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Abstract

We use economic theory to rank the impact of structural shocks across sectors. This ranking
helps us to identify the origins of U.S. business cycles. To do this, we introduce a Hierarchical
Vector Auto-Regressive model, encompassing aggregate and sectoral variables. We find that
shocks whose impact originate in the “demand” side (monetary, household and government con-
sumption) account for 43 percent more of the variance of U.S. GDP growth at business cycle
frequencies than identified shocks originating in the “supply” side (technology and energy). Fur-
thermore, corporate financial shocks, which theory suggests propagate to large extent through
demand channels, account for an amount of the variance equal to an additional 82 percent of
the fraction explained by these supply shocks.
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1 Introduction
What drives business cycles? Macroeconomists have alternatively argued for demand factors such
as monetary and fiscal expenditure shocks and supply factors such as technological innovation and
the cost of raw materials. So far, comprehensive decompositions of output fluctuations into the
contributions of various shocks has only been obtained in tightly specified structural models. Those
typically indicate a prominent role for supply shocks.1

We propose an approach to identify a variety of demand and supply shocks simultaneously, but
within a flexible statistical framework. We identify shocks based on prior knowledge of their impact
on different sectors. Thus, for example, an energy cost shock is identified with an aggregate shock
that increases energy prices, and has a larger price and output impact on energy intensive sectors.
Our analysis suggests a prominent role for shocks that manifest themselves on the demand side.

In order to implement this identification scheme, we introduce a large scale, flexible, and
tractable econometric model: the Hierarchical Vector Auto-Regression (Hi-VAR). It allows us to
analyze aggregate and sectoral time-series jointly, while allowing for rich internal sectoral dynamics.
Aggregate shocks are captured by common factors in the innovations of the various series, and shock
identification is obtained by setting priors on factor loadings. The introduction of this particular
econometric framework forms a separate methodological contribution of this paper.

In our baseline analysis, we identify six structural shocks: energy cost, technological progress,
monetary, corporate finance, government consumption, and household demand. The first five shocks
can be easily motivated with reference to an extensive literature. We take the household demand
shock to encompass the set of shocks to household credit, wealth, or expectations that have been
most heavily emphasized following the 2007-09 recession, and that operate mainly through their
effect on household consumption decisions. The identification scheme used for each of the shocks is
done by analogy to the energy shock example given above, and mostly relies on input or demand in-
tensity shares that can be read directly from input-output tables. The two exceptions are corporate
credit shocks (tied to external financial dependence measures as in Rajan and Zingales (1998)) and
monetary shocks (tied to sectoral price stickiness measures by Nakamura and Steinsson (2008)).

We check the reasonableness of our identification scheme by inspecting the resulting impulse
response functions for aggregate variables. We find that those largely conform to theoretical priors
and findings by studies focusing on single, well identified shocks.

Our results point to a prominent role for fluctuations originating on the demand side of the
economy and in access to corporate credit. We find that demand side fluctuations (monetary,
household demand, and government consumption) account for a fraction of the variance of GDP
growth at business cycle frequencies which is 43 percent larger than the fraction accounted for
by identified supply (technology and energy) shocks. Of the three demand shocks, household
demand features most prominently, followed by monetary policy and government consumption.
Furthermore, corporate financial shocks, which theory implies propagate to a substantial degree
through demand channels, account for 82 percent as much as those same supply shocks.

The emphasis on the demand origins of business cycles complements results by Angeletos et al.
(2018), who find that most business cycle fluctuations do not seem to be driven by supply shocks
such as technological innovations. Bachmann and Zorn (2013) find that demand shocks are the
dominant driver of output growth fluctuations in German data. Those findings are in contrast to
the results of prominent studies based on tightly specified DSGE models, which tend to emphasize
supply factors.

1Justiniano et al. (2010) attribute 75% of GDP fluctuations to "neutral" and investment specific TFP shocks.
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A standard approach to identifying structural shocks is the use if sign restrictions, as pioneered
by Uhlig (2005), Faust (1998), and Canova and Nicolo (2002). The use of sign restrictions on sectoral
responses to identify aggregate shocks processes has been analyzed by Amir-Ahmadi and Drautzburg
(2017).2 Relative to this previous work, our main innovation is to develop a method that allows us
to investigate the role of several shocks simultaneously in a tractable manner in environments with
large amounts of data. This paper thus also falls into a more general trend within macroeconomics
of using cross-sectional data to inform on questions of relevance to macroeconomists (Holly and
Petrella (2012), Beraja et al. (2016), Sarto (2018), Chen et al. (2018), and Guren et al. (2019),
for example). We also add to an existing suite of time series models designed to incorporate large
panels, including dynamic factor models (Stock and Watson (2005a)), factor augmented VARs
(Bernanke et al. (2005), Boivin et al. (2009)), and global VARs (Chudik and Pesaran (2016), Holly
and Petrella (2012)). Lastly, on a more technical note, we add to a literature that relies on Bayesian
priors rather than hard identification restrictions (Kociecki (2010) and Baumeister and Hamilton
(2015)), where our main contribution is to provide a method to add those restrictions in a maximally
tractable manner.

The paper proceeds as follows: Section 2 describes the Hi-VAR model and the identification
procedure. Section 3 lays out an analytically tractable multi-sector model with sticky prices and
wages to provide the theoretical motivation for the identification assumption. Section 4 presents
the results. Section 5 concludes.

2 Hierarchical VAR model: Identification and Estimation
We combine a VAR-type time series model for a vector of aggregate variables Yt with autoregressive
models for vectors of sectoral data Xi

t , where i indicates the sector. Aggregate and sectoral data
interact in two ways: (i) via structural shocks that affect both types of data and (ii) via direct
feedback from (lagged) aggregate data to sectoral data.3 We use a Gaussian prior for the effects
of the structural shocks on aggregate and sectoral data.4 This procedure allows us to impose more
prior information on the magnitudes of these effects compared to what would be feasible in the
standard sign restriction approach.5 By exploiting our specific model structure, we can efficiently
estimate very large scale models. Also, because we directly estimate a structural VAR, our approach
can handle set-identified, exactly identified, and over-identified environments - the differences just
amount to choosing different priors on the parameters governing the contemporaneous impact of
structural shocks.

2Also, Schwartzman (2014) and Fulford and Schwartzman (2015) use cross-sectional information to identify shocks.
Whereas the first paper uses a structural small open economy model, the second paper leverages the cross-sectional
impact of a shock identified from an historical narrative. The case for using information on the relative magnitude
of the responses to shocks to help identify shocks has also been made by De Graeve and Karas (2010).

3In the appendix we discuss extensions that allow for more flexible feedback.
4We can do this because we directly estimate the impact of structural shocks rather than first estimate a reduced-

form model and then infer the structural model afterwards, as is common in the VAR literature. In directly estimating
a structural representation, we follow in the footsteps of, for example, Baumeister and Hamilton (2015) and Sims
and Zha (1998), who directly estimate structural VARs.

5In the standard approach to impose sign restrictions, as outlined in Rubio-Ramirez et al. (2010), inequality
restrictions are imposed on impulse responses in conjunction with a uniform (Haar) prior on the rotation matrices
that map reduced form parameters to initial impulse responses. In the appendix we show how to incorporate strict
inequality restrictions in our framework should a researcher be interested in those.
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2.1 Modeling aggregate variables
We model aggregate variables as following a linear vector autoregressive process. A key difference
from traditional VARs for aggregate data is that we break the tight link between forecast errors
and structural shocks, thus allowing sectoral data to help identify structural shocks.

The aggregate variable vector Yt (of dimension N by 1) is a function of its past values, structural
shocks εt, and other shocks wt:

Yt = µ+

L∑
l=1

AlYt−l +Dεt + wt (1)

where εt is of dimension S × 1, and Σ is an N × S matrix encoding the impact of the Gaussian
structural shocks ε on the aggregate variables, and wt is a N × 1 vector of mean 0, non-structural
Gaussian shocks with covariance matrix Ω. We further assume that ε ∼ N(0, I).6 As will be clear
later, we can allow for S < N , S = N , or S > N , whereas standard VAR analyses require S ≤ N .

