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Abstract

What drives macroeconomic tail risk? To answer this question, we borrow a definition

of macroeconomic risk from Adrian et al. (2019) by studying (left-tail) percentiles of the

forecast distribution of GDP growth. We use local projections (Jordà, 2005) to assess how

this measure of risk moves in response to economic shocks to the level of technology,

monetary policy, and financial conditions. Furthermore, by studying various percentiles

jointly, we study how the overall economic outlook—as characterized by the entire fore-

cast distribution of GDP growth—shifts in response to shocks. We find that contrac-

tionary shocks disproportionately increase downside risk, independently of what shock

we look at.
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1 Introduction

Economic policymakers and market participants are generally not only worried about what
changes to economic conditions will do to the economy on average, but also how these
changes affect the probability of large losses materializing.1 Standard impulse response
functions in linear models such as Vector Autoregressions (VARs) are not built to answer
these questions as they track average outcomes. Our goal is to provide a flexible, yet simple
framework that can directly tackle these issues. In the finance literature, the notion of value
at risk is prevalent. What is meant by value-at-risk is the evolution of left-tail percentiles of
the variable of interest under various scenarios. We borrow this idea to operationalize the
concept of macroeconomic risk. To be more precise, we follow Adrian et al. (2019) and study
the distribution of macroeconomic risk by estimating a quantile forecast regression of GDP
growth four quarters ahead for various quantiles. We focus on the 10th percentile and, as ref-
erence points, the median and 90th percentiles. We interpret this 10th percentile of the fore-
cast distribution of future GDP growth as macroeconomic tail risk. With that measure at hand,
we ask how macroeconomic risk changes after structural shocks hit the economy by study-
ing local projections as introduced by Jordà (2005). To do so, we collect various measures
of a suite of macroeconomic shocks. In particular, we use various measures of technology
shocks, monetary policy shocks, as well as a measure of shocks to financial conditions. Here
we follow the large literature that directly uses measures of (or instruments for) structural
shocks—see for example Ramey and Zubairy (2018), Romer and Romer (2004), or Mertens
and Ravn (2013). With the changes in the 10th percentile as well as the median and the 90th
percentile in hand, we can further follow in the footsteps of Adrian et al. (2019) and fit a flex-
ible (skewed-t) distribution to match various estimated quantiles as well as trace out how
the entire distribution of real GDP growth four quarters ahead changes after a shock hits
the economy. We view changes in this distribution as summarizing changes in the economic
outlook after a shock hits the economy.
One key point to emphasize is that our approach is constructed to be as flexible as possi-
ble: In the initial quantile regression stage, we model each quantile separately instead of
assuming a specific distribution for the forecast distribution of real GDP growth. In the
second stage, we use local projections to impose as few restrictions on the data generating
process as possible.2 Just as Adrian et al. (2019), we only use the skewed-t distribution after

1For research showing that the Federal Reserve is concerned by downside risk, see Kilian and Manganelli
(2008). For direct evidence of a policymaker thinking about downside risk, see this March 2019 speech by Lael
Brainard, member of the Board of Governors of the Federal Reserve System: https://www.federalreserve.
gov/newsevents/speech/brainard20190307a.htm.

2As shown by Plagborg-Møller and Wolf (2019), local projections and VARs asymptotically estimate the
same impulse responses, but are on diametrically opposite ends of the bias-variance trade-off in finite samples.
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having estimated the quantiles separately. A common pattern emerges when we study our
shocks: Expansionary shocks compress the distribution of future GDP growth, thus making
“bad” outcomes (those in the left tail) more tolerable. Unfortunately, as we show later, this
result also implies that contractionary shocks make the 10th percentile fall more than the
median—hence leading not only to poor average outcomes, but also to a further increase
in downside risk. Complementing the analysis in Adrian et al. (2019), we find that the key
channel through which shocks affect macroeconomic risk is via their effect on financial con-
ditions.

The remainder of the paper is organized as follows. Section (2) presents econometric method-
ology. Section (3) provides an intuition for how shocks might affect the shape of distribution
in different manners. Section (4) presents the main findings, and Section (5) concludes.

