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Abstract

We advance a theory of how private information and heterogeneous screening

ability across market participants shapes trade in decentralized asset markets. We

solve for the equilibrium market structure and show that the investors who interme-

diate trade the most and interact with the largest set of counterparties must have the

highest screening ability. That is, the primary intermediaries are those with supe-

rior information - screening experts. We provide empirical support for the model’s

predictions using transaction-level micro data and information disclosure require-

ments. Finally, we study the connection between screening ability and efficiency, and

observe that a market where all investors are screening experts –and thus, a market

with no private information– may be dominated in terms of welfare by a market with

no screening experts.
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1 Introduction

Intermediation is a prevalent feature of how assets are traded in over-the-counter (OTC)

financial markets. Assets tend to be reallocated through a sequence of bilateral trans-

actions that often involve a core set of institutions serving as intermediaries.1 Under-

standing how decentralized asset markets function thus requires understanding the de-

terminants of intermediation. In this paper, we build a theory of intermediation based

on a key friction inherent in decentralized trade: market participants possess private

information about their willingness to pay for assets.

The theory predicts that if there is heterogeneity in the ability of participants to

learn the information of their counterparties, what we refer to as screening ability, then

those that intermediate assets the most must be the most informed. In other words,

the core is endogenously comprised of experts. We then provide empirical evidence,

using transaction-level micro-data, to support this and other key predictions of the the-

ory as well as illustrate that the interaction of private information and the incentive to

intermediate assets is an important determinant of efficiency in decentralized trade.

The theory builds on Duffie, Garleanu, and Pedersen (2005) and Hugonnier, Lester,

and Weill (2014) that model trade through random bilateral meetings between investors

with heterogeneous valuations of the asset. We augment the theory in two important

ways. First, we assume that an investor’s valuation of the flow of dividends is private in-

formation. While there is common knowledge about the dividend process, each investor

is unaware of the private value of their counterparty. For instance, traders can agree

about the risk an asset pays off, but still do not know of each others’ hedging, liquidity,

or order-flow needs. Second, we assume that investors are heterogeneous in their ability

to learn the private information of their trade counterparty, a technology we refer to as

screening ability. Specifically, screening ability is the probability an investor learns the

private information of their counterparty in a meeting before trade takes place. This

feature is meant to capture that institutions can differ according to their level of financial

expertise, one aspect of which is having better information about the trading motives of

other market participants.

We then show that intermediation is endogenously linked to screening ability. We

1This is often referred to as a core-periphery market structure and has been widely documented in the
literature, for instance, in the market for municipal bonds (Green, Hollifield, and Schurhoff, 2007), the
Fed funds market (Bech and Atalay, 2010), the asset-backed securities market (Hollifield, Neklyudov, and
Spatt, 2017), and the corporate bond market (Maggio, Kermani, and Song, 2016), among others.
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define a concept of an investor’s centrality in the market that measures the fraction of

trade volume they account for. We show that the most central investors —those who

intermediate assets the most and form the core of the market— possess the highest

screening ability, who we call experts. We also show that, relative to those with low

screening ability and similar valuation for the underlying asset, experts endogenously

trade more often and with a larger pool of investors.

To understand the intuition for why the investors most central in intermediating

assets are experts, it is helpful to describe a few features of bilateral trade in partial equi-

librium. Consider a meeting between a buyer and seller, and assume that one investor

is randomly chosen to make a take-it-or-leave-it (TIOLI) offer in the form of a bid or

ask price.2 If the investor making the offer also observes the type of their counterparty

—determined by their screening ability— then they extract all of the surplus in trade.

However, if the investor is uninformed, as in Myerson (1981), they must set a distortive

price that yields informational rents to their counterparty and destroys some efficient

trades. In partial equilibrium, in the sense that we keep the investor’s valuation for the

asset constant, investors with higher screening ability are less likely to resort to setting

distortive prices and so endogenously have a higher probability of trade. As a result,

screening ability is a force that increases an investor’s trading speed, increases their set

of potential counterparties, and increases their expected profits from trade. In other

words, in partial equilibrium, higher screening ability implies an investor possesses a

better trading technology.

The intuition is more complicated in general equilibrium as an investor’s screening

ability affects their asset valuation, which in turn affects the extent to which they in-

termediate. Experts with too-low or too-high a flow valuation for the asset may still

overwhelmingly serve as sellers and buyers, respectively. However, we show that the

investors who intermediate assets the most, and form the core of the market, must be

experts.

In the second part of the paper, we provide empirical evidence that supports the

primary result that heterogeneity in information leads to differences in intermediation

activity. To do so, we use transaction-level data on the OTC market for credit-default-

swap (CDS) indexes and examine the differential effects of information disclosure on an

2 We show that TIOLI ask and bid prices are the solution to an optimal mechanism design problem
that maximizes the respective profits of sellers and buyers (this is an application of Myerson (1981) to a
dynamic general equilibrium setting). Additionally, we study mechanisms that maximize total surplus
and obtain the same qualitative results.
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institution’s trade with the core versus periphery. A subgroup of CDS-index traders in

our sample are required to file a 13-F form to the Securities and Exchange Commission

(SEC). The form contains the holdings of all securities regulated by the SEC, which

mostly consist of equities that trade on an exchange and equity options. The SEC then

makes the 13-F form public immediately after its filed and so other market participants

know detailed portfolio information about 13-F filers. Since (i) CDS asset positions are

small relative to the 13-F asset positions of these institutions and (ii) many institutions

that file a 13-F do not trade CDS, we consider a 13-F filing as exogenous variation in the

information the market possess about the institution’s motives to trade CDS.3

We first extend the model to include a set of investors that file 13-F. We assume

that filing a 13-F (imperfectly) reveals a filers’ private information at a known future

date, a shock that is independent of the screening ability of the filer’s counterparties.

The model predicts that a 13-F filing has heterogeneous effects on the filer’s probability

of trade with core versus periphery investors. Specifically, a 13-F filing discontinuously

increases the probability of trade with the periphery, as once a filing occurs the periphery

is more likely to know the filer’s private valuation and are less likely to distort trade.

However, a 13-F filing should have strictly less or no effect on trade with the core, as the

model predicts that these investors already possess superior information. In other words,

if the core is (at least in part) composed of institutions with better information, then

information disclosure should effect these trades less than trades with the periphery.

We then show these predictions hold in the CDS index market. We find that a 13-F

filing increases an investor’s probability of trade with the periphery in the week follow-

ing a filing, but find either a zero or smaller increase in the probability of trade with the

core. Our results are robust to controlling for different sets of fixed effects, classes of CDS

indexes, and types of institutions. We also show that a 13-F filing temporarily increases

the probability of trade with the periphery up to two weeks after a filing, but the effect

vanishes in week three and beyond. Further, we show the effect is quantitatively smaller

in more liquid markets as measured by total trade volume. This result is consistent

with our model that posits that private information about trade motives are less relevant

in more competitive markets (i.e. markets with high meeting rates). We conclude that

these results are evidence that heterogeneity in information is an important determinant

of shaping the structure of OTC markets.

Finally, we explore the connection between screening ability and efficiency in OTC

3See Section 6 for a detailed discussion.

3



markets. We consider a version of the model with only experts and uninformed in-

vestors. The efficient fraction of experts strikes a balance between two forces: a larger

fraction can increase welfare through a lowering the distortion in bilateral trade, but a

larger fraction can also decrease welfare through causing a higher distortion in inter-

mediation and issuance incentives, as explored in Bethune et al. (2019). We construct

numerical examples where this trade-off is apparent. In some cases, having only experts

maximizes welfare, and so it is optimal for the market to function under complete in-

formation. However, we also provide examples where the opposite is true having all

investors with no screening expertise maximizes welfare. These results show that the

effect of private information on the incentive to intermediate assets is central in under-

standing if there are benefits to increase transparency in OTC markets.

The results in our paper follow a long tradition in economics of studying the role of

information asymmetries in determining financial market outcomes. A recent literature,

including Duffie, Malamud, and Manso (2009), Golosov, Lorenzoni, and Tsyvinski (2014),

Guerrieri and Shimer (2014a), Lester, Shourideh, Venkateswaran, and Zetlin-Jones (2015),

Glode and Opp (2016), Malamud and Rostek (2017), and Babus and Kondor (2018), study

information asymmetries in the context of decentralized asset markets. We differ from

the majority of the papers in this literature in two ways. First, by considering asymmet-

ric information about private values (information that only affects the individual payoff)

as opposed to common values (information that affects the payoff of all agents in the

economy).4 Second, by focusing on how intermediation arises endogenously, while pre-

vious work studying the interaction of information and intermediation, typically assume

exogenous market makers.5

Our theory is consistent with other results in the literature about the determinants

of core institutions. For instance, Uslu (2016) and Farboodi, Jarosch, and Shimer (2017)

build theories where intermediaries are investors that possess a higher arrival rate of

meetings, and thus trade more often. Nosal, Wong, and Wright (2014) and Farboodi,

Jarosch, and Menzio (2017) build a theory where intermediaries are investors that pos-

sess superior bargaining power, providing them with high profits from intermediation.

4Exceptions are Duffie (2012), Guerrieri and Shimer (2014b) and Chang (2017) that consider both private
and common values and Guerrieri et al. (2010), Cujean and Praz (2015) and Zhang (2017) that consider
private values, but do not study endogenous intermediation.

5An early example is Glosten and Milgrom (1985) who show, in the presence of adverse selection, mar-
ket makers charge a positive bid-ask spread; a more recent example is Lester, Shourideh, Venkateswaran,
and Zetlin-Jones (2018) who study the role of market-makers in the presence of adverse selection and
search frictions.
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In Chang and Zhang (2015) intermediaries are investors with low volatility in their flow

valuation and, as a result, trade with a larger set of counterparties. We also find that

intermediaries are investors with intermediate flow valuation, a result consistent with

Hugonnier, Lester, and Weill (2014) and Afonso and Lagos (2015) in models similar to

ours, as well as Atkeson, Eisfeldt, and Weill (2015) who show that intermediaries tend

to have intermediate risk exposure.6 A notable distinction between our environment

and those mentioned, and one that is relevant for our empirical analysis, is that the key

friction driving intermediation activity is the information structure.

2 Environment

Time is continuous and infinite and there is a measure one of infinitely-lived investors

that discount the future at rate r > 0. There is transferable utility across investors and a

supply of assets, s. Each unit of the asset pays a unit flow of dividends. The dividend

flow is common knowledge and non-transferable—only the investor holding an asset

consumes its dividends. Investors can hold either zero or one unit of the asset. We refer

to investors holding an asset as owners and those not holding an asset as non-owners.

Trade occurs in a decentralized, over-the-counter market in the style of Duffie et al.

(2005). Investors contact each other with Poisson arrival rate λ/2 > 0. Meetings between

two investors that are owners result in no trade: agents can hold at most one asset and

since every asset has the same common value, there are no gains from simply exchanging

assets. Likewise, meetings between two non-owner investors result in no trade. Only

meetings between an owner investor and a non-owner investor involve gains from trade.

Investors are heterogeneous in two dimensions: they differ in their screening ability,

α, and in the utility they derive from consuming the dividend flow of an asset, ν. When

two investors meet, the screening ability α is public information, while the utility type

ν is private information.7 The screening ability α determines the probability by which

an investor learns the utility type of their counterparty. We let θ = (α, ν) denote the

investor type. When two investors of types θ = (α, ν) and θ̂ = (α̂, ν̂) meet, the investor

with screening ability α learns ν̂ with probability α, and the investor with screening

ability α̂ learns ν with probability α̂.8

6We are also related to the literature that model intermediation with explicit links between investors.
Examples are Farboodi (2017), Babus and Kondor (2018) and Wang (2018).

7The results in this paper also hold if we assume that both α and ν are private information.
8A natural question is whether one investor knows what the other investor knows in the meeting—
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Types are fixed over time, are independent across investors, and are drawn from

the cumulative distribution F. The distribution F has support Θ := {αi}I
i=1 ×R, which

satisfies 0 ≤ α1 < α2 < . . . < αI = 1, and density f that is continuous over ν for a given

αi. We assume that the screening ability α has finite support for technical reasons, but

note that we can take the number of grid points, I, to be as large as we want. Further,

we assume that
∫

ν2dF < ∞ for technical reasons.

We assume assets mature and investors can produce new assets. An asset matures

with Poisson arrival rate µ > 0. When the asset matures, it disintegrates. With Poisson

arrival rate η > 0, an investor faces an opportunity to issue a new asset at no cost.

Investors can freely dispose of assets at any time. As a result of maturity and issuance,

a steady state with positive trade emerges in our economy even without time-varying

types, which are required for existence of a steady state with trade in Duffie et al. (2005)

and much of the literature that followed. Adding time-varying types in our setup is

straightforward, but it does not provide additional insights so we do not incorporate

this feature.

3 Price determination, asset valuations, and allocations

In this section, we study price determination, provide expressions for value functions

and the distribution of assets among investors, and define an equilibrium and prove its

existence. We restrict attention to steady-state equilibria and omit the time t from the

set of states of the economy. We denote the measures of owners and non-owners of type

θ̃ ≤ θ by Φo(θ) and Φn(θ), respectively, and the measure of assets by s =
∫

dΦo. We

denote the value function of an owner of type θ by Vo(θ) and the value function of a

non-owner by Vn(θ). Finally, ∆(θ) = Vo(θ)− Vn(θ) denotes the reservation value of an

investor, which is the price that makes them indifferent between holding and not holding

an asset. Whenever it is not ambiguous, we use ∆o instead of ∆(θo) and ∆n instead of

∆(θn).

that is, what information is common knowledge. Say investors A and B meet, and A happens to learn
the utility type of investor B. Does investor B know that A knows his type? And does A know if B
knows what he knows? To keep it simple, we assume that the information structure (who knows what)
is common knowledge. However, this assumption is without loss of generality. That is because whether
an investor knows the utility type of the counterparty or not only informs the counterparty about the
screening ability—there is no correlation between what an investor knows and his utility type. Since the
screening ability of investors is public information, there is nothing to learn from whether an investor
knows the utility type of the counterparty or not.
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3.1 Bilateral trade

As a result of private information, we cannot resort to Nash bargaining or similar pro-

tocols to determine the terms of trade. Instead, we assume that when an owner and a

non-owner meet, they play a random dictator game. With probability ξo ∈ (0, 1) the

owner makes a take-it-or-leave-it offer, with commitment, to the non-owner that takes

the form of an ask price. Likewise, with probability ξn = 1− ξo the non-owner makes

a take-it-or-leave-it offer, with commitment, to the owner that takes the form of a bid

price.

The random-dictator game has several nice properties. First, it seems realistic to

imagine that in some markets/trades the seller sets the terms, while in other mar-

kets/trades the buyer sets the terms. Further, while imposing bid and ask prices may

seem restrictive, we show in Appendices A.1 and A.2 that it is equivalent to a generic

mechanism design problem where the owner and non-owner maximize their respec-

tive, expected profits subject to individual rationality and incentive compatibility. That

is, even when allowed to design complicated buying and selling mechanisms, take-it-

or-leave-it bid and ask prices are indeed optimal. Alternatively, we could impose a

mechanism that maximizes the total trade surplus in a meeting, in the spirit of Myerson

and Satterthwaite (1983). In Appendix D, we study this case and obtain similar results

regarding the main implications of our theory of financial intermediation.

The choice of ask and bid prices depend on whether or not the investor making an

offer observes the utility type of their counterparty, which occurs with probability α, the

investor’s own screening ability. Since screening ability is public information, when an

investor learns the utility type of their counterparty, they also learn their reservation

value. Hence, when an investor gets to set the terms of trade and is informed, they set

their ask and bid price to extract the entire gains from trade, if positive. Let ∆o and ∆n

be the reservation values of an owner and non-owner, respectively, in a meeting. The

optimal ask price, asko, solves asko = ∆n if ∆o ≤ ∆n and asko = ∆o otherwise. Similarly,

the optimal bid solves bidn = ∆o if ∆o ≤ ∆n and bidn = ∆n otherwise. In words, when

investors are informed they extract the entire gains from trade when making the offer.

When the investor making an offer does not observe the utility type of their counter-

party, they must set their ask and bid prices under private information. First consider

the problem of the uninformed owner setting their ask price. The optimal ask price
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solves

max
ask

objo(ask; αn) := [ask− ∆o] [1−Mn(ask; αn)] , (1)

where αn denotes the screening ability of the non-owner counterparty and Mn(∆̃; αn) =∫
1{∆(θ)≤∆̃, α=αn}dΦn(θ)/∫ 1{α=αn}dΦn(θ) denotes the endogenous cumulative distribution of reser-

vation values of non-owners with screening ability αn. For a given ask, the measure

1−Mn(ask; αn) of counterparties value the asset above the ask price and so accept the

offer. If trade occurs, the owner receives the ask price and loses her reservation value ∆o.

A solution to (1) exists if Mn(·; αn) has no mass points and finite second moments.

We conjecture that a solution to this problem exists and later, when proving existence of

an equilibrium, we verify that the conjecture applies.9

The next lemma provides a useful result: the optimal ask price is strictly above the

owner’s reservation value whenever there are expected gains from trade. Appendix B

contains the proof of this lemma and all proofs that follow.

Lemma 1. Consider the owner’s reservation value ∆o and a non-owner’s screening ability αn. If

there is a positive measure of non-owners with screening ability αn and reservation value above

∆o, that is, 1−Mn(∆o; αn) > 0, then asko is strictly above ∆o.

To provide intuition, suppose that Mn(·; αn) is differentiable, and consider an owner

that sets an ask price equal to their reservation value, ask = ∆o. The derivative of the

objective function in (1) evaluated at ask = ∆o is given by ∂objo(∆o,αn)
∂ask = 1−Mn(∆o; αn).

If 1−Mn(∆o; αn) > 0, the expected gains from trade are positive and the owner strictly

prefers to set an ask price at a markup above their reservation value. As a result, there

exists a measure of non-owners, Mn(asko; αn)−Mn(∆o; αn), that have reservation value

above the owner’s but do not buy the asset. In other words, private information de-

stroys efficient bilateral trades. This is a well-known, negative result from Myerson and

Satterthwaite (1983) where the distributions, Mn and Mo, are exogenous. Here we show

the result holds in a general equilibrium model of trade, but the same intuition applies.

The following Corollary formalizes this result.

Corollary 1. Consider a reservation value of owners ∆o and a non-owner’s screening ability αn.

If there exists ε̄ > 0 such that Mn(∆o + ε; αn)−Mn(∆o; αn) > 0 for all ε ∈ (0, ε̄), then with

positive probability the non-owner has a higher reservation value than the owner and they still do

not trade—that is, Mn(asko − ε; αn)−Mn(∆o; αn) > 0 for some ε > 0.

9If it happens that problem (1) has multiple solutions, we let asko be the lowest ask price that solves (1).
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The optimal bid price under private information follows closely to that above, and is

given by the solution to

max
bid

objn(bid; αo) := [∆n − bid] Mo(bid; αo), (2)

where Mo(∆̃; αo) =
∫

1{∆(θ)≤∆̃, α=αo}dΦo(θ)/∫ 1{α=αo}dΦo(θ) denotes the endogenous cumulative

distribution of reservation values of owners with screening ability αo. For a given bid,

the measure Mo(bid; αo) of owners with screening ability αo accept the offer and sell the

asset to the non-owner. When the non-owner buys the asset, she gains her reservation

value ∆n and pays the bid price. As before, a solution to (2), exists in equilibrium.10

Whereas the optimal ask price under private information is a markup over the reser-

vation value of the owner, the opposite is true for the optimal bid price.

Lemma 2. Consider a non-owner’s reservation value ∆n and an owner’s screening ability αo.

If there is a positive measure of owners with screening ability αo and reservation value strictly

below ∆n, that is, lim∆↗∆n Mo(∆; αo) > 0, then bidn is strictly below ∆n.