For later discussion, it is useful to note that the one-step ahead forecast error for the aggregate
level is given by Dεt+wt, whereas a standard VAR model for the aggregate variables would assume
that any estimate of the structural shock is a linear combination of the aggregate one-step ahead
forecast error.7

2.2 Modeling idiosyncratic variables
There are observations for I idiosyncratic units (such as industries, regions, or, in our specific
application, sectors) with K variables (such as prices and quantities) each. The law of motion for
the data from unit i, summarized in the K-dimensional vector Xi

t , is given by:

Xi
t = µi +

LX∑
l=1

BilX
i
t−l +

LY∑
l=1

CihYt−l +Diεt + wit (2)

where now Di is a K × S matrix encoding the impact of shocks ε on the idiosyncratic variables
and the mean zero Gaussian vector wit incorporates the impact of idiosyncratic (or non-structural)
shocks on individual units. We denote the covariance matrix of wit by Ωi. We assume that wit is
independent across i and independent from wt.

2.3 Interpreting our model
To gain further intuition, it will be useful to rewrite our model as follows: first, define the vector
of all observables

Zt = [Yt
′ X1

t
′
X2
t
′
. . . XI

t

′
]′

6The distributional assumptions are necessary because we ultimately want to carry out Bayesian inference, for
which we need to build a likelihood function.

7This is true even if fewer than N shocks are identified, as is common in the literature on sign restrictions in
VARs.
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We can then recast our model in the following way:

Zt = µZ +

max(LX ,LY ,L)∑
l=1

BZl Zt−l +DZεt + wZt︸ ︷︷ ︸
uZt

(3)

where wZt is a vector that stacks the non-structural shocks according to the ordering of observables
in Zt. Our model imposes restrictions on the matrices Bl by assuming that one sector’s variables
cannot directly respond to any other sector’s lagged variables. Note that our one step ahead
forecast error uZt is iid and independent of all other right-hand side variables. We now provide a
characterization of identification as it pertains to both the parameters of the model as well as the
aggregate shocks. Because of the structure of the one-step ahead forecast error, we can identify
µZ as well as the coefficient matrices BZl . Even single equation-estimation via OLS would yield
consistent estimates in our environment. Since we use even more information in our likelihood-
based approach, the same identification results carry over. Focusing on uZt , we can see that it
follows a factor structure, where the common factors are the iid structural shocks εt. Note also
that our assumptions on the correlation structure of wZt limits the correlation of those idiosyncratic
components across observables (these shocks can be correlated within sector and at the aggregate
level, but not across the sets of equations outlined above). In fact, standard results on identification
in Factor models apply (Bai and Ng (2008)). While the effects of individual structural shocks are not
identified without additional assumption, the overall effect of all structural shocks is identified, as we
show below and later highlight in a Monte Carlo experiment. To identify εt, we need identification
restrictions akin to those used in the structural VAR literature. To see this, define

ut = Dεt + wt (4)
uit = Diεt + wit ∀i (5)

For any conformable orthogonal matrix Q, we can construct alternative models that feature the
same first and second moments and thus the same Gaussian likelihood:

ut = DQ−1︸ ︷︷ ︸
D̃

Qεt︸︷︷︸
ε̃t

+wt (6)

uit = DiQ−1︸ ︷︷ ︸
D̃i

Qεt︸︷︷︸
ε̃t

+wit ∀i (7)

With the sign and magnitude restrictions in this paper, we are not going to pin down a unique
value of Q to get exact identification even though the overall impacts Dεt and Diεt ∀i are iden-
tified. However, even though we are in the realm of set identification, important recent work on
the usefulness of restrictions of the kind we use (Amir-Ahmadi and Drautzburg (2017)) shows that
they can be very informative. This is especially true for our setting, where we have many sectors
on which we impose restrictions. It is important to point out what this identification discussion
does not say; namely, that the data cannot help tell different identification assumption encoded in
different Gaussian priors for D and Di apart. In fact, these identification assumptions could be
assessed via the marginal likelihood. How can we square the previous two statements? First, for
every possible combination of D and Di ∀i, we can find alternative values that will give the same
likelihood. But draws from those parameters from different Gaussian priors over these parameters
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(which is what we use in this paper) will generally not all imply the same second moments for the
variables in our model and thus will not imply the same value of the likelihood function. Priors
that not only restrict the sign of a response, but also contain information about the magnitude of
a response to shocks (such as our Gaussian priors on D and Di) might then be more helpful to
disentangle different theories or points of view about the impact of different shocks.
We are not the first to impose a factor structure on residuals of time series models. Altonji and
Ham (1990),Clark and Shin (1998),Stock and Watson (2005b), and Gorodnichenko (2005) follow
the same route to estimate common shocks in time series models with many observables. In par-
ticular, Gorodnichenko (2005) offers an interpretation of the wt shocks as shocks that can arise
in equilibrium models due to "expectations errors, measurement errors, heterogeneous information
sets (e.g., consumers and the central banker can have different information sets), myopia and other
forms of irrational behavior". Gorodnichenko (2005) also describes an equilibrium model with im-
perfect information that has such a factor structure in residuals. We share with Stock and Watson
(2005b) the assumption that non-structural shocks cannot contemporaneously affect variables in
other blocks of the model.
What sets our approach apart from the previous literature on structural VARs is that (i) because of
our model structure, we can use substantially larger datasets than standard VAR applications can,
(ii) for that same reason we can identify several shocks simultaneously, rather than one or two.8

Importantly, our approach is computationally very efficient. This is because, as we will show
below, it relies solely on standard steps in Gibbs samplers (drawing from Normal and inverse-
Wishart priors as described in Koop and Korobilis (2010) as well as using Gibbs sampling for linear
and Gaussian state space models as in Carter and Kohn (1994)) that, in our specific case, are
especially amenable to parallelization.9 This implies that our approach can be very efficient even in
applications that have a much larger scale than our application in this paper.10 Finally, how do we
interpret the shocks wt? These are shocks that do not have a contemporaneous effect on sectoral
data, while they do affect the aggregate data at time t. Furthermore, these innovations do not
have an independent role in determining sectoral data beyond how they influence aggregate data.
To safeguard ourselves against a scenario where identified wt is estimated to be more important
for determining aggregate data than it actually is in reality, we suggest adding additional shocks
to the vector of structural innovations εt on which no identification restrictions are imposed. The
additional ‘structural’ shocks will soak up any explanatory power that would otherwise falsely be
attributed to wt. In our application, we add three of those shocks, but also show in the Appendix
results with 10 additional shocks as a robustness check.

8By estimating the responses to structural shocks directly, we do not need to post-process reduced-form VAR
estimates to obtain the structural representation that allows us to compute the effects of structural shocks. This
is useful because the algorithms used to deliver the impulse responses after estimating a reduced-form model can
be numerically inefficient because not all proposed candidate parameter vectors of the structural VAR satisfy the
identification restrictions Rubio-Ramirez et al. (2010) or because the imposed restrictions are actually overidentifying
as in Amir-Ahmadi and Drautzburg (2017).

9This parallelization argument does not hold, for example, in large scale VARs. And while certain aspects of
Gibbs samplers for factor models might also be amenable to parallelization, these models do not directly emphasize
the dynamics of all variables in sector in a transparent fashion.

10As a final note on the model, it might be helpful to note that one could interpret the lagged aggregate variables
Yt−l as additional, but observable, factors.
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2.4 Setting Priors
An important step in our analysis is in the setting of priors. In contrast with traditional approaches,
which achieve identification by setting hard constraints on the shock process, we follow Baumeister
and Hamilton (2015) in using “soft” prior restrictions for identification. At the same time, by setting
Gaussian priors on the direct impact of the structural shocks on variables and inverse Wishart priors
on the variances, we can use a Gibbs sampler to estimate a large scale model with several identified
shocks very efficiently.

