

 =

X
=0

()

− + 


 (7)

with
©

ª
the (narratively-identified) shocks to government spending, () the impulse re-

sponse function of  to shock  and 

 the residual.

18 We can then directly estimate the

impulse response of  using a functional approximation of (), and the multiplier is obtained

by comparing the responses of  and .

In practice, since the multiplier is a function of two separate impulse responses ( and

), we will jointly estimate the responses of  and in order to obtain a posterior distribution

for the multiplier.

Specifically, we will estimate a SUR-type (Seemingly Unrelated Regression) modelÃ




!
=

X
=0

Ã
 ()

()

!
− +

Ã




!
(8)

where the vector u =

Ã




!
follows a VAR process with

u =Υ(L)u−1 + η

18The residual satisfies 

 =





=0

()
()

− where


()



are the other  shocks affecting the economy and

() captures the impulse response function to shock 
()
 
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with Σ = ηη
0
 and Υ(L) matrices to be estimated. The likelihood of model (1) can be

constructed from the prediction error decomposition by assuming that η is i.i.d. and follows

a multivariate normal distribution. More details are provided in the Appendix.19

While having u following a VAR process is not necessary for consistency, it will allow us to

improve the efficiency of the estimation since  and  are functions of the other structural

shocks affecting the economy and are thus both serially- and cross-correlated.

2.3 Defining the government spending multiplier

We define the government spending multiplier as in Mountford and Uhlig (2009) and Ramey

and Zubairy (2016), and we compute the “sum” multiplier

 =

X
=0

 ()

X
=0

() (9)

where  () and () denote respectively the impulse response function of output (denoted

 from now on) and government spending (denoted  from now on) to a spending shock.

Since the multiplier captures a ratio of changes in the levels of  and , while the impulse

responses are estimated for variables in logs, we need to convert the estimated impulse responses

into dollar units. While a standard approach in the literature is to use an ex-post conversion

based on the approximation 


'  ln
 ln



where 


is the sample average of the GDP to

government spending ratio, Ramey and Zubairy (2016) argue that this approach can lead to

biased multiplier estimates, because 

can display large movements over the sample period.

We thus use instead an ex-ante conversion approach as in Gordon and Krenn (2010) and Ramey

(2016), and before estimation we re-scale all variables by "potential output", where potential

output ( ) is estimated from a quadratic trend.

3 The asymmetric government spending multiplier

We now turn to studying the asymmetric effects of government spending shocks. We first

describe how to introduce asymmetry in FAIR models, and then present the estimation results

using (i) a recursive identification scheme à la Auerbach and Gorodnichenko (2012), and (ii)

a narrative identification scheme à la Ramey (2011). We leave a detailed description of the

estimation of such models (which is a simple extension of the linear case described above) for

19Note that the estimation of the multiplier from such a SUR-model is similar to an Instrument Variable (IV)

regression where one regresses  on lagged values of  using lagged values of 

 as instruments. See Ramey

and Zubairy (2016) for a related IV approach using Local Projections.
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the appendix, and in the online appendix we show that the structural shocks can be identified

in (i) or (ii) even when the shocks have asymmetric effects.

3.1 Introducing asymmetry

To allow for asymmetry, we let Ψ depend on the sign of the government spending shock ,

i.e., we let Ψ take two possible values: Ψ
+
 orΨ

−
 . Specifically, a general model that allows

for asymmetric effects of shocks would be

y =

∞X
=0

h
Ψ+ 1−0

+Ψ− 1−0
i
ε− (10)

with 1 the indicator function and Ψ+ and Ψ
−
 the lag matrices of coefficients for, respectively,

positive and negative government spending shocks.

Denoting +
 () the impulse response of variable  at horizon  to a positive government

spending shock (and similarly for −
 ()), a functional approximation of the impulse response

function +
 is

+
 () =

X
=1

+
−

−+




+


2
, ∀  0 (11)

with +, 
+
, 

+
 some parameters to be estimated. A similar expression would hold for

−
 ().

We then denote + the government spending multiplier (9) associated with a positive (ex-

pansionary) spending shock and − the multiplier associated with a negative (contractionary)
shock.

3.2 Results from a recursive identification scheme

To identify innovations to government spending, we first follow Auerbach and Gorodnichenko

(2012), and we consider the vector
³
∆

|−1    
´0
, where  is log real government (federal,

state, and local) purchases (consumption and investment),  is log real government receipts of

direct and indirect taxes net of transfers to businesses and individuals, and  is log real gross

domestic product (GDP) in chained 2000 dollars, and ∆
|−1 is the growth rate of government

spending at time  forecasted at time −1. As described in Section 2, we include the anticipated
growth rate of government spending in order to soak up any forecastable changes in government

spending. For ∆
|−1, we combine Greenbook and SPF quarterly forecasts following Auerbach

and Gorodnichenko (2012) and extending their dataset so that our sample cover 1966q1-2014q4.

Figure 3 plots the impulse responses estimated using a VAR with 4 lags (dashed black line)
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and a FAIR model with 1 Gaussian basis function (thick line) where we allow for a linear trend

for each variable.20 The error bands cover 90 percent of the posterior probability. The upper

panel plots the impulse responses to a positive shock to G, while the lower panel plots the

impulse responses to a negative shock to G.

When comparing impulse responses to positive and negative shocks, it is important to keep

in mind that the impulse responses to negative shocks were multiplied by -1 in order to ease

comparison across impulse responses. With this convention, when there is no asymmetry, the

impulse responses are identical in the top panel (responses to an expansionary shock) and in

the bottom panels (responses to a contractionary shock). Finally, the magnitude of the fiscal

shock is chosen to generate a peak effect on government spending of 1 (in absolute value) in

order to facilitate the interpretation of the results.

The results show that the impulses responses are strongly asymmetric:21

Starting with the left panels, the thick blue line depicts the response of G to a positive

spending shock (an expansionary shock), while the red line depicts the shock to a negative

spending shock (a contractionary shock). The responses to positive and negative shocks are

similar although the response to a negative shock appears slightly more persistent.

Turning to the response of output, we can see that the impulse response of output is strong

following a contractionary G shock but is not significantly different from zero following an

expansionary G shock.

The strong asymmetric responses of Y imply strong asymmetries in the spending multiplier.

As shown in Table 1, the “sum” multiplier to a spending contraction is − = 125 (cumulating
the impulse responses over 20 quarters), while the expansionary multiplier is + = 027. To

assess the statistical significance of our result, the upper-panel of Figure 5 plots the posterior

distribution of the multiplier following expansionary spending shocks (x-axis) and following

contractionary shocks (y-axis). Evidence for asymmetry is strong with a 099 posterior prob-

ability that −  +.

Figure 3 shows that the response of taxes is not behind the asymmetric size of the multi-

plier. While the response of taxes is not different from zero following an expansionary shock,

taxes declined markedly following a contractionary shock (recall that the impulse responses to

contractionary shocks are multiplied by -1). Thus, the tax response should make the adverse

effect of contractionary fiscal policy on output smaller, not larger.