Non-owners set a markdown under their reservation value when buying the asset.

As a result, owners with reservation value below ∆n and above the bid, will not sell the

asset to the non-owner. Private information destroys bilaterally efficient trades, whether

the owner or non-owner sets the terms of trade.

Corollary 2. Consider a reservation value of non-owners ∆n and a owner’s screening ability αo.

If there exists ε̄ > 0 such that Mo(∆n; αo)−Mo(∆n − ε; αo) > 0 for all ε ∈ (0, ε̄), then with

positive probability the non-owner has a higher reservation value than the owner and they still do

not trade—that is, Mo(∆n − ε; αo)−Mo(bidn; αo) > 0 for some ε > 0.

3.2 Expected gains from trade

The expected gains from trade in a meeting of an owner of type θo are given by

πo(θo) = ξo

∫
αo (∆n − ∆o) 1{∆n≥∆o} + (1− αo) (asko − ∆o) 1{∆n≥asko}d

Φn(θn)

1− s

+ ξn

∫
(1− αn) (bidn − ∆o) 1{bidn≥∆o}d

Φn(θn)

1− s
, (3)

and of a non-owner of type θn are given by

πn(θn) = ξn

∫
αn (∆n − ∆o) 1{∆n≥∆o} + (1− αn) (∆n − bidn) 1{bidn≥∆o}d

Φo(θo)

s
10If the problem has multiple solutions, we let bidn be the highest bid price that solves (2).
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+ ξo

∫
(1− αo) (∆n − asko) 1{∆n≥asko}d

Φo(θo)

s
. (4)

Consider (3). The first term accounts for the expected profits when the owner is selected

to make the offer, which occurs with probability ξo. In this case, with probability αo the

owner is informed about the utility type of her counterparty and uninformed otherwise.

When she is informed, the owner trades with any non-owner with reservation value

larger than ∆o and receives the entire trade surplus, ∆n − ∆o. When uninformed, the

owner sets an ask price under private information and gets expected profits according

to (1). The second term in (3) accounts for the expected profits when the non-owner is

selected to make the offer, which occurs with probability ξn. In this case, the owner only

receives positive profits if (i) her trade counterparty is uninformed, which occurs with

probability 1− αn, and (ii) her reservation value is below the optimal bid price of the

non-owner. Otherwise, whenever the non-owner is informed about the utility type of the

owner, the non-owner extracts the entire gains from trade. Finally, notice that the owner

takes expectations over the endogenous distribution of non-owners, Φn(θn)/(1− s). The

expected gains from trade in a meeting of a non-owner of type θn, presented in (4),

follow analogously to (3).

3.3 Value functions and reservation value

The value function of an owner of a type θ is given by

rVo(θ) = ν− µ
[
Vo(θ)−Vn(θ)

]
+ λ(1− s)πo(θ). (5)

The value of owning an asset, discounted at rate r, equals the sum of three terms. The

first term accounts for the flow utility of holding the asset, ν. The second term accounts

for the change in value when the asset matures and the owner becomes a non-owner,

which occurs at rate µ. The third term accounts for the expected profits of an owner

when meeting a non-owner; the probability that two investors meet is given by 2λ/2 = λ

and, conditional on meeting, the owner contacts a non-owner with probability (1− s).

The value function for a non-owner of type θ is,

rVn(θ) = η
[
Vo(θ)−Vn(θ)

]
+ λsπn(θ). (6)

The value of not owning an asset, discounted at rate r, equals the sum of two terms.

The first term accounts for the value of receiving an issuance opportunity, which arrives

at rate η. Conditional on receiving an issuance opportunity, the non-owner decides

whether it is optimal to produce the asset and become an owner, or to not produce and
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remain a non-owner. The second term accounts for the expected profits of a non-owner

in bilateral trade, where a meeting occurs with an owner at rate λs.

We define the value functions assuming that owners hold the asset until maturity

or sell it and non-owners issue a new asset whenever they have an opportunity to do

so. If investors have negative value of being an owner, they can freely dispose of the

asset and not issue a new asset when an opportunity arrives. These possibilities will be

embedded in the equilibrium condition for the law of motion for asset supply, which

guarantees that investors with negative value of being an owner do not hold or issue

assets in equilibrium.11

Finally, using (5)-(6) we can compute the reservation value for an investor of type θ,

∆(θ) ≡ Vo(θ)−Vn(θ). The reservation value ∆(θ) solves

∆(θ) =
ν

r + µ + η︸ ︷︷ ︸
fundamental

value

+
λ(1− s)πo(θ)

r + µ + η︸ ︷︷ ︸
option value

to sell

− λsπn(θ)

r + µ + η︸ ︷︷ ︸
option value

to buy

. (7)

Equation (7) decomposes the reservation value into three components. The first com-

ponent represents the fundamental value of holding an asset, the discounted utility of

the dividend payoff. The second and third components represent the option values of

selling and buying the asset, respectively. What is important for the reservation value is

the net, or the expected gain in value from buying then selling an asset, or the expected

gain from intermediation.

3.4 The distribution of assets

The change over time in the measure of owners of type θ is

φ̇o(θ) = ηφn(θ)1{∆(θ)≥0} − µφo(θ)− λφo(θ)q̄o(θ) + λφn(θ)q̄n(θ), (8)

where the probability that an owner of type θ sells an asset in a meeting is

q̄o(θ) =
∫

q(θ, θn)φn(θn)dθn, (9)

the probability that a non-owner of type θ buys an asset in a meeting is

q̄n(θ) =
∫

q(θo, θ)φo(θo)dθo (10)

11 Alternatively, we could write the value functions as the maximum of the value functions we wrote
above and zero. We opt to write it in the way we did because the equilibrium allocations in both formula-
tions are the same, but the notation is heavier in alternative formulation.
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and

q(θo, θn) = 1{∆n≥∆o} − ξo(1− αo)1{asko>∆n≥∆o} − ξn(1− αn)1{∆n≥∆o>bidn} (11)

is the probability of trade between a type θo owner and a type θn non-owner.

The first term on the right-hand side of (8) accounts for the inflow of non-owner

investors of type θ that become owners because they receive an issuance opportunity

and find it worthwhile to produce the asset. The second term accounts for the outflow

of owners of type θ because of asset maturity. The third term accounts for the outflow

of owners of type θ that sell their asset. The fourth term accounts for the inflow of non-

owners of type θ that buy an asset. A steady-state equilibrium satisfies φ̇o(θ) = 0 for all

θ.

Since the measure of types, f (θ), is exogenous and fixed, we can obtain an expression

for the measure of non-owners from the following equilibrium condition,

φo(θ) + φn(θ) = f (θ). (12)

Finally, since all assets in the economy are held by owners, total asset supply is given by

s =
∫

φo(θ)dθ. (13)

4 Equilibrium

We focus on symmetric steady-state equilibria.

Definition 1. A family of bid and ask price functions, reservation values and distributions,

{bidn, asko, ∆, φo, φn, s}, constitutes a symmetric steady-state equilibrium if it satisfies: (i) the

ask price function, asko, solves the owner’s problem (1), and the bid price function, bidn, solves

the non-owner’s problem (2); (ii) investors’ reservation value, ∆, is continuous on ν and satisfies

(7), where πo and πn are given by (3) and (4); and (iii) the density of owners, φo satisfies (8)

with φ̇o = 0, the density of non-owners, φn, satisfies (12), and the stock of assets, s, satisfies (13).

Notice that the equilibrium definition does not include the value functions Vo and Vn

because we can recover them from (5) and (6). The next Proposition guarantees that an

equilibrium exists in the economy, and further, that imposing trade using bid and ask

prices is not restrictive.

Proposition 1. There exists a symmetric steady-state equilibrium, with bid and ask prices asso-

ciated with optimal buying and selling mechanisms.
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Proving existence of an equilibrium in this economy is not straightforward. In partial

equilibrium, existence of optimal bid and ask prices in (1) and (2) require conditions on

the equilibrium objects φo, φn and ∆. However, these objects are themselves determined

by optimal bid and ask prices. Hence, there is no guarantee that there exists operator

that maps the space of well-behaved equilibrium objects into itself and, as a result, we

cannot use standard fixed-point arguments. Instead, we show existence by constructing

a well-behaved polynomial approximation to the operator and show that there exists

a fixed point for any finite degree of polynomials. Then, we invoke the Arzelà-Ascoli

Theorem to show there exists a convergent sub-sequence of the fixed points as the degree

of polynomials goes to infinity.

5 Private Information and Market Structure

We now study how private information shapes the market structure. Specifically, we

are interested in the relationship between an investor’s screening ability and their role in

intermediation, or the process by which assets flow from low-value owners to high-value

non-owners. Our main result is presented in Propositions 2 and 3, which state that the

investors most involved in intermediation, measured as the fraction of total trade volume

they account for, have the highest screening ability. In other words, in the core of the

endogenous core-periphery market structure, is composed of experts.

We start by defining an investor’s trade centrality (or just centrality to keep it short).

Given the expected probability of trade as an owner and non-owner presented in (9)-(10),

i.e. q̄o(θ) and q̄n(θ), we define centrality as

c(θ) =
λ

2Vol
× φo(θ)q̄o(θ) + φn(θ)q̄n(θ)

f (θ)
, (14)

where Vol = λ
∫ ∫

q(θo, θn)dΦo(θo)dΦn(θn) is total trade volume. Centrality measures

the extent an investor of type θ accounts for total trade volume, both as a buyer and a

seller. In (14), the expected probabilities of trade are weighted by the fraction of time

spent as buyer or seller, φn/ f and φo/ f , respectively. In order to have high centrality

an investor must not only have a high probability of trade conditional on a meeting

but also have a high rate of meetings with gains from trade. For instance, the investor

with the lowest asset valuation will have a high probability of trade in a meeting as an

owner, since it is likely that any non-owner they meet will value the asset more than her,

but they will spend little time possessing an asset in equilibrium and so seldom get the
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chance to sell. Further, to have a high centrality an investor must trade frequently as

both buyer and seller. Notice that
∫

c(θ) f (θ)dθ = 1.

We start with the following lemma that establishes a partial equilibrium result: if two

investors have the same reservation value for an asset, the investor with higher screening

ability is more central.

Lemma 3. Consider a symmetric steady-state equilibrium {bidn, asko, ∆, φo, φn, s}, and let the

types θ = (α, ν) and θ̂ = (α̂, ν̂) satisfy ∆(θ) = ∆(θ̂) and α > α̂. Then, (i) if ∆(θ) = ∆(θ̂) < 0,

we have that c(θ) = c(θ̂) = 0, and (ii) if ∆(θ) = ∆(θ̂) ≥ 0, we have that c(θ) > c(θ̂) > 0.

Figure 1 illustrates the result in Lemma 3. The figure shows the level curves of the

reservation value in a two-dimensional graph with the utility type ν on the horizontal

axis and screening ability α on the vertical axis. For a given level curve, the red arrows

indicate the direction in which centrality increases. Conditional on having the same

reservation value, an investor with a higher screening ability will have a higher proba-

bility of trade in a meeting as either a buyer or seller since it is more likely they trade

with efficient mechanisms.12 Since better information leads to a better trading technol-

ogy in equilibrium, higher screening ability α implies higher centrality for investors that

value the asset the same.

Figure 1: Reservation value level curves

ν

α
α = αI

Notes: The figure presents reservation value level curves –i.e. ∆(θ) = ∆̃– as a function of asset valuation ν and
screening ability α. Each blue line represents a different level curve. The red arrows represent the direction by
which centrality increases, for a given reservation value level curve.

In Figure 1, the reservation value level curves can be upward or downward sloping.

The reason is that the reservation value is always increasing in the utility type ν because

it represents the flow value of holding an asset. However, the effect of increasing screen-

ing ability α depends on its effect on the difference between the option value of selling

12See Lemma 14 in the Appendix.
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relative to buying, as can be seen in (7). When ν is high, investors are typically buyers in

equilibrium as it is very costly for them to give up the utility stream that follows from

holding an asset. As a result, screening ability affects their option value of buying more

relative to selling since they seldom meet investors who value the asset more but often

meet investors who value it less. Hence, in order to keep the reservation value constant

as ν increases, the option value of buying must also increase (lowering the reservation

value). This requires a higher screening ability α. When ν is low, the opposite is true

and α must decrease to keep the reservation value constant.

We now turn to studying how information shapes centrality in general equilibrium.

Definition 1. An investor type θ∗ is the most central if c(θ∗) ≥ c(θ) for all θ ∈ Θ.

Proposition 2. Consider a symmetric steady-state equilibrium {bidn, asko, ∆, φo, φn, s}. If an

investor type θ∗ = (α∗, ν∗) is the most central, then α∗ = aI and c(θ∗) > c(θ) for all θ ∈ Θ

satisfying α < aI .

Figure 2 illustrates the results in Proposition 2. It shows the level curves of centrality

in a two-dimensional graph, with screening ability α and utility type ν. The investors

most central in intermediating assets must have the highest screening ability. Consider

any investor θ = (ν, α) with α < αI . Using the intuition of Lemma 3, we can always find

an investor with α′ > α and ∆(θ′) = ∆(θ) that is more central. Since we can do this for

any initial θ, the most central investor must be one with α = αI . However, as Figure 2

shows, not all investors with the highest screening ability are most central. Centrality is

maximized at α = αI and an intermediate value of ν. Investors with high (low) ν tend to

have high (low) reservation value, which implies they seldom engage in selling (buying)

assets and tend to only act on one side of the market.
Not only does the most central investor have the highest screening ability, but a mea-

sure of investors above a certain centrality threshold do as well. Let
¯
c := 1

2 supθ∈Θ{c(θ)}+
1
2 supθ∈Θ{c(θ); s.t. α ≤ αI−1}. Then,

Proposition 3. Consider a symmetric steady-state equilibrium {bidn, asko, ∆, φo, φn, s}. Then,

α = αI for all investors type θ = (α, ν) ∈ Θ such that c(θ) ≥
¯
c.

Proposition 3 implies that the group of investors that are most central in interme-

diating assets all possess the highest screening ability. In other words, those investors

satisfying the condition c(θ) ≥
¯
c endogenously form a core of a core-periphery market

structure. They are the top-p investors in terms of centrality, where p :=
∫

1{c(θ)≥
¯
c}dF.
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Figure 2: Trade centrality level curves

ν

α α = αI(αI , ν∗)

(0.15, ν̂) α = 0.15

Notes: The figure presents trade centrality level curves –i.e. c(θ) = c̃– as a function of asset valuation ν and
screening ability α. The gray arrows show the direction by which the level curves increase. The arrows over the
blue dotted lines show, for a given value of α, how centrality increases with ν. Finally, centrality is maximized
at (αI , ν∗).

Several papers studying financial trade networks, such as Green, Hollifield, and

Schurhoff (2007), Bech and Atalay (2010) and Hollifield, Neklyudov, and Spatt (2017),

document that central traders not only are involved in a large share of trade volume, as

measured by (14), but also trade with a larger set of investors. A natural question then,

in the context of our theory, is if investors with high screening ability also trade with a

larger number of counterparties. Define the measure of counterparties of an investor of

type θ as

np(θ) =
∫ [

1{q(θ,θ̂)>0} + 1{q(θ̂,θ)>0}

]
dF(θ̂). (15)

The function np(θ) captures the measure of counterparties that an investor of type θ

trades with—either as a seller, q(θ, θ̂) > 0, or as a buyer, q(θ̂, θ) > 0. If an investor of

type θ has a positive probability to trade with every other investor, then np(θ) = 1.

The following proposition shows that in the case with two screening abilities, experts

(α = 1) and non-experts (α < 1), experts trade with a larger set of counterparties and

therefore have a larger trade network.

Proposition 4. Suppose there are only two screening abilities, αh = 1 and αl < 1. Consider a

symmetric steady-state equilibrium {bidn, asko, ∆, φo, φn, s} and some investor type θ ∈ Θ such

that ∆(θ) > 0. We have that np(θ) = 1 if, and only if, α = αh = 1.

Investors with negative reservation value do not hold or trade assets in equilibrium.

Among the investors with positive reservation value, an investor trades with every other

investor if, and only if, they are a screening expert. On the other hand, non-experts

distort trade due to private information and do not trade with a set of other investors,

np(θ) < 1. Hence, the theory is able to accommodate the empirical finding that cen-

tral traders both account for a larger trade volume and have a larger network of trade
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counterparties.

Finally, we study the relationship between screening ability, trading speed, and rent

extraction. The theoretical literature has shown that intermediation activity in OTC mar-

kets can be linked to investors that possess higher trading speed or a better ability to

extract rents.13 Our theory also delivers similar predictions, although both are gener-

ated endogenously through differences in screening ability. For instance, in our model

investors do not differ in trading speed as a result of heterogeneity in contact rates, λ.

Rather, differences in speed are a result of endogenous heterogeneity in the probability

of trade conditional on a meeting, q̄(θ). Since trading speed is given as the product of the

meeting rate and the conditional trade probability, i.e. speedj(θ) = λq̄(θ) for j = {o, n},
for two investors with the same reservation value, the one with higher screening ability

will trade faster. Similarly, for these same investors the one with higher screening ability

will also extract more rents as a result of their informational advantage. Therefore, they

will have larger expected profits from trade, πo(θ) and πn(θ).

Lemma 4. Consider a symmetric steady-state equilibrium {bidn, asko, ∆, φo, φn, s}, and let the

types θ = (α, ν) and θ̂ = (α̂, ν̂) satisfy ∆(θ) = ∆(θ̂) and α > α̂. Then,

i) speedo(θ) > speedo(θ̂) and speedn(θ) ≥ speedn(θ̂), with strict inequality if ∆(θ) =

∆(θ̂) > 0, and

ii) πo(θ) > πo(θ̂) and (ii) πn(θ) ≥ πn(θ̂), with strict inequality if ∆(θ) = ∆(θ̂) > 0.

6 Empirical validation

The central feature of our theory is that heterogeneity in private information shapes

the market’s structure by influencing the probability of trade. All else equal, experts—

investors who are more likely to know the trading needs of their counterparties —trade

faster. As a result, investors in the core of the market are experts who serve as natural

intermediaries in trade. In this section, we provide empirical evidence of these predic-

tions using trade data on credit default swaps (CDS) indexes and regulatory reports of

financial holdings.

Our empirical strategy is the following. A subgroup of investors, which includes

managers from banks, insurance companies, broker-dealers, pension funds, and corpo-

13See e.g. Rubinstein and Wolinsky (1987), Nosal, Wong, and Wright (2014), Uslu (2016) and Farboodi,
Jarosch, and Shimer (2017) who study heterogeneity in contact rates and Farboodi et al. (2017) who study
heterogeneity in bargaining power.
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rations, are required to file a 13-F form to the Securities and Exchange Commission

(SEC). The form contains the holdings of all securities regulated by the SEC, which

mostly consist of equities that trade on an exchange and equity options, but also shares

of closed-end investment companies and certain debts. The SEC makes the 13-F form

public immediately after its filed, and so market participants know detailed portfolio

information about 13-F filers. However, CDS positions are not reported in the 13-F form.

We then study how a 13-F filing impacts an investor’s probability of trade with core

versus periphery counterparties in the OTC market for CDS indexes. Since CDS are

a primary way for institutions to hedge against risk in their portfolio, we interpret a

13-F filing as (imperfectly) revealing information about an investor’s trading needs in

the CDS market. This interpretation is supported both theoretically and empirically.