2 Econometric Methodology

2.1 Conditional Quantiles

We compute conditional quantiles for annualized real GDP growth following the method
proposed by Adrian et al. (2019). In particular, we run a quantile regression (Koenker and
Bassett, 1978) for real GDP growth over the subsequent 4 quarters by conditioning on a
constant, the National Financial Conditions Index (NFCI), and real GDP growth at time t.3

Formally, let yt+h denote the average value of real GDP growth between t and t + h and
let xt denote the vector of conditioning variables, then the quantile regression is given by:

γ̂τ = argmin
γτ∈Rk

T−h

∑
t=1

(
τ · 1(yt+h≥xtγ)|yt+h − xtγτ|+ (1− τ) · 1(yt+h<xtβ)|yt+h − xtγτ|

)
, (2.1)

where 1(·) denotes the indicator function and τ ∈ (0,1) indicates the τth quantile. The quan-
tile of yt+h conditional on xt is then given by the predicted value from that regression4,
defined as

Q̂yt+h|xt(τ|xt) = xtγ̂τ ≡ qτ,t. (2.2)

In the following, we will analyze how different quantiles react to aggregate shocks.

3In Appendix C, we show that our findings are robust to adding additional controls.
4While Adrian et al. (2019) define the predicted value of yt+h as the conditional quantile at t + h, we define

the predicted value as today’s risk. That is, the predicted value of yt+h corresponds to t.
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2.2 Impulse Responses

We estimate responses of different GDP growth quantiles to a variety of aggregate shocks
by applying the local projection method based on Jordà (2005). As a baseline, we run the
following linear regression:

qτ,t+s = ατ,s + βτ,sshockt + ψτ,scontrols + ετ,t+s, (2.3)

for s = 0, . . . ,S and where qτ,t+s is the measure of risk at period t + s for the τth quantile (i.e.,
the quantile τ of the distribution of yt+s+h conditional on information at time t + s), and
controls is a vector of control variables that include the lagged quantiles and model-specific
controls that we will explain in the next section. Note that that there are two distinct notions
of “horizon” in our application. First, the horizon in the quantile regression h, which we
keep fixed at 4 quarters. This first horizon captures how forward looking our measure of
risk is. The second notion of horizon is s in the local projection, which we vary as we trace
out how risk responds at different horizons to a shock at time t. The response of quantile qτ

at time t+ s to a shock at time t is then given by βτ,s. Thus, we construct the impulse-response
functions by the estimating the sequence of the βτ,s’s in a series of univariate regressions for
each horizon. Confidence bands are based on Newey-West corrected standard errors that
control for serial correlation in the error terms induced by the successive leading of the de-
pendent variable.
At this point it is useful to contrast our approach with another approach that aims to com-
bine quantile regressions with local projections, an approach advocated for by Linnemann
and Winkler (2016). We want to interpret the 10th percentile of 4-quarters ahead GDP
growth as a measure of downside risk and we then ask how this measure of risk reacts
to different shocks. Furthermore, by not only looking at the 10th percentile in isolation but
various quantiles jointly, we can construct how the distribution of four-quarters ahead real
GDP growth changes as shocks hit the economy. We study a number of shocks and find it
useful to use the same quantile (or measure of risk) for all shocks we study in our local pro-
jections. Linnemann and Winkler (2016), instead, are interested in one shock only and model
the conditional quantiles conditional on, among other things, a fiscal shock and thus include the
shock directly in the quantile regression. By following their approach, Linnemann and Win-
kler (2016) cannot distinguish between the two horizons h and s that we emphasized above
(given that they ask a different question, they probably would not want to).5

With impulse responses to various quantiles at hand, we fit a flexible distribution to our es-

5Another approach in empirical macroeconomics that uses quantile regressions is introduced in Mumtaz
and Surico (2015), who use quantile autoregressive models to study state dependence in the consumption-
interest rate relationship.
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timated path of GDP growth distributions after each shock. To be specific, we start with the
average distribution of real GDP growth four quarters ahead using the sample of Adrian
et al. (2019). We then change four quantiles according to the estimated impulse response
functions (IRFs) 6 to produce paths of those four quantiles. For each horizon, we then choose
the four parameters of the skewed-t distribution (Azzalini and Capitanio, 2003) to exactly
match those four quantiles. The skewed-t distribution is given by the following density
function for a data point y:

f (y|µ,σ,α,ν) =
2
σ

t
(

y− µ

σ
;ν
)

T

α
y− µ

σ

√√√√ ν + 1

ν +
(

y−µ
σ

)2 ;ν + 1

 . (2.4)

As discussed in Adrian et al. (2019), t and T are the density and cumulative distribution func-
tion of the common t-distribution, µ is a location parameter, σ is a scale parameter, ν con-
trols how fat the tails are (similar to the degrees of freedom in the common t-distribution),
whereas α governs skewness because it controls how much the standard t-distribution is
twisted (or skewed) according to T.