2.4.1 Priors on D and Di

The most important priors for our identification purposes are the ones we set on the impact matrices,
D and Di. We set priors for both parameters to be Gaussian. To set the average value for element
k, s of Di, we assume that it can decomposed as follows:

(E
[
Di
k,s

]
)2 = γikβk,sα

i
k,s , (8)

(E
[
Di
k

]
)2 =

S∑
s=1

(E
[
Di
k,s

]
)2 . (9)

where

1. αik,s: a measure of the relative impact of shock s on variable k for sector i as compared to other
sectors. For example, this variable could encode the fact that a more energy intensive sector
ought to be more sensitive to shocks pertaining to the price of energy than a less energy
intensive one. This measure, which we derive from cross-sectoral data, is not comparable
across shocks. To ensure that we are capturing the effect of the shock, we only use identifying
information for those sectors that are in either extreme of the distribution of our indicator
variables, remaining agnostic on the ones that lie in the middle. The specific indicators that
we use to choose αik,s are informed by the model presented in Section 3 and will be described
in detail in Section 3.7.11

2. βk,s : a measure of the overall impact of shock s on variable k across all sectors. For example,
this variable could encode the notion that aggregate productivity shocks account for a larger
fraction of the variance of quantities in all sectors as compared to markup shocks and vice
versa for prices. We use an ’ignorance prior’ and set this variable to 1/S, where S is the
number of structural shocks.

3. γik: a measure of the overall sectoral sensitivity to shocks. For example, this variable could
encode the notion that consumption of durable goods is overall more sensitive to all shocks
than consumption of nondurables. Given αik,s and βk,s, we can back out this variable if we
have values for (Di

k)2. We obtain those by estimating the model in a training sample from our
estimation with an agnostic prior. We do not need to impose any identifying restrictions on
the structural shocks for that training sample step because we are only interested in estimating
how important those shocks are for fluctuations of different variables together. The factor

11If there are missing values for the indicator variables for some sectors, we assume that the indicators for those
sectors takes on the average value of the relevant indicator.
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structure of the shocks allows us to do that even if we cannot disentangle the individual
shocks. We also only impose very loose prior on the covariance matrix of the non-structural
shocks.

The procedure above allows us to set a magnitude for the prior mean E
[
Di
k,s

]
. We use a priori

information on the sectoral impact of shocks to set the sign.
To set the prior mean for the impact of shocks on aggregate variables, we only use minimal

assumptions: a monetary policy shock is more likely to raise the nominal rate than to lower it,
a household demand shock tends to increase consumption, a government spending shock tends to
increase government spending, a technology shock tends to increase measured TFP, a credit shock
shock tends to increase our measure of the spread, and finally an energy shock tends to increase
energy price inflation. To be precise, we treat the aggregate variables as another sector. In lieu
of sectoral indicators, we just set α ∗ β equal to the same value for all shock/variable pairs at the
the aggregate level for which we want to assume non-zero prior impulse responses on impact. The
specific value is actually numerically irrelevant. The fraction of aggregate fluctuations driven by
aggregate shocks is determined by the training sample estimation just as it is for each sector. Those
prior assumptions, together with the priors regarding the impact of the shocks on sectoral variables
are summarized in table 2 For the impact of those shocks on other variables, we impose an agnostic
prior with mean zero and variance 0.25. Given those assumptions, the training sample pins down
the prior mean impact of the shocks on the aggregates.

In order to obtain a prior standard deviation for Di
k,s, we choose the prior standard deviation

to be k × abs
(
E
[
Di
k,s

])
, where we set k to be 0.1.

At this point it is useful to step back. What we have solved for here is the prior mean of
Di
k,s. Let’s make this explicit and call the (square root of the) solution to the system of equations

above E
[
Di
k,s

]
. This means that we do not necessarily force the sign restrictions to hold with

certainty. Since the prior on Di
k,j is normal, there will always be some probability that the sign of

the posterior mean will be different from that of the prior mean. This also highlights the role of
the prior variance.

2.4.2 Setting priors for Ω and Ωi

To use the Gibbs sampler, we use inverse-Wishart priors for the covariance matrices of the reduced
form shocks at the aggregate and sectoral levels. As is well known, this imposes some restrictions
on what prior beliefs we can impose on our model. One is that the variances are bounded away
from 0 (really not much of a problem in our case), while the main problem is that there is no truly
uninformative prior (as we increase the variance, we also have to at some point increase the prior
mean since variances are bounded below by 0 ).
Since the priors for these covariances turn out to be potentially influential in finite samples, we will
use the results of the estimation with the agnostic prior to set this prior.

Prior on Ω To set the prior for Ω, we use results from our agnostic prior estimation. We set
the prior mean to the estimated posterior mean of Ω and use as degrees of freedom the size of our
overall sample.

Prior on Ωi For Ωi, we follow the same strategy as for its aggregate counterpart Ω.
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2.5 Sampling Strategy
As mentioned before, we exploit the Gibbs sampler throughout by imposing independent Normal-
inverse Wishart priors.

2.5.1 Drawing εt given all other parameters

We assume Gaussian innovations throughout for tractability. If we use a variant of equations (1)
and (2), it is straightforward to see that, conditional on Al, Bl, Cl, Σ, D, and Di, εt can be drawn
via exploiting the Kalman filter (simply put all known quantities on the left-hand-side: all that
remain on the right hand side are the ε terms, wi and w), based on Carter and Kohn (1994).
To make this step more numerically efficient, we follow Durbin and Koopman (2012) and collapse
the large vector of observables in a vector with the same dimension as the structural shocks. As
discussed by Durbin and Koopman (2012), this can be done without loss of information.

2.5.2 Drawing other parameters given ε

Since we condition on ε at this stage, drawing all other parameters amounts to drawing from
Gaussian and inverse Wishart posteriors. For the aggregate equations, we use a Minnesota-type
prior following Koop and Korobilis (2010). Such a prior is useful because it avoids overfitting.
Since there are only two variables per sector, overfitting is less of an issue, so we use priors centered
at 0 with a standard deviation of .5 there. One helpful insight here is that conditional on ε, all
other blocks can be run in parallel. This means that our approach can be scaled up easily. This is
especially useful for extensions where the researcher might want to depart from the Normal-inverse
Wishart prior used here.

2.6 Comparison with other approaches
Our model differs from other approaches that try to model large panels of time series by explic-
itly modeling a distinction between time series at the aggregate and idiosyncratic levels. FAVARs
(Bernanke et al. (2005)) do feature this distinction, but do not explicitly model dynamics at the
sectoral level. Furthermore, identifying structural shocks in both factor models and FAVARs re-
quires imposing identifying assumptions for both the unobserved factors and the structural shocks,
which, in turn, identify the factors. While our model does have a factor structure, we only require
identifying assumptions for the structural shocks since all other factors are observable. Another
modeling approach that touches on issues similar to ours are Global VARs (Chudik and Pesaran
(2016)). Those do not break the tight link between aggregate shocks and one-step ahead forecast
errors at the aggregate level and require restrictions on how shocks propagate between idiosyncratic
variables. At this point the reader might wonder why breaking the tight link between one-step ahead
forecast errors and structural shocks implied by standard VARs is useful. There are two distinct
reasons: (i) this allows sectoral data and aggregate data to jointly identify structural shocks and
(ii) it does not necessarily force structural shocks to explain large fractions of the variances of our
observables if the data do not call for structural shocks to be important.12

12Our model does not preclude structural shocks from being the main drivers of business cycles a priori: the
estimated variances of the non-structural shocks could be very small.
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Figure 1: Fraction of variance explained by structural shocks, Monte Carlo experiment, index of
variables on the x-axis.