For instance, the seminal model of Merton (1974) illustrates that a firm’s credit spreads

and equity prices are fundamentally linked through the firm’s optimal choice of capital

structure. Hence, if credit and equity assets have correlated returns, then the demand

for an asset written on a firm’s credit (e.g. CDS) is correlated with the holdings of their

equity (which 13-F reports reveal). Empirically, a series of papers have found evidence

of correlated debt and equity returns.14

6.1 Model predictions about the effects of a 13-F filing

Before moving to the empirical tests, we first develop a set of model predictions about

the effects of information disclosure through 13-F filings, summarized in Proposition

5. We consider a version of the baseline model above, but assume that a fraction of

the investors, which we label as “13-F investors", have to publicly disclose information

at random future dates through a 13-F filing. Let the distribution of types across 13-F

and non-13-F investors be given by F13F and Fn13F, respectively. Let ω13F ∈ [0, 1] be

the fraction of 13-F investors, so that F = ω13FF13F + (1− ω13F)Fn13F. We assume the

identities of 13-F investors are common knowledge, but importantly not their utility

type.

Starting from some known future date t0, each 13-F investor draws a filing date

T ≥ t0 with Poisson arrival γ > 0. We assume that the filing dates of the investors

are independent from each other and that the filing date is not known beforehand. The

assumption that filing dates are spread out across time is consistent with the data, where

14A few examples are Campbell and Taksler (2003), Blanco, Brennan, and Marsh (2005), Lonstaff, Mithal,
and Neis (2005), Zhang, Zhou, and Zhu (2009) and Forte and Pena (2009).
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13-F filings are distributed across a 45-day period from the beginning of the quarter.

We assume the information revealed by filing a 13-F is imperfect. Let ρ ∈ (0, 1] be the

probability that in any meeting after an investor’s filing date T, the 13-F report perfectly

reveals the type of the filer to the counterparty. With probability 1− ρ, the 13-F report is

uninformative. We assume this shock is independent and identically distributed across

13-F investors and meetings and is independent from other shocks.15

Our key statistic of interest is how a filing impacts a 13-F investor’s probability of

trade with a “core” investor relative to a “periphery” investor, where we define the set

of core investors as those with a centrality measure in the top-p percentile as defined in

Proposition 3. The following proposition establishes our main set of testable predictions.

Proposition 5. When a 13-F investor files a 13-F form, there is (i) a strict increase in her

probability of trade with periphery investors, (ii) a weak increase in her probability of trade with

core investors, and (iii) a shift in trade probability from core investors to periphery investors.

Parts (i) and (ii) of Proposition 5 establish that information disclosure will at least

weakly increase an investor’s probability of trade; intuitively more information implies

that distortions that follow from pricing under private information are less likely to

destroy efficient trades. Further, and more importantly, part (iii) establishes that infor-

mation disclosure also disproportionately increases an investor’s probability of trade

with the periphery relative to the core. This result stems from the key prediction of our

model. Since the theory predicts that those investors who endogenously populate the

core have an informational advantage, public information disclosure will impact them

less. The result does not rely on the utility type or screening ability of the 13-F investor,

or in turn their centrality. 16 We test these predictions in the remainder of the section.

6.2 Data description and summary statistics

We combine two datasets: 13-F filings from the Securities and Exchange Commission

(SEC) and CDS trade-level data from the Trade Information Warehouse (TIW) of the

15Alternatively, we could model a 13-F filing as providing a noisy signal about the flow value of filers.
The main predictions of the extension would remain unchanged at the cost of additional complexity. We
choose instead to keep the thought experiment as simple as possible.

16The predictions of Proposition 5 are also likely robust to adding additional heterogeneity across in-
vestors, for instance in their contact rates, λ. However such a model would predict differences in the
probability of trade across investors with the same screening ability but different contact rates. In this
case, the results would need to be re-stated by normalizing by the unconditional probability of trade with
core and periphery investors.
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Depository Trust and Clearing House Corporation (DTCC). Our sample includes trades

from the 1st quarter of 2013 to the 4th quarter of 2017—a total of 19 quarters or 246

weeks.

13-F filings. Congress passed Section 13(f) of the Securities Exchange Act in 1975 in

order to increase the public availability of information regarding the security holdings

of institutional investors. Under Section 13(f), any registered investment manager with

discretion over its own or a client account with an aggregate fair market value of more

than $100 million in Section 13(f) securities must file a 13-F form. The 13-F form lists

the holdings of Section 13(f) securities, which primarily includes U.S. exchange-traded

stocks (e.g., those traded on NYSE, AMEX, NASDAQ), stock options, shares of closed-

end investment companies, and shares of exchange-traded funds (ETFs).17 Importantly,

CDS are not included in the list of 13(f) securities.

The SEC makes 13-F filings publicly available through its Electronic Data Gathering,

Analysis, and Retrieval (EDGAR) program. The identity of the institutions that must

file a 13-F form is known by market participants. This implies that when a report is

filed, counterparties of 13-F filers possess detailed portfolio information when trading.

Since CDS indexes are a way for institutions to hedge against risk in their portfolio, we

interpret the information provided to the market in the 13-F form as information related

to the trading needs of investors on CDS

When filing a 13-F form, institutions are required to list their portfolio ownership

of all Section 13(f) securities as of the last trading day of each quarter, which we label

the report date. However, institutions have the discretion to delay reporting and file a

13-F form up to 45 days past the report date.18 We label the day in which institutions

actually file the filing date. The 45-day delay rule is designed to protect investors from

copycatting and front-running and many in fact choose to delay reporting.19 From EDGAR

we observe the filing date and the unique Central Index Key (CIK) of the filing manager,

which gives us the institution name and is used to link filing institutions to those trading

CDS.

CDS data. The Dodd-Frank Wall Street Reform and Consumer Protection Act re-

quires real-time reporting of all swap contracts to a registered swap data repository

(SDR). The DTCC operates a registered SDR on CDS. The Dodd-Frank Act also requires

17See https://www.sec.gov/fast-answers/answers-form13fhtm.html for a complete list of 13(f) securi-
ties and other institutional details.

18If day-45 lies on a weekend or holiday, the window is extended to the first business day past 45 days.
19 In the next subsection we discuss at length the potential endogeneity concern delay poses.

20



SDRs to make all reported data available to appropriate prudential regulators.20 As a

prudential regulator, members of The Federal Reserve System have access to the trans-

actions and positions involving individual parties, counterparties, or reference entities

that are regulated by the Federal Reserve. For each transaction, we observe the day of

the trade, the company name of the buyer and seller, the reference entity (or series of

the index), and other details of the contract (e.g. notional amount, initial payment, etc.).

We access the raw CDS trade data from the Federal Reserve Board (FRB) servers via the

DTCC regulatory portal.

The market for CDS is large and active, with a daily notional volume around $2

trillion. Generally a CDS contract, called a single-name CDS, involves an agreement

in which the buyer of protection makes regular payments to the seller of protection in

exchange for a contingent payment from the seller upon a credit event (e.g. nonpayment

of debt) on a specified reference entity (e.g. a single corporate bond issue). In our

analysis, we focus on trades of US CDS indexes, which are bundles of single-name CDS.

We choose to focus on CDS indexes for several reasons. First, unlike single-name

CDS, the contract terms in CDS indexes are standardized and more easily comparable

across investors. Second, CDS indexes are centrally cleared in the time period we con-

sider, which helps us avoid having counterparty risk determine counterparty choice, as

discussed in Du et al. (2017). Third, while CDS indexes are still traded OTC, they are

more liquid than single-name CDS and have a higher frequency of trade. Frequent trade

for a given CDS index allows us to control for unobservable index, institution, and time

period characteristics using fixed effects. Finally, our main results focus on U.S. CDS

indexes because the data only covers trades that either have a party or reference entity

regulated domestically. Since US indexes are mostly traded by U.S. firms or subsidiaries

of foreign firms, they are more likely to be regulated by the Federal Reserve and be

included in our data.

Combining the 13-F fillings with the CDS trade data. We merge CDS trade data

with 13-F filings using the names of the institution of each trader. Since the institutions’

names do not match perfectly we approximate them using Levenshtein-edit distance.

The Levenshtein edit distance is a measure of approximateness between strings: it is the

total number of insertions, deletions and substitutions required to transform one string

into another. We match the names with Levenshtein-edit distance less than 0.5. We only

use the first three words of the identifiers when computing the Levenshtein edit distance

20See Sections 727 and 728 of The Dodd-Frank Wall Street Reform and Consumer Protection Act.
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because this is where the identifying parts of the institution’s name tend to be.21 We

manually check the matched names to make sure there are no bad matches, which is

feasible given there are not many institutions filing that also trade CDS, see Table 1.

In some cases, we find multiple DTCC account IDs, but only one CIK ID from

EDGAR. That is, not everything is one-to-one between the data sets.22 These cases hap-

pen because the DTCC IDs can be granular, while the 13-F filings tend to be more at the

institution level. We keep the institution ID from the DTCC data, so one filling that is

associated with a CIK in the EDGAR data, will be associated with multiple DTCC IDs

in our data.

Descriptive Statistics. Table 1 provides summary statistics of the data after merging.

We consider three different samples. Our preferred sample includes only institutions

that filed at least once in the sample period, which we label as filers, and trades of U.S.

CDS indexes. Since in our regressions we control for fixed effects at the institution level,

narrowing the sample to include only filers is enough to identify the effect of a 13-F

report in the time period around a filing. We provide more details on identification in

the next section. However, since we also control for trade activity at the index-class level

we report results for the sample that includes all traders, regardless of filing status.

Table 1: CDS trades and 13-F filings, summary statistics

Sample

US indexes, US indexes,
filers all institutions

Number of institutions 52 4,124

% that file in every quarter 51.9 0.7

Number of trades 113,900 369,527

% involving two filers 4.6 1.7

% in which at least one institution filed in prev. week 2.2 0.8

% in which at least one institution filed in previous 2 weeks 4.3 1.6

average trades per week 463.0 1,502.1

average trades per week, per institution 8.9 0.4

Number of index-classes traded 36 36

21After the first three words, there tend to be “filler” words such as "LTD" - "LIMITED", "CORP" or
"CORPORATION".

22For example, the Edmond De Rothschild Holdings has an unique CIK in the EDGAR data, and it
is associated with four DTCC IDs: EDMOND DE ROTHSCHILD EMERGING BONDS, EDMOND DE
ROTHSCHILD Bond Allocation, EDMOND DE ROTHSCHILD QUADRIM 8 and EDMOND DE ROTH-
SCHILD QUADRIM 4.
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We observe a total of 4,124 institutions trading U.S. CDS indexes in our sample pe-

riod, of which 52 filed a 13-F in at least one quarter. Most CDS-index traders are not

filing 13-F reports. Additionally, not all filing institutions filed in every quarter in our

sample; out of the 52 institutions that filed in at least one quarter, a little over half filed

in every quarter. To capture any endogeneity that concerns selection into filing a 13-F,

we will show results that control for fixed effects at the institution-quarter level. That is,

we will only exploit variation within a quarter around filing dates.

While filers make up a small fraction of institutions trading CDS indexes, they are

included in a large number of trades. Of the total 369,527 CDS-index transactions we

observe, 36.24% involve at least one filer. This is in line with the idea that 13-F filers

tend to be larger institutions, and the amount of trade activity provides us with enough

observations for identification. However as we will discuss later, while 13-F filers trade

more than the average non-13-F filer, they do not comprise the core of the CDS-index

market. In other words, there are other non-13-F institutions that trade even more dis-

proportionately than 13-F filers.

Typically, only one of the two participants in a transaction are a filer; only 4.6%

involve a trade between two filers in the main sample.23 Table 1 also shows the extent

of trades we observe in the time period recently following a 13-F report. Since our

theoretical predictions are all local in nature, our tests focus on trading activity during

this time period. Of the total trades we observe, 0.81% involve an institution that filed

a recent 13-F report, that is within the previous week, and 1.56% involve an institution

that filed within the previous two weeks.

We observe trades of 36 U.S. CDS-index classes. Most of the trade activity is con-

centrated in two groups: North American CDS indexes (CDX.NA) and Commercial

Mortgage Backed Security Indexes (CMBX). These two groups account for 89% of all

U.S. trades in our data. The average number of trades in a given week for any of the

indexes across all institutions is 1,502, and the number falls to 463 when we restrict to

trades involving at least one filer. Hence, even though CDS indexes are more liquid than

single-name CDS, they are still traded relatively infrequently. As a result, our regressions

will use observations of trade at a weekly frequency.

As mentioned above, institutions have the option to delay filing a 13-F form up to

45 days past the end of the quarter, the report date. We define delay as the difference

in days between the report date and filing date. All institutions delay, with a minimum

23 Among the trades involving at least one filer, the share in which buyer or seller filed is split roughly
even.
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delay of 6 days and some institutions delay over the standard limit of 45 days.24 Since

delay is a choice, a potential concern is the endogeneity of delay and CDS trading activity

around the filing date. The literature on 13-F filing studies why institutions delay filing.

Christoffersen et al. (2015) argues that institutions primarily delay filing to prevent front-

running—a situation in which other investors, upon observing the portfolio shares of the

reporting institution, infer their future trades and attempt to execute a trade in the same

direction before, obtaining a better price.25 Institutions tend to delay filing a 13-F so they

can execute their trading without competition from front-runners. The test of our model

will be if the probability of trade increases in the time period following a 13-F report.

However, if front-running is the primary reason for delay, the probability of trade would

decrease in the time period following a report. Hence, it would lead to bias in the opposite

direction of our tests.

Finally, as is true with many OTC markets, the market for CDS indexes is concen-

trated, where a set of institutions comprise a large share of trade volume. To see this, for

each institution we calculate the percentage of all trades in which they participate, either

as a buyer or seller, then rank them from largest to smallest. This measure aligns with

our measure of centrality in Section 5. We find that the top five institutions account for

the majority of trade we observe; 92% of all observed trades involve a top five institution.

We associate the top five institutions in the data with the set of core institutions in our

theory. We chose the top five because there is a noticeable discontinuity in centrality

from the top-5th to the top-6th institution. The institution ranked 5th has a centrality

measure 102% higher than the institution ranked 6th, while the institution ranked 4th

has a centrality measure only 19% higher than the institution ranked 5th.

6.3 Empirical results

In this section we test the predictions of our model, as described in Proposition 5, that

a 13-F filing (i) strictly increases the probability of trading with periphery institutions,

(ii) weakly increases the probability of trade with core institutions, and (iii) shifts trade

towards periphery institutions. To do so, we estimate the following linear model:

Yijt = β
Fj,t−1

Frequency
+ Fixed Effectsjit + εjit (16)

24This can occur for two reasons. If day 45 falls on a weekend or holiday the deadline is extended until
the following business day. Also, institutions can apply to extend the standard delay period.

25 Christoffersen et al. (2015) also find evidence of institutions delaying in order to hide corporate voting
power as a result of shares of corporate securities.
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where i denotes a CDS-index class (e.g. CDX.NA.IG), j denotes an institution, and t

denotes a time period, which we set to be equal to a week. The variable Yijt represents

the outcome of interest which is one of two possible dummy variables, Dp
ijt, Dc

ijt, where

p stands for periphery and c stands for core. The variable Dp
ijt is a dummy for a trade

by institution j involving CDS index i in week t trading with a periphery institution.

Similarly Dcore
ijt is a dummy for trade by institution j involving CDS index i in week t

trading with a core institution.

The coefficient of interest is β—the coefficient on the dummy variable Fj,t−1, which

equal to one if institution j filed a 13-F report in the week previous to t. As we discuss

in subsection 6.1, we normalize the dummy Fj,t−1 in each regression by the frequency

of trade in the sample (i.e. frequency of trade involving core and frequency of trade

involving periphery investors). This normalization allows us to control for other deter-

minants of trade centrality, such as trade speed as discussed in Uslu (2016) and Farboodi

et al. (2017), that would differentially affect the probability of trade with core relative to

periphery investors. Under the normalization, we can compare the coefficient β across

specifications.

Before discussing our empirical results it is useful to discuss identification. Iden-

tification primarily comes from two sources: (i) comparing trade activity by the same

institution in weeks following a report versus not, and (ii) comparing trades within a

week across institutions that filed in the week before versus those that did not. For (i)

we have variation in the weeks and indexes that institutions trade relative to the weeks

where they file a 13-F. For (ii) we have variation in the weeks where different institu-

tions file. Since transactional data gives us a large sample size, we are able to control

for many unobservable correlations using a combination of fixed effects on institutions,

weeks and indexes. One potential concern is endogeneity bias that stems from the filing

requirements of Form 13-F causing selection on unobservables that are correlated with

trading activity in CDS markets. This type of bias is unlikely to effect our results since

the number of institutions required to file Form 13-F is considerably larger than those

that file and trade CDS indices.26 However, we address this concern by narrowing our

baseline sample to only filers.

Table 2 reports our baseline results. Column (1) includes fixed effects for week-index

pairs and institutions, and restricts the sample to filers and US indexes. We find that

26For instance, there are 5,560 financial institutions that filed at least one Form 13-F between 2013 and
2017, while only 52 institutions in our dataset trade CDS indices and filed form 13-F at least once in the
same sample period.
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Table 2: Impact of a 13-F filing on trade

US index, filers All index, filers US index, all inst. US index, filers

(1) (2) (3) (4)
Trade with Periphery, βp 0.225*** 0.125*** 0.501** 0.137*

(0.075) (0.046) (0.198) (0.074)
R-squared 0.176 0.167 0.107 0.198
Trade with Core, βc 0.096* 0.095** -0.002 -0.010

(0.054) (0.038) (0.128) (0.053)
R-squared 0.182 0.177 0.069 0.204
Test on difference, βp − βc 0.129* 0.030 0.498** 0.147**

(0.073) (0.042) (0.209) (0.072)
Fixed Effects

Week − index yes yes yes yes
Institution yes yes yes no
Institution − quarter no no no yes

Observations 460,512 1,100,358 36,522,144 460,512

Notes: Sample includes trades of US credit default swap indexes by regulated institutions or those trading CDS
indexes on regulated institutions, that filed a 13-F report at least once in the sample period, 2013Q1-2017Q4. The
independent variable is a normalized dummy, where the dummy is equal to one if institution j filed a 13-F in the
previous week. The two dependent variables are dummies if institution j traded CDS index i in week t with a
periphery and core institution, respectively. Test on difference: tests whether the difference in the coefficients is
equal to zero. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

the probability of trade with periphery institutions increases by 22.5% in the week after

a 13-F filing. We also find that the probability of trade with core institutions increases,

by 9.6%. Both effects are statistically significant and positive, consistent with parts (i)

and (ii) in Proposition 5; a 13-F report leads to increased trading activity in the week

following the report. However, part (iii) of 5 suggests that the information revelation

should shift the probability of trade towards periphery institutions. The third panel of

Table 2 shows the results of testing the difference in the first two coefficients. We find

that the difference is positive and significant; a 13-F report increases trade with periphery

institutions by 12.9% relative to core institutions.

Columns (2) and (3) in Table 2 test for the robustness of our results to the sample

selection. In column (2) we extend our baseline sample to include non-US indexes, and

in column (3) we extend our sample to also include all institutions, regardless of filing

status. The results remain consistent with those presented in column (1). Specifically,

extending the sample to include all institutions implies the effects of a 13-F on trade

with core institutions disappears and leads to a nearly 50% increase in the probability of

trade with periphery institutions.

In column (4), we report results that control for fixed effects at the institution-quarter
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level. In our sample of filers not all institutions filed in every quarter. This may be

resulting from either an error in our process of matching 13-F reports to CDS trades or

in variation in the size the institution’s 13(f) portfolio from quarter to quarter that could,

in principle, bias in our results.27 Adding institution-quarter fixed effects address both

of these concerns by limiting our identifying variation to weeks within an institution’s

filing quarter. Doing so leads to results that are also in line with columns (1)-(3). A

13-F report increases the probability of trade with periphery institutions relative to core

institutions by 14.8%.