2.3 Data

We estimate responses in different quantiles of GDP growth to various aggregate shocks.
All regressions are estimated at quarterly frequency and as a baseline we use four lags for
all control variables. This section gives a brief overview of the various specifications and
data transformations. Most of the shocks considered here are reviewed in Ramey (2016) and
can be thus found in her data appendix. More details on our data sources are provided in
Appendix A.

Narrative Monetary Policy Shocks We explore two types of monetary policy shocks. First,
we use the Romer and Romer (2004) (RR henceforth) narrative-based monetary shocks. They
regress the federal funds target rate on Greenbook forecasts at each FOMC meeting date
and use the residuals as the monetary policy shock. We aggregate these monthly shocks by
adding up the monthly values within each quarter. The sample period runs from 1973Q1
to 2007Q4. As a second measure, we use the monetary policy shocks identified by Antolín-
Díaz and Rubio-Ramírez (2018) (AR henceforth) who add narrative sign restrictions to the
VAR model in Uhlig (2005). Also in this case, monthly values are aggregated to quarterly

6Following Adrian et al. (2019), we use impulse responses for the 5th, 25th, 75th, and 95th percentiles to
match the percentiles that Adrian et al. (2019) used to compute the distributions in their paper. We show the
impulse responses for those quantiles in Appendix B. They tell the same story as our choice of percentiles.
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frequency. Here the sample period runs from 1973Q1 to 2007Q3. For both types of shocks we
include the following controls in the local projection regression: Lagged values of the shock
itself, the log of both the consumer and the commodity price index (aggregated to quarterly
frequency by simple averaging) in first-differences, the log of real GDP in first-differences,
the federal funds rate (quarterly average), and the unemployment rate. We refrain from
including contemporaneous controls.

Excess Bond Premium Shocks We take the Gilchrist and Zakrajšek (2012) excess bond pre-
mium (EBP henceforth) updated by Favara et al. (2016) to construct an aggregate shock7. The
excess bond premium can transformed into an exogenous shock by setting the additional
controls appropriately if we assume that the bond premium affects interest rates contempo-
raneously but has no impact on prices and economic activity within a quarter.8 Thus, the set
of controls consists of the contemporaneous federal funds rate and lags of the EBP, the log
of the consumer price index, and the log of real GDP (the last two in first-differences). All
other shocks we study are identified in a separate estimation. For EBP, we can instead iden-
tify the shock in the local projection step along the lines of Barnichon and Brownlees (2016)
by controlling for the relevant variables. In this one step approach, the lagged “shocks”
are implicitly controlled for in lags of endogenous variables. The sample period runs from
1973Q1 to 2015Q4.

Unanticipated and Anticipated Technology shocks We consider three different technol-
ogy shocks. First, a technology shock à la Galí (1999), constructed by imposing that a tech-
nology shock is the only shock affecting labor productivity in the long-run. For the Galí
(1999) shock, we estimate a VAR with four lags that includes three variables: changes in la-
bor productivity, changes in hours, and changes in the GDP deflator. The technology shock
is identified as the only shock affecting labor productivity in the long-run. Second, we con-
struct technology shocks by taking the growth rate of the Fernald (2012) utilization-adjusted
TFP series for the aggregate economy. We refer to these shocks as “JF-TFP” shocks. Third,
we consider the Barsky and Sims (2012) TFP news shocks. The news shock is identified in a
VAR with four lags that includes TFP, consumption, real output, and hours per capita. The
identification assumption is that the news shock is orthogonal to the innovation in current
TFP that best explains variation in future TFP (in the subsequent 10 years). For the Galí
(1999) shock and the TFP news shock, the sample period runs from 1975Q1 to 2007Q3. The
JF-TFP shock is available from 1974Q1 up to 2015Q3. For all technology shocks we include

7We transform it to quarterly frequency by averaging the monthly values within each quarter.
8For a further discussion of how timing restrictions such as this can be incorporated in local projections see

Barnichon and Brownlees (2016).
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the following controls in local projections: lags of the shock itself, lagged log of real GDP
per capita in first-differences, and lagged log of productivity in first-differences. The latter
is measured as real GDP divided by total hours.