20The loose priors for the FAIR parameters are detailed in the Appendix. To determine the appropriate

number of basis functions, we use posterior odds ratios to compare models with increasing number of basis

functions. We select the model with the highest posterior odds ratio. This approach can be seen as analogous

to the choice of the number of lags in VAR models using Bayesian Information Criteria.
21Another way to evaluate the significance of our results is to use Bayesian model comparison. The asymmetric

FAIR model displays marginal data densities that are substantially larger than the marginal data density of a

corresponding Bayesian VAR with loose, but proper, Normal-Whishart priors.
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3.3 Results from a narrative identification scheme

We now turn to Ramey’s narrative identification scheme, and we explore the asymmetry of

the multiplier following unexpected changes in anticipated future defense expenditures. We

estimate impulse response functions from a SUR-type FAIR model with 1 Gaussian basis

function using quarterly data over 1939-2014.22

Figure 4 plots the impulse responses of government spending and output to news shocks,

and Table 1 reports the corresponding sizes of the multiplier. Again the impulse responses and

the size of the multiplier differ markedly between expansionary and contractionary shocks. The

multiplier following a positive news shock is lower than 1 with + = 047, but the multiplier

following a negative shock is above one with − = 156. These results confirm our previous

findings based on a recursive identification scheme. To assess the statistical significance of our

result, the bottom-panel of Figure 5 plots the posterior distribution of the multiplier following

expansionary spending shocks (x-axis) and following contractionary shocks (y-axis). Again,

the evidence in favor of asymmetry is strong, as the posterior probability that −  + is

above 099.

3.4 Robustness: Using Local Projections over 1890-2014

In this section, we examine the robustness of our findings of an asymmetric spending multiplier.

We consider the robustness of our results to two important aspects of our approach: (i) the

sample period, and (ii) our FAIR methodology.

1. Using historical data over 1890-2014:

Our baseline results rely on two different sample sizes. In the case of the recursive identification

scheme, our 1966-2014 sample is dictated by the availability of professional forecasts to soak up

anticipated spending changes. In the case of the narrative identification scheme, our baseline

choice of Ramey’s (2011) original 1939-2014 sample instead of Ramey and Zubairy (2016)’s

extended 1890-2014 sample was motivated by a number of reasons: (i) to avoid measurement

issues inherent to historical macroeconomic data (e.g., Romer, 1989), (ii) to use a time period

comparable with that of Auerbach-Gorodnichenko and relatedly (iii) to use a time period

without large secular changes in the size and composition of government spending.23

22The loose priors for the FAIR parameters are detailed in the Appendix. The number of Gaussian basis

functions was determined by model comparison using Bayes factors.
23As mentioned by Gorodnichenko (2014) in his NBER Summer Institute discussion of Ramey and Zubairy

(2016), the post-1939 sample has the advantage of avoiding periods with important regime changes, variation

in data quality (Romer, 1986) and secular structural changes (notably a trend in the size and composition of

government spending).
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In this robustness section however, we make full use of the historical data available, and we

use the full 1890-2014 sample with both the narrative and the recursive identification schemes

(as in Ramey and Zubairy, 2016). Since data on professional forecasts are not available prior

to 1966, we will resort to the original Blanchard-Perotti identification scheme (keeping in mind

the caveat associated with this identification assumption (Ramey, 2011)).

2. Using Local Projections instead of FAIR:

Since our approach relies on the parametrization of the impulse response functions with

Gaussian basis functions, we examine the robustness of our results to this parametrization.

Specifically, we will not rely on functional approximation of the impulse responses but instead

use a fully non-parametric method —Jorda’s (2005) Local Projections (LP)—, which imposes

no structure on the impulse response functions and is thus more robust to mis-specification

(although at the expense of efficiency). There is an important drawback to such an LP-based

approach however: in the case of an asymmetric data-generating process, LP requires a series

of previously identified structural shocks to estimate structural impulse responses (in contrast

to multivariate FAIR models).24 While this is not a problem when using (independently iden-

tified) narrative Ramey news shocks, we cannot use a recursive identifying restriction in a LP

to assess the asymmetric size of the multiplier. However, since our aim is only to assess the

robustness of our findings, we will take a short-cut and use as spending shocks the structural

spending shocks from a (linear) VAR a la Blanchard-Perotti (2004). While such a hybrid VAR-

LP procedure is flawed (in fact, not internally consistent since the VAR shocks are identified

under the assumption that the DGP is linear), we see it as a useful robustness check of our

results based on FAIR.

In the interest of space, this section will present results using both historical data and Local

Projections. We also estimated FAIR models over 1890-2014 or ran LP over shorter post-1939

samples and reach identical conclusions.

3.4.1 Results from a narrative identification scheme

We start by using the Ramey news shocks in Local Projections. We conduct two exercises; (i)

we estimate the impulse responses of government spending and GDP to positive vs. negative

news shock, and (ii) we compute the multipliers associated with these shocks.

24 It is possible to directly impose recursive identifying assumptions (i.e., identify structural shocks) in Local

Projections by including the right set of contemporaneous and lagged observables as controls and thus to directly

obtain structural impulse responses from the LP estimates (e.g., Barnichon and Brownlees, 2017). However,

this approach does not work if the data generating process is asymmetric. In that case, the system does not

have an autoregressive representation (as we discussed in Section 2), and a structural shock cannot be written

as a linear combination of contemporaneous and lagged observables.
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To have a benchmark, we first consider the linear case without asymmetry. To estimate

the impulse responses, we run linear Local Projections with Instrument Variables (IV), i.e. we

estimate  + 1 equations

+ =  +  + 0 + +  = 0 1  (12)

where + is the variable of interest (government spending or GDP),  contains lags of ,

and  is government spending at time  that we instrument with the series of news shocks

denoted
©

ª
 As discussed in Mertens and Ravn (2013) and Ramey and Zubairy (2016), an

IV approach has the advantage of allowing for measurement error in both the shock and the

instrumented variable (as long as their errors are uncorrelated), which is especially important

when using historical data. The impulse response of  is then given by 0 1   . We use

a horizon of  = 20 quarters, and we report Newey-West (1987) standard errors to allow for

autocorrelation in the error terms.

To obtain the multiplier associated with a news shock, we follow Ramey and Zubairy

(2016) and directly estimate the "sum" multiplier using again an IV approach by estimating

the following  + 1 linear Local Projections

X
=0

+ =  +

X
=0

+ + 0 + +  = 0 1  (13)

using  as an instrument for
P

=0 + . Here,
P

=0 + is the sum of the GDP variable from

 to +  and
P

=0 + is the sum of the government spending variable from  to + , and

 includes the same set of controls as in (12). In (13), the coefficient  is directly the "sum"

multiplier over the first  periods, and the associated standard errors can be readily estimated

using Newey-West.

To allow for asymmetric effects of government spending shocks, we proceed as in the linear

case except that we use as instrument either
n
 1 0

o
to get the effect of expansionary

shocks or
n
 1 0

o
to get the effect of contractionary shocks.

Figure 6 shows the impulse response functions of government spending and output to

expansionary and contractionary news shocks, and Table 2 reports the associated multipliers.

Overall, the results are very similar to the results obtained with FAIR models over the more

recent period: the multiplier is above 1 for a contractionary shock but is below 1 for an

expansionary shock.25

25Note the strong similarity between the impulse responses to a positive shock and the average impulse

response estimated (Figure 6). This result owes to the fact that a few large positive shocks dominate the sample

of Ramey news shocks and thus have a strong influence on the linear impulse response estimate. We come back
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3.4.2 Results from a recursive identification scheme

To use LP to estimate the asymmetric effects of spending shocks identified with a recursive

identification scheme, we proceed in two steps. First, we estimate a standard structural VAR

with (   )
0 to identify structural shocks to government spending, denoted {e }. Second,

we take {e } as our measure of structural shocks, and we estimate the Local Projections (12)
and (13). Again, recall that such a hybrid VAR-LP procedure is flawed but nonetheless a

useful robustness check of our FAIR results.

Figure 7 shows the impulse response functions of government spending and output to

expansionary and contractionary news shocks, and Table 2 reports the associated multipliers.