Table 3: Impact of 13-F filing on trade, varying lag lengths

1 week 2 weeks 3 weeks 4 weeks
Fj,t−1 Fj,t−2 Fj,t−3 Fj,t−4

(1) (2) (3) (4)
Trade with Periphery, βp 0.137* 0.146** 0.029 -0.058

(0.074) (0.058) (0.052) (0.049)
Trade with Core, βc -0.009 -0.014 -0.006 -0.037

(0.053) (0.042) (0.038) (0.035)
Test on difference, βp − βc 0.147** 0.160*** 0.035 -0.021

(0.072) (0.057) (0.051) (0.048)
Fixed Effects

Week − index yes yes yes yes
Institution − quarter yes yes yes yes

Observations 460,512 458,640 456,768 454,896

Notes: Sample includes trades of US credit default swap indexes by regulated institutions or those
trading CDS indexes on regulated institutions, that filed a 13-F report at least once in the sam-
ple period, 2013Q1-2017Q4. The independent variables, (1) Fj,t−1/Frequency, (2) Fj,t−2/Frequency, (3)
Fj,t−3/Frequency, and (3) Fj,t−4/Frequency are normalized dummies, where the dummies are equal to
one if institution j filed a 13-F within the previous week, two weeks, three weeks, and four weeks re-
spectively. The two dependent variables are dummies if institution j traded CDS index i in week t with
a non-top-5 and top-5 institution, respectively. Test on difference: tests whether the difference in the
coefficients is equal to zero. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

In Table 3, we examine the effect of a 13-F report on trade in the following one-, two-,

three- and four-week windows. While Proposition 5 only concerns the effects of a 13-F

in the time period immediately following a report, we are interested in investigating

the persistence of the shock. Column (1) repeats the results from column (4) in Table

2, which controls for fixed effects by week-index and institution-quarter. The positive

effect of 13-F filing on the probability of trade with periphery institutions holds up to

two weeks after the filing, but it is not present in the three- and four-week windows. The

27For instance, we may be unable to recover the filing date if the institution manager changes since the
last filing – as filing is manager specific– or if she files the report jointly with another manager, which can
occur if both managers belong to a bigger corporation.
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effect of a 13-F on the probability of trading with a core institutions remains insignificant

and with a point estimate close to zero. The difference between the two, or the effect of a

13-F on the probability of trade with periphery versus core institutions is significant and

positive up to two weeks after the filing date, with a difference in the change of trading

probability of nearly 15%, but vanishes after two weeks. These results are consistent

with our theory. As we increase the window length, we also increase the number of

trades that we consider as related to filing a report. In theory, by doing so we are adding

trades that are less correlated with the revelation of information, thus adding noise and

eventually breaking the link between trade activity and filing.

In Table 4, we add an additional regressor to (16) that controls for trade in the time

period just prior to a 13-F filing,

Yijt = β1
Fj,t−x

Frequency
+ β2

Fj,t+x

Frequency
+ Fixed Effectsjit + εjit, (17)

where, as before, Fj,t−x is a dummy equal to one if institution j filed a 13-F report in

the x-weeks previous to week t and Fj,t+x is a dummy equal to one if institution j filed

a 13-F report in the x weeks following week t. The coefficient β2 should identify trade

activity immediately before a report. For instance, if front-running is a concern of 13-F

filers that trade CDS indexes, then β2 > 0 to indicate that institutions trade relatively

higher immediately before reporting. Then, as suggested by Proposition 5, we should

find an increase in the probability of trade in the time period after relative to the time

period before a report, or β1 > β2.

We focus on the sample of filers trading US CDS indexes and report results using the

two sets of fixed effects from above. Columns (1) and (2) of Table 4 look at the probability

of trade in the week before versus the week after the week of the 13-F filing. Similarly,

columns (3) and (4) broaden the horizon to two weeks before and after.

As in Table 2, the first row of the table shows that the probability of trade with

periphery institutions increases in the week (two weeks) after a filing. In the week (two

weeks) prior to the filing, the probability of trade with non-central institutions is also

slightly above the average, but importantly the magnitude is always smaller than in the

time period after. In fact, when we control for institution-quarter fixed effects, we find

no statistical effect on trade with periphery institutions just before a report. However, we

find a report increases the probability of trade with non-central institutions by around

14-15% in the week to two weeks just after a report.

While we find a significant impact of a 13-F filing on trade with periphery institutions,
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Table 4: Impact of 13-F filing on trade in week(s) after report relative to before.

x = 1 week x = 2 weeks
(1) (2) (3) (4)

Dependent Variable: Trade with Periphery, βp

Filed in week t− x, Fi,t−x 0.237*** 0.140* 0.271*** 0.149**
(0.075) (0.074) (0.059) (0.060)

Filed in week t + x, Fi,t+x 0.124* 0.027 0.124** 0.018
(0.075) (0.074) (0.059) (0.060)

Prob>F: β1 = β2 0.266 0.259 0.058 0.087
R-squared 0.176 0.198 0.176 0.198

Dependent Variable: Trade with Core, βc

Filed in week t− x, Fi,t−x 0.102* -0.016 0.137*** -0.018
(0.054) (0.054) (0.042) (0.043)

Filed in week t + x, Fi,t+x 0.053 -0.065 0.130*** -0.022
(0.054) (0.054) (0.043) (0.043)

Prob>F: β1 = β2 0.499 0.497 0.891 0.940
R-squared 0.183 0.204 0.183 0.204

Dependent Variable: Difference, βp − βc

Filed in week t− x, Fi,t−x 0.135* 0.156** 0.133** 0.167***
(0.073) (0.073) (0.058) (0.058)

Filed in week t + x, Fi,t+x 0.072 0.092 -0.005 0.040
(0.073) (0.073) (0.058) (0.058)

Prob>F: β1 = β2 0.522 0.516 0.066 0.091
R-squared 0.097 0.119 0.097 0.119
Fixed Effects

Week − index yes yes yes yes
Institution yes no yes no
Institution − quarter no yes no yes

Observations 458,640 458,640 454,896 454,896

Notes: Sample includes trades of US credit default swap indexes by regulated institutions or those trading
CDS indexes on regulated institutions, that filed a 13-F report at least once in the sample period, 2013Q1-
2017Q4. The independent variables, Fj,t−x/Frequency and Fj,t+x/Frequency, are normalized dummies, where
the dummies are equal to one if institution j filed a 13-F within the previous x weeks and within the following
x weeks, respectively, to week t. The two dependent variables are dummies if institution j traded CDS index
i in week t with a periphery and core institution, respectively. Test on difference: tests whether the difference
in the coefficients is equal to zero. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

we find no effect on trade with core institutions. The coefficient estimates for trade in

the one or two weeks after a 13-F filing versus before are statistically the same (as shown

in the middle panel of Table 4). We test the difference in the probability of trade and

find a significant, positive impact of a 13-F on trade with periphery institutions relative

to core institutions, which verifies the estimates effects from Tables 2 and 3.
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6.4 Market Liquidity and Private Information

In our theory, private information is relevant due to trade frictions that makes assets

illiquid. Indeed if we consider the frictionless competitive market version of the model,

investors can buy or sell the asset immediately at a fixed transfer, the competitive price.

This implies that all investors’ reservation values must be equal to the competitive price

and are independent of the investors’ utility type. As a result, in the competitive case,

private information and investors’ screening ability are irrelevant.

The competitive market version of the model is similar to the limit when trade fric-

tions vanish, i.e. λ → ∞. Naturally, in this extreme case, we should find no difference

in the effect of a 13-F on the probability of trading with core vs. periphery investors.

Although we do not prove it, it seems reasonable to expect that as frictions are reduced

and frequency of trade increases, that private information becomes less relevant in de-

termining trade outcomes. As a result, we expect the differential impact of information

disclosure on trade with core versus periphery investors to become weaker. We study if

there is such a relationship in the data in Table 5.

Table 5 shows the results from specification (16), run separately for three groups of

CDS index classes with different trade frequencies. IHS Markit’s CDX index class on

North American entities is by far the most liquid in terms of trading frequency, account-

ing for roughly 65% of trades in our sample. The second most liquid class is Markit’s

CMBX indexes referencing commercial mortgage-backed securities, which accounts for

a much smaller fraction of trades (23% of trades). The group "Other" accounts for the

remainder and includes indexes that trade infrequently, such as those that reference

sub-prime mortgage backed securities or municipal CDSs, swaps referencing interest

and principal components of agency pools, or the Dow Jones CDX family.

We find that as an index is traded more frequently in the market, the impact of a 13-F

on trade with the periphery is diminished, as well as the effect relative to trade with

the core. Using week-index and institution fixed effects, columns (1)-(3), we find that a

13-F filing increases the probability of trade with the periphery by 9.1% in the market

for CDX, 29.2% in the market for CMBX, and 59.4% in the remaining markets for low

liquidity indexes. We find a differential impact on trade with the periphery relative to

the core of 22.8% and 38.8% in the less liquid markets for CMBX and other indexes, but

not in the market for CDX. The results the same if we control for institution-quarter fixed

effects, in columns (4)-(6).

While the previous section showed that private information and screening ability
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Table 5: Impact of 13-F filing on trade, by CDX Index Class

CDX CMBX Other CDX CMBX Other
(1) (2) (3) (4) (5) (6)

Percent of Trades 65.6% 23.4% 11% 65.6% 23.4% 11%
Dependent Variable: Trade with Periphery, βp

Filed in prev. week, Fi,t−x 0.091 0.292** 0.594*** 0.053 0.178* 0.353*
(0.089) (0.116) (0.188) (0.089) (0.102) (0.185)

R-squared 0.448 0.317 0.111 0.478 0.483 0.148
Dependent Variable: Trade with Core, βc

Filed in prev. week, Fi,t−x 0.122 0.064 0.207* 0.037 -0.045 0.034
(0.077) (0.072) (0.123) (0.074) (0.068) (0.122)

R-squared 0.392 0.362 0.105 0.455 0.452 0.135
Dependent Variable: Difference, βp − βc

Filed in prev. week, Fi,t−x -0.031 0.228* 0.388** 0.016 0.223** 0.318*
(0.092) (0.121) (0.189) (0.091) (0.111) (0.187)

R-squared 0.164 0.240 0.068 0.216 0.111 0.187
Fixed Effects

Week − index yes yes yes yes yes yes
Institution yes yes yes no no no
Institution − quarter no no no yes yes yes

Observations 38,376 102,336 268,632 38,376 102,336 268,632

Notes: Sample includes trades of US credit default swap indexes by regulated institutions or those trading CDS indexes on
regulated institutions, that filed a 13-F report at least once in the sample period, 2013Q1-2017Q4. The independent variable,
Fj,t−1/Frequency, is a normalized dummy, where the dummy equals to one if institution j filed a 13-F within the week
t− 1. The two dependent variables are dummies if institution j traded CDS index i in week t with a periphery and core
institution, respectively. Test on difference: tests whether the difference in the coefficients is equal to zero. Standard errors
are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

are features that affect the probability of trade conditional on a meeting, and hence

the overall market structure, this section provides evidence that trading delay is also a

relevant friction in OTC markets. When delay is severe, private information shapes the

market’s structure to a greater extent than when delay is less severe.

6.5 Robustness

The empirical results in Tables 2 through 5 are robust to alternative specifications and

tests. We briefly summarize them here and report the details in Appendix E. First, since

our primary sample included only filers, we end up ignoring many trades involving

non-filers that may provide a useful counter-factual to filers. However, to make the right

comparison we need to assign non-filers with filing dates, which we do quarterly using

the observed distribution of filing dates. Then, we test to see if there is an effect of a "real"
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13-F filing versus a "fake" 13-F fling and find a positive and statistically significant effect.

Further, we also find that a "real" filing shifts the probability of trade towards periphery

institutions while a "fake" filing does not, in-line with our results above. These results

are reported in Tables 6 and 7. In Table 8 we consider how a 13-F filing affects the

probability of trade, separately for buyers and sellers. We find the results go through for

both sides of the market, in equal magnitude. In Table 9, we show that our results are

robust if we consider the 45-day cutoff rule as exogenous variation in filing, unrelated

to CDS trading in a given quarter. Hence, even though there is not a strong case to be

made for why endogeneity in filing would lead to bias in the direction of our results, we

show that a reasonable control for this leaves our results unchanged.

7 The efficient amount of screening

The previous sections explored how private information shapes the structure of trade

in decentralized markets. In this section we explore the connection between screening

ability and efficiency in OTC markets with private information.

A natural implication of private information is that there are important gains for

those investors with superior information. Not only do these investors get high rewards

from their expertise, i.e. high expected intermediation profits, but also they improve

efficiency in bilateral trade. Meetings involving an investor with high screening ability

are more likely to result in trade, and as a result, allow assets to flow faster from low-

valuation to high-valuation investors, improving efficiency. Then is it always better, in

terms of aggregate welfare, to have more information in the market by endowing all

investors with α = 1? The answer is, it depends. Welfare may rise or fall with more

information as a result of how it reallocates the gains from trade.

Why would the market running under full information be inefficient? As explored

in Bethune et al. (2019), OTC markets with asset creation feature a double-sided hold-up

problem. The first hold-up problem is standard. Sellers create surplus when obtaining

an asset, either through buying from lower valuation investors or issuing, and then

selling it to high-valuation investors. However because trade occurs after the seller

acquires the asset, if they only receive a fraction of the gains from trade, they face a

hold-up problem and undervalue assets. The second hold-up problem is on the buyer

side and is more specific to models of intermediation. Buyers also create surplus by

making an “investment” in not acquiring or creating an asset, and waiting to purchase
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it in the future. If they only receive a fraction of the future gains from trade, they face a

hold-up problem and overvalue assets. As argued in Bethune et al. (2019), the double-

sided hold-up problem implies that the equilibrium in the market is always inefficient in

the sense that there is no way to split the surplus between buyer and seller that restores

efficiency. Interestingly, private information can help alleviate the inefficiencies that

follow from the double-sided hold-up problem, as it allows for a mechanism to transfer

surplus from buyer to seller, and vice-versa, through informational rents.

To illustrate this, consider a version of the model where screening ability can take

only two values, α = {0, 1}. Let π ∈ [0, 1] be the fraction of investors with α = 1,

which we will call experts. Figure 3 illustrates the effects of changing π on welfare,

W =
∫ ∫

Vn(θ)dΦn(θ) + Vo(θ)dΦo(θ), and asset supply, s, in a numerical example. We

assume r = 0.03, µ = η = 1/10, λ = 6, ν ∼ N(1, 25), and report results for varying

values of ψ1, the probability an owner makes an offer. Notice in this example a fraction

of agents have ν < 0 which implies they will only create assets in order to sell them, and

as the results in Section 5 show, these trades will typically occur with better informed

agents serving as intermediaries.

Figure 3: The effects of information on welfare and the supply of assets.
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Notes: The examples above assume α ∈ {0, 1}, where π ∈ [0, 1] is the fraction of experts α = 1. Each line represents a
separate owner offer rate, ψ1. The remaining parameters are r = 0.03, µ = η = 1/10, λ = 6, and ν ∼ N(1, 25).

The left-panel in Figure 3 illustrates the percentage change in welfare from intro-

ducing experts. Welfare may rise or fall with information, depending on the value of

ψ1. When ψ1 = 1, owners always get to make the offer, and so when an investor gets

an issuance opportunity they understand the gains from re-selling will only depend on
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their own screening ability and not the screening ability of any counterparty they meet.

When π is low, the gain from creating an asset to resell is low because owners will often

be making uninformed offers and giving up informational rents. When π increases, it

spurs asset creation because the gains from re-selling rise. In turn, asset supply rises

(right panel of Figure 3) and welfare rises.

Alternatively, consider when ψ1 = 0 so that non-owners always get to make the offer.

In this case, when an investor gets an issuance opportunity the only gain from creating

an asset and re-selling is given by any informational rents they get when their counter-

party is uninformed. When π is low, informational rents are high and so the incentive

to create assets is high. When π increases, informational rents and asset issuance fall,

and as a result asset supply and welfare fall.

Figure 4: The effects of information on intermediation profits and issuance.
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Notes: The examples above assume α ∈ {0, 1}, where π ∈ [0, 1] is the fraction of experts α = 1 and non-owners possess
make all the offers, ψ1 = 0. The remaining parameters are r = 0.03, µ = η = 1/10, λ = 6, and ν ∼ N(1, 25).

Figure 4 illustrates how more information can distort the incentive to create assets for

the case when ψ1 = 0. The left panel shows the net profits from intermediating assets, as

given in (7), as a function of the utility type. Moving from an economy with no experts

to an economy with all experts implies a lower incentive to create assets for agents with

low ν. The right panel shows the distribution of non-owners for both economies, φn.

The shaded region represents which non-owners will create an asset. When π = 0,

almost every non-owner with ν < 0 creates an asset since the gain from intermediating

overcomes the utility loss from holding. However when π = 1, only non-owners with
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ν > 0 create assets. This example shows how in a second-best economy, improving

information may distort the gains from trade and lead to lower welfare.

8 Concluding remarks

We propose a theory of financial intermediation based on heterogeneity in the infor-

mation investors possess about the trading motives of their counterparties. Superior

information allows investors to avoid distortive mechanisms and, as a result, the in-

vestors who are the most central in trade must be endowed with superior information.

We provide empirical evidence in line with this central prediction of our theory by ex-

amining the effect of filing a 13-F form to the SEC, which makes public the institution’s

holdings of SEC regulated securities public information, on the probability of trade in

the CDS index market. We show that a 13-F filing increases the probability of trade with

periphery institutions to a greater extent than with core institutions, and in several spec-

ifications we find no effect of a 13-F filing on trade with core institutions. This prediction

follows from our theory in which core institutions are already more likely to possess in-

formation about the trading motives of filers, but does not follow from other theories of

financial market intermediation based on complete information. Further, we show that

better information, in the sense of providing higher screening ability to all investors, is

not always desirable in OTC markets with intermediation.

The predictions of our model and our empirical results are robust across varying

assumptions and specifications. In Appendix A, we show that TIOLI bid and ask prices

are the solution to a mechanism design problem that maximizes the expected profits of

the investor making the offer, analogous to the one in Myerson (1981). We also show our

prediction that screening experts form the core of the market survives if we consider a

mechanism that maximizes the expected trade surplus, as in Myerson and Satterthwaite

(1983). In Appendix E, we provide additional robustness to our empirical tests.

In recent years, many important theoretical contributions have been advanced with

the goal of understanding the driving forces of intermediation in OTC markets. Our pa-

per provides a new theory of intermediation along with empirical support using micro-

data that suggests the mechanism we study is relevant. Since these other theories are

built on the assumption of common knowledge, our empirical results should not be seen

as a test of these models since they do not provide theoretical predictions about informa-

tion revelation and market structure. However, we also emphasize that our results imply
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that information heterogeneity is an important determinant of which institutions popu-

late the core of OTC markets. To our knowledge, there is no existing empirical work that

tests other theories of endogenous intermediation nor are there existing theories about

private information and endogenous intermediation in OTC markets.
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A Appendix: Optimal Mechanisms

We conjectured that it is optimal for the owner to use an ask price to sell the asset when

she does not observe the type of the non-owner in a meeting. Likewise, it is optimal for

a non-owner to use a bid price when uninformed. In this section, we show that these are

in fact optimal selling and buying mechanisms.28

A.1 The optimal selling mechanism as an ask price

First consider the problem of an owner designing a mechanism to maximize their ex-

pected gains from trade. It is without loss of generality to focus on direct mechanisms

28It is worth mentioning that many variations of the techniques and results we discuss in this section
are standard in the mechanism design literature, and can be found in, for example, textbooks such as
Mas-Colell et al. (1995). They are included in this section for completeness of the manuscript. Readers
that have familiarity with this literature can skip this section without loss in understanding of the proofs
we present in Appendix B.
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due to the revelation principle. A direct mechanism for an owner with reservation value

∆o is a pair of functions m = (p, x) : [
¯
∆, ∆̄] → [0, 1] ×R, where, for given reservation

value ∆n of the non-owner, p(∆n) represents the probability of transferring the asset

from the owner to the non-owner, and x(∆n) represents the transfer from the non-owner

to the owner.