3 Some Intuition for Impulse Responses of Quantiles

This section gives three examples where an initial distribution of an outcome changes after
a shock hits. We show these examples to convey how the change in quantiles is linked to the
change in the distribution as a whole and how changes in specific moments translate into
changes in quantiles. Our scenario is as follows: After an initial univariate distribution of
an outcome is hit by a shock, we trace out how this distribution changes on impact and in
the period after impact. We consider three experiments:

1. The shock leads to an increase in the variance of our distribution, which is Gaussian.

2. The shock leads to an increase in the mean of our distribution, which is Gaussian.

3. The shock leads to an increase in the shape parameter of our distribution, which is
distributed according to a Gamma distribution.

Figure 1 plots three panels for each experiment. The first panel in each row shows the initial
distribution, the distribution when the shock hits, and the distribution in the period after
the shock has materialized. The middle panel in each row shows the evolution of the 10th
and 90th percentile for those three periods. The last panel in each row gives the impulse
responses for the 10th and 90th percentiles under the assumption that if the shock that moved
the distributions did not materialize, the distribution would have remained at its original position.
As the impulse response plots the difference between the relevant percentiles and the origi-
nal values, the impulse response figures only show values for two time periods (the period
where the shock hits and the period after). Each row presents the figures for one experi-
ment. Note that the levels of the percentiles are not directly interpretable as IRFs because
we do not subtract the baseline value from the quantiles in those figures. As we can see,
an increase in the variance of a symmetric distribution makes the quantiles drift apart in
a mirror-image fashion, whereas a change in the mean of a symmetric distribution makes
the quantiles move in parallel, which in turn makes the impulse responses lie on top of each
other. With a non-symmetric distribution (or if a shock makes a distribution non-symmetric)
the quantiles can drift apart, but not necessarily in a mirror-image fashion, as is the case in
the last example.
Interpreting changes in multiple quantiles jointly can be challenging because we have to
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envision how the entire distribution might change. We will later also plot changes in distri-
butions to help the reader with interpretation. Nonetheless, it is useful to dig a bit deeper
at this point. As an example, let us focus on the third experiment. As can be seen from the
last panel on the bottom row of Figure 1, the 10th and 90th percentile drift apart because the
90th percentile increases faster than the 10th percentile. Thus the distribution spreads out as
a result of the shock—this can also be seen by looking at the leftmost panel of the bottom
row, where the yellow distribution is more spread out than the original blue distribution.
Let us for a second imagine that this impulse response is the response to a “positive” shock
and that quantiles react linearly to those shocks (as will be the case in our local projections),
so that the response to a “negative” shock would just be the mirror image of the rightmost
panel of the bottom row. What would happen to the distribution in that case? The 90th per-
centile would decrease faster than the 10th percentile. Hence the distribution would actually
compress in that scenario.
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Figure 1: Illustration of Changes in Percentiles.

4 Results

In this section, we present various impulse responses (i.e. βτ,s) based on equation 2.3.
The βτ,s coefficients can be interpreted as responses to one standard deviation shocks. We
present results for three groups: monetary policy shocks, credit shocks, and technology
shocks. Additional figures can be found in Appendix B. We first plot the impulse responses
of the 10th percentile, the median, and the 90th percentile in Figure 2. We show the error
bands for the response for the median in the main text; the corresponding error bands for
the other percentiles can be found in Appendix B. We then follow Adrian et al. (2019) and
use those estimated quantiles to fit a flexible (skewed-t) distribution to match the quantiles.
In Figure 3, we plot how various shocks change this distribution. In particular, we first com-
pute the average distribution of four-quarters ahead real GDP growth in our total sample
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and then plot the difference between this initial distribution and the distribution affected by
a specific shock at various horizons. In order to facilitate interpretation, each panel of Figure
3 plots three lines: the 10th percentile (in red), the median (in black), and the 90th percentile
(in blue) of the original (average) distribution. This helps check in what direction a shock
shifts the distribution. In particular, whenever a line is visible it means that posterior mass
at that quantile of the original distribution has decreased.