Overall, the results are very similar to the results obtained with FAIR models: the multiplier

is above 1 for a contractionary shock but is substantially below 1 for an expansionary shock.

3.5 Digging deeper: the behavior of investment and consumption

Finally, to dig deeper into the asymmetric response of the economy to government spending

shocks, we study the impulse responses of investment and consumption. The response of

consumption is of particular interest, since the size of the multiplier is directly related to sign

of the response of consumption (e.g., Ramey, 2011).

As always, we present results for the two main identification schemes, and Figures 8 and 9

plot the impulse responses of investment (I) and consumption (C).26 To obtain these impulse

responses, we run Local Projections with IV where the instrument is the shock series { }
given either by Ramey news shocks series or by the series of shocks identified from a timing

restriction.

When comparing impulse responses to positive and negative shocks, keep in mind that the

impulse responses to negative shocks were multiplied by -1 in order to ease comparison across

impulse responses. With this convention, when there is no asymmetry, the impulse responses

are identical in the left-hand panels (responses to a positive shock) and in the right-hand panels

(responses to a negative shock).

Regardless of the identification scheme, the response of consumption is markedly different

between positive and negative shocks: the response of consumption to a contractionary shock

is significantly negative (recall that the impulse responses to contractionary shocks are mul-

tiplied by -1), consistent with a contractionary multiplier above 1. In contrast, the response

of consumption to an expansionary shock is weak and not significantly different from zero.

The strongly asymmetric response of consumption is important since a key channel through

to this point in Section 6.
26Since data on C and I are only available after 1947, all results were obtained using the 1947-2014 sample

period.
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which fiscal policy can have asymmetric effects is through asymmetry in the MPC to transitory

shocks. We come back to this point in our theoretical discussion in Section 6.

Turning to the responses of investment, we can see that an expansionary shock leads to

a decline (crowding-out) in investment, whereas a contractionary shock does not lead to any

increase (crowding-in) in investment. These results are again consistent with a contractionary

spending multiplier above one and an expansionary multiplier below one.

4 Additional evidence

In this section, we provide additional support for our findings of an asymmetric multiplier

by considering two additional approaches to analyze the size of the multiplier: (a) Jorda

and Taylor (JT, 2016) and (b) Blanchard and Leigh (BL, 2013). This additional evidence

is interesting because it relies on entirely different identification schemes than the ones used

by Ramey (2011) and Auerbach and Gorodnichenko (2012), and also because JT and BL’s

findings exploit cross-country variations in contrast to our study, which relies on time series

variation in US data.

4.1 Jorda and Taylor (2016)

An influential literature studies the economic effects of fiscal consolidations by studying the

effects of shocks to the cyclically adjusted primary budget balance.27 Such shocks include (but

not exclusively) shocks to government spending and thus contain information on the size of

the government spending multiplier.

The latest word in that literature is Jorda and Taylor (2016), who consider two differ-

ent identification schemes —an instrumental variable approach and inverse-propensity score

weighting— and consistently find a multiplier that is approximately 2.

This is a larger multiplier than reported in the government spending literature, and yet

we think our results are fully consistent with their finding. Indeed, the thing to notice is

that Jorda and Taylor (2016) only study the effects of fiscal consolidations. As a result, their

estimated multiplier is that of a contractionary multiplier, which we also find to be large. In

light of our findings, it is also natural that Jorda and Taylor find larger spending multiplier

than in the rest of the literature whose evidence is based on a mix of positive and negative

shocks.

27Alesina and Ardagna (2010), Guajardo, Leigh, and Pescatori (2011) and Jorda and Taylor (2016).
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4.2 Blanchard and Leigh (2013)

Blanchard and Leigh (BL, 2013) analyze the size of the multiplier from a very different angle.

Using a panel of EU countries over 2009-2012, BL regress the forecast error of real GDP growth

on forecasts of fiscal adjustments. Under rational expectations, and assuming that forecasters

use the correct model of forecasting, the coefficient on the fiscal adjustment forecast should be

zero. However, BL find that there is a significant relation between fiscal adjustment forecasts

and subsequent growth forecast errors, which indicates that the size of the multiplier was

under-estimated during the last recession. Moreover, the magnitude of the under-estimation

is large: if forecasters had in mind a multiplier of about 05, BL’s estimates imply that the

multiplier was 16 during 2009-2012.

BL’s approach is an interesting testing ground for our findings. Since we find that only the

contractionary multiplier is above one, BL’s results should be driven by fiscal consolidations

alone, and not by fiscal expansions. As we show below, this is exactly what we find.

Specifically, BL run the regression

Forecast error of ∆+1| = + 
¡
Forecast of ∆+1|

¢
+ +1 (14)

on a cross-section of European countries where ∆+1| denotes cumulative (year-over-year)
growth of real GDP in economy  and the associated forecast error is ∆+1|−d∆ +1| withd∆ +1| the forecast made with information available at date , and where ∆+1| denotes
the change in the general government structural fiscal balance in percent of potential GDP.

Under the null hypothesis that fiscal multipliers used for forecasting were accurate, the

coefficient  should be zero.28 In contrast, a finding that  is negative indicates that forecasters

tended to be optimistic regarding the level of growth associated with a fiscal consolidation,

i.e., that they under-estimated the size of the multiplier. Using World Economic Outlook

(WEO) forecast data, BL find that  ≈ −11 for forecasts over 2009-2012, indicating that the
multiplier was substantially under-estimated by forecasters, and implying that the multiplier

was 16 (0.5+1.1) during the recession.29

To test our prediction that BL’s findings is driven by fiscal consolidations, we re-estimate

BL’s baseline specification but allowing for different  coefficients depending on the sign of the

fiscal adjustment —expansionary or contractionary—. Figure 14 shows the corresponding fitted

28 In other words, information known when the forecasts were made should be uncorrelated with subsequent

forecast errors.
29BL conduct a number of robustness checks to argue that their non-zero  is symptomatic of an under-

estimated multiplier and is not due to other confounding factors. In particular, they verify that their results

hold after controlling for other factors that could trigger both planned fiscal adjustments and lower than expected

growth, or that the forecast error in fiscal adjustment was not correlated with the initial fiscal adjustment forecast

(which would bias ).
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lines. To avoid confusion, note that a fiscal consolidation in BL’s framework shows up as in

increase in the fiscal balance and thus shows up as positive entries in Figure 14. We can see that

BL’s results are indeed driven by fiscal consolidations. Table 3 presents the regression results.

The  associated with fiscal expansions is not different from zero —suggesting an expansionary

multiplier of about 05 during the recession—, but the  associated with fiscal consolidations

is − ≈ −12 —suggesting a contractionary multiplier of about 17—. These results are close to
our estimates on the size of the multiplier during recessions.30

A caveat in our analysis so far is that fiscal adjustments include not only changes in

government purchases but also changes in revenues. To better map BL’s results with ours, we

follow BL and treat separately changes in spending and changes in revenues by running the

regression

Forecast error of ∆+1| = +
¡
Forecast of ∆+1|

¢
+

¡
Forecast of ∆+1|

¢
++1

(15)

where ∆+1| denotes the WEO forecast of the change in structural spending in 2010-11 and
∆+1| denotes the WEO forecast of the change in structural revenue in 2010-11, both in

percent of potential GDP.

Column (3) of Table 3 presents the results of regression (15) where we treat separately fiscal

consolidations and fiscal expansions. In line with our findings, the only significant coefficient

is − ≈ 16,31 corresponding to a contractionary spending multiplier of about 2 in recessions
(again in line with our findings), whereas + is not significantly different from zero, consistent

with an expansionary spending multiplier of about 0.5 in recessions.