To keep the presentation simple, we assume for now that the distribution of reserva-

tion values of non-owners, Mn(·; αn), has a non-empty support [
¯
∆, ∆̄] and a continuous

density mn(·; αn) which is bounded away from zero. In the equilibrium we construct,

these conditions may not hold but using an ask price is still optimal. We omit the argu-

ment αn from Mn(·; αn) and mn(·; αn) to keep the notation short.

The problem of an owner with reservation value ∆o is

max
m

∫
[x(∆n)− p(∆n)∆o]mn(∆n)d∆n (18)

subject to

IR : p(∆n)∆n − x(∆n);≥ 0 and (19)

IC : p(∆n)∆n − x(∆n) ≥ p(∆̂n)∆n − x(∆̂n); (20)

for all ∆n and ∆̂n.

We will show a solution to (18)-(20) is associated with an ask price. To do so, it is

helpful to start with the following lemmas.

Lemma 5. A mechanism m = (p, x) satisfies (19) and (20) if, and only if, p(∆n) is non-

decreasing and U(∆n) = U(
¯
∆) +

∫ ∆n

¯
∆ p(∆)d∆ with U(

¯
∆) ≥ 0.

Proof. Let us start showing the necessity part. The IC constraint (20) for a non-owner

with reservation value ∆n implies that

U(∆n) ≥ p(∆̂n)∆n − x(∆̂n) = U(∆̂n) + p(∆̂n)[∆n − ∆̂n]

=⇒ U(∆n)−U(∆̂n) ≥ p(∆̂n)[∆n − ∆̂n].

The IC constraint (20) for a non-owner with reservation value ∆̂n implies that

U(∆̂n)−U(∆n) ≥ p(∆n)[∆̂n − ∆n].

Reorganizing the two inequalities above, we have that

p(∆n)[∆n − ∆̂n] ≥ U(∆n)−U(∆̂n) ≥ p(∆̂n)[∆n − ∆̂n].

And we can conclude that p is non-decreasing. Moreover, because p is monotone, it has
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at most countable many discontinuities. Therefore,

p(∆n) ≥
U(∆n)−U(∆̂n)

∆n − ∆̂n
≥ p(∆̂n)

implies that U is differentiable almost everywhere and it must satisfy

U′(∆n) = p(∆n) =⇒ U(∆n) = U(
¯
∆) +

∫ ∆n

¯
∆

p(∆)d∆.

Because m = (p, x) satisfies the IR constraint (19), U(∆n) ≥ 0 for all ∆n. Hence, we must

have that U(
¯
∆) ≥ 0.

For the sufficient part, first that, if U(∆n) = U(
¯
∆) +

∫ ∆n

¯
∆ p(∆)d∆ and U(

¯
∆) ≥ 0, then

U(∆n) ≥ 0 for all ∆n since p(∆n) ∈ [0, 1]. Hence, the mechanism satisfies individual

rationality. For incentive compatibility note that

U(∆n)−U(∆̂n) =
∫ ∆n

∆̂n
p(∆)d∆n.

Since p is non-decreasing, we have that

U(∆n) ≥ U(∆̂n) + p(∆̂n)[∆n − ∆̂n] =⇒ U(∆n) ≥ p(∆̂n)∆n − x(∆̂n).

That is, the IC constraint (20) is satisfied. This concludes the proof of the lemma.

Lemma 6. Let the distribution of non-owners, Mn, have a non-empty support [
¯
∆, ∆̄] and a

continuous density mn that is bounded away from zero. A direct mechanism m∗ = (p∗, x∗)

solves problem (18) if, and only if, it solves problem

max
m

∫
p(∆n)

[
∆n −

1−Mn(∆n)

mn(∆n)
− ∆o

]
mn(∆n)d∆n (21)

subject to p(∆n) being increasing and U(∆n) := p(∆n)∆n − x(∆n) =
∫ ∆n

¯
∆ p(∆)d∆.

Proof. Using Lemma 5, we can rewrite the objective function given by problem (18) as∫
[x(∆n)− p(∆n)∆o]mn(∆n)d∆n =∫
p(∆n) [∆n − ∆o]mn(∆n)d∆n −

∫
U(∆n)mn(∆n)d∆n =∫

p(∆n) [∆n − ∆o]mn(∆n)d∆n −
∫ ∫ ∆n

¯
∆

p(∆)d∆mn(∆n)d∆n −U(
¯
∆).

We can then apply integration by parts in the following term∫ ∆̄

¯
∆

∫ ∆n

¯
∆

p(∆)d∆mn(∆n)d∆n

=
∫ ∆n

¯
∆

p(∆)d∆Mn(∆n)

∣∣∣∣∆̄
¯
∆
−
∫

p(∆n)Mn(∆n)d∆n =
∫

p(∆n)[1−Mn(∆n)]d∆n.
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Combining the above equations, we have that the objective function is∫
p(∆n)

[
∆n −

1−Mn(∆n)

mn(∆n)
− ∆o

]
mn(∆n)d∆n −U(

¯
∆).

For the last, by Lemma 7, for the mechanism to satisfy the IC constraint we must have

that p(∆n) is non-increasing.

Now we can state the result that an ask price is an optimal selling mechanism under

incomplete information. Define the functions

H̄n(q) = min
ω, r1 , r2

ωr1 + (1−ω)r2 = q

{ωHn(r) + (1−ω)Hn(r)} and h̄n(q) =
dH̄n(q)

dq
, (22)

where hn(q) = M−1
n (q)− 1−q

mn(M−1
n (q))

and Hn(q) =
∫ q

0 hn(r)dr.

Proposition 6. Let the distribution of non-owners, Mn, have a non-empty support [
¯
∆, ∆̄] and a

continuous density mn that is bounded away from zero. Define the functions

cn(∆) = h̄n (Mn(∆)) and c−1
n (∆) = inf{∆n ∈ [

¯
∆, ∆̄]; cn(∆n) ≥ ∆}.

Then, for given ∆o ∈ [
¯
∆, ∆̄] the direct mechanism

m(∆n) =
(

p(∆n), x(∆n)
)
=


(
1, c−1

n (∆o)
)

if cn(∆n) ≥ ∆o

(0, 0) otherwise

achieves the maximum in problem (21).

Proof. We can write the objective function as∫
p(∆n)

[
∆n −

1−Mn(∆n)

mn(∆n)
− ∆o

]
dMn =

∫
p(∆n) [hn(Mn(∆n))− ∆o] dMn

=
∫

p(∆n) [cn(∆n)− ∆o] dMn +
∫

p(∆n)
[
hn(Mn(∆n))− h̄n(Mn(∆n))

]
dMn.

Let us consider the last term of the above equation.∫
p(∆n)

[
hn(Mn(∆n))− h̄n(Mn(∆n))

]
dMn

= p(∆n) [Hn(Mn(∆n))− H̄n(Mn(∆n))]
∆̄

¯
∆ −

∫
[Hn(Mn(∆n))− H̄n(Mn(∆n))] dp(∆n).

Since H̄n is the convex-hull of Hn, they coincide at the boundary points
¯
∆ and ∆̄, and we

conclude that the first term of the final expression is equal to 0. The objective function

equals ∫
p(∆n) [cn(∆n)− ∆o] dMn −

∫
[Hn(Mn(∆n))− H̄n(Mn(∆n))] dp(∆n).

42



It is easy to see that our proposed mechanism maximizes the first term since, by con-

struction, p(∆n) = 1 whenever cn(∆n) ≥ ∆o. Also, the proposed mechanism maximizes

the second term. To see this, note that the second term is nonpositive for any weakly

increasing p(∆n). In our proposed mechanism, this term is exactly zero because when-

ever Hn(Mn(∆n))− H̄n(Mn(∆n)) > 0 the derivative g(q) = H̄nG(q)
dq is constant due the

convex hull and, as a result, dp(∆n) is zero. Thus, the proposed mechanism achieves the

maximum in problem (21).

For the owner, asking the price c−1
n (∆o) and selling the asset whenever the non-owner

has a reservation value higher than the ask price is an optimal mechanism. Therefore, it

coincides with the optimal ask price analyzed in Section 3.1.

A.2 The optimal buying mechanism as a bid price

Now consider the problem of a non-owner designing a mechanism to maximize their

expected gains from trade. Similar to subsection A.1, to keep the presentation simple,

we assume the distribution of reservation values of owners, Mo(·; αo), has a non-empty

support [
¯
∆, ∆̄] and a continuous density mo(·; αo). The results do not depend on these

conditions in equilibrium. We also omit the argument αo from Mo(·; αo) and mo(·; αo) to

keep the notation short.

Non-owners choose a mechanism to maximize their expected gains from trade. With-

out loss of generality, we focus on direct mechanisms due to the revelation principle. As

before, a direct mechanism is a pair of functions m = (p, x) : [
¯
∆, ∆̄] → [0, 1]×R, where,

for given reservation value ∆o of the owner, p(∆o) represents the probability of transfer-

ring the asset from the owner to the non-owner, and x(∆o) represents the transfer from

the non-owner to the owner. The problem of a non-owner with reservation value ∆n is

given by

max
m

∫
[p(∆o)∆n − x(∆o)]mo(∆o)d∆o (23)

subject to

IR : x(∆o)− p(∆o)∆o ≥ 0 and (24)

IC : x(∆o)− p(∆o)∆o ≥ x(∆̂o)− p(∆̂o)∆o; (25)

for all ∆o and ∆̂o.

We will show the solution to problem (23) - (25) is associated with a bid price. To do

so, we will use the results in the following lemmas, which are analogs to Lemmas 5 and
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6.

Lemma 7. A mechanism m = (p, x) satisfies (24) and (25) if, and only if, p(∆n) is decreasing

and U(∆n) = U(
¯
∆) +

∫ ∆̄
∆o

p(∆)d∆ with U(
¯
∆) ≥ 0.

Proof. Let us start showing the necessity part. The IC constraint (25) for an owner with

reservation value ∆o implies that

U(∆o) ≥ x(∆̂o)− p(∆̂o)∆o = U(∆̂o)− p(∆̂o)[∆o − ∆̂o]

=⇒ U(∆o)−U(∆̂o) ≥ − p(∆̂o)[∆o − ∆̂o].

The IC constraint (25) for an owner with reservation value ∆̂o implies that

U(∆̂o)−U(∆o) ≥ − p(∆o)[∆̂o − ∆o].

Reorganizing the two inequalities above, we have that

−p(∆o)[∆o − ∆̂o] ≥ U(∆o)−U(∆̂o) ≥ −p(∆̂o)[∆o − ∆̂o].

And we can conclude that p is decreasing. Moreover, because p is monotone, it has at

most countable many discontinuities. Therefore,

−p(∆o) ≥
U(∆o)−U(∆̂o)

∆o − ∆̂o
≥ −p(∆̂o)

implies that U is differentiable almost everywhere and it must satisfy

U′(∆o) = −p(∆o) =⇒ U(∆o) = U(∆̄) +
∫

¯
∆

∆o
p(∆)d∆.

Because m = (p, x) satisfies the IR constraint (24), U(∆o) ≥ 0 for all ∆o. Hence, we must

have that U(∆̄) ≥ 0.

For the sufficient part, note that, if U(∆o) = U(∆̄) +
∫

¯
∆

∆o
p(∆)d∆ and U(∆̄) ≥ 0, then

U(∆o) ≥ 0 for all ∆n since p(∆n) ∈ [0, 1]. Hence, the mechanism satisfies individual

rationality. For incentive compatibility note that

U(∆o)−U(∆̂o) = −
∫ ∆o

∆̂o
p(∆)d∆n.

Since p is decreasing, we have that

U(∆o) ≥ U(∆̂o)− p(∆̂o)[∆o − ∆̂o] =⇒ U(∆n) ≥ x(∆̂o)− p(∆̂o)∆o.

That is, the IC constraint (25) is satisfied. This concludes the proof of the lemma.

Lemma 8. Let the distribution of non-owners, Mo, have a non-empty support [
¯
∆, ∆̄] and a

continuous density mo. A direct mechanism m∗ = (p∗, x∗) solves problem (23) if, and only if, it
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solves problem

max
m

∫
p(∆o)

[
∆n − ∆o −

Mo(∆o)

mo(∆o)

]
mo(∆o)d∆o (26)

subject to p(∆n) being decreasing and U(∆n) := x(∆o)− p(∆o)∆o =
∫ ∆̄

∆o
p(∆)d∆.

Proof. Using Lemma 7, we can rewrite the objective function given by problem (23) as∫
[p(∆o)∆n − x(∆o)]mo(∆o)d∆o =∫
p(∆o) [∆n − ∆o]mo(∆o)d∆o −

∫
U(∆o)mo(∆o)d∆o =∫

p(∆o) [∆n − ∆o]mo(∆o)d∆o −
∫ ∫ ∆̄

∆o
p(∆)d∆mo(∆o)d∆o −U(∆̄)

We can then apply integration by parts in the following term∫ ∆̄

¯
∆

∫ ∆̄

∆o
p(∆)d∆mo(∆o)d∆o

=
∫ ∆̄

∆o
p(∆)d∆Mo(∆o)

∣∣∣∣∆̄
¯
∆
+
∫

p(∆o)Mo(∆o)d∆o =
∫

p(∆o)Mo(∆o)d∆o.

Combining the above equations, we have that the objective function is∫
p(∆o)

[
∆n − ∆o −

Mo(∆o)

mo(∆o)

]
mo(∆o)d∆o −U(∆̄).

For the last, by Lemma 7, for the mechanism to satisfy the IC constraint we must have

that p(∆o) is decreasing. This concludes the proof of the proposition.

We are now ready to state the result that the optimal buying mechanism is a bid

price. Define the functions

H̄o(q) = min
ω, r1 , r2

ωr1 + (1−ω)r2 = q

{ωHo(r) + (1−ω)Ho(r)} , h̄o(q) =
dH̄o(q)

dq
(27)

where ho(q) = M−1
o (q) + q

mo(M−1
o (q))

and Ho(q) =
∫ q

0 ho(r)dr.

Proposition 7. Let the distribution of owners, Mo, have a non-empty support [
¯
∆, ∆̄] and a

continuous density mo. Define the functions

co(∆) = h̄o (Mo(∆)) and c−1
o (∆) = sup{∆o ∈ [

¯
∆, ∆̄]; co(∆o) ≤ ∆}.

Then, for given ∆n ∈ [
¯
∆, ∆̄] the direct mechanism

m(∆o) =
(

p(∆o), x(∆o)
)
=


(
1, c−1

o (∆n)
)

if co(∆o) ≤ ∆n

(0, 0) otherwise
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achieves the maximum in problem (26).

Proof. We can write the objective function as∫
p(∆o)

[
∆n − ∆o −

Mo(∆o)

mo(∆o)

]
mo(∆o)d∆o =

∫
p(∆o) [∆n − ho(Mo(∆o))] dMo

=
∫

p(∆o) [∆n − co(∆o)] dMo −
∫

p(∆o)
[
ho(Mo(∆o))− h̄o(Mo(∆o))

]
dMo.

Let us consider the last term of the above equation.∫
p(∆o)

[
ho(Mo(∆o))− h̄o(Mo(∆o))

]
dMo

= p(∆o) [Ho(Mo(∆o))− H̄o(Mo(∆o))]
∆̄

¯
∆ −

∫
[Ho(Mo(∆o))− H̄o(Mo(∆o))] dp(∆o).

Since H̄o is the convex-hull of Ho, they coincide at the boundary points
¯
∆ and ∆̄, and we

conclude that the first term of the final expression is equal to 0. The objective function

equals ∫
p(∆o) [∆n − co(∆o)] dMo +

∫
[Ho(Mo(∆o))− H̄o(Mo(∆o))] dp(∆o).

It is easy to see that our proposed mechanism maximizes the first term since, by con-

struction, p(∆o) = 1 whenever ∆n ≥ co(∆o). Also, the proposed mechanism maximizes

the second term. To see this, note that the second term is nonpositive for any weakly

decreasing p(∆o). In our proposed mechanism, this term is exactly zero because when-

ever Ho(Mo(∆o)) − H̄o(Mo(∆o)) > 0 the derivative ho(q) = H̄o(q)
dq is constant due the

convex hull and, as a result, dp(∆o) is zero. Thus, the proposed mechanism achieves the

maximum in problem (26).

For the non-owner, biding the price c−1
o (∆n) and buying the asset whenever the

owner has a reservation value lower than the bid price is an optimal mechanism. There-

fore, it coincides with the optimal bid price analyzed in Section ??.

B Appendix: Main proofs

B.1 Bilateral trade

Lemma (1). Consider the owner’s reservation value ∆o and a non-owner’s screening ability αn.

If there is a positive measure of non-owners with screening ability αn and reservation value above

∆o, that is, 1−Mn(∆o; αn) > 0, then asko is strictly above ∆o.
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Proof. Note that objo(ask; αn) is smaller or equal to zero for any ask smaller or equal to

∆o. Since Mn(·; αn) is a cumulative distribution, and therefore right continuous, and

Mn(∆o; αn) < 1, there exists ˆask > ∆o such that Mn( ˆask; αn) < 1. As a result, we have

that objo(asko; αn) ≥ objo( ˆask; αn) = [ ˆask− ∆o][1−Mn( ˆask; αn)] > 0 =⇒ asko � ∆o.

Corollary (1). Consider a reservation value of owners ∆o and a non-owner’s screening ability

αn. If there exists ε̄ > 0 such that Mn(∆o + ε; αn)−Mn(∆o; αn) > 0 for all ε ∈ (0, ε̄), then

with strictly positive probability the non-owner has a higher reservation value than the owner and

they do not trade. That is, we have that Mn(asko − ε; αn)−Mn(∆o; αn) > 0 for some ε > 0.

Proof. Because 1−Mn(∆o; αn) ≥ Mn(∆o + ε̄/2; αn)−Mn(∆o; αn) > 0, Lemma 1 implies

that asko − ∆o > 0. Let ε = asko − ∆o − min{asko − ∆o, ε̄}/2 ∈ (0, ε̄). Then have that

Mn(asko − ε; αn)−Mn(∆o; αn) = Mn(∆o + min{asko − ∆o, ε̄}/2)−Mn(∆o; αn) > 0.

Lemma (2). Consider a non-owner’s reservation value ∆n and an owner’s screening ability αo.

If there is a positive measure of owners with screening ability αo and reservation value below ∆n,

that is, lim∆↗∆n Mo(∆; αo) > 0, then bidn is strictly below ∆n.

Proof. It is analogous to the proof of Lemma 1 and we omit it here.

Corollary (2). Consider a reservation value of non-owners ∆n and a owner’s screening ability

αo. If there exists ε̄ > 0 such that Mo(∆n; αo)− Mo(∆n − ε; αo) > 0 for all ε ∈ (0, ε̄), then

with positive probability the non-owner has a higher reservation value than the owner and they

still do not trade. That is, we have that Mo(∆n − ε; αo)−Mo(bidn; αo) > 0 for some ε > 0.

Proof. It is analogous to the proof of Corollary 1 and we omit it here.

B.2 Equilibrium

Proposition (1). There exists a symmetric steady-state equilibrium, with bid and ask prices

associated with optimal buying and selling mechanisms.

Proof of Proposition 1. The strategy for our proof is the following. We define an operator

to map the reservation value and distribution of types across owners, ∆ and Φ, in a new

reservation value and distribution, ∆̂ and Φ̂, using the equilibrium conditions (in partic-

ular, the optimal bid and ask prices). In principle, such procedure may lead to functions

that are discontinuous or not differentiable. We then approximate these outcomes with

polynomials of degree j. The approximation in the space of polynomials guarantees that

the functions are well behaved and a fixed point exists. As the degree of the polynomials
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goes to infinity, a sub-sequence of the fixed points and the associated optimal bid/ask

must converge. We then can build the other equilibrium objects from this limit.