4.1 Monetary Policy Shocks

The first panel of Figure 2 plots the responses to a contractionary RR monetary shock esti-
mated via local projections. Those shocks affect the distribution of GDP growth dispropor-
tionately across quantiles. A contractionary (i.e., positive) monetary policy shock decreases
the 10th percentile more than the median or the 90th percentile. This means that not only
will a monetary policy shock lead to a decrease in median forecasted GDP growth four quar-
ters ahead, but it will also make “bad” outcomes substantially worse by spreading out the
left tail of the distribution.

The above result is robust to the use of an alternative monetary shock measure, namely
the AR monetary shock (see the second panel in the top row of Figure 2). This shift is also
evident from the top two panels of Figure 3, which plot the implied changes in the entire
distribution of forecasted GDP growth.

4.2 Credit Spread Shock

The third panel of Figure 2 plots the responses to a contractionary (i.e., positive) shock to
the excess bond premium, which we interpret as an unexpected deterioration of financial
conditions, just as Gilchrist and Zakrajšek (2012). The entire conditional distribution of GDP
growth is shifted, with the left tail being affected disproportionately more. On impact and
up to one year, the interpretation of the effects of a contractionary credit shock is similar
to the interpretation of the monetary policy shock given above. After one year, however,
the responses of the 10th and 90th percentile cross, leading the distribution of future GDP
growth to actually compress since the 10th percentile grows faster than the 90th percentile.
One interpretation of these results is that policymakers counteract financial shocks, but that
it takes around a year for these measures to take effect (potentially and partially due to lags
in policy implementation).
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4.3 Technology Shocks

The effects of a technology shock identified along the lines of Galí (1999) is shown in the
second panel of the middle row of Figure 2. The bottom row of that figure shows the cor-
responding effects for a technology shock identified using Fernald (2012) and a TFP news
shock following Barsky and Sims (2012). We discuss the findings together since the results
for both risk (the effects on the 10th percentile of the forecast distribution) and the entire
shape of the economic outlook are similar across these specifications. An expansionary tech-
nology shock of any of the three types we consider here compresses the distribution of real
GDP growth one year ahead. This means that not only does a technology shock raise me-
dian GDP growth one year ahead, but it also makes low outcomes of future GDP growth
more tolerable by shifting the distribution to the right—as can be seen in Figure 3. The only
slight caveat to this interpretation is that at large horizons (more than three years out) the
impulse response of the 10th percentile to a Fernald TFP shock becomes negative.
This positive view of an expansionary technology shock comes with a downside: A contrac-
tionary technology shock will increase downside risk. Indeed, the response to a negative
shock would be the mirror image of the corresponding panels in Figure 2.
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Figure 3: Difference in Fitted t-Distributions.
Note: Straight lines are 10th percentile (red), median (black), and 90th percentile (blue) of the average distri-
bution of 4-quarters ahead real GDP growth in our sample.



4.4 Inspecting the Economic Mechanism

Through which channel do macroeconomic shocks affect the conditional distribution of GDP
growth? To answer this question we look at how the conditioning variables used to con-
struct the quantiles of GDP growth in (2.1) respond to the shocks studied in this paper. In
particular, in Figure 4 we report the impulse responses of the National Financial Conditions
Index (NFCI). Positive values indicate that financial conditions are tighter, while negative
values indicate financial conditions that are looser. As expected, while contractionary mon-
etary policy shocks and credit spread shocks make financial conditions tighter, the reverse is
true for expansionary technology shocks. A key difference is that while there is, on average,
strong mean reversion in the response to the shocks that make financial conditions tighter,
technology shocks improve financial conditions for much longer. Notice that the impulse
responses of the 10th quantile of the conditional GDP growth distribution in Figure 2 inherit
the (inverse) pattern of the response of financial conditions.9 This result suggests that of our
two conditioning variables, i.e., financial conditions and current GDP growth, it is through
the former channel that shocks affect macroeconomic tail risk. Our finding is in line with
Adrian et al. (2019), who point out that including the NFCI as a conditioning variable is im-
portant to capture downside risk. Adrian et al. (2019) discuss various equilibrium models in
the literature that help explain the central role of financial conditions in shaping future real
GDP growth.
We can thus conclude that contractionary monetary policy shocks and credit spread shocks
temporarily increase macroeconomic tail risk by tightening financial conditions. On the con-
trary, expansionary technology shocks reduce tail risk for substantially longer by loosening
financial conditions. Over a horizon of five years, which is the largest horizon we study
here, movements in the forecast distribution of GDP growth due to expansionary technol-
ogy shocks are not undone and hence shift the entire distribution to the right.
Another feature of our results that stands out is that upside risk reacts substantially less to
economic shocks than downside risk, as is evident from Figure 2. This is in line with the
finding in Adrian et al. (2019) that upside risk moves substantially less over time relative to
downside risk.