5 The asymmetric and state-dependent government spending

multiplier

We now explore whether the size of the multiplier depends on the state of the business cycle,

and whether the magnitude of such state dependence depends on the sign of the government

intervention. We first describe how we introduce state dependence into a FAIR model and then

present the estimation results using both identification schemes: (i) the recursive identification

scheme à la Auerbach and Gorodnichenko (2012), and (ii) the narrative identification scheme

à la Ramey (2011). We leave a description of the estimation method for the appendix, and

30Throughout this exercise, we follow BL in keeping the assumption that forecasters had in mind a multiplier

of 0.5.
31The coefficient − is positive because a fiscal consolidation corresponds to a decrease in government spend-

ing. In contrast, in columns (1) and (2), − is negative because a fiscal consolidation corresponds to an increase
in the fiscal balance.
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in the online appendix we show that the structural shocks can be identified in (i) or (ii) even

when the shocks have asymmetric and state dependent effects.

5.1 Introducing asymmetry and state-dependence

With asymmetry and state dependence in response to government spending shocks, the matrix

Ψ+ becomesΨ
+
 (−), i.e., the impulse response to a positive shock depends on some indicator

variable  (and similarly for Ψ
−
 ).

To construct a model that allows for both asymmetry and state dependence, we build on

the asymmetric FAIR model (11) and approximate +
 , the impulse response function of

variable  to a positive innovation to government spending, as

+
 () = (1 + + −)

X
=1

+
−

−+




+


2
, ∀  0 (16)

with + , 
+
, 

+
 and + parameters to be estimated. An identical functional form holds for

−
 .

In this model, the amplitude of the impulse response depends on the state of the business

cycle (captured by the cyclical indicator ) at the time of the shock. In (16), the amplitude of

the impulse response is a linear function of the indicator variable . Such a specification will

allow us to test whether a positive fiscal shock has a stronger effect on output in a recession

than in an expansion.

Note that in specification (16), the state of the cycle is allowed to stretch/contract the

impulse response, but the shape of the impulse response is fixed (because ,  and  are all

independent of ). While one could allow for a more general model in which all variables , 

and  depend on the indicator variable, with limited sample size, it will typically be necessary

to impose some structure on the data, and imposing a constant shape for the impulse response

is a natural starting point.

5.2 Results from a recursive identification scheme

We estimate model (16), where we use as cyclical indicator () the unemployment rate de-

trended by CBO’s estimate of the natural rate (available from 1949 on).32

32We detrend the unemployment rate to make sure that our results are not driven by slow moving trends (e.g.,

due to demographics) in the unemployment rate, which could make the unemployment rate a poor indicator

of the amount of economic slack (see e.g. Barnichon and Mesters, 2016). Using the actual unemployment rate

gives similar qualitative results for state dependence, but a posterior odds ratio calculation favors a model with

detrended unemployment.
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As a preliminary step, and to put our results into perspective, Figure 10 plots our cyclical

indicator along with the identified government spending shocks implied by the posterior mode

estimates. While the cyclical indicator has zero mean, it is right-skewed, a well-known property

of the unemployment rate (e.g., Neftci, 1984). As a result, fiscal shocks are observed over values

of (detrended) unemployment ranging mostly from −1 to 2.
The first row of Figure 11 shows how the “sum” multiplier depends on the state of the busi-

ness cycle at the time of the shock. The left column reports the multiplier following positive

(expansionary) shocks, and the right column reports the multiplier following negative (con-

tractionary) shocks. The bottom panels of Figure 11 plot the histograms of the distributions

of respectively contractionary shocks and expansionary shocks over the business cycle. This

information is meant to get a sense of the range of (detrended) unemployment over which we

identify the coefficients capturing state dependence.

To report the effect of slack under a slightly different angle, Table 4 reports the size of

the multiplier in a high unemployment state (detrended unemployment of 2) and in a low

unemployment state (detrended unemployment of -1).

We can once more see a stark asymmetry between positive and negative shocks. The

multiplier associated with contractionary fiscal shocks depends strongly on the state of the cycle

and reaches its highest value in times on high unemployment. Specifically, the contractionary

multiplier is about 0.9 around business cycle peaks but gets above to 2 around business cycle

troughs, and the posterior probability that −U high  −U low is high at 095 (Table 4).33 In

contrast, the multiplier associated with expansionary fiscal shocks does not depend significantly

or economically on the state of the cycle ( (+U high  +U low) = 052). Overall, + is

small and not significantly different from zero regardless of the level of unemployment.

5.3 Results from a narrative identification scheme

We now perform the same exercise but using the Ramey news shocks in the SUR-type FAIR

model with asymmetry and state dependence to allow the impulse responses to depend on

both the sign of the news shock as well as the state of the cycle (captured by detrended

unemployment) at the time of the shock. Since CBO’s natural rate estimate is not available

over 1939-2014 (the estimate only starts in 1949), we use as cyclical indicator the unemployment

33 Interestingly, these results are consistent with the recent work of Caggiano et al. (2015), who find that

state dependence in the size of the multiplier comes from extreme "events", and in particular deep recessions

versus strong expansionary periods. This is what one would expect if the effect of the state of the cycle on the

(contractionary) multiplier was close to linear: For small business cycle fluctuations, the size of the multiplier

will not vary very much (Figure 11) and its variations will be hard to detect. It is only when the unemployment

reaches high levels that the contractionary multiplier can reach values close to 2 and start differing markedly

from its level during expansionary times.
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rate detrended with an HP-filter ( = 105).

Figure 12 presents the results using the same formatting as Figure 11. The state dependence

results are similar to the ones obtained with the recursive identification: positive shocks have

no state dependent effects on output, —the multiplier remaining around 0.5 regardless of the

state of the cycle—, while negative shocks have stronger effects on output during times of slack.

And just like with the recursively identified shocks, the contractionary multiplier is about 1

around business cycle peaks but rises to about 2 around business cycle troughs with a posterior

probability that −U high  −U low of 098 (Table 4).

5.4 An explanation for the range of estimates in the literature

The literature has reached seemingly conflicting conclusions on the effect of slack on the size

of the multiplier: while studies based on narratively-identified shocks find little evidence for

state dependence, VAR-based studies finding strong evidence for state dependence.

Interestingly, the asymmetric nature of the spending multiplier offers a simple possible

explanation for this set of results. To see that, note that the estimated average multiplier (and

its state dependence) depends on the relative frequency of expansionary and contractionary

shocks used for estimation. The key is then to note that this relative frequency varies markedly

across the two main identification schemes. Figure 13 plots the distribution of Ramey (2011)

news shocks along with the distribution of recursively-identified shocks (as in Auerbach and

Gorodnichenko, 2012). Unlike with recursively-identified shocks whose distribution is (by

construction) evenly distributed between positive and negative shocks, a few very large positive

shocks dominate the sample of Ramey news shocks.

Our "composition effect" hypothesis is thus the following. Studies based on Ramey News

shocks (Owyang, Ramey and Zubairy 2013, Ramey and Zubairy 2016) find little evidence

for state dependence using news shocks to defense spending, because their results are driven

predominantly by positive shocks, which (according to our results) display no detectable state

dependence. In contrast, studies such as Auerbach and Gorodnichenko (2012) based on a VAR

find some evidence for state dependence, because (roughly) half of the identified shocks are

negative shocks, which display strong state dependence. Interestingly, and consistent with

this "composition effect" hypothesis, Ramey and Zubairy (2016) do find significant evidence

of state dependence when they use a recursive identification scheme (in which the distribution

between positive and negative shocks is symmetric).34

34One may wonder whether such a "composition effect" between + and − should also imply that the

average multiplier for government spending shocks —call it  (Auerbach and Gorodnichenko, 2012)— is larger

than the average multiplier for news shocks to defense spending —call it  (Ramey and Zubairy, 2016).