Consider a truncated version of our economy with preference types ν ∈ [
¯
ν, ν̄], where

ν̄ > 0 is some large constant and
¯
ν < −λν̄. With slight abuse of notation, we use F

and f below to denote the cumulative distribution and density of θ = (α, ν) truncated

in the set ΘM = Θ ∩ [0, 1]× [
¯
ν, ν̄]. We first show that an equilibrium for this truncated

economy exists. Then we take the limit when
¯
ν and ν̄ go to infinity and argue for the

convergence to an equilibrium of the original economy.

Defining some objects: Let a = λ
λ+µ+η+r , b = 1

λ+µ+η+r , κ = 1
1−a , κ̄ = λ+η

λ+µ+η ,
¯
∆ = ¯

ν
r ,

∆̄ = ν̄
r , φ(θ) = ∂Φ/∂ν, ∆ν = ∂∆/∂ν and h(q) = dH/dq.

Define the set D ⊂ C0(ΘM) as the set of functions ∆ ∈ C0(ΘM) satisfying

¯
∆ ≤ ∆(α, ν) ≤ ∆̄ and

b
2
≤ ∆(α, ν̂)− ∆(α, ν)

ν̂− ν
≤ (1 + κ)b

for all (α, ν), (α, ν̂) ∈ ΘM. Similarly, define the set P ⊂ C0(ΘM) as the set of functions

Φ ∈ C0(ΘM) satisfying

0 ≤ Φ(α, ν) ≤ F(α, ν) and 0 ≤ Φ(α, ν̂)−Φ(α, ν)

ν̂− ν
≤ F(α, ν̂)− F(α, ν)

ν̂− ν

for all (α, ν), (α, ν̂) ∈ ΘM.

Note that any sequence {∆j, Φj}j ⊂ D × P is equicontinuous and by the Arzelà-

Ascoli theorem has a converging sub-sequence and the limit is continuous. Moreover,

it is easy to show that D × P is convex. Therefore, D × P is a compact and convex

subspace of C0(ΘM)× C0(ΘM). We use this result later in the proof when applying the

Schauder fixed point theorem.

Solving for the optimal bid and ask functions: The pair (∆, Φ) ∈ D ×P is associated

with measures of reservation values Mo and Mn (note that in subsection 3.1 we normalize

these measures so they integrate to one, but this is done for presentation purpose and

is not necessary here). Fix an integer j ≥ 1 and let p ∈ Pj be the best monotone

approximation of Mo on [
¯
∆, ∆̄]. Note that the polynomial p ∈ Pj is uniquely defined

(see Lorentz (1971)). Let M̂o(x) = (1− 1/j) p(x) + 1/j(x −
¯
∆) for x ∈ [

¯
∆, ∆̄] (the mix

guarantees that m̂o(x) = ∂Mo(x)/∂x is bounded away from zero). Using M̂o (and after

normalizing them to be probability measures), we obtain the function H̄o given by (27),

which is well defined since M̂o have a compact support, is differentiable and has density

bounded away from zero. Finally, H̄o uniquely identifies the best buying mechanism as
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in Proposition 7. We obtain the best selling mechanism in a the same fashion.

Note that these best buying/selling mechanism are approximations that depend on

the parameter j. The operator we define now will depend on j and later we will take the

limit as j goes to infinity. It is easy to show that, not only the polynomial approximations

of Mo and Mn converge uniformly as j goes to infinity, but the implied profit and trade

probabilities will also converge.

Reservation value: Given j ≥ 1 and (∆, Φ) ∈ D ×P , define ∆̂ as

∆̂(θ) =
ν + λ[∆(θ) + (1− s)πo(θ)− sπn(θ)]

λ + µ + η + r
, (28)

where πo and πn are given by (3) and (4) associated with the bid and ask defined above

based on M̂o and M̂n.

Lemma 9. The function ∆̂ defined above belongs to D.

Proof. First note that ∆̂ ∈ C0(ΘM) since ∆ ∈ C0(ΘM) and πo and πn, given by (3) and

(4), are max functions, which preserve continuity. We need to show that

¯
∆ ≤ ∆(α, ν) ≤ ∆̄ and

b
2
≤ ∆(α, ν̂)− ∆(α, ν)

ν̂− ν
≤ (1 + κ)b.

Let us start showing that ∆̂ ≤ ∆̄ := ν̄/r. We have that

∆̂(θ) =
ν + λ[∆(θ) + (1− s)πo(θ)− sπn(θ)]

λ + µ + η + r
≤ ν + λ[∆(θ) + (1− s)(∆̄− ∆(θ))]

λ + µ + η + r
.

The inequality comes from two reasons. First, the highest profit of an owner is achieved

if he sells the asset to the highest valuation investor with probability one, which implies

that πo(θ) ≤ ∆̄− ∆(θ). Second, the lowest profit a non-owner can make is zero, which

implies that −πn(θ) ≤ 0. Rearranging the above inequality and using that ∆ ≤ ∆̄ = ν̄/r,

we have

∆̂(θ) ≤ ν + λ[∆(θ) + (1− s)(∆̄− ∆(θ))]
λ + µ + η + r

≤ r + λ

λ + µ + η + r
∆̄ ≤ ∆̄.

Let us now show that ∆̂(α,ν̂)−∆̂(α,ν)
ν̂−ν ≤ (1+ κ)b. Without loss of generality, assume that

ν̂ > ν, then we have that

∆̂(α, ν̂)− ∆̂(α, ν) =
ν̂− ν + λ[∆(α, ν̂)− ∆(α, ν)]

λ + µ + η + r

+ λ
(1− s)[πo(α, ν̂)− πo(α, ν)]− s[πn(α, ν̂)− πn(α, ν)]

λ + µ + η + r
.
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Note that the profit an owner makes must be decreasing in his reservation value. That

is because when selling the asset, the owner gives up his reservation value. As a result,

since ν̂ > ν and ∆ is increasing in ν, we have that πo(α, ν̂)− πo(α, ν) ≤ 0. For a similar

reason we know that πn(α, ν̂)− πn(α, ν) ≥ 0. Then we have that

∆̂(α, ν̂)− ∆̂(α, ν) ≤ ν̂− ν + λ[∆(α, ν̂)− ∆(α, ν)]

λ + µ + η + r
.

Note now that ∆ ∈ D and, therefore, ∆(α,ν̂)−∆(α,ν)
ν̂−ν ≤ (1 + κ)b. As a result,

∆(α, ν̂)− ∆(α, ν)

ν̂− ν
≤ 1 + λ(1 + κ)b

λ + µ + η + r
=

[
1 + a

(
1 +

1
1− a

)]
b

=
1− a + a(1− a) + a

1− a
b =

(
a +

1
1− a

)
b ≤ (1 + κ) b.

The proofs that ∆̂(α, ν̂) ≥
¯
∆ and ∆̂(α,ν̂)−∆̂(α,ν)

ν̂−ν ≥ b
2 are similar and we omit them here

to keep this section shorter.

Distribution: Given j ≥ 1 and (∆, Φ) ∈ D ×P , define the density φ̂ as

φ̂(θ) =
λq̄n(θ) + η

λ[q̄o(θ) + q̄n(θ)] + µ + η
1{∆̂(θ)≥0} f (θ), (29)

and the distribution Φ̂ as

Φ̂(θ) =
∫

θ̃≤θ
φ̂(θ̃)dθ̃, (30)

where we obtain q̄n(θ) and q̄o(θ) from equations (9) and (10) using the functions Ĥo and

Ĥn from the solutions to the optimal bid and ask we discussed above.

Similarly to the result for ∆̂, the construction of Φ̂ implies that the constraints we

impose in the set P are satisfied.

Lemma 10. The function Φ̂ defined above belongs to P .

Proof. First note that Φ̂ ∈ C0(ΘM) since it is the integral of the function φ̂ which is

bounded. So we just need to show that

0 ≤ Φ(α, ν) ≤ F(α, ν) and 0 ≤ Φ̂(α, ν̂)− Φ̂(α, ν)

ν̂− ν
≤ F(α, ν̂)− F(α, ν)

ν̂− ν

for all (α, ν), (α, ν̂) ∈ ΘM. All the above inequalities come from the fact that Φ̂ =
∫

φ̂ and

that φ̂ =
[λq̄n+η]1{∆̂≥0}
λ[q̄o+q̄n]+µ+η

× f , where f is the density of F and the function
[λq̄n+η]1{∆̂≥0}
λ[q̄o+q̄n]+µ+η

∈
[0, 1]. It is easy to see how these imply that Φ̂ is non-negative, bounded by F, and that

changes in Φ̂ are bounded by changes in F.
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For example, without loss of generality consider ν̂ > ν, then

Φ̂(α, ν̂)− Φ̂(α, ν) =
∫ ν̂

ν
φ̂(α, ν̃)dν̃

=
∫ ν̂

ν

[λq̄n(α, ν̃) + η]1{∆̂(α,ν̃)≥0}
λ[q̄o(α, ν̃) + q̄n(α, ν̃)] + µ + η︸ ︷︷ ︸

belongs to the interval [0,1]

f (α, ν̃)dν̃

≤
∫ ν̂

ν
f (α, ν̃)dν̃ = F(α, ν̂)− F(α, ν),

which implies that Φ̂(α,ν̂)−Φ̂(α,ν)
ν̂−ν ≤ F(α,ν̂)−F(α,ν)

ν̂−ν . The other inequalities can be obtained in

a similar manner and we omit them here.

Operator: Define the map Tj : D×P → D×P that maps (∆, Φ) ∈ D×P into (∆̂, Φ̂) ∈
D×P defined by equations (28) and (30). Lemmas 9 and 10 imply that Tj(∆, Φ) ∈ D×P ,

so the map is well defined. The next lemma shows that Tj is not only well defined, but

it is also a continuous map.

Lemma 11. The operator Tj, as defined above, is a continuous map.

Proof. Consider a sequence {(∆l, Φl)}l ⊂ D × P which converges to (∆∗, Φ∗) ∈ D × P
in the sup norm. We need to show that the sequence {Tj(∆l, Φl)}l = {(∆̂l, Φ̂l)}l also

converges to Tj(∆∗, Φ∗) = (∆̂∗, Φ̂∗).

Define Mol and Mnl as in subsection 3.1 (note that in subsection 3.1 we normalize

these measures so they integrate to one, but this done for presentation purpose and is not

necessary here), that is, Mol(∆̃) =
∫

1{∆l≤∆̃, α=αn}dΦnl and Mnl(∆̃) =
∫

1{∆l≤∆̃, α=αo}dΦol,

where Φol = Φl and Φnl = F − Φl. It is easy to see that Mol and Mnl are con-

tinuous on (∆l, Φl). Therefore, liml Mol = M∗o and liml Mnl = M∗n, where M∗o (∆̃) =∫
1{∆∗≤∆̃, α=αn}dΦ∗n and M∗n(∆̃) =

∫
1{∆∗≤∆̃, α=αo}dΦ∗o .

The polynomial approximations of Mol and Mnl, call them pol and pnl, also converge

to the polynomial approximations of M∗o and M∗n (this is the case in every norm since

they are polynomials of degree at most j), call them p∗o and p∗n. Let us show the result

for p∗o , the result for p∗n is analogous. {pol}l is a sequence of polynomials of uniformly

bounded degree j on a compact support, so it either has a convergent subsequence or it

diverges. If {pol}l diverges, then we have that lim ||pol −Mol|| ≥ lim ||pol|| − ||M∗o || =
∞. In this case, ||p∗o − Mol|| < ||pol − Mol|| for l high enough since lim ||p∗o − Mol|| =
||p∗o − M∗o || < ∞. This cannot happen since pol is the best polynomial approximation

to Mol. If {pol}l has a convergent subsequence which converges to some p̄o 6= p∗o , then
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lim ||p∗o − Mol|| = ||p∗o − M∗o || < || p̄o − M∗o || = lim ||pol − Mol||, which implies that

||p∗o − Mol|| < ||pol − Mol|| for l high enough. This also cannot happen since pol is

the best polynomial approximation to Mol. As a result, pol converges to p∗o . Since the

polynomials pol and pnl converge, then M̂ol(x) = (1− 1/j) pol(x) + 1/j(x−
¯
∆) and M̂nl =

(1− 1/j) pnl(x) + 1/j(x −
¯
∆) must also converge to M̂∗o (x) = (1− 1/j) p∗o(x) + 1/j(x −

¯
∆)

and M̂∗n = (1− 1/j) p∗n(x) + 1/j(x−
¯
∆).

Now let us show that the sequences {H̄ol}l and {H̄nl}l, defined using {M̂ol}l and

{M̂nl}l and (22) and (27), also converge. Call the limits H̄∗o and H̄∗n . Let us show for

{H̄ol}l, the result for {H̄nl}l is analogous. First note that

Hol(q) =
∫ q

0
hol(r)dr =

∫ q

0
M̂−1

ol (r) +
r

m̂ol(M̂−1
ol (r))

dr

=
∫ M̂−1

ol (q)

¯
∆

∆̃dM̂ol(∆̃) +
∫ M̂−1

ol (q)

¯
∆

Mol(∆̃)d∆̃,

where the above equality comes from substituting r = M̂ol(∆̃). It is easy to see from the

above equation that Hol converges in the sup norm to

H∗o (q) =
∫ q

0
h∗o(r)dr =

∫ q

0
M̂∗−1

o (q) +
q

m̂∗o(M̂∗−1
o (q))

dr.

By definition, we have that

H̄ol(q) = min
ω, r1 , r2

ωr1 + (1−ω)r2 = q

{ωHol(r1) + (1−ω)Hol(r2)} and h̄ol(q) =
dH̄ol(q)

dq
.

Then, we must have that H̄ol converges to H̄∗o , which is defined as above but using H∗o .

Note also that h̄ol(q) converges to h̄∗o(q) = dH̄∗o (q)/dq in the L1 norm. This is the case since

either h̄ol(q) = H̄ol(r1) − H̄ol(r2), for some r1 and r2 satisfying r1 + (1− ω)r2 = q, or

h̄ol(q) = hol(q). In the former case, h̄ol(q) converges to h̄∗o(q) = dH̄∗o (q)/dq because H̄ol

converges to H̄∗o . In the later case, h̄ol(q) = hol(q) must converge in the L1 norm to

h̄∗o(q) = hol(q) since H̄ol converges to H̄∗o .

Because h̄ol(q) and h̄nl(q) converge to h̄∗o(q) and h̄∗n(q) in the L1 norm, then we must

have that the associated bid and ask sequences, {bidnl}l and {askol}l, also converge to

ask∗o(q) and bid∗n(q) in the L1 norm since askol = h̄−1
nl (M−1

nl ) and bidnl = h̄−1
ol (M−1

ol ).

Finally, note that both, profits given by (28), and distributions given by (30), are

integral functions of bid, asks, Φ and ∆. Since, by our initial assumption, the sequence

{(∆l, Φl)}l ⊂ D ×P converges to (∆∗, Φ∗) ∈ D ×P in the sup, and we just argued that

{bidnl}l and {askol}l converge to ask∗o(q) and bid∗n(q) in the L1 norm, then {(∆̂l, Φ̂l)}l

converges to Tj(∆∗, Φ∗) in the sup norm.
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Now we can conclude that Tj has a fixed point.

Lemma 12. For every integer j ≥ 1, the map Tj defined above has a fixed point.

Proof. This is a direct application of the Schauder Fixed Point Theorem. D×P is convex

and compact, and Tj is continuous, so a fixed point exists.

Finding the fixed point: By the previous lemma, for each j ≥ 0, Tj : D ×P → D ×P
has a fixed point. That is, there is (∆j, Φj) such that Tj(∆j, Φj) = (∆j, Φj).

Let us construct the sequence of fixed points of the Tjs. That is, a sequence {∆j, Φj}j

such that Tj(∆j, Φj) = (∆j, Φj). Since {∆j, Φj}j ⊂ D × P , it is equicontinuous and

by the Arzelà-Ascoli theorem, {∆j, Φj}j has a converging sub-sequence. Passing to a

subsequence if necessary, let (∆∗, Φ∗o) := limj(∆j, Φj) and Φ∗n = F−Φ∗o . Since the space

of polynomials is dense in C1, we have that ∆∗ satisfies (28) with equality and Φ∗o satisfies

(30) with equality.

Define the sequence {H̄ j
o, H̄ j

n}j where, for each j, H̄ j
o and H̄ j

n are given by (22) and (27)

using M̂j
o and M̂j

n defined for the operator Tj evaluated at the fixed point (∆j, Φj). Note

that investors with negative reservation value won’t hold assets in equilibrium. Also, for

j high enough, for at least one i we have that ∆j(αi, ν̄) > 0. As a result, the support of

M̂j
o is an interval

[max{0, min
i
{∆(αi, ¯

ν)}}, max
i
{∆(αi, ν̄)}],

and the support of M̂j
n is the interval [mini{∆(αi, ¯

ν)}, maxi{∆(αi, ν̄)}]. We can take j

sufficiently high so {dH̄ j
o/dq, dH̄ j

n/dq}j are uniformly bounded by

¯
∆− 1

µ inf{ f (θ)}/(λ + η + µ)
and ∆̄ +

1
(λ + η) inf{ f (θ)}/(λ + η + µ)

.

As a result, passing to a subsequence if necessary, let (H̄∗o , H̄∗n) := limj(H̄ j
o, H̄ j

n).

Constructing the equilibrium: Let us define {bid∗, ask∗, ∆∗, φ∗o , φ∗n, s∗} in the following

way. We know that H̄∗o and H̄∗n are convex since they are the limit of convex functions.

Therefore, we can define the bid and ask functions, bid∗ and ask∗, using propositions (6)

and (7). Let φ∗o and φ∗n be the densities associated with the limits Φ∗o and Φ∗n discussed

above, and s∗ = Φ∗o(1, ν̄).

Verifying the equilibrium conditions:
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(i) Let us show that the ask price function ask∗(∆o) solves the owner’s problem (1), and

the bid price function bid∗(∆n) solves the non-owner’s problem (2), using a counter-

positive argument. If the ask price function ask∗(∆o) does not solve the owner’s

problem (1), then there is an alternative ask price ˆask that generates a strictly higher

profit. Since the distribution of reservation values of non-owners, M̂j
n, converges

to M∗n, it must be the case that ˆask also generates a strictly higher profit for the

distribution M̂j
n than the associated askj(∆o), which converges to ask∗(∆o). We

know that the last statement is false—by construction, askj(∆o) maximizes profits.

Therefore, the first statement must be false and we conclude that the ask price

function ask∗(∆o) does solve the owner’s problem (1). The argument for bid∗(∆n)

is analogous.

(ii) First note that ∆∗ is a fixed point of (28), which is equivalent to (7). Note also that

πo and πn, in (28), are given by (3) and (4). We can then conclude that (28) and

(7) coincide since we already showed that ask∗(∆o) and bid∗(∆n) are optimal and,

therefore, generate the same profits πo and πn.

(iii) The density in (30) is just a rewriting of (8) with φ̇o = 0. Moreover, φ∗n is defined

according to (12), and the stock of assets s∗ is defined according to (13).

This concludes the proof for the economy with preference types truncated between
¯
ν

and ν̄. Since ∑i
∫

ν2 f (αi, ν)dν < ∞, it is straightforward to show that the equilibrium of

the truncated economy converges to an equilibrium of the original economy as ν̄ goes to

infinity and
¯
ν goes to minus infinity.

B.3 Private Information and Market Structure

We build to the results in Lemmas 3 and 4 and Propositions 2 through 4 by first intro-

ducing a few helpful Lemmas.

Lemma 13. In any symmetric steady-state equilibrium {bid, ask, ∆, φo, φn, s}, we have that ∆(·)
is strictly increasing in ν.