In terms of comparison with factor models along the lines of Stock and Watson (2005a), one ques-
tion that might arise is why those models often select few factors (where the factors are modeled as
persistent VAR processes), whereas we will use a larger number of iid structural shocks as factors
in our empirical application. The answer is that the few ’VAR factors’ in the factor model literature
could in fact be driven by our larger number of iid shocks, but in the factor model literature the
assumption is that the number of iid shocks driving the ’VAR factors’ is the same as the number
of ’VAR factors’. Notice that for applications where no structural shocks are identified, assuming
as many iid shocks as ’VAR factors’ is without loss of generality under Gaussianity and linearity.

2.7 A Monte Carlo Experiment
This section describes the results of a Monte Carlo experiment that is meant to highlight that
the overall impact of structural shocks in our environment is identified independently of identifying
restrictions for any specific structural shock. All variables in this example are stationary, even
though this is not necessary for our method. The aggregate level consists of 4 variables, whereas
each sector (of which we have 100) consists of 2 variables. There are two structural shocks (elements
of εt). The additional, non-structural, shocks are correlated within units (sectors or the aggregate
level). We assume that most of the variance of the one-step ahead forecast errors is in fact due to
these additional shocks - Figure 1 displays the fraction of the one-step ahead forecast error due to
structural shocks for the variables at the aggregate and sectoral levels. These numbers are meant
to convey that this is in fact a hard inference problem - most of the variation in the simulated data
is not due to structural shocks. We simulate 130 datapoints and assume a lag length of 1 in all
specifications (which is the correct specification). We use the agnostic prior for this estimation.

The Gaussian priors for all coefficients are centered at 0 with a variance of 10 and are thus loose
given the magnitude of the parameters used in the estimation. A loose Wishart prior is used for

10



0 20 40 60 80 100 120 140

-5

0

5

0 20 40 60 80 100 120 140

-5

0

5

0 20 40 60 80 100 120 140

-4

-2

0

2

0 20 40 60 80 100 120 140

-4

-2

0

2 true

estimated median

Figure 2: True effect and estimated median effect of the structural shocks on the four aggregate
variables, Monte Carlo experiment.

the covariance of the residual error terms.
Even without any specific identifying restrictions on structural shocks, the next two figures show
that in finite samples, our approach is able to correctly predict the overall effect of structural
shocks. Figure 2 plots the true and estimated (median) effects of the structural shocks on aggregate
variables. As outlined in our discussion of identification, these results highlight that while the
individual effects of structural shocks can not be estimated without identifying assumption in our
framework, the overall effect of all structural disturbances is well identified.

3 A Tractable Multi-Sector Model with Nominal Rigidites
We now lay out a tractable, multi-sector model with nominal rigidities to motivate the shock
identification. Nominal rigidities allow for a non-trivial “aggregate demand” channel. Since our main
focus is in the cross-sectional differences between industries rather than their individual dynamics,
we lay out a static multi-sector economy. This meshes well with our empirical analysis since we only
impose identifying restrictions on the impact responses. The model shares many elements with the
framework developed in Pasten et al. (2018), while also allowing for nominal wage stickiness and
for several aggregate shocks.

3.1 Households
There are I sectors, indexed i ∈ {1, ..., I}. There is a representative household with Cobb-Douglas
preferences over the various goods, with share-parameter αi for a good of industry i.

U =
∏
i

Cαii ,
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where
∑
i αi = 1. The household chooses its the amount it consumes of good i, Ci, to maximize its

utility subject to the budget constraint∑
i

PiCi + T = WL+ Π +
∑
i

riK̄i,

where T is a lump-sum tax levied by the government to finance its consumption, W is the wage
rate, Π are profits rebated from firms, K̄i is the stock of capital specific to sector i owned by the
household, with ri the corresponding rental rate, and L < 1 is employment to be determined in
equilibrium. Households supply one unit of labor inelastically, but nominal wages are rigid so that
labor is rationed.

Optimal household consumption choice satisfies:

PiCi = αCi P
CC,

for PC ≡
∏
i

(
Pi
αi

)αi
and C ≡

∏
i (Ci)

αi

3.2 Fiscal Authority
The fiscal authority minimizes the cost of consuming an exogenously given aggregate government
consumption G,

min
∑
i

PiGi

s.t. :
∏
i

(Gi)
αGi = G,

where G is exogenously determined and αGi are the shares. The optimality condition for the
government is:

Gi = αGi
PG
Pi
G

where

PG =
∏
i

(
Gi
αGi

)αGi
.

3.3 Firms
Within each sector there is a continuum of varieties of intermediate products indexed v ∈ [0, 1].
Those varieties are purchased by final goods producers that bundle them into the I goods according
to a CES aggregator:

Yi =

[∫ 1

0

Yi(v)
θ−1
θ dv

] θ
θ−1

The demand for final good producer in sector i for intermediate input of variety v is
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Yi(v) =

(
Pi(v)

Pi

)−θ
Yi

where

Pi =

[∫
Pi(v)1−θdv

] 1
1−θ

For each variety, production takes place with a Cobb-Douglas production function:

Yi(v) = eεi
∏
j

(Xji(v))
γji × (Li(v))

λi (Ki (v))
χ
,

where Xji(v) is the quantity of final goods materials produced in sector j used as materials in
sector i for variety v, Li(v) is labor, Ki(v) is sector-specific capital, and εi is a sector-specific
exogenous productivity shock. The share parameter for good j used in sector i is γji. We assume
that

∑
j γji + λi + χ = 1, so that firms in the industry face constant returns to scale.

Producers of varieties are monopolists. Firms differ on the information set available to them re-
garding prices and the demand for their intermediate input. Letting s =

{
mG,mC ,mY , {ki}Ii=1 , {εi}

I
i=1

}
denote the state of the economy, they take the wage rate, final goods prices, and household demand
as given and choose their inputs to maximize expected profits.

max
Mji

E

Pi(v)Yi(v, s)−
∑
j

Pj(s)Xji(v, s)− w(s)Li(v, s)− ri(s)Ki(v, s)|Ii(v)


s.t. :Yi(v, s) =

(
Pi(v)

Pi(s)

)−θ
Yi(s)

Yi(v, s) = eεi
∏
j

(Xji(v, s))
γji (Li(v, s))

λi (Ki(v, s))
χ

where Ii(v) is the information set for variety v in sector i. For a fraction φi of variety producers
in sector i (v ∈ [0, φi]) the information set does not includes the realized vector of shocks s. For
the remainder, the information set does includes it. Yet, firms commit to producing as much as
necessary to satisfy demand at the prices that they choose.

Given cost-minimization, marginal cost is

mci(s) = e−εi
∏
j

(
Pj(s)

γji

)γji (w(s)

λi

)λi (r(s)

χ

)χ
Firms with full information set

Pi(v, s) =
θ

θ − 1
mci(s)

Firms without full information set
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Pi(v) =
θ

θ − 1
E

[
Pi(s)

θYi(s)

E [Pi(s)θYi(s)]
mci(s)

]

We thus have that the price index for sector i is

Pi(s) =

[
φi

(
θ

θ − 1
E

[
Pi(s)

θYi(s)

E [Pi(s)θYi(s)]
mci(s)

])1−θ

+ (1− φi)
(

θ

θ − 1
mci(s)

)1−θ
] 1

1−θ

Given that all firms in a sector have the same marginal cost, we can write the average markup
as

µi =
Pi(s)

mci(s)
=

[
φi

θ

θ − 1
E

[
Pi(s)

θYi(s)

E [Pi(s)θYi(s)]
mci(s)

]1−θ (
1

mci(s)

)1−θ

+ (1− φi)
(

θ

θ − 1

)1−θ
] 1

1−θ

3.4 Market Clearing
Market clearing for each sector i, requires that all output is used either as materials, for household
consumption or for government consumption:

Yi =
∑
j

Xij + Ci +Gi

Also, there is a fixed stock of capital K̄i for each sector. Market clearing in capital markets thus
requires that the demand for capital in sector i equals supply:

Ki = K̄i

The resource constraint in the labor market is∑
i

Li ≤ 1

With sticky wages the inequality need not hold. We assume that wages are stuck at a level high
enough that it doesn’t bind. Labor rationing thus implies that

L =
∑
i

Li

3.5 Shocks
There are two nominal quantities set exogenously: nominal private consumption and nominal gov-
ernment consumption. Specifically, we assume that

14



PCC = MCMY

PGG = MGMY

so that nominal private and government consumptions can be affected either by an exogenous
component which is specific to each type of final expenditure MC or MG, or by a common compo-
nent MY .

We also allow for industry level productivity shocks εi. We assume that εi =
∑R
r=1 λirεr + ε̂i ,

where εr are aggregate shocks, Fi captures the sensitivity of various sectors to that shock, and ε̂i
is a sector-specific shock. In our application, we will allow εr to incorporate shocks to technology
and financial shocks.

3.6 Reduced log-linearized system
After log-linearizing and rearranging, the model can be reduced to:13

pi =
1− φi
1− χ

χ

−εi +
∑
j

γjipj + χ(yi − k̄i)


pi + yi =

∑
j

γij
Yj
Yi

(
yj +

1

1− φj
pj

)
+
Ci
Yi

(
mC +mY

)
+
Gi
Yi

(
mG +mY

)
ci + pi = mC +mY

where small caps letters denote log deviations from a reference level. The first set of equations are
“sectoral supply” equations, relating marginal production cost to prices. The second set of equations
are “sectoral demand” ’equations, relating nominal expenditures to sectoral prices. The last set of
equations link nominal consumption expenditures and exogenous demand shocks.

The system has the form

Z = AZ + b = ANZ +

N−1∑
n=0

Anb

with Z including prices and quantities in all sectors, b including the direct impact of all exogenous
shocks, and A including the indirect impact of shocks through linkages.

As we show in the appendix, the direct impact of shocks is

pDirect
i = Φiχ

[
Ci
Yi
mC +

Gi
Yi
mG +mY

]
− Φi

(
εi + χk̄i

)
(10)

yDirect
i = (1− Φiχ)

[
Ci
Yi
mC +

Gi
Yi
mG +mY

]
+ Φi

(
εi + χk̄i

)
(11)

cDirect
i = (1− Φiχ)

Ci
Yi
mC + (1− Φiχ)mY − Φiχ

Gi
Yi
mG + Φi

(
εi + χk̄i

)
(12)

13See the appendix for the detailed derivation.

15



where

Φi ≡
1− φi

χ(1− φi) + 1− χ
is inversely related to φi. Indirect effects are

pIndirect
i = Φi

∑
j

(
χ

fij
1− φj

+ bji

)
pj + χΦi

∑
j

fijyj (13)

yIndirect
i = (1− χΦi)

∑
j

fijyj +
∑
j

[
1− χΦi
1− φj

fij − Φibji

]
pj (14)

cIndirect
i = −pIndirect

i (15)

where fij = γij
Yj
Yi

capture forward linkages and bji = γji captures backward linkages.

3.7 Priors on sectoral impact of aggregate shocks
Since we use PCE prices and quantities, we use equations 10 through 15 to put priors on the
differential responses of sectoral prices and consumption to shocks (signs for the prior mean in
parentheses). We will focus whenever possible on the direct effects of the shocks, as these are likely
to be the most salient ones. Also, we will focus on the part of those effects that are most likely
to be unique to the shock in part. Thus, for example, whereas the sectoral impact of all shocks is
mediated by the degree of price stickiness, indexed by Φi, only the shock to consumption demand
has its impact depend on the consumption share Ci

Yi
. Once other shocks are controlled for, the

monetary shock is the only one that has its effects primarily tied to the degree of price stickiness,
Φi.

For most shocks, a unique source of heterogeneous impact appears most clearly in the direct
impact. The exception is the energy shock, the impact of which is felt through its indirect impact. In
what follows, we describe the priors chosen to identify each of those shocks following this heuristic.

• Household demand (mC): αsi,k = Ci
Yi

(+ for quantities and prices), obtained from Use tables
published by the BEA (see equations 10 and 12)

• Government demand: αsi,k = Gi
Yi

(- for quantities, + for prices), obtained from Use tables
published by the BEA (see equations 10 and 12)

• Credit: αsi,k = ∂k̄i/∂credit, proxied by dependence on external finance (- for quantities, + for
prices) calculated from COMPUSTAT data. (see equations 10 and 12))

• Energy: αsi,k = γenergy,i (- for quantities, + for prices), obtained from Use tables published
by the BEA. This follows if we assume that there are forward linkages from the energy sector
that are small relative to backward linkages (i.e., energy is an important input in many sectors
but is a relatively small consumer of other sectors’ output). With fij ' 0, the indirect impact
of energy shocks on sectoral prices and quantities captured in equations 13 to 15 resembles
that of a productivity shock.
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• Monetary: αsi,k = φi for quantities and 1/φi for prices, proxied by average price duration,
obtained from Nakamura and Steinsson 2008. (see equations 10 and 12))

• Technology: γsi,k = ∂εi/∂technology proxied by R&D intensity (+ for quantities, - for prices).
Here we us the ratio of intermediate goods from tech industries to total intermediate goods
following Heckler (2005) (see equations 10 and 12))

Those prior assumptions, together with the priors regarding the impact of the shocks on aggre-
gate variables are summarized in table 2.

4 Data and Results

4.1 Data
We use 8 aggregate US time series (in year-over-year growth rates where applicable): real GDP
growth, CPI inflation, the effective Federal Funds rate, growth rate in real government spending,
real PCE consumption growth, Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on
10-Year Treasury Constant Maturity, Fernald’s utility adjusted TFP (Fernald (2014)), and energy
inflation based on the relevant producer price index. We use data from the first quarter of 1961 to
the last quarter of 2017.
For the sectoral data, we use the growth rate of real activity as measured by the sectoral PCE
and sectoral inflation as measured by the associated price. In terms of specification, we use 6 lags
throughout, except for the lagged aggregate variables in the sectoral equations, where we only use
one lag. We allow for 6 aggregate shocks: monetary policy, government spending, financial, energy,
technology, and household demand. We also allow for 3 unidentified sources of sectoral variation,
which we include to allow for the possibility that we missed some important aggregate structural
shocks. We plot the data we use in the appendix.

Table 1 below summarizes the priors on the different parameters, whereas table 2 summarizes
the aggregate variable and sectoral indicators used to pin down the prior means for the impact
matrices.

Table 1: Summary of prior distributions

Parameters Prior Density Prior Parameters

µ, Al Normal Minnesota prior as in Koop & Korobilis
Ω Inverse Wishart mean set via training sample, degrees of freedom set to sample size
D, constrained elements Normal mean and standard deviation set by solving system of equations
D, unconstrained elements Normal mean 0, standard deviation 0.25
µi,Bil , C

i
h Normal each element has mean 0, standard deviation 0.5

Ωi Inverse Wishart prior mean set via training sample, degrees of freedom set to 15
Di Normal mean and standard deviation set by solving system of equations
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Table 2: Summary of prior means

Shock aggregate impact Sectoral impact index

Technology Fernald TFP high-tech content
Credit credit spread financially dependence
Household household consumption consumption oriented
Government government consumption government oriented
Monetary fed funds rate price stickiness
Energy energy price index energy intensity

4.2 Impulse Response Functions
We now show the impulse response functions to different shocks. This provides a check on our
identification procedure, in that it allows us to evaluate whether responses to identified shocks
conform to theory or prior findings based on other identification schemes. To economize on space,
we show the 5th percentile, median and 95th percentile of the impulse responses to a one-standard
deviation shock for the monetary and household demand shocks in figures 3 and 4. For those shocks
we will also highlight how the different components of our identification strategy (on aggregate and
sectoral data) interact. For all other shocks, figure 5 shows the median IRFs. The full set of impulse
response plots with error bands and the associated figures analyzing the role of our identification
assumptions for all other shocks can be found in the appendix. The plots look largely as expected:
technology shocks increase consumption and GDP without much of an effect on consumption,
while credit shocks depress those. Household demand shocks increase interest rate and GDP at
first, the impact on output quickly reverts and the point estimate becomes somewhat negative
(Figure 3). Government consumption shocks increase interest rates and inflation, and while they
boost consumption at first, they crowd it out later. Energy shocks increase interest rates and
inflation and depress GDP and consumption. Monetary policy shocks depress inflation, GDP and
consumption (Figure 4).