However,  and  refer to different types of government spending (defense purchases only versus all

federal, state and local purchases), and news shocks to defense spending have larger multipliers (for both +
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6 Theoretical discussion

In this final section, we discuss some theoretical channels through which a temporary, deficit-

financed, increase in government spending can affect output, and we discuss two different

channels that could rationalize our empirical findings of −  1 and +  1: (i) the existence

of financial frictions, and/or (ii) downward nominal rigidities.

To frame the discussion, we start by discussing the main (linear for now) theoretical effects

of an increase in government spending financed by future higher lump-sum taxes.

In the textbook Keynesian IS/LM model, the marginal propensity to consume (MPC) out

of transitory income is large, so that an increase in government spending that raises household

income also raises household consumption. If the central bank does not increase the interest

rate too much (so that investment does not decline too much), private spending goes up and

the multiplier is above 1.

In the standard neo-classical (RBC) model however, a deficit-financed increase in gov-

ernment spending generates a negative wealth effect for households, who respond by saving

more in anticipation of future higher tax hikes (Baxter and King, 1993). With a decline in

consumption, the multiplier in RBC models is then typically less than 1.

In the New-Keynesian model, which builds a sticky-price edifice on neoclassical foundations,

the multiplier can be above one provided that three assumptions are satisfied (Gali et al.,

2007):35 (i) prices are sticky, (ii) the central bank response to changes in government spending

is not too strong, and (iii) household’s MPC out of transitory income is large enough. With

(iii), the increase in disposable income brought about by higher government spending can

compensate the negative wealth effect and thus lead to an increase in household consumption

and to a multiplier above one. While Gali et al. (2007) allow for a large MPC out of transitory

income by assuming the existence of rule-of-thumb consumers (who behave "hand-to-mouth"

by consuming all of their disposable income), their assumption is motivated by the existence

of financial frictions and by the fact that a sizable fraction of households have close to zero

liquid wealth and face high borrowing costs (Kaplan et al., 2014).36

and −) than shocks to overall government spending (see Table 1 or Table 2). Thus, while the distribution of
news shocks does make the average Ramey multiplier  smaller (closer to its + value), this effect is not

enough to compensate the fact that +  + and −  − As a result, we find   

in Table 1 and 2 (as in Ramey and Zubairy, 2016).
35The discussion of New-Keynesian models with government spending is not meant to be exhaustive, and

other mechanisms can generate a multiplier above 1 (see e.g., Kormilitsina and Zubairy, 2016). The goal of the

discussion is to highlight simple channels that can lead to an asymmetric multiplier.
36Wealthier individuals can also behave in an hand-to-mouth fashion —holding low liquid assets despite sizeable

illiquid assets— (Kaplan, et al., 2014).
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6.1 Financial frictions

The existence of financial frictions can lead to an asymmetric multiplier, because borrowing

constraints can make the MPC asymmetric. Specifically, with financial constraints the MPC

out of temporary income changes can be higher for negative income shocks than for positive

income shocks, because borrowing constraints impede households’ ability to bring future con-

sumption forward, but do not prevent households from postponing consumption.37 Going back

to Gali et al. (2007)’s New-Keynesian framework, this would imply that the multiplier is larger

following declines in government spending than following increases in spending, consistent with

our findings.

Interestingly, Bunn et al. (2017) and Christelis et al. (2017) recently found such evidence of

asymmetry in the MPC with households reporting changing their consumption by significantly

more following temporary unanticipated falls in income than following rises of the same size.

For instance, Bunn et al. (2017) estimate an average MPC of only 0.1 following a positive

income shock but of about 0.6 following a negative income shock.38 Such an asymmetric MPC is

promising to explain our findings that−  1 and+  1 as well as the asymmetric responses

of consumption to government spending shocks: With a substantial MPC out of negative

transitory income shocks but a close to zero MPC out of positive income shocks, consumption

could behave asymmetrically; (i) decreasing following a contractionary government spending

shock (the economy behaving in a Keynesian fashion where the fall in disposable income

dominates the positive wealth effect) but (ii) not increasing (possibly even declining) following

an expansionary government spending shock (the economy behaving in a neo-classical fashion

where the negative wealth effect dominates). This is exactly what we found in Section 3.5.

Another channel through which financial frictions and government spending shocks can

interact is the extensive margin of borrowing constraints. By affecting disposable income, a

government spending shock can affect the share of households that are financially constrained

and thus affect the average MPC. Interestingly, this extensive margin channel has the poten-

tial of not only generating some sign-dependence in the spending multiplier, 39 but also of

explaining our finding that the contractionary multiplier is largest in recessions: In recessions,

the share of households facing borrowing constraints is larger, which implies an even larger

37See Christelis et al. (2017) for a quantitative discussion of how liquidity constraints (as well as prudence

and a precautionary saving motive) can generate a higher MPC out of negative shocks than out of positive

shocks. See also Bunn et al. (2017).
38Moreover, households more likely to face liquidity shortages or liquidity constraints report even higher MPC

to adverse income shocks.
39A positive government spending shock could bring some households off the constraint, leading them to

behave in a Ricardian fashion and thereby making the multiplier smaller. In contrast, a negative government

spending shock could push more households into the constraint and force them to reduce consumption, implying

a larger multiplier.
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average MPC out of negative income shocks and thus an even larger contractionary multiplier.

Taking stock, this discussion highlights how a better understanding of the effects of financial

frictions on the MPC (and its asymmetry) is likely to be an important part of future research

on the size of the multiplier and on the effects of fiscal policy.

6.2 Downward nominal rigidities

Another possibility for −  + is the existence of downward nominal rigidities, or more

generally asymmetric nominal rigidities (e.g., Kahn, 1997), where prices adjust more easily

upwards than downwards. With asymmetric nominal rigidities, the economy can behave in

a more "Keynesian" fashion following a decrease in government spending (implying a larger

multiplier, possibly above 1) but behave in a more "classical" fashion following an increase in

government spending (implying a smaller multiplier).40

7 Conclusion

This paper estimates the asymmetric effects of shocks to government spending by using Gaussian

basis functions to approximate impulse response functions. Using either of the two main iden-

tification schemes in the literature —recursive or narrative—, we find that the multiplier is above

1 for contractionary shocks to government spending, but below 1 for expansionary shocks. The

multiplier for contractionary shocks is largest in recessions, but the multiplier for expansionary

shocks is always below 1 and not larger in recessions.

Our results have two interesting policy implications. First, they strongly weaken the case

for fiscal packages to stimulate the economy. Second, they caution that austerity measures

may have a much higher output cost than suggested by linear estimates.