Proof. For the proof, just note that

∆(θ) = ν− (µ + η)∆(θ) + λ(1− s)πo(θ)− λsπn(θ). (31)

The above equation must be strictly increasing otherwise the left-hand side of (31) would

be decreasing and the right-hand side would be strictly increasing (this by itself is a

consequence of πo been decreasing and πn increasing in ∆).
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Lemma 14. Consider a symmetric steady-state equilibrium {bidn, asko, ∆, φo, φn, s}, and let

types θ = (α, ν) and θ̂ = (α̂, ν̂) satisfy ∆(θ) = ∆(θ̂) and α > α̂. Then the probability of trade

of an owner and non-owner satisfy, (i) q̄o(θ) ≥ q̄o(θ̂), and (ii) q̄n(θ) ≥ q̄n(θ̂), both with strict

inequality if ∆(θ) = ∆(θ̂) > 0.

Proof. First consider the owner’s probability to sell an asset in a meeting. From s (11)

and (9), we have that

q̄o(θ)− q̄o(θ̂) = (α− α̂)
∫

1{asko>∆n≥∆o}φn(θn)dθn ≥ 0.

Since ∆(·) is continuous and strictly increasing, and φn(θ̃) is bounded below by µ f (θ̃)
λ+µ+η

for all θ̃, the distribution of reservation values of non-owners, Mn, satisfies the conditions

in Corollary 1. Therefore, trade probabilities must be distorted in meeting where the

seller does not know the type of the counterparty.

The proof for the non-owner’s case follow a similar logic. The difference is that,

in equilibrium, φo is zero when ∆(θ) < 0. This implies that non-owners with reserva-

tion value below zero all have zero probability to buy an asset. That is why the strict

inequality only holds when ∆(θ) = ∆(θ̂) > 0.

Lemma (3). Consider a symmetric steady-state equilibrium {bidn, asko, ∆, φo, φn, s}, and let the

types θ = (α, ν) and θ̂ = (α̂, ν̂) satisfy ∆(θ) = ∆(θ̂) and α > α̂. Then, (i) if ∆(θ) = ∆(θ̂) < 0,

we have that c(θ) = c(θ̂) = 0, and (ii) if ∆(θ) = ∆(θ̂) ≥ 0, we have that c(θ) > c(θ̂) > 0.

Proof. If ∆(θ) = ∆(θ) < 0, then in a stationary equilibrium we must have that φo(θ) = 0

and q̄n(θ) = 0. That is, there is no owner with negative reservation value holding assets

in equilibrium because they would not issue new assets nor buy from investors with

non-negative reservation value. So any existing assets would mature and disappear.

This implies that c(θ) = c(θ̂) = 0 when ∆(θ) = ∆(θ) < 0.

For ∆(θ) = ∆(θ) ≥ 0 we have the following. Replacing the equilibrium condition of

φo and φn in (14) we obtain

c(θ) =
λ

2Vol
× [η + λq̄n(θ)]q̄o(θ) + [µ + λq̄o(θ)]q̄n(θ)

η + µ + λ[q̄o(θ) + q̄n(θ)]
,

It is easy to verify that [η+λq̄n(θ)]q̄o(θ)+[µ+λq̄o(θ)]q̄n(θ)
η+µ+λ[q̄o(θ)+q̄n(θ)]

is strictly increasing in q̄o(θ) and q̄n(θ),

and, from Proposition 14, we know that q̄o(θ) > q̄o(θ̂) and q̄n(θ) ≥ q̄n(θ̂). Therefore, we

conclude that c(θ) > c(θ̂).

Proposition (2). Consider a symmetric steady-state equilibrium {bidn, asko, ∆, φo, φn, s}. If an

investor type θ∗ = (α∗, ν∗) is the most central, then α∗ = aI and c(θ∗) > c(θ) for all θ ∈ Θ
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satisfying α < aI .

Proof. It is easy to see that the most central investor cannot satisfy ∆(θ∗) < 0 since that

would imply c(θ∗) = 0. Then, we must ∆(θ∗) ≥ 0. This implies that α∗ equals 1,

otherwise we could pick θ′ such that α′ = 1 and ∆(θ′) = ∆(θ∗). Then, by Proposition

3, we would have c(θ′) > c(θ∗)—a contradiction. By a similar argument, we must also

c(θ∗) > c(θ) for any θ such that α < α∗ = 1.

Proposition (3). Consider a symmetric steady-state equilibrium {bidn, asko, ∆, φo, φn, s}. Then,

α = αI for all investors type θ = (α, ν) ∈ Θ such that c(θ) ≥
¯
c.

Proof. We can consider two cases. If supθ∈Θ{c(θ)} > supθ∈Θ{c(θ); s.t. α ≤ αI−1}, the re-

sults is trivial. For any θ, c(θ) ≥
¯
c implies that c(θ) > supθ∈Θ{c(θ); s.t. α ≤ αI−1}.

Therefore, by the definition of sup, we cannot have α ≤ αI−1. If supθ∈Θ{c(θ)} =

supθ∈Θ{c(θ); s.t. α ≤ αI−1}, then c(θ) ≥
¯
c implies that c(θ) = supθ∈Θ{c(θ); s.t. α ≤

αI−1}. But this is a contradiction since, by Proposition 3, there would exist θ′ such that

α′ = 1, ∆(θ′) = ∆(θ) and c(θ′) > c(θ) ≥
¯
c = supθ∈Θ{c(θ)}.

Proposition (4). Suppose there are only two screening abilities, αh = 1 and αl < 1. Consider a

symmetric steady-state equilibrium {bidn, asko, ∆, φo, φn, s} and some investor type θ ∈ Θ such

that ∆(θ) > 0. We have that np(θ) = 1 if, and only if, α = αh = 1.

Proof. Pick any θ = (α, ν) such that ∆(θ) > 0. First, let us consider the case where α = αh.

Then, the investor buys an asset with probability one whenever he has the bargaining

power and there are gains from trade. In the same way, he sells an asset with probability

one whenever he has the bargaining power and there are gains from trade. For any other

θ̂, either we have ∆(θ) > ∆(θ̂), ∆(θ) < ∆(θ̂) or ∆(θ) = ∆(θ̂). The measure of cases in

which ∆(θ) = ∆(θ̂) is zero. In the other two cases, we have that q(θ, θ̂) is bounded below

by ξo > 0 and q(θ̂, θ) is bounded below by ξn > 0. So we can conclude that np(θ) = 1.

Now, let us consider the case where α = αl. Then, by lemma 1, we know that

asko(αl, ∆(θ)) > ∆(θ). Define θε = θ + (α, ν) = (α, nu + ε). Note that we can take ε̄ > 0

small enough such that bidn(αl, ∆(θε)) < ∆(θ) for all ε ∈ (0, ε̄). That is because the

objective function that defines the bid is continuous and bidn(αl, ∆(θε)) is increasing in

the reservation value, which is increasing in ν. As a result, the investor type θ = (α, ν)

won’t sell or buy to any investor type θε for ε ∈ (0, ε̄). Since F has positive density

everywhere, we then have that np(θ) < 1.

Lemma (4). Consider a symmetric steady-state equilibrium {bidn, asko, ∆, φo, φn, s}, and let the

types θ = (α, ν) and θ̂ = (α̂, ν̂) satisfy ∆(θ) = ∆(θ̂) and α > α̂. Then,
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i) speedo(θ) > speedo(θ̂) and speedn(θ) ≥ speedn(θ̂), with strict inequality if ∆(θ) =

∆(θ̂) > 0, and

ii) πo(θ) > πo(θ̂) and (ii) πn(θ) ≥ πn(θ̂), with strict inequality if ∆(θ) = ∆(θ̂) > 0.

Proof. The result in part (i) is immediate from Lemma 14 since speed is λ times qo or qn.

For part (ii), we can write πo(θ)− πo(θ̂) from (3) as

πo(θ)− πo(θ̂) = (α− α̂)
∫

(∆n − ∆o) 1{∆n≥∆o} − (asko − ∆o) 1{∆n≥asko}d
Φn

1− s

= (α− α̂)
∫

(∆n − asko) 1{∆n≥asko} + (∆n − ∆o) 1{asko>∆n≥∆o}d
Φn

1− s
> 0.

Therefore, α > α̂ implies πo(θ) > πo(θ̂). The argument for πn is analogous. The only

difference for πn is that, in equilibrium, φn is zero when ∆(θ) < 0. This implies that

non-owners with reservation value below zero all have zero probability to buy an asset.

That is why the strict inequality only holds when ∆(θ) = ∆(θ̂) > 0.

C Extension with 13-F investors

In this section we provide a formal derivation of the results discussed in Section 6.1.

As a reminder, the distribution of types across 13-F and non-13-F investors is given by

F = ω13F13 +ωn13Fn13. Each 13-F investor draws a filing date T ≥ t0 with Poisson arrival

γ > 0. Filing dates are independent from each other and are not known beforehand. The

information revealed by filing a 13-F is imperfect. In a meeting after a 13-F investor files,

ρ ∈ (0, 1] is the probability that the report perfectly reveals the type of the 13-F investor

to the counterparty. This shock is independent and identically distributed across 13-F

investors and meetings and is independent from other shocks.

We consider how a filing affects the 13-F investor’s conditional probability of trade

with a given set of counterparties, Θ̂ ⊆ Θ. CAN THESE BE EITHER 13-F or NON-13-F?

The conditional probability the 13-F investor trades with counterparties in Θ̂ at time t is

given by

q̄13F
t (θ; Θ̂) = ωo q̄13F

ot (θ; Θ̂) + ωn q̄13F
nt (θ; Θ̂), (32)

where q̄13F
ot (θ; Θ̂) and q̄13F

nt (θ; Θ̂) are the conditional probabilities the 13-F investor sells an

asset to and buys an asset from a counterparty in Θ̂, respectively, and ωo,t = φo,t(θ)/ f (θ)

and ωn,t = 1−ωo,t are weights that give the probability of being an owner or non-owner,
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respectively.29 It is useful to define the discontinuity in trade probability for an in-

vestor of type θ trading with a group of investors Θ̂ as D13F
t (θ; Θ̂) = limε↘0 q̄13F

t+ε(θ, Θ̂)−
q̄13F

t−ε(θ; Θ̂).

We are interested in the effect of a 13-F filing on this discontinuity. That is, consider

a investor who received a Poisson shock to file the 13-F at time t = T. In this case, we

can write the discontinuity in trade probability in closed form as,

D13F
T (θ; Θ̂) = ωoξnEΘ̂

{
ρ(1− αn)1{∆n≥bid13F

T (∆n)}

}
(33)

+ ωnξoEΘ̂

{
ρ(1− αo)1{ask13F

T (∆o)≥∆o}

}
.

The expectation operator in the first and second term of (33) are conditional expectations

over θn ∈ Θ̂ and θo ∈ Θ̂, respectively. The effect of a 13-F filing depends positively on

how informative a filing is, ρ, and negatively on the screening expertise of the set of

counterparties, αn and αo. Intuitively, if the set of counterparties includes investors with

higher screening ability, the discontinuity is lower.

The following proposition establishes our main set of testable predictions: for a 13-

F investor who files at time T, (i) a 13-F filing causes a strictly-positive jump in the

probability of trade with periphery investors, (ii) a 13-F filing causes a weakly positive

jump in the probability of trade with core investors, and (iii) a 13-F filing shifts the

probability of trade towards periphery investors relative to core investors.

Proposition 8. Let ε > 0 be an arbitrarily small number. Then, if αI ∈ [1− ε, 1], then: (i)

D13F
T (θ; Θperiphery) > 0, (ii) D13F

T (θ; Θcore) ≥ 0, and (iii) D13F
T (θ; Θperiphery)−D13F

T (θ; Θcore) >

0, where Θcore = {θ ∈ Θ : c(θ) ≥ c}, Θperiphery is its complement, and c is defined in Proposi-

tion 3.

Proposition 8 considers the set of core investors as those with a centrality measure

in the top-p percentile, which Proposition 3 established as investors with α = αI . In-

formation revelation can potentially increase the probability of trade with both core and

periphery investors, however it must have a greater impact on the probability trade with

periphery investors relative to core investors precisely because core investors already

have an informational advantage.

This result, illustrated in Figure 5, is the key prediction of our model. If central

traders do indeed possess a better screening technology then we would expect to find

that public information revelation impacts them less.

29We omit the expressions for q̄13F
ot (θ; Θ̂) and q̄13F

nt (θ; Θ̂), but they follow from (9)-(11) replacing the
distributions φn and φo with conditional distributions with support over Θ̂.
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Figure 5: Filing form 13-F and the discontinuity in the probability of trade

D13F
t (θ; Θ̂)

0

t
T

•

•

•

Θ̂ = Θcore, α = 1

Θ̂ = Θcore, α < 1

Θ̂ = Θperiphery

Notes: The figure presents the discontinuity in trade probability D13F
t (θ; Θ̂) around the filing date for Form 13-F,

t = T. Away from t = T, there is no discontinuity. At t = T: (i) in the economy where maximum screening
ability is αI = 1, there is no discontinuity when trading with core investors, (ii) in the economy where maximum
screening ability is strictly less than one –i.e. αI < 1, there is a discontinuity when trading with core investors,
(iii) for either economy there is a discontinuity when trading with periphery investors, and this discontinuity is
always larger than when trading with core investors.

D An alternative trade mechanism

In this section, we explore a mechanism that maximizes the expected trade surplus in the

bilateral meeting, as in Myerson and Satterthwaite (1983). The mechanism we currently

use—ask and bid prices that maximize the owner’s and non-owner’s expected surplus,

respectively—does not maximize trade surplus for two reasons. The first reason is the

following. Consider a meeting where the owner designs the trade mechanism, but she

does not observe the type of the non-owner, while the non-owner does observe the type

of the owner. In this case, the owner will distort trade in order to maximize her trade

profits, as described in Corollary 1. However, if the non-owner would have been chosen

to design the mechanism, trade surplus would have been maximized, as the non-owner

observes the type of the owner.

The second reason the mechanism we use does not maximize trade surplus relates to

the incentives faced by investors. In a meeting where both owner and non-owner do not

observe the type of their counterparty, Myerson and Satterthwaite (1983) show that there

is no mechanism that implements the ex-post efficient allocation. When either owner or

non-owner is chosen to design the trade mechanism—the owner with probability ξo or

the non-owner with probability ξn—they are both willing to give up total surplus in

order to maximize their individual surplus.

Whenever owner or non-owner observes the type of their trade counterparty, ex-post

efficiency can be achieved by assigning all the gains from trade to the informed party.

When neither side is informed, the trade mechanism used is the one in Myerson and
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Satterthwaite (1983). We show our main results remain unchanged using this alternative

mechanism.30

D.0.1 Bilateral trade

We consider a mechanism that maximizes the total gains from trade, or trade surplus, in

a meeting. In any meeting, there are four possible information structures:

i. both owner and non-owner know each other types;

ii. the owner knows the non-owner’s type and the non-owner does not know the

owner’s type;

iii. the owner does not know the the non-owner’s type and the non-owner knows the

owner’s type; and

iv. neither owner or non-owner know each other types.

In case i, we can directly apply Nash bargaining since we have complete information.

In this case, we use the same notation as before to represent the bargaining power of

investors, with ξo denoting the owner’s bargaining power and ξn = 1− ξo denotes the

non-owner’s bargaining power. In case ii, to maximize the total surplus in the trade

the mechanism just gives all the bargain power to the owner. Since the owner knows

the type of the non-owner, she will sell the asset whenever the reservation value of the

non-owner is above her own and will extract all the surplus. In a similar way, in case iii,

the mechanism just gives all the bargain power to the non-owner. Since the non-owner

knows the type of the owner, she will buy the asset whenever the reservation value of

the owner is below her own and will extract all the surplus in the trade.

In case iv, we have two-sided incomplete information so we apply the mechanism

propose by Myerson and Satterthwaite (1983), which maximizes the expected gains from

trade in a meeting. In order to characterize the outcomes from such mechanism, it is

without loss of generality to focus on direct mechanisms due to the revelation principle.

A direct mechanism is a pair of functions m = (p, x) : [
¯
∆, ∆̄] × [

¯
∆, ∆̄] → [0, 1] × R,

where, for given reservation values ∆o and ∆n of owner and non-owner, p(∆o, ∆n) is the

probability of transferring the asset from the owner to the non-owner, and x(∆o, ∆n) is

the transfer from the non-owner to the owner. The mechanisms are also going to be a

function of the screening expertise αo and αn in equilibrium, but we omit this argument

here to keep the notation short.

30All proofs in this section are variations of previous proofs or directly derived from Myerson and
Satterthwaite (1983), so we omit these proofs here. They are available upon request.
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Let Mo(·; αo) and Mn(·; αn) be the cumulative distribution of reservation values of

owner and non-owner conditional on αo and αn, and mo(·; αo) and mn(·; αn) the respec-

tive densities. As before, we omit the argument αo and αn from the distributions above to

keep the notation short. The mechanism that maximizes the expected gains from trade

in the meeting solves

max
m

∫ ∫
p(∆o, ∆n) [∆n − ∆o] dMo(∆o)dMn(∆n) (34)

subject to

IRo : xo(∆o)− po(∆o)∆o ≥ 0; (35)

ICo : xo(∆o)− po(∆o)∆o ≥ xo(∆̂o)− po(∆̂o)∆o; (36)

IRn : pn(∆n)∆n − xn(∆n) ≥ 0 and (37)

ICn : pn(∆n)∆n − xn(∆n) ≥ pn(∆̂n)∆n − xn(∆̂n); (38)

where

xo(∆o) =
∫

x(∆o, ∆n)mn(∆n)d∆n, po(∆o) =
∫

p(∆o, ∆n)mn(∆n)d∆n,

xn(∆n) =
∫

x(∆o, ∆n)mo(∆o)d∆o and pn(∆n) =
∫

p(∆o, ∆n)mo(∆o)d∆o.

Equations (35) and (37) are the usual individual rationality constraints. They guar-

antee that the mechanism generates enough incentives for both agents to participate.

Equations (36) and (38) are the usual incentive compatibility constraints. They guaran-

tee that the mechanism generates enough incentives for both agents to truthfully reveal

their reservation values.

D.0.2 Expected gains from trade

The expected gains from trade of a type θo owner in a meeting is

πo(θo) =
∫ {

αo (1− αn + αn/2) [max(∆o, ∆n)− ∆o]

+ (1− αo)(1− αn) [x(∆o, ∆n)− p(∆o, ∆n)∆o]
}

d
Φn(θn)

1− s
, (39)

and the expected gains from trade of a type θn non-owner in a meeting is

πn(θn) =
∫ {

αn (1− αo + αo/2) [max(∆o, ∆n)− ∆o]

+ (1− αn)(1− αo) [p(∆o, ∆n)∆n − x(∆o, ∆n)]
}

d
Φo(θo)

s
. (40)

The expected gains from trade described in (39) and (40) are analogous to the ones
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described in (39) and (40). The difference is how investors split the trade surplus. Here,

trade occurs according to the arrangement discussed in subsection D.0.1, where transfers

are designed to maximize expected surplus.

D.0.3 Value functions and reservation value

In this section we describe the value functions for owners and non-owners and we pro-

vide an expression for the reservation value ∆. These objects are analogous to the ones

derived in subsection 3.3. The difference here is that we use the expected gains from

trade of owners and non-owners, πo and πo, that we computed in subsection D.0.2 in-

stead of the one in subsection 3.2. The value function for an owner of a type θ is given

by

rVo(θ) = ν− µ
[
Vo(θ)−Vn(θ)

]
+ λ(1− s)πo(θ). (41)

Likewise, the value function for a non-owner of type θ is,

rVn(θ) = η
[

max{Vo(θ), Vn(θ)} −Vn(θ)
]
+ λsπn(θ). (42)

Using equations (41)-(42), we can compute the reservation value function for an investor

of type θ, ∆(θ) ≡ Vo(θ)−Vn(θ). The reservation value ∆(θ) solves

r∆(θ) = ν− µ∆(θ)− η max{∆(θ), 0}+ λ(1− s)πo(θ)− λsπn(θ). (43)

D.0.4 The distribution of assets

The change over time in the density of owners with type θ is

φ̇o(θ) = ηφn(θ)1{∆(θ)≥0} − µφo(θ)− λφo(θ)q̄o(θ) + λφn(θ)q̄n(θ), (44)

where

q(θo, θn) = [1− (1− αo)(1− αn)]1{∆n≥∆o} + (1− αo)(1− αn)p(∆o, ∆n) (45)

is the probability of trade between a type θo owner and a type θn non-owner,

q̄o(θ) =
∫

q(θ, θn)φn(θn)dθn (46)

is the probability that a type θ owner sells an asset in a meeting, and

q̄n(θ) =
∫

q(θo, θ)φo(θo)dθo (47)

is the probability that a type θ non-owner buys an asset in a meeting. The difference

between the law of motion in (8) and (44) comes from the use the Myerson and Satterth-

waite (1983) trade mechanism. We can see this from the equations for q(∆o, ∆n) in the
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two different settings.