We also show how incorporating the sectoral data helps with identification. For example, figure 6
shows that, relative to a specification where the shock is identified only from its impact on aggregate
consumption, the impulse response functions for the household demand shock becomes much more
tightly estimated once we incorporate priors on the sectoral responses. It is those tighter posteriors
that make clear the impact of those shocks on inflation and interest rates. Also, figure 7 does the
same analysis for monetary policy shocks. Compared to a shock identified solely from its impact
on the nominal interest rate, the sectoral identification shows the deflationary impact much more
clearly.14

14These figures plot 16th and 84th percentiles.
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Figure 3: Responses to Household Demand Shock

Figure 4: Responses to Monetary Shock
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Figure 5: Median Responses to all other Shocks
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Figure 6: Responses to Household Demand Shocks: Comparison of Identification Schemes
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Figure 7: Responses to Monetary Shocks: Comparison of Identification Schemes
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4.3 Analysis of Variance
In this section, we show how much our identified structural shocks explain as a fraction of the
variance explained by all structural shocks. The results are presented in table 3 below. To obtain
the numbers in the table, we decompose for each variable the fraction of the variance of its innovation
that is tied to aggregate shocks into different components. The numbers refer to average variances
for forecast errors 6 to 32 quarters ahead. The six identified shocks account for more than 80% of
overall variance explained by the structural shocks ε, with the one exception being Fernald’s TFP
series. The table shows that monetary shocks play a prominent role not only in explaining nominal
interest rates and inflation (as one would expect), but also GDP, consumption, and energy prices.
The other shock with a prominent role is to corporate credit, accounting for a large part of the
variance of GDP and consumption. If we count household consumption, government consumption,
and monetary policy shocks as “demand” shocks and energy and technology as “supply” shocks,
we find that demand shocks account for substantially more of GDP variation at business cycle
frequencies than supply shocks.
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tech credit demand gov energy monetary

π 4.9 21.3 28.6 4.1 4.2 27.1
gdp 21.1 20.8 16.8 3.9 4.1 15.4
i 12.2 10.3 38.4 4.3 2.9 20.6
c 15.9 22.2 28.5 4.3 3.6 14.8

spread 17.1 38.7 14.9 2.6 2.4 15.5
g 18.8 26.7 15.4 9.5 3.8 12.5
tfp 26.4 23.3 16.2 2.1 2.3 14.8

energy 9.6 26.3 17.5 4.6 11.1 16.7

Table 3: Mean of conditional variance decomposition across business cycle frequencies and posterior
draws

4.4 The Role of the Prior in Determining Impulse Responses
To get a sense how much information we impose a priori about the impulse responses, we next
plot histograms of draws from the prior on the impact aggregate impulse responses. Here we focus
on those impulse responses for which we imposed informative priors. We then compare those prior
histograms with those from the posterior (both are computed using 10,000 draws). We focus here
on the impact responses because that is where we use identification restrictions via our choice of
priors on D. Figure 8 shows that the data are in fact informative about the impulse responses, but
also that the prior certainly is not at odds with the posterior impulse responses.
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Figure 8: Prior vs posterior impact IRFs for those IRFs where informative priors are used

4.5 Model Fit and the Interplay between Sectoral and Aggregate Data
Our model is highly restrictive in that any correlation between sectors as well as between sectors
and aggregate variables has to come through either the structural shocks εt or lagged aggregate
variables. The reader might a priori wonder if this leads to substantial misspecification, which in
turn would cast doubt on our identification strategy that is based on sectoral data.
To address this possible concern, we first compute the correlations between aggregate consumption
growth and consumption growth at the sectoral level that appear in our dataset as well as the
corresponding correlations for aggregate and sectoral inflation. We then draw 1000 parameter values
from the posterior, simulate data of the same length as our dataset for each set of parameters (after
discarding 1000 burn-in observations) and compute the same correlations for our simulated data.
This gives us the posterior distribution of the correlations we are interested in. We are thus carrying
out a posterior predictive check as advocated for by Rubin (1984) and further discussed by Gelman
et al. (2013) and Geweke (2005), for example.
Figure 9 plots the correlations from the data (black) as well as the median (red) and the 5th and
95th percentiles (blue) of the posterior distribution. We sort the correlations from the actual data
by size (starting with the largest correlation) to make the figure easier to interpret. We order the
sectors the same way for the simulated data. As can be seen from figure 9, our model is able to
replicate the correlation patterns between aggregate and sectoral data. An inquisitive reader might
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Figure 9: Correlations between sectoral and aggregate data, sectors on x-axis
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ask for a more stringent test, namely a check of the correlation of variables across sectors rather
than between any sector and the corresponding aggregate variable. We show the results for this
posterior predictive check in figure 10. The figure looks noisier just because there are many more
datapoints (pairwise correlations between the 185 sectors in our sample), but the main pattern
remains, our model is able to replicate the broad correlation patterns. Our model misses at the
very tail ends of the spectrum of correlations (more so for inflation than for consumption growth),
but given that our model is tightly parametrized and parsimonious, we think of these results as
very encouraging.
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Figure 10: Correlations between sectoral data, sectors on x-axis

5 Conclusion
We lay out a new methodology to identify the effect of aggregate shocks and their role in driving
aggregate fluctuations. The hierarchical vector auto-regressive model allows us to isolate innovations
to aggregate and sectoral variables. We can then use those innovations to extract common factors
that isolate the role of aggregate shocks in driving fluctuations. Those factors are identified through
priors on their differential impact on different sectoral prices and quantities combined with minimal
identifying assumptions on aggregate variable.

This identification procedure allows us to recover impulse response functions. We find that
our estimated impulse responses are consistent with macroeconomic theory and prior studies that
focused on one shock at a time. We then use those identified shocks to inquire into the origins
of business cycles in the U.S. Identified shocks that originate in household behavior, government
expenditure, or monetary policy decisions (“demand” shocks) account for a larger proportion of
business cycles than shocks associated with technical progress or energy costs (“supply shocks”).
U.S. business cycles thus have their origins more in demand fluctuations rather than supply shocks.
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Appendices
In the following appendices we show plots of our data, as well as discuss possible extensions and
alternative modes of inference.

A Data Plots
First, we plot the aggregate data we use in our benchmark analysis.