One promising avenue to explain the asymmetric size of the multiplier lies in the asym-

metric size of the MPC out of transitory income changes (Bunn et al., 2017, Christelis et al.,

2017), and we conclude that a better understanding of the effects of financial frictions on the

(asymmetric) size of the MPC should be an important part of the research agenda on the

size of the multiplier and the effects of fiscal policy. While there is, as far as we know, little

work on the non-linear implications of financial frictions on the size of the spending multi-

plier,41 Brunnermeier and Sannikov (2014) recently showed that financial constraints can lead

40An alternative mechanism involving wage rigidity (and possibly asymmetric multipliers) can be found in

Alesina, Ardagna, Perotti and Schiantarelli (2002). In their model, an increase in government spending can

lead to wage pressures which hurt investment by the private sector. With downward wage rigidity, a decrease

in government spending would not lower wages and thus would not stimulate investment, which could lead to

a larger contractionary multiplier.
41See Fernandez-Villaverde (2010) for an exploration of the linear effects of financial frictions on the multiplier.
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to highly nonlinear dynamics in the economy’s response to shocks, notably asymmetric and

state dependent impulse-responses. The model of Brunnermeier-Sannikov does not have nom-

inal rigidities and only explore the effects of real shocks, but such non-linear features are also

likely to be present with government spending shocks. Relatedly, the recent Heterogeneous

Agents New-Keynesian (HANK) models with a non-trivial share of hand-to-mouths agents

(Kaplan, Moll and Violante, 2016) may offer a promising framework to explore asymmetric

MPCs and asymmetric effects of fiscal shocks.
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Appendix A1: Bayesian estimation of multivariate FAIR models

In this section, we describe the implementation and estimation of multivariate FAIR models,

where government spending shocks are identified from a recursive ordering as in Section 2.1.1.

We first describe how we construct the likelihood function by exploiting the prediction-error

decomposition, discuss the estimation routine based on a multiple-block Metropolis-Hasting

algorithm, prior elicitation, and finally the determination of the number of basis functions used

in the basis function expansion.

Constructing the likelihood function

We now describe how to construct the likelihood function (y |θ  ) of a sample of size  for
the moving-average model (1) with parameter vector θ and where a variable with a superscript

denotes the sample of that variable up to the date in the superscript.

To start, we use the prediction error decomposition to break up the density (y |θ) as
follows:

(y |θ) =
Y
=1

(y|θy−1) (17)

To calculate the one-step-ahead conditional likelihood function needed for the prediction

error decomposition, we assume that all innovations {ε} are Gaussian with mean zero and
variance one,42 and we note that the density (y|y−1θ) can be re-written as (y|θy−1) =
(Ψ0ε|θy−1) since

y = Ψ0ε +

X
=1

Ψε− (18)

Since the contemporaneous impact matrixΨ0 is a constant, (Ψ0ε|θy−1) is a straightforward
function of the density of ε.

To recursively construct ε as a function of θ and y
, we need to uniquely pin down the

value of the components of ε from (18), that is we need that Ψ0 is invertible. We impose this

restriction by only keeping parameter draws for which Ψ0 is invertible.
43 It is also at this stage

that we impose the identifying restriction that Ψ0 has its first two rows filled with 0 except

for the diagonal coefficients. Finally, to initialize the recursion, we set the first  innovations

{ε}0=− to zero.

In the non-linear case where we have Ψ = Ψ(ε− −), we proceed similarly. However,
a complication arises when one allowsΨ0 to depend on the sign of the shock while also imposing

42The estimation could easily be generalized to allow for non-normal innovations such as t-distributed errors.
43Parameter restrictions (such as invertibility) are implemented by assigning a minus infinity value to the

likelihood whenever the restrictions are not met.
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identifying restrictions on Ψ0. The complication arises, because with asymmetry the system

of equations implied by (18):

Ψ0(ε− −)ε = u (19)

where u = y −
P
=1

Ψε− need not have a unique solution vector ε, because Ψ0(ε), the

impact matrix, depends on the sign of the shocks, i.e., on the vector ε. However, in the online

appendix we show that this is not a problem (so that (19) has a unique solution vector ε) in

a recursive identification scheme like the one considered in this paper.

Finally, when constructing the likelihood, to write down the one-step ahead forecast density

(y|θy−1) as a function of past observations and model parameters, we use the standard
result (see e.g., Casella-Berger, 2002) that for Ψ0 a function of ε and , we have

(Ψ0(ε )ε|θy−1) = (ε)

where  is the Jacobian of the (one-to-one) mapping from ε to Ψ0(ε )ε and where (ε)

is the density of ε.
44 45

Estimation routine and initial guess

To estimate our model, we use a Metropolis-within-Gibbs algorithm (Robert & Casella 2004)

with the blocks given by the different groups of parameters in our model (there is respectively

one block for the  parameters, one block for the  parameters, one block for the  parameters

and one block for the constant and contemporaneous impact matrix Ψ0).

To initialize the Metropolis-Hastings algorithm in an area of the parameter space that has

substantial posterior probability, we follow a two-step procedure: first, we estimate a standard

VAR using OLS on our data set, calculate the moving-average representation, and we use

the impulse response functions implied by the VAR as our starting point. More specifically,

we calculate the parameters of our FAIR model to best fit the VAR-based impulse response

functions.46 Second, we use these parameters as a starting point for a simplex maximization

routine that then gives us a starting value for the Metropolis-Hastings algorithm.

In the non-linear models, we initialize the parameters capturing asymmetry and state

dependence at zero (i.e., no non-linearity). This approach is consistent with the starting point

44Recall that we assume that the indicator variable  is a function of lagged values of  (so that  is known

conditional on −1) or that  is a function of variables exogenous to  (and thus taken as given and known).
45 In our case with asymmetry, this Jacobian is simple to calculate, but the mapping is not differentiable at

 = 0. Since we will never exactly observe  = 0 in a finite sample, we can implicitly assume that in a small

neighborhood around 0, we replace the original mapping with a smooth function.
46Specifically, we set the parameters of our model (the ,  and  coefficients) to minimize the discrepancy

(sum of squared residuals) between the two sets of impulse responses.
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(the null) of this paper: structural shocks have linear effects on the economy, and we are testing

this null against the alternative that shocks have some non-linear effects. We then center the

priors for these parameters at zero with loose priors, as described next.

Prior elicitation

We use (loose) Normal priors centered around the impulse response functions obtained from

the benchmark (linear) VAR. Specifically, we put priors on the ,  and  coefficients that are

centered on the values for ,  and  obtained by matching the impulse responses obtained

from the VAR, as described in the previous paragraph. Specifically, denote 0, 
0
 and 

0
,

 ∈ {1} the values implied by fitting a FAIR model to the VAR-based impulse response of
variable  to shock . The priors for ,  and  are centered on 0, 

0
 and 0,

and the standard-deviations are set as follows  = 10,  =  and  =  ( is the

maximum horizon of the impulse response function).47 While there is clearly some arbitrariness

in choosing the tightness of our priors, it is important to note that they are very loose and let

us explore a large class of alternative specifications.

The use of informative priors is not critical for our approach, but we do this for a number

of reason. First, since our current knowledge on the effect of government spending shocks is

based to a large extent on VAR evidence, it seems natural (and consistent with the Bayesian

approach) to impose priors centered on our current state of knowledge. Second, given the in-

herent difficulty in estimating moving-average models, the priors help discipline the estimation

by keeping the parameters in a reasonable set of the parameter space. Finally, and while we

could have used improper uniform prior, the use of proper priors allows us to compute poste-

rior odds ratio, which are important to select the order of the moving-average and to compare

different FAIR models.

Choosing  , the number of Gaussian basis functions

To choose  , the number of basis functions used in the functional approximation of the impulse

response function, we use posterior odds ratios (assigning equal probability to any two model)

to compare models with increasing number of basis functions. We select the model with the

highest posterior odds ratio.

47Note that these priors are very loose. This is easy to see for  and  For , if it easy to show that 
√
ln 2

is the half-life of the effect of a shock. Thus,  =  corresponds to a very persistent impulse response function,

since 
√
ln 2 = 38 quarters.
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Appendix A2: Bayesian estimation of univariate and SUR-type

FAIR models

The previous section described how to estimate multivariate FAIR models when we simulta-

neously identify the structural shocks and estimate the impulse response functions. We now

describe how to estimate models when the shocks have been previously identified (typically

through a narrative approach as in Ramey, 2011). The model can be a univariate FAIR model

like (7) or a SUR-type FAIR model like (8). The advantage of this approach (compared to a

multivariate self-contained FAIR model as in Appendix A1) is that only the impulse responses

of interest are parametrized and estimated, yielding a small parameter space and a very fast

estimation procedure.