9In Appendix B, we show the corresponding figure for the other conditioning variable in the quantile re-
gressions, GDP growth. There are substantially more pronounced differences in the responses of that variable
to the shock relative to how the 10th percentile of the GDP growth forecast distribution reacts to shocks.
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Figure 4: Impulse Responses of the Chicago FED National Financial Conditions Index.

5 Conclusion

The impact of macroeconomic shocks on average economic activity has been studied exten-
sively, whereas the effect on lower quantiles—commonly referred to as “tail risk”—has been
studied substantially less, even though it is of utmost importance to policymakers. This
paper fills this gap by focusing on how macroeconomic shocks affect both tail risk and the
entire distribution of future GDP growth. We find that all shocks we consider (monetary pol-
icy, credit conditions, and productivity shocks) affect the tail risk disproportionately more
than other quantiles. This means that contractionary shocks deserve even more attention
than what their effect on average outcomes suggests to the extent that they make poor eco-
nomic conditions much more likely. Since this is also true of monetary policy shocks, there
is reason to be especially wary of the consequences of contractionary policy shocks. We
complement the findings in Adrian et al. (2019) by showing that financial conditions are the
key channel through which shocks affect macroeconomic risk. This suggests that research
on how structural shocks affect financial conditions is key to studying economic growth and
its vulnerability.

14



References

ADRIAN, T., BOYARCHENKO, N. and GIANNONE, D. (2019). Vulnerable Growth. American
Economic Review, forthcoming.

ANTOLÍN-DÍAZ, J. and RUBIO-RAMÍREZ, J. F. (2018). Narrative Sign Restrictions for SVARs.
American Economic Review, 108 (10), 2802–29.

AZZALINI, A. and CAPITANIO, A. (2003). Distributions Generated by Perturbation of Sym-
metry with Emphasis on a Multivariate Skew t-distribution. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 65, 367–389.

BARNICHON, R. and BROWNLEES, C. (2016). Impulse Response Estimation By Smooth Local
Projections. (11726).

BARSKY, R. B. and SIMS, E. R. (2012). Information, Animal Spirits, and the Meaning of
Innovations in Consumer Confidence. American Economic Review, 102 (4), 1343–77.

FAVARA, G., GILCHRIST, S., LEWIS, K. F. and ZAKRAJŠEK, E. (2016). Updating the Recession
Risk and the Excess Bond Premium. (2016-10-06).

FERNALD, J. G. (2012). A Quarterly, Utilization-Adjusted Series on Total Factor Productivity.

GALÍ, J. (1999). Technology, Employment, and the Business Cycle: Do Technology Shocks
Explain Aggregate Fluctuations? American Economic Review, 89 (1), 249–271.

GILCHRIST, S. and ZAKRAJŠEK, E. (2012). Credit Spreads and Business Cycle Fluctuations.
American Economic Review, 102 (4), 1692–1720.

JORDÀ, O. (2005). Estimation and Inference of Impulse Responses by Local Projections.
American Economic Review, 95 (1), 161–182.

KILIAN, L. and MANGANELLI, S. (2008). The Central Banker as a Risk Manager: Estimating
the Federal Reserve’s Preferences under Greenspan. Journal of Money, Credit and Banking,
40 (6), 1103–1129.

KOENKER, R. and BASSETT, G. (1978). Regression Quantiles. Econometrica, 46 (1), 33–50.

LINNEMANN, L. and WINKLER, R. (2016). Estimating Nonlinear Effects of Fiscal Policy Us-
ing Quantile Regression Methods. Oxford Economic Papers, 68 (4), 1120–1145.

MERTENS, K. and RAVN, M. O. (2013). The Dynamic Effects of Personal and Corporate
Income Tax Changes in the United States. American Economic Review, 103 (4), 1212–1247.