Figure 11: Aggregate data
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Next, we look at our sectoral data. We want to highlight the large dispersion across sectors. To
do this, we plot the 5th, 50th, and 9th percentile (across sectors) of our sectoral data over time.
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Figure 12: Percentiles of sectoral data
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B Additional Impulse Responses

B.1 Plots with 5th and 95th Percentile Bands

Figure 13: Responses to Technology Shock

0 2 4 6 8 10 12 14 16 18 20

-0.2

-0.1

0

0.1

0.2
var:  shock: tech

0 2 4 6 8 10 12 14 16 18 20

-0.2

0

0.2

0.4

0.6
var: gdp shock: tech

0 2 4 6 8 10 12 14 16 18 20

-0.2

0

0.2

0.4

0.6
var: i shock: tech

0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

var: c shock: tech

0 2 4 6 8 10 12 14 16 18 20

-0.2

-0.15

-0.1

-0.05

0

0.05
var: spread shock: tech

0 2 4 6 8 10 12 14 16 18 20

-0.2

0

0.2

0.4
var: g shock: tech

0 2 4 6 8 10 12 14 16 18 20

-0.2

0

0.2

0.4

0.6
var: tfp shock: tech

0 2 4 6 8 10 12 14 16 18 20

-2

-1

0

1

2
var: energy shock: tech

Figure 14: Responses to Corporate credit Shock
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Figure 15: Responses to Government Shock
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Figure 16: Responses to Energy Shock
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B.2 Digging Deeper into Identification Assumptions for other Variables

Figure 17: Responses to Technology Shocks: Comparison of Identification Schemes
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Figure 18: Responses to Credit Shocks: Comparison of Identification Schemes
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Figure 19: Responses to Government Shocks: Comparison of Identification Schemes
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Figure 20: Responses to Energy Shocks: Comparison of Identification Schemes
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C Displaying Error Bands for Our Monte Carlo Exercise
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Figure 21: True effect and 90 percent estimated error bands

D A model with multiple hierarchies and feedbacks from id-
iosyncratic to aggregate variables

This section lays out a more general model (of which the model so far is a special case). Suppose we
do not only consider aggregate data and data at (one) sectoral level, but instead consider variables
measured at various levels of coarseness or aggregation. Further suppose there areM different levels
of aggregation in addition to the aggregate level. Each level has Im, m = 1, ...,M different units
(sectors in our application). We assume that m = 1 is the coarsest aggregation. For expositional
clarity, assume that we use a lag length of 1 throughout. Then the model is given by:

Yt = AYt−1 +BFy({X1,i
t−1}

I1
i=1) + Σεt + wt (16)

Xm,i
t = Am,iXm,i

t−1 +Bm,iYt−1 + Cm,iFm,i({Xm+1,i
t−1 }Im+1

i=1 )) +Dm,iεt + wm,it (17)
FM,i = 0∀i (18)

The superscript m, i denotes the ith unit in the mth level of aggregation. Note that a model of
this form is really only necessary if some variables are only available at some levels of aggregation,
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but not others (otherwise we could solve for the dynamics at higher levels of aggregation by simply
adding up the equations at the finest level of aggregation) or if not all units are observable at finer
levels of aggregation. The functions F could be nonlinear (along the lines of Chen et al. (2018)), but
we assume they are known a priori, possibly up to a finite dimensional parameter vector.15 These
functions allow for feedback from lower levels of aggregation back to higher levels and ultimately
the aggregate level.

E Two step inference
Akin to the estimation of FAVARs (where both one-step fully Bayesian and two step inference are
common), two-step inference is possible in this environment. Note that at the aggregate level and
for each sector, one can run regressions (of the frequentist or Bayesian persuasion) to identify all
parameters except that separately identifying the effects of idiosyncratic and structural shocks is
not possible. But with estimates of all other parameters in hand, we can back out the sum of the
effects of idiosyncratic and structural shocks, which in turn can then be used to back out structural
shocks either via the Kalman filter or via principal component analysis (in which case we might
have to rotate the estimated structural shocks after estimation so that they satisfy identification
restrictions). Note that the structural shocks in our setup really are iid factors. So we could
borrow from the large literature on identification of factor models to assess what conditions on the
idiosyncratic shocks are necessary to achieve identification (note that this identification would be
conditional on estimates of other parameters obtained in the first step). Generally speaking, Bai
& Ng (2005) show that we can’t have correlations of idiosyncratic shocks across time and variables
that is too strong in a sense that they make precise in (for example) assumption E of their Advances
in Econometrics summary article.

F The Relative Importance of εt and wt

In this section, we present evidence on how important the identified elements of εt are for overall
fluctuations. By "identified", we mean those 6 shocks on which we put identification restrictions
(remember that we also add 3 additional elements to soak up any misspecification). Figure 23
shows the median as well as the 5th and 95th percentile of the contribution of those shocks to
overall fluctuations of the relevant variables at the horizon given on the x-axis. We show below that
our results are robust to priors that lead to larger fractions of the overall variance explained by the
identified shocks.

15In particular, F could be a weighted average with the weights of the different disaggregated variables being given
a priori such as in the GVAR literature, see Chudik and Pesaran (2016).
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Figure 22: Fraction of variance explained by identified shocks.
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G Robustness

G.1 Using less sectors to identify shocks
In our benchmark analysis, we impose identifying restrictions on all sectors. Here we only use
the top and bottom 25 percent of sectors according to a specific indicator to identify the shock
associated with the indicator. Those elements of Di that are not in the top or bottom 25 percent
have a prior with mean zero and standard deviation 0.25.
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tech credit demand gov energy monetary

π 6.3 10.5 12.5 9.0 5.0 44.8
gdp 17.9 13.3 15.6 7.3 6.5 13.4
i 7.6 9.3 20.8 9.5 4.9 31.8
c 7.9 12.3 42.0 5.9 3.2 11.7

spread 13.5 36.6 11.5 3.4 3.5 21.3
g 11.3 15.7 24.1 12.8 4.0 13.6
tfp 30.9 15.9 12.2 3.1 9.3 11.0

energy 9.6 14.3 15.5 6.8 14.3 25.5

Table 4: Mean of conditional variance decomposition across business cycle frequencies and posterior
draws, less sectors used in identification

G.2 Lag Length
In our benchmark analysis we assumed L = LX = 6 lags. Here instead we assume L = LX = 4.

tech credit demand gov energy monetary

π 4.5 28.3 16.1 7.9 9.1 23.5
gdp 11.6 38.6 9.8 8.4 4.5 15.4
i 6.4 14.9 23.4 9.8 4.6 30.8
c 10.5 29.4 22.4 5.2 4.5 18.1

spread 6.3 58.9 7.0 2.2 2.6 16.8
g 6.6 38.1 8.6 13.5 5.3 16.0
tfp 24.7 35.1 7.0 2.1 3.1 12.1

energy 6.8 31.5 10.8 6.3 15.9 16.7

Table 5: Mean of conditional variance decomposition across business cycle frequencies and posterior
draws, 4 lags

G.3 An Alternative Prior
In this robustness check, we use an alternative prior that encodes the view that aggregate fluc-
tuations should be driven mainly by εt. To do so, we simply change the prior mean of Ω, the
covariance matrix of wt, to be 25 percent of the value used in the benchmark. All other prior
parameters remain unchanged.
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tech credit demand gov energy monetary

π 4.0 9.3 31.7 8.9 2.6 29.2
gdp 3.2 20.2 35.3 13.7 3.6 9.7
i 3.8 6.6 35.3 11.3 2.8 26.8
c 3.5 12.9 40.3 14.8 2.8 13.3

spread 8.1 34.1 13.9 4.3 3.0 28.7
g 4.0 20.7 28.6 15.3 4.0 13.0
tfp 11.2 24.3 27.3 11.1 4.4 14.2

energy 5.6 19.6 22.4 9.1 11.6 20.0

Table 6: Mean of conditional decomposition across business cycle frequencies and posterior draws,
, alternative prior

Figure 23: Fraction of variance explained by identified shocks, alternative prior
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G.4 More Elements in ε without prior restrictions
In our benchmark model, we add 3 elements to εt for which we do not impose any prior information.
To check whether the choice of 3 additional shocks is crucial, we now present in table 7 results with
10 additional shocks.
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tech credit demand gov energy monetary

π 9.3 19.1 32.8 7.9 3.8 12.4
gdp 13.2 22.1 31.8 5.1 3.2 10.6
i 7.1 16.2 43.4 5.4 2.9 13.1
c 6.8 14.4 53.1 2.9 2.4 9.1

spread 7.8 36.8 28.5 4.5 2.7 11.2
g 4.5 19.9 35.8 12.1 4.5 11.7
tfp 18.7 20.4 19.7 4.9 2.8 13.5

energy 11.1 26.2 22.2 7.4 6.4 13.2

Table 7: Mean of conditional variance decomposition across business cycle frequencies and posterior
draws, 10 additional shocks