For ease of exposition, we focus on the univariate model first, since the SUR-type model

is a simple extension of the univariate case. As with the multivariate FAIR model, we use

Bayesian methods and the key part is the construction of the likelihood. Recall from section

3 that we have a model of the form

 =

X
=0

()− +  (20)

with

() =

X
=1


−(−


)2

where ,  and  can be functions of 

− (in the non-linear case), and where the residual

is  ≡
P


P
=0

()
()

−

Since {} is serially correlated by construction, in order to improve efficiency, we allow for
serial correlation in  by positing that  follows an (1) process. That is, we posit that

 = −1+ where  is Normally distributed (0 
2
) with  a parameter to be estimated.

We set −1 and 0 to zero, and from (20), it is straightforward to build the likelihood given

a series of previously identified shocks
©

ª
. For prior elicitation, we proceed as with the

multivariate FAIR, and use very loose priors with  = 10,  =  and  = .

For a SUR-type model like (8), the estimation proceeds along the same lines as above,

except that we take into account that the one-step forecast error  is now a vector that

follows a VAR(1) process instead of an AR(1) process.

31



Estimation routine and initial guess

As with multivariate FAIR models, we use a Metropolis-within-Gibbs algorithm. Regarding

the initial guess, an interesting advantage of a univariate FAIR is that it is possible to compute

a good initial guess, even in non-linear models.

Obtaining a non-linear initial guess

To obtain a good (possibly non-linear) initial guess in univariate and SUR-type FAIR models,

we use the following two-step method:

1. Recover the {} factors given { }

Assume that the parameters of the Gaussian kernels —{ }=1— are known, so that we
have a "dictionary" of basis functions to decompose our impulse response. Then, estimating

the coefficients {}=1 in (20), a non-linear problem, can be recast into a linear problem that

can estimated by OLS. In other words, compared to a direct non-linear least square of (20)

that treats all three sets of parameters ,  and  as free parameters, our two-step approach

has the advantage of exploiting the efficiency of OLS to find {} given { }.
To see that, consider first a linear model where () is independent of −. We then

re-arrange (20) as follows:

X
=0

()− =

X
=0

X
=1


−(−


)2
−

=

X
=1



X
=0


−(−


)2
−

Defining

 =

X
=0


−(−


)2
−

our estimation problem becomes a linear problem (conditional on knowing { }=1):

 =

X
=1

 + +  (21)

where the {} parameters can be recovered instantaneously by OLS. Assuming that  follows
an AR(1), we can estimate the {} with a NLS procedure.
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The method described above is straightforward to apply to a case with asymmetry and

state dependence. Consider for instance the case with asymmetry

(

−) = + 1≥0 + − 10

Then, we can proceed as in the previous section and define the following right-hand side

variables ⎧⎪⎪⎨⎪⎪⎩
+
 =

P
=0

()

−1≥0

−
 =

P
=0

()

−10

and use OLS to recover + and − 

2. Choose { }

To estimate { }=1 (and therefore {}=1 from the OLS regression), we minimize the
sum of squared residuals of (21) using a simplex algorithm.
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Figure 1: Impulse response functions (in percent) of government spending, government revenue

("Tax") and output to a one standard-deviation government spending shock. Impulse responses

estimated with a VAR (dashed-line) or approximated with one Gaussian basis function (FAIR,

left-panel, thick line) or two Gaussian basis functions (FAIR, right panel thick line). Estimation

using quarterly data covering 1966-2014.

38



5 10 15 20
0

0.5

1

G
vt

 s
pe

nd
in

g

Gaussian basis functions

5 10 15 20
−0.5

0

0.5

1

T
ax

5 10 15 20

0

0.5

1

1.5

Quarters

O
ut

pu
t

 

 
GB

1

GB
2

Figure 2: Gaussian basis functions (dashed lines) used by a FAIR with two Gaussian basis

functions for the responses of government spending, government revenue ("Tax") and output

to a government spending shock. The basis functions are appropriately weighted so that their

sum gives the functional approximation of the impulse response functions (solid lines) reported

in the right-panels of Figure 1.
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Figure 3: Recursive identification scheme, FAIR, 1966-2014: Impulse response functions

(in percent) of government spending, government revenue ("Tax") and output to a government

spending shock identified from a timing restriction. Estimation from a standard VAR (dashed-

line) or from a FAIR with one Gaussian basis function (plain line). The thin lines cover 90%

of the posterior probability. For ease of comparison between the top and bottom panels, the

responses to a contractionary shock are multiplied by -1 in the bottom panels.
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Figure 4: Narrative identification scheme, FAIR, 1939-2014: Impulse response functions

(in percent) of Government spending and Output to a Ramey news shock identified from a

narrative approach. Estimation from a linear (i.e., symmetric) FAIR model (dashed-line) or

from an asymmetric FAIR model with one Gaussian basis function (plain line). The thin lines

cover 90% of the posterior probability. For ease of comparison between the top and bottom

panels, the responses to a contractionary shock are multiplied by -1 in the bottom panels.

41



m+

m
−

R
ec

ur
si

ve

0 1 2

0

1

2

m+

m
−

N
ar

ra
tiv

e

0 1 2

0

1

2

Figure 5: Posterior distribution of the "sum" government spending multiplier for expansionary

spending shocks (+, x-axis) and contractionary spending shocks (−, y-axis). Estimation
using a recursive identification scheme over 1966-2014 (top panel) or a narrative identification

scheme with Ramey news shocks over 1939-2014 (bottom panel). The dashed red line marks

the symmetric case; with equal multipliers for expansionary and contractionary shocks. The

"sum" multiplier is calculated over the first 20 quarters after the shock.
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Figure 6: Narrative identification scheme, Local Projections, 1890-2014: Impulse

response functions (in percent) of Government spending and Output to a Ramey news shock.

Estimates from Local Projections. The dashed lines report the point estimates from a linear

(i.e., symmetric) model. For ease of comparison between the top and bottom panels, the

responses to a contractionary shock are multiplied by -1 in the bottom panels. The shaded

areas are the 90 percent confidence bands calculated using Newey-West standard errors.
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Figure 7: Recursive identification scheme, Local Projections, 1890-2014: Impulse

response functions (in percent) of Government spending and Output to a government spending

shock. Estimates from Local Projections. The dashed lines report the point estimates from

a linear (i.e., symmetric) model. For ease of comparison between the top and bottom panels,

the responses to a contractionary shock are multiplied by -1 in the bottom panels. The shaded

areas are the 90 percent confidence bands calculated using Newey-West standard errors.
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Figure 8: Narrative identification scheme, Local Projections, 1947-2014: Impulse

response functions (in percent) of Government spending, Investment (I), and Consumption

(C) following an expansionary Ramey news shock (left panel) and a contractionary Ramey

news shock (right panel). Estimates from Local Projections. The dashed lines report the point

estimates from a linear (i.e., symmetric) model. For ease of comparison between the left and

right panels, the responses to a contractionary shock are multiplied by -1 in the right panels.

The shaded areas are the 90 percent confidence bands calculated using Newey-West standard

errors.
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Figure 9: Recursive identification scheme, Local Projections, 1947-2014: Impulse

response functions (in percent) of Government spending, Investment (I) and Consumption (C)

following an expansionary government spending shock (left panel) and a contractionary shock

(right panel). The dashed lines report the point estimates from a linear (i.e., symmetric) model.