As in subsection 3.4, we can obtain an expression for the density of non-owners of

type θ from the equilibrium condition

φo(θ) + φn(θ) = f (θ), (48)

and an expression for total asset supply is given by

s =
∫

φo(θ)dθ. (49)

D.0.5 Equilibrium

We focus on symmetric steady-state equilibrium.

Definition 2. A family of direct mechanism, reservation values and distributions, {m = (p, x), ∆, φo, φn, s},
constitutes a symmetric steady-state equilibrium if it satisfies:

i. the mechanism m = (p, x) solves problem (34);

ii. the reservation value of investors ∆(·) is continuous and satisfies (43), where πo and πn are

given by (39) and (40); and

iii. the density of owners φo satisfies (44) with φ̇o = 0, the measure of non-owners φn satisfies

(48), and the stock of assets s satisfies (49).

As in section 4, the equilibrium definition does not include the value functions Vo

and Vn because we can recover them from (41) and (42).

Proposition 9. There exists a symmetric steady-state equilibrium.

D.0.6 Intermediation

The trade protocol used here differs from the one used in Section 5, but our results

regarding trading speed and centrality are the same.

Efficient ex-post trade in a bilateral meeting means that the buyer acquires the asset

whenever her reservation value is above the reservation value of the seller. That is, if

trade is ex-post efficient, then the probability of trade is 1{∆n≥∆o}. The Myerson and

Satterthwaite (1983) implies that, under private information,31 efficient ex-post trade

cannot be achieved.
31 To be more specific, without common knowledge of gains from trade and connected support for

valuations.
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Proposition 10. Consider a symmetric steady-state equilibrium {m = (p, x), ∆, φo, φn, s}.
Then, efficient ex-post trade in the bilateral meetings is not achieved. That is, p(∆o, ∆n) <

1{∆n≥∆o} for a positive measure of ∆o and ∆n. Moreover,

•
∫

p(∆o, ∆n)dMn <
∫

1{∆n≥∆o}dMn, and

•
∫

p(∆o, ∆n)dMo ≤
∫

1{∆n≥∆o}dMo, with strict inequality if ∆n > 0.

The probability of trade between a type θo owner and a type θn non-owner is

q(θo, θn) = [1− (1− αo)(1− αn)]1{∆n≥∆o} + (1− αo)(1− αn)p(∆o, ∆n).

Since αo and αn are smaller than one with positive probability, Proposition 10 implies

that q(θo, θn) is smaller than one for a positive measure of θo and θn. Moreover, keeping

the reservation value constant, we have that

q(θo, θn)

∂αo

∣∣∣
∆(θo)=∆̄

= (1− αn)
[
1{∆n≥∆o} − p(∆o, ∆n)

]
.

In a similar way,

q(θo, θn)

∂αn

∣∣∣
∆(θn)=∆̄

= (1− αo)
[
1{∆n≥∆o} − p(∆o, ∆n)

]
.

This brings us to our next result.

Proposition 11. Consider a symmetric steady-state equilibrium {m = (p, x), ∆, φo, φn, s}, and

let the types θ = (α, ν) and θ̂ = (α̂, ν̂) satisfy ∆(θ) = ∆(θ̂) and α > α̂. Then,

• q̄o(θ) > q̄o(θ̂), and

• q̄n(θ) ≥ q̄n(θ̂), with strict inequality if ∆(θ) = ∆(θ̂) > 0.

Proposition 11 is intuitive. We know from Proposition 10 that trade is distorted in

meetings under private information—that is, p(∆o, ∆n) < 1{∆n≥∆o} for a positive measure

of ∆o and ∆n. Since investors with higher screening expertise are less likely to be in those

meetings, they are less likely to have their trades distorted.

From Proposition 11 we can derive our main centrality result below.

Proposition 12. Consider a symmetric steady-state equilibrium {m = (p, x), ∆, φo, φn, s}, and

let the types θ = (α, ν) and θ̂ = (α̂, ν̂) satisfy ∆(θ) = ∆(θ̂) and α > α̂. Then,

• if ∆(θ) = ∆(θ̂) < 0, we have that c(θ) = c(θ̂) = 0, and

• if ∆(θ) = ∆(θ̂) ≥ 0, we have that c(θ) > c(θ̂) > 0.

Moreover, if an investor type θ∗ = (α∗, ν∗) is the most central, then α∗ = 1 and c(θ∗) > c(θ)

for all θ ∈ Θ satisfying α < 1.

64



E Appendix: Additional Empirical Results

Alternative Empirical Specification. Our primary specification examined the proba-

bility of trade conditional on reporting in the previous week(s) versus not reporting.

Alternatively, by Bayes’ rule we could test the reverse, the probability of reporting in

a given week conditional on observing a trade. However since not all investors file a

report, we do not know what the filing date would be if they did file. As a result, for

each quarter, only some trades at a particular date t can be linked to a prior filing of

form 13-F that quarter by one of the two trade participants, but other trades cannot. In

order to test the incidence of filing a report, we need to assign a filing date for investors

that do not file in a particular quarter.

For every investor present in the dataset that did not file the form in a particular

quarter, we impose a fake filing date, with delay drawn from the observed empirical dis-

tribution of delays in filling. Doing so implies that every investor-quarter pair is linked

to a filing, although some are real and some are fake. The real versus fake distinction is

crucial for our test. For a given trade between a buyer j and a seller j̃, we can link for

both j and j̃ the trade with a filing that occurred in the N weeks prior to the trade. After

appropriately controlling for unobservables using fixed effects, we study the connection

between trade activity and real versus fake filings. That is, we test whether a trade is

more likely when a real report happened in the previous N weeks using compared to

when a fake filing occurred in the previous N weeks.

Let investor ∈ {buyer, seller}. Our empirical model is the following,

RN
j,i,k,t = β1realj,i + β2realj,i × corej,i + FEj + FEk + FEt + ε j,i,k,t, (50)

where RN
j,i,k,t equals 1 if institution j in trade i, trading a CDS-index class k at date t, filed

a 13-F within N weeks before the trade date t and equals 0 otherwise, realj,i equals 1

if investor j’s 13-F report associated with trade i is real, and equals 0 otherwise, corej,i

equals 1 if the counterparty of investor j in trade i is in the core, top-5 in centrality, and

equals 0 otherwise. Finally, FEj accounts for the institution fixed effects, FEk accounts

for CDS-index-class fixed effects, and FEt accounts for time fixed effects.

Our theory predicts that the probability of trade increases after a 13-F report. In our

empirical approach, this maps to testing whether a real filing, instead of a fake one,

precedes the trade within a window of size N, which implies β1 > 0. Our theory also

predicts that this effect should be smaller when the institution’s counterparty is in the

core, which implies β2 < 0.
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Table 6 presents the results of (50) restricting attention to U.S. CDS indexes and

Table 7 presents the results for all CDS indexes. The top panel in each table presents the

results for buying activity, while the bottom panel presents the results for selling activity.

Columns (1)-(2) use a window of one week, columns (3)-(4) use a window of two weeks,

and columns (5)-(6) use a window of three weeks. For each window, we report results

with and without fixed effects.

Table 6: The impact of a 13-F filing on trade, U.S. CDS indexes

N=1 week N=2 weeks N=3 weeks

Panel A: Buyers filing (1) (2) (3) (4) (5) (6)

realbuyer 0.0374*** 0.0278*** 0.111*** 0.0910*** 0.130*** 0.107***

(0.00277) (0.00308) (0.00373) (0.00413) (0.00450) (0.00498)

realbuyer ∗ coreseller -0.0163*** -0.0122*** -0.0601*** -0.0575*** -0.0320*** -0.0482***

(0.00319) (0.00347) (0.00429) (0.00466) (0.00518) (0.00562)

Constant 0.0377*** 0.0702*** 0.107***

(0.000338) (0.000455) (0.000549)

R-squared 0.001 0.016 0.004 0.027 0.006 0.030

Observations 348,903 348,012 348,903 348,012 348,903 348,012

Fixed Effects none instit., qtr., index none instit., qtr., index none instit., qtr., index

Panel B: Sellers filing

realseller 0.0304*** 0.0299*** 0.0954*** 0.0832*** 0.120*** 0.103***

(0.00288) (0.00323) (0.00385) (0.00431) (0.00469) (0.00524)

realseller ∗ corebuyer -0.00731** -0.0107*** -0.0412*** -0.0427*** -0.0295*** -0.0403***

(0.00329) (0.00361) (0.00440) (0.00482) (0.00536) (0.00586)

Constant 0.0377*** 0.0689*** 0.107***

(0.000337) (0.000450) (0.000548)

R-squared 0.001 0.015 0.003 0.021 0.005 0.025

Observations 348,903 348,205 348,903 348,205 348,903 348,205

Fixed Effects none instit., qtr., index none instit., qtr., index none instit., qtr., index

Sample includes trades of US credit default swap indexes by regulated institutions or those trading CDS indexes on
regulated institutions during 2013Q1-2017Q4. The independent variable is a dummy equal to one if in trade i of CDS
index k at date t, institution j filed a 13-F in the previous N weeks. The independent variable real is equal to one if the
filing was real and zero if it was fake. The independent variable core is equal to one if the filer’s counterparty is in the top-5
in terms of centrality. The top panel provides the regression results for the case where the buyers are those filing, while
the bottom panel present the results for the case where the sellers are those filing. Standard errors are in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.

First, consider Table 6. For both buyers and sellers reporting 13-F, for all windows,

and regardless of controlling for fixed effects, we observe β1 > 0 and significant as

indicated in the first row of each panel. There is a higher probability of observing an

institution trading CDS indexes when that institution filed a report prior to trade. For
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example in column(1), filing a report is associated with a 3.7% increase in the probability

of buying a CDS index. Likewise, filing a report is associated with a 3.0% increase of

selling a CDS index. The unconditional probability that we observe a trade and a prior

filing (either real or fake) within the one week is 3.7% for both buyers and sellers. Hence

a filing doubles the probability of the event of observing a trade. As the window size

increases to two and three weeks, the impact of a filing relative to the unconditional

probability of observing a trade and prior filing falls but is still positive and significant.

The second row of each panel shows the coefficient estimates of β2. We find the

coefficient on a real report given we observe a trade with a counterparty in the core

to be negative and significant. That is, the increase in the probability that we observe

trade after a filing is lower when they are trading with core institutions. These results

are consistent with those in Section 6. Table 7 repeats the analysis for trades of all CDS

indexes and the results remain consistent; filing a 13-F increases the probability of trade,

but less so with core institutions

The effect of 13-F on buying versus selling. In Table 8, we report the results of the

baseline regressions, (16), where we now define the dependent variables Dcore/periphery
ijt as

dummies equal to one if institution j traded CDS index i in week t as a buyer or seller,

respectively. We are interested if the effect of trading CDS is active both on the buy and

sell side of the market, or is dominated by one side. The proof of Proposition 5 suggests

that our results should hold for at least one side of the market, but not necessarily both

depending on the weights ξo and ξn. For instance if ξo = 1, then we should only see the

effects of a 13-F report on the buyer-side of the market. The intuition is if sellers always

make the offer, or ξo = 1, then an institution’s private information is only valuable when

they trade with a seller, as a buyer. The opposite is true when ξn = 1.

We see that the effect of a 13-F report on trade with the periphery is positive and

similar whether on the buy- or sell-side of the market. The effect of a 13-F on trade with

the core is always below the effect with the periphery, although splitting the sample we

lose power so the standard errors increase.

Exploiting the 45-day delay rule As discussed in Section 6, the SEC requires institu-

tions to file form 13-F within 45-days of the first business day of the quarter. As discussed

earlier, we do not believe endogeneity in delay is causing selection on unobservables that

are correlated with trading CDS-indexes after filing date. The finance literature suggests

the primary reason institutions delay is worry about front-running, which would only
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Table 7: The impact of a 13-F filing on trade, All CDS indexes

N=1 week N=2 weeks N=3 weeks

Panel A: Buyers filing (1) (2) (3) (4) (5) (6)

realbuyer 0.0481*** 0.0484*** 0.109*** 0.0999*** 0.130*** 0.111***

(0.00168) (0.00197) (0.00225) (0.00264) (0.00270) (0.00316)

realbuyer ∗ topseller -0.0253*** -0.0204*** -0.0480*** -0.0414*** -0.0256*** -0.0240***

(0.00200) (0.00211) (0.00268) (0.00281) (0.00321) (0.00337)

Constant 0.0370*** 0.0680*** 0.102***

(0.000212) (0.000284) (0.000341)

R-squared 0.001 0.009 0.004 0.015 0.006 0.019

Observations 865,094 864,092 865,094 864,092 865,094 864,092

Fixed Effects none instit., qtr., index none instit., qtr., index none instit., qtr., index

Panel B: Sellers filing

realseller 0.0365*** 0.0436*** 0.0981*** 0.0985*** 0.123*** 0.128***

(0.00170) (0.00204) (0.00227) (0.00272) (0.00272) (0.00326)

realseller ∗ topbuyer -0.0174*** -0.0127*** -0.0448*** -0.0378*** -0.0298*** -0.0214***

(0.00203) (0.00215) (0.00270) (0.00286) (0.00324) (0.00342)

Constant 0.0392*** 0.0711*** 0.107***

(0.000217) (0.000289) (0.000347)

R-squared 0.001 0.009 0.003 0.013 0.005 0.017

Observations 865,094 864,265 865,094 864,265 865,094 864,265

Fixed Effects none instit., qtr., index none instit., qtr., index none instit., qtr., index

Sample includes trades of all credit default swap indexes by regulated institutions or those trading CDS indexes on
regulated institutions during 2013Q1-2017Q4. The independent variable is a dummy equal to one if in trade i of CDS
index k at date t, institution j filed a 13-F in the previous N weeks. The independent variable real is equal to one if the
filing was real and zero if it was fake. The independent variable core is equal to one if the filer’s counterparty is in the top-5
in terms of centrality. The top panel provides the regression results for the case where the buyers are those filing, while
the bottom panel present the results for the case where the sellers are those filing. Standard errors are in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.

lead to bias in the opposite direction of our tests, that trade activity should fall in the

time period after a filing. However, for robustness, we can exploit the 45-day cutoff rule

as exogenous variation in reporting. If the number 45 is randomly-chosen, then insti-

tutions close to the cut-off day are exogenously required to file, even if the incentive to

delay longer are correlated with CDS trading.

Table 9 reports the results of (16) where we define the independent variable Fj,t−x

to be a dummy variable equal to one if institution j filed a 13-F report in the x-weeks

previous to week t and that report was made between 42 and 48 days from the beginning

of the quarter, a symmetric window around the cutoff. We extend to 48 days because

sometimes the deadline falls on a weekend or holiday. In these cases, the SEC extends
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Table 8: Impact of a 13-F filing on trade, buy-side vs. sell-side

Buy-side Sell-side

(1) (2) (3) (4)

Trade with Periphery, βperiphery

Freqperiphery 0.232*** 0.146* 0.244** 0.150*

(0.088) (0.087) (0.089) (0.089)

R-squared 0.150 0.171 0.148 0.167

Trade with Core, βcore

Freqcore 0.097 -0.007 0.134** 0.025

(0.067) (0.066) (0.065) (0.065)

R-squared 0.145 0.163 0.144 0.162

Test on difference, βperiphery

Freqperiphery −
βcore

Freqcore 0.135 0.153* 0.110 0.125

(0.089) (0.089) (0.089) (0.089)

Fixed Effects

Week − index yes yes yes yes

Institution yes no yes no

Institution − quarter no yes no yes

Observations 460,512 460,512 460,512 460,512

Sample includes trades of US credit default swap indexes by regulated institutions or those trading
CDS indexes on regulated institutions, that filed a 13-F report at least once in the sample period,
2013Q1-2017Q4. The independent variable is a dummy equal to one if institution j filed a 13-F in
the previous week. The two dependent variables are dummies if institution j traded CDS index
i in week t as a buyer or seller with a periphery or core institution, respectively. We normalize
the coefficients of each regression by the frequency of trading with each group so that coefficients
are comparable. Test on difference: tests whether the difference in the normalized coefficients are
equal to zero. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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the deadline to the first business day after 45 days past the beginning of the quarter.

We find that narrowing the test of a 13-F to only those around the deadline strengthens

our previous results. Whether looking at windows of one or two weeks and regardless

of controlling for trade in the time period just before a report, we find a positive and

significant impact of a 13-F filing on trade with periphery institutions and no effect on

trade with core institutions. The coefficient estimates increase, nearly doubling in most

specifications. For instance, if we compare column (1) in Table 9 to column (4) in Table

2, we find that narrowing the focus to 13-F reports around the deadline increases the

impact of a 13-F report on trade with the periphery from 13.8 percentage points to 21.4

percentage points. Similarly the differential effect on trade with the periphery relative

to the core increases from 14.8 percentage points to 25.8 percentage points. As much as

these regressions control for endogeneity in filing delay, we see the bias in our previous

results was working against us, consistent with the notion of front-running being the

primary incentive to delay.
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Table 9: Impact of a 13-F filing on trade (42-48 day filing delay).

x = 1 week x = 2 weeks
(1) (2) (3) (4)

Dependent Variable: Trade with Periphery, βp

Filed in week t− x, Fi,t−x 0.214** 0.216** 0.281*** 0.281***
(0.106) (0.107) (0.080) (0.080)

Filed in week t + x, Fi,t+x 0.017 0.005
(0.107) (0.081)

R-squared 0.198 0.198 0.198 0.198

Dependent Variable: Trade with Core, βc

Filed in week t− x, Fi,t−x -0.043 -0.050 0.008 0.003
(0.077) (0.077) (0.057) (0.058)

Filed in week t + x, Fi,t+x -0.092 -0.027
(0.077) (0.058)

R-squared 0.204 0.204 0.204 0.204

Dependent Variable: Difference, βp − βc

Filed in week t− x, Fi,t−x 0.256** 0.266** 0.273*** 0.278***
(0.104) (0.104) (0.078) (0.079)

Filed in week t + x, Fi,t+x 0.107 0.032
(0.104) (0.079)

R-squared 0.119 0.119 0.119 0.119

Fixed Effects
Week − index yes yes yes yes
Institution − quarter yes yes yes yes

Observations 460,512 458,712 458,640 455,040

Sample includes trades of US credit default swap indexes by regulated institutions or those trading CDS
indexes on regulated institutions, that filed a 13-F report at least once in the sample period, 2013Q1-2017Q4.
The independent variables, Fj,t−x/Frequency and Fj,t+x/Frequency, are normalized dummies, where the
dummies are equal to one if institution j filed a 13-F within the previous x weeks and within the following
x weeks, respectively, to week t, conditional on filing near the filing deadline defined as 42 to 48 days
past the beginning of the quarter. The two dependent variables are dummies if institution j traded CDS
index i in week t with a periphery and core institution, respectively. Test on difference: tests whether the
difference in the coefficients is equal to zero. Standard errors are in parentheses. *** p<0.01, ** p<0.05, *
p<0.1.
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