G.5 Using Instruments for Shocks
Recently, there has been substantial interest in using external information/instruments for struc-
tural shocks to help identification of the effects of these shocks (Mertens and Ravn (2013)). Here
we borrow ideas from Caldara and Herbst (2016) to incorporate these instruments in our Bayesian
framework. To do so, we estimate equations of the following form:

mi
t = mi + aiεit + uit

where mi
t is an instrument for the ith elements of εt. mi captures any possible differences in means

across the instrument and true shock, whereas ai and the variance of uit (which we assume to be a
Gaussian iid shock) capture how informative the instrument is by determining the signal to noise
ratio in the instrument. Once the parameters are estimated in a separate Gibbs sampling step, we
add the instrument equations above to the state space system that is used to generate draws of εt.
We use four instruments:

1. the government spending news shock from Ramey (2011)

2. the government spending news shock from Zeev and Pappa (2017)

3. the monetary shock from Romer and Romer (2004)

4. the exogenous oil price shock from Kilian (2009)

We truncate our sample to the largest time period so that all shocks are available. Monthly series are
averaged to quarterly values. As can be seen from table 8 our results are confirmed. Unfortunately,
the instruments themselves do not add substantial information, as the posteriors for ai broadly
centered around 0 and the estimated standard deviation for uit is large for all instruments.
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tech credit demand gov energy monetary

π 2.6 13.6 53.1 1.7 2.5 20.0
gdp 9.2 23.5 40.9 1.1 2.4 11.2
i 2.9 12.7 57.9 1.3 2.6 16.0
c 2.6 14.8 60.6 0.9 1.7 10.4

spread 5.2 32.9 39.8 2.8 4.5 10.1
g 3.9 20.2 36.2 6.5 3.1 20.7
tfp 4.1 15.2 54.0 2.5 4.2 13.0

energy 4.2 18.4 36.5 2.4 5.8 26.0

Table 8: Mean of conditional variance decomposition across business cycle frequencies and posterior
draws, using instruments

G.6 A Labor Market Shock
In this section, we add one additional element to εt relative to our benchmark: a labor market
shock, which we identify as a shock that has a larger impact on sectors where compensation to
employees as a share of value added is higher.

tech credit demand gov energy monetary labor

π 6.4 12.7 8.7 9.8 6.7 38.7 5.0
gdp 7.2 12.9 15.2 5.3 12.0 15.0 10.6
i 6.9 8.0 17.1 9.9 8.9 28.2 7.1
c 10.1 12.8 28.5 5.8 7.7 15.6 7.7

spread 9.7 31.2 9.6 4.4 8.1 18.4 8.7
g 8.3 13.1 16.9 10.2 7.9 16.6 9.4
tfp 26.6 18.8 10.7 5.0 8.8 12.8 4.9

energy 6.8 12.8 12.8 6.1 18.6 24.2 5.9

Table 9: Mean of conditional variance decomposition across business cycle frequencies and posterior
draws, with labor shock

G.7 A Shorter Sample
To check that our results are not driven by specific events, we re-run our estimation using only data
from the first quarter of 1984 to the last quarter of 2007, hence excluding both the Great Inflation
and the Great Recession.
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tech credit demand gov energy monetary

π 10.0 17.2 50.0 7.1 2.8 10.0
gdp 8.4 15.7 54.0 7.6 2.7 8.9
i 8.8 13.3 59.5 6.7 1.8 7.5
c 6.7 12.6 61.8 7.5 1.9 7.2

spread 9.8 25.1 44.9 6.5 2.8 9.1
g 9.9 18.1 49.3 6.9 2.8 10.2
tfp 9.7 17.4 48.2 6.3 2.7 12.8

energy 9.3 19.0 49.3 6.1 2.9 10.9

Table 10: Mean of conditional variance decomposition across business cycle frequencies and poste-
rior draws, shorter sample

H Model Reduction
Up to a first-order approximation the economy is described by the following system of equations
(small letters indicate log deviations from steady-state):

pC + c = mC +mY

pG + g = mG +mY (19)
w = 0 (20)

gi − g = pG − pi ∀i (21)

ci − c = pC − pi ∀i (22)

yi = εi +
∑
j

γjixji + λili + χki ∀i (23)

w + li = pi + yi − µi ∀i (24)
pj + xji = pi + yi − µi ∀i, j (25)
ri + ki = pi + yi − µi ∀i (26)

ki = k̄i (27)

µi = −φi

∑
j

γjipj + λiw + χri − εi

 (28)

yi =
∑
j

Xij

Yi
xij +

Cj
Yi
cj +

Gj
Yi
gj (29)

The system can be reduced to:
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pi − (1− χ)µi = −εi +
∑
j

γjipj + χ
(
pi + yi − k̄i

)
pi + yi =

∑
j

γij
Yj
Yi

(yj + pj − µj) +
Ci
Yi

(mC +mY ) +
Gi
Yi

(mG +mY )

µi = − φi
1− φiχ

−εi +
∑
j

γjipj + χ
(
pi + yi − k̄i

)
Or, eliminating µi,

pi =
1− φi
1− χ

−εi +
∑
j

γjipj + χ
(
yi − k̄i

)
pi + yi =

∑
j

γij
Yj
Yi

(yj +
1

1− φj
pj) +

Ci
Yi

(mC +mY ) +
Gi
Yi

(mG +mY )

The system can be rewritten as

pi =
1− φi
1− χ

χ

(1− χΦi)

∑
j

fij(yj +
1

1− φj
pj) +

Ci
Yi

(mC +mY ) +
Gi
Yi

(mG +mY )

+ Φi
(
εi + χk̄i

)
− Φi

(
εi + χk̄i

)
+ Φi

∑
j

bjipj

yi = (1− χΦi)

∑
j

fij(yj +
1

1− φj
pj) +

Ci
Yi

(mC +mY ) +
Gi
Yi

(mG +mY )

+ Φi
(
εi + χk̄i

)
− Φi

∑
j

bjipj

with fij = γij
Yj
Yi

capturing forward links and bji = γji capturing backward links
Direct impact of shocks is

pDirect
i = Φiχ

[
Ci
Yi
mC +

Gi
Yi
mG +mY

]
− Φi

(
εi + χk̄i

)
yDirect
i = (1− χΦi)

[
Ci
Yi
mC +

Gi
Yi
mG +mY

]
+ Φi

(
εi + χk̄i

)
Indirect effects are
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pIndirect
i = Φi

∑
j

(
χ

fij
1− φj

+ bji

)
pj + χΦi

∑
j

fijyj

yIndirect
i = (1− χΦi)

∑
j

fijyj +
∑
j

[
1− χΦi
1− φj

fij − Φibji

]
pj

Consider special case with γji = 0. Then

(1− χ)pi − (1− φi)χyi = − (1− φi) εi + (1− φi)χk̄i

pi + yi =
Ci
Yi
mC +

Gi
Yi
mG +mY

Solving the system for pi and yi yields:

(1− χ)pi − (1− φi)χyi = − (1− φi)
(
εi − χk̄i

)
yi =

1− χ
1− χ+ (1− φi)χ

[
Ci
Yi
mC +

Gi
Yi
mG +mY

]
+

1− φi
1− χ+ (1− φi)χ

(
εi − χk̄i

)

’

pi = Φiχ
Ci
Yi
mC + Φiχ

Gi
Yi
mG + Φiχm− Φiεi

yi = (1− χΦi)
Ci
Yi
mC + (1− χΦi)

Gi
Yi
mG + (1− χΦi)m+ Φiεi

where Φi ≡ 1−φi
χ(1−φi)+1−χ . Note that Φ is decreasing in φi for χ < 1.
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