For ease of comparison between the left and right panels, the responses to a contractionary

shock are multiplied by -1 in the right panels. The shaded areas are the 90 percent confidence

bands calculated using Newey-West standard errors.

46



(d
et

re
nd

ed
) 

U
R

 

 

1966 1976 1986 1996 2006
−4

−3

−2

−1

0

1

2

3

4

5

UR
Fiscal shocks (right scale)
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ural rate estimate— (solid line, left scale)—, and government spending shocks identified from a

recursive ordering (circles, right scale) with larger circles indicating larger shocks.
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Figure 11: Recursive identification scheme, FAIR, 1966-2014: Size of the “sum” mul-

tiplier as a function of the state of the business cycle (measured with detrended unemploy-

ment) for expansionary government spending shocks (left panel) and contractionary govern-

ment spending shocks (right panel). The shaded areas respectively cover 68 and 90 percent of

the posterior probability. The bottom panels plot the distributions of (respectively) contrac-

tionary shocks and expansionary shocks over the business cycle.
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Figure 12: Narrative identification scheme, FAIR, 1939-2014: Size of the “sum” multi-

plier as a function of the state of the business cycle (measured with detrended unemployment)

for expansionary Ramey news shocks (left panel) and contractionary Ramey news shocks (right

panel). The shaded areas respectively cover 68 and 90 percent of the posterior probability. The

bottom panel plots the distribution of (respectively) contractionary shocks and expansionary

shocks over the business cycle.
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Figure 13: Histograms of the distributions of government spending shocks (rescaled by their

standard-deviation). The upper-panel depicts the distribution of shocks recovered from a

recursive ordering (1966-2014), the bottom-panel depicts the distribution of Ramey news shocks

(1939-2014).
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Figure 14: Blanchard and Leigh (2013) approach: Regression of forecast error for real

GDP growth in 2010 and 2011 relative to forecasts made in the spring of 2010 on forecasts of

fiscal consolidation for 2010 and 2011 made in spring of year 2010. The lines depict the regres-

sion lines for respectively fiscal consolidation (increase in budget surplus, blue line) and fiscal

expansion (decrease in budget surplus, red line). Note that a fiscal consolidation corresponds

to an increase in the fiscal balance and thus enters as a positive entry on the x-axis.

51



 
Table 1: Asymmetric government spending multipliers, FAIR estimates 

 “Sum” multiplier, 5 year integral 

 Linear Expansionary 
shock 

Contractionary 
shock 

    
AG shocks  
1966-2014 
 

0.58 
(0.2--1.0) 

 

0.27 
(0.0--0.6) 

 

1.25 
(0.7--1.8) 

 
P(m->m+)  P=0.99*** 

   
 
Ramey News shocks 
1939-2014 
 

0.73 
(0.6--0.8) 

0.47 
(0.3--0.6) 

1.56 
(1.0--2.3) 

P(m->m+)  P>0.99*** 

   
Note: The "sum" multiplier is calculated by cumulating the impulse responses over the first 20 quarters. Estimates from 
FAIR models with 1 Gaussian basis function. Numbers in parenthesis cover 90% of the marginal posterior probability. AG 
shocks refer to shocks obtained as in Auerbach and Gorodnichenlo (2012) from a Blanchard-Perotti recursive 
identification scheme augmented with professional forecasts of government spending. Ramey news shocks are the 
unexpected changes in anticipated future expenditures constructed by Ramey (2011). P(m->m+) reports the posterior 
probability that the contractionary multiplier m- is larger than the expansionary multiplier m+. “***” denote a posterior 
probability above 0.99. 

 

 

Table 2: Robustness check:  
Asymmetric government spending multipliers, Local Projections, 1890-2014 

 “Sum” multiplier, 5 year integral 

 Linear Expansionary 
shock 

Contractionary 
shock 

    
 
BP shocks  
1890-2014 
 

0.60 
(0.08) 

0.15 
(0.22) 

1.00 
(0.17) 

 
Ramey News shocks 
1890-2014 
 

0.92 
(0.08) 

0.88 
(0.07) 

1.50 
(0.38) 

Note: Numbers in parenthesis denote the Newey-West standard errors. BP shocks refer to shocks obtained as in Blanchard 
and Perotti (2002). Ramey news shocks are the unexpected changes in anticipated future expenditures constructed by 
Ramey and Zubairy (2016). The "sum" multiplier is calculated by taking the integrals of the impulse responses over the 
first 20 quarters. 

 

 

 

 



 
Table 3: Blanchard-Leigh-type regressions 
Forecast error of ∆𝒀𝒊,𝒕|𝒕+𝟏 = 𝜶 + 𝜷𝐅𝐨𝐫𝐞𝐜𝐚𝐬𝐭 𝐨𝐟 ∆𝑭𝒊,𝒕|𝒕+𝟏 + 𝜺𝒊,𝒕|𝒕+𝟏  

Specification (1) (2) (3) 

    
𝜷   -1.09*** (.25)   
    
𝜷+     0.28       (.81)  
𝜷−    -1.23*** (.34)  

    
𝜷𝑮+    -0.46       (.78) 
𝜷𝑮−      1.66*** (.80) 
𝜷𝑻+    -0.15       (.58) 
𝜷𝑻−    -0.95       (.67) 

    
Obs 26 26 26 
R2 .49 .56 .60 
Note: Data from Blanchard-Leigh (2013). The table reports estimates and heteroskedasticity-robust standard errors 
in parentheses. ***, **, and * denote statistical significance at the 1, 5, and 10 level, respectively. Equation (1) 
reports the results of estimating the baseline specification of Blanchard-Leigh (equation (15) in the main text), 
equation (2) allows for separate βs depending on the sign of the planned fiscal adjustment ∆F : 𝛽+  is the coefficient 
for fiscal expansions (decrease in budget surplus) ; 𝛽−  is the coefficient for fiscal consolidations (increase in 
budget surplus); equation (3) reports the results of estimating equation (16) in the main text but allowing for 
separate βs depending on the sign of the planned spending adjustment ∆G or planned revenue adjustment ∆T : 𝛽𝐺+ is 
the coefficient for fiscal expansions (increase in government spending) ; 𝛽𝐺− is the coefficient for fiscal 
consolidations (decrease in government spending) and similarly for 𝛽𝑇− and 𝛽𝑇+ but for revenues. 

 

 

Table 4: Asymmetric multipliers and labor market slack, FAIR estimates 

 
“Sum” multiplier 

5 year integral 

 
Expansionary shock 

 

 
Contractionary shock 

 

 U low U high U low U high 

AG shocks  
1966-2014 

 
0.3 

 

 
0.1 

 

 
0.9 

 

 
2.1 

 
P(mU high>mU low) P=0.52 P=0.95** 

     

Ramey News shocks 
1939-2014 

 
0.6 

 

 
0.5 

 

 
1.5 

 

 
2.7 

 
P(mU high>mU low) P=0.35 P=0.98** 

   Note: The "sum" multiplier is calculated by cumulating the impulse responses over the first 20 quarters. Estimates from FAIR 
models with 1 Gaussian basis function. AG shocks refer to shocks obtained as in Auerbach and Gorodnichenlo (2012) from a 
Blanchard-Perotti recursive identification scheme augmented with professional forecasts of government spending. Ramey news 
shocks are the unexpected changes in anticipated future expenditures constructed by Ramey (2011). P(mU high>mU low) reports the 
posterior probability that the multiplier m is larger in state of high unemployment (detrended unemployment of +2 ) than in a 
state of low unemployment (detrended unemployment of -1). “**” denotes a posterior probability above 0.95. 
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