15



MUMTAZ, H. and SURICO, P. (2015). The Transmission Mechanism In Good And Bad Times.
International Economic Review, 56, 1237–1260.

PLAGBORG-MØLLER, M. and WOLF, C. (2019). Local Projections and VARs Estimate the
Same Impulse Responses.

RAMEY, V. (2016). Macroeconomic Shocks and Their Propagation. Handbook of Macroeco-
nomics, 2, 71 – 162.

RAMEY, V. A. and ZUBAIRY, S. (2018). Government Spending Multipliers in Good Times and
in Bad: Evidence from US Historical Data. Journal of Political Economy, 126 (2), 850–901.

ROMER, C. D. and ROMER, D. H. (2004). A New Measure of Monetary Shocks: Derivation
and Implications. American Economic Review, 94 (4), 1055–1084.

UHLIG, H. (2005). What Are the Effects of Monetary Policy on Output? Results from an
Agnostic Identification Procedure. Journal of Monetary Economics, 52 (2), 381–419.

16



A Data

This section gives a brief overview of the data we use throughout this paper, which is mostly
available at FRED. Additional data sources are provided.

To estimate the quantile regression we use seasonally adjusted and annualized real GDP
growth as well as the Chicago FED National Financial Conditions Index (NFCI). This index
is not seasonally adjusted and downloaded at quarterly frequency by relying on the average
of weekly values within a quarter.

The control variables in the local projection stage are given as follows. At quarterly
frequency we take seasonal adjusted real GDP, the seasonal adjusted civilian unemployment
rate, total population (including armed forces overseas) and total hours worked given by the
hours of wage and salary workers on non-farm payrolls. The latter two series are used to
compute per capita GDP and productivity (real GDP divided by hours), respectively. Both
the commodity price index and the consumer price index are available at monthly frequency.
We take the CRB commodity index provided by Ramey (2016) and headline CPI (defined
in FRED as “Consumer Price Index for all Urban Consumers: All Items”). Additionally,
we take the monthly federal funds rate. All monthly series are aggregated to quarterly
frequency by taking the quarterly average.

Finally, we utilize the following aggregate shocks. The Romer and Romer (2004) mone-
tary shock is provided by Ramey (2016). We aggregate the monthly shock series to quarterly
frequency by taking the quarterly sum. We take the narrative monetary policy shock pro-
vided by Antolín-Díaz and Rubio-Ramírez (2018), again aggregated to quarterly frequency
by calculating the quarterly sum. To identify the credit shock we use the Gilchrist and Za-
krajšek (2012) excess bond premium, frequently updated by Favara et al. (2016)10. The three
technology shocks are identified by running the VARs described in Section (2).

10The series can be downloaded at https://www.federalreserve.gov/econresdata/notes/feds-notes/
2016/updating-the-recession-risk-and-the-excess-bond-premium-20161006.html.
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B Additional Impulse Responses

In this section we show the error bands for the 10th and 90th percentile responses that were
not presented in the main text.
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Figure 5: Impulse Responses of Various Quantiles.
Note: Red (dashed) is response of the 10th quantile, blue (dotted) is response of the 90th quantile. Confidence
bands correspond to 10th quantile response, 90% significance level, based on Newey-West standard errors.
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Figure 6: Impulse Responses of Quantiles Used to Fit t-Distributions.
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Figure 7: Impulse Responses of Average GDP Growth yt+h.
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C Allowing for More Controls in Quantile Regressions

To check whether or not our results are robust to adding additional controls in the quan-
tile regression stage, we add the controls from the local projections stage already at the first
quantile regression stage (except for the shock measures). This means that each impulse re-
sponse is now based on a different set of quantiles.
Nonetheless, the results from the main section are broadly in line with what we find for this
robustness check, in particular when it comes to the responses of the 10th percentile.
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Figure 8: Impulse Responses of Various Quantiles.
Note: Red (dashed) is response of the 10th quantile, black (solid) is the median response, blue (dotted) is
response of the 90th quantile. Confidence bands correspond to median response, 90% significance level, based
on Newey-West standard errors.
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Figure 9: Impulse Responses of Various Quantiles, More Controls in Quantile Regression.
Note: Red (dashed) is response of the 10th quantile, blue (dotted) is response of the 90th quantile. Confidence
bands correspond to 90% significance level, based on Newey-West standard errors.
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