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Abstract

We analyze the efficiency properties of competitive economies with strategic default

and limited pledgeability. We show that laissez-faire equilibria can be constrained sub-

optimal: under certain conditions, imposing tighter borrowing constraints (relative to

the laissez-faire regime) can make everybody in the economy better off. The inefficiency

is due to the interaction between debt pricing and the default option, which generates a

pecuniary externality. We also show that a Pigouvian subsidy on net financial positions

may induce borrowers to internalize this externality and increase welfare.
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1 Introduction

Understanding whether competitive economies with financial frictions are vulnerable to

potential inefficiencies or market failures is an important question in macroeconomics with
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many relevant implications. In particular, it helps us understand whether and when policy

interventions are warranted. However, asserting that equilibria might be inefficient from a

second-best point of view turns out to be more nuanced than it may appear.

There are broadly two strands of the literature that provide different answers and impli-

cations. On the one hand, a large and growing body of research has emphasized the presence

of pecuniary externalities as a fundamental source of inefficiency, especially in settings where

contractual arrangements are subject to limited commitment and/or informational asymme-

tries.1 There, the frictions take the form of borrowing constraints that depend on market

prices of goods or assets. Private agents fail to take into account the general equilibrium ef-

fects of their individual decisions on market prices, and that failure could lead, for instance,

to excessive borrowing in equilibrium. On the other hand, standard general equilibrium

models with self-enforcing debt constraints have found it generally harder to show that com-

petitive equilibria are constrained suboptimal. In the well-known class of single-commodity

models, which is widely used in applications and where debt constraints are microfounded

by the threat of financial autarky, the competitive equilibria are indeed constrained efficient.

This is despite the fact that the debt constraints depend on market prices. For instance, in

the seminal work of Alvarez and Jermann (2000, 2001)2 borrowing is subject to debt limits

that are set at the largest possible levels such that the value of repayment (that depends on

asset prices) equals the autarkic value.

In addition to the nontrivial problem of establishing inefficiency, how the resulting exter-

nalities are related to the precise nature of the underlying financial frictions is less obvious

than commonly understood. For example, little theoretical work has explored whether dif-

ferent debt enforcement mechanisms lead to different types of inefficiency.

In this paper, we revisit these issues in the context of a standard dynamic general equilib-

rium model with microfounded borrowing constraints. More precisely, we study endowment

economies in which agents cannot commit to honor their liabilities and debt repayment is

sustained because a part of the private resources is pledgeable, and/or due to exclusion from

credit markets upon default. Pledgeable resources represent output contraction in the case

of sovereign default, or recourse and seized collateral in the case of consumer and corpo-

rate default. Exclusion from credit reflects the adverse effects on debtors’ reputation in

1A nonexhaustive list includes, among others, Kiyotaki and Moore (1997), Gromb and Vayanos (2002),

Golosov and Tsyvinski (2007), Lorenzoni (2008), Farhi et al. (2009), Bianchi (2011), Bianchi and Mendoza

(2011), and Dávila and Korinek (2018).
2See also Kehoe and Levine (1993, 2001), Kocherlakota (1996), Bloise and Reichlin (2011).
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financial markets. Agents can smooth their consumption by trading one-period-ahead con-

tingent claims (Arrow securities), but their borrowing is subject to endogenous borrowing

constraints induced by the default punishment. Following Alvarez and Jermann (2000), we

consider laissez-faire equilibria where debt limits are not too tight, i.e., they are set at the

largest possible levels so that repayment is always individually rational. This setup serves

our purposes well as it encompasses economies where debt repudiation leads to dead weight

losses and exclusion from the credit market as well as economies with collateral constraints.3

Our main result is to show that in economies with limited pledgeability, laissez-faire

equilibria might be constrained inefficient, in the sense that restricting the amount of credit

private agents can obtain may lead to Pareto improvement. More precisely, we consider

policy interventions where a regulator imposes tighter debt constraints than the not-too-tight

constraints. We interpret such interventions as a parsimonious representation of regulatory

or prudential policies that aim to constrain leverage in the financial markets. We show that,

under certain conditions, the policy intervention can increase the ex-ante welfare of all agents

in the economy.

Intuitively, though all agents are fully rational and forward looking, they fail to internalize

how changes in the severity of credit restrictions in the future feedback on equilibrium prices

and, most crucially, the effect of changes in market prices on the default option. In particular,

tightening the debt constraints from some period τ onward might increase bond prices, or

equivalently, lower the implied interest rates. In the setting where defaulters are subject to

endowment losses and exclusion from credit (à la Bulow and Rogoff 1989 and Hellwig and

Lorenzoni 2009), this tightening might reduce the value of the default in periods t < τ , since

it is now more costly to smooth consumption over time by saving only. As a consequence,

the not-too-tight debt limits increase at periods t < τ , and this opens the possibility for

Pareto improvement: the benefits from the relaxed debt constraints at periods t < τ may

3There are many variations of models with collateralized or reputation debt, and the literature is too vast

to be summarized here. The reputation mechanism strand of the literature was significantly spurred by the

early contributions of Eaton and Gersovitz (1981) and Bulow and Rogoff (1989) and embedded to general

equilibrium by Kehoe and Levine (1993), Zhang (1997), Alvarez and Jermann (2000), Kehoe and Levine

(2001) and Hellwig and Lorenzoni (2009). The seminal papers of Geanakoplos (1997), Kiyotaki and Moore

(1997), and Geanakoplos and Zame (2002) brought together collateral with rigorous general equilibrium

theory. Recent contributions include, among others, Kubler and Schmedders (2003), Azariadis and Kaas

(2007), Fostel and Geanakoplos (2008), Chien and Lustig (2010), and Gottardi and Kubler (2015). The

papers of Hellwig and Lorenzoni (2009) and Chien and Lustig (2010) provide the closest settings to our

setup.
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compensate for the costs of facing tighter constraints in subsequent periods. In a setting

with collateral constraints (à la Chien and Lustig 2010), the argument is similar. There,

lower interest rates raise the value of pledgeable income and increase trade opportunities in

the periods that precede the tightening of the collateral constraints. Again, this opens the

possibility for Pareto improvement. This is the essence of the mechanism we explore in this

paper.

Our analysis exploits an intuitive and powerful characterization of not-too-tight debt

limits in economies with limited pledgeability: debt limits are always decomposed into a

component that equals the present value of pledgeable resources, and a credit bubble com-

ponent that is interpreted as the amount of credit agents can rollover indefinitely.4 This

characterization serves our purposes well as it substantially simplifies the computation of

the laissez-faire equilibria, ruling out complications related to the fixed-point determination

of the debt limits. Importantly, it allows us to map the set of laissez-faire equilibria in the

environment with reputation debt to the set of equilibria in the environment with collater-

alized debt and vice versa. This equivalent mapping between different equilibrium concepts

offers a useful benchmark upon which we can carry out our policy interventions.

To provide more clarity on the underlying mechanism, we concentrate to a simple econ-

omy with two agents facing uncertainty only at the initial period. Once uncertainty is

resolved, the economy is a deterministic one in which endowments switch from a high value

to a low value between periods. We further assume that pledgeable resources are time-

invariant and identical for both agents. Within this setting, we restrict attention to sym-

metric Markov laissez-faire equilibria where, by an appeal to our characterization result,

debt limits are bubble-free and equal to the present value of pledgeable resources. The pol-

icy intervention takes the form of tightening debt limits by a fraction ε from some period τ

onward and analyzing the feedback effect of such a distortion on equilibrium prices and the

default option.

It is worth remarking two important features of our policy experiment. First, the in-

tervention in financial markets is not equivalent to modifying pledgeable resources, which

remain fixed. The reallocation is induced by tightening the borrowing limits with respect

to their level endogenously determined in equilibrium. Second, the coincidence between the

4Though this decomposition can be seen as the analogue of Hellwig and Lorenzoni (2009)’s characteri-

zation result in an augmented setup with output losses, the result cannot be derived by a simple adaptation

of their argument. It rather builds on novel insights that have no analogue in the absence of output losses.
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set of equilibria in economies with reputation debt and in economies with collateralized debt

breaks down in the post-intervention economy, where the debt limits are no longer not-too-

tight. Therefore, we do have to conduct our analysis and compute the new equilibrium

variables in each setup separately. Interestingly enough, though the source of inefficiency

is common in both environments, Pareto-improving equilibria might feature very different

qualitative properties. We show that delaying the intervention in financial markets in the

economy with collateral constraints can lead to equilibria that are close to the first-best

outcome.

The fact that private agents fail to internalize the pecuniary externality at the competitive

equilibrium with limited pledegability implies that there is room for government interven-

tion by means of macroprudential controls on financial markets in the lines of Jeanne and

Korinek (2010, 2019) and Farhi and Werning (2016). We show that the externality discussed

above can be tackled by means of corrective Pigouvian subsidies on net financial positions

supported by lump-sum taxes. In particular, we show that a planner who has flexibility in

the choice of the subsidy rate can improve welfare without intervening in each individual

decision made by each agent. The distortion created by the subsidy leads to a wedge in

marginal rates of substitution between the high-income and the low-income agents. When

compared to the laissez-faire equilibrium, the wedge generates higher prices and looser debt

limits that can reduce the extent of market failure. An interesting observation is that the

equilibrium coincidence between the reputation debt model and the collateral debt model is

not distorted by this type of intervention, and this permits to study in a unified way whether

macroprudential controls can be welfare improving.

Related Literature. The idea that economies with limited commitment are prone to

market failures dates back to Kehoe and Levine (1993). When there is more than one

commodity and default cannot exclude agents from trading in spot markets, constrained

efficiency might fail because private contracts cannot internalize their effect on relative prices

and the default option. The logic there is conceptually the same as in incomplete markets

economies where a redistribution of asset holdings, through the induced price changes, affects

the spanning properties of the limited assets (Geanakoplos and Polemarchakis 1986). In the

single good model studied here, however, there are no spot markets, and as a result, this

mechanism is absent. Moreover, Alvarez and Jermann (2000, 2001) show that competitive

equilibria are constrained efficient when the default option is autarky. We instead show that
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constrained inefficiency obtains in economies with a single commodity when debt enforcement

relies on the limited pledgeability of private resources and/or a weak form of exclusion (i.e.,

one-sided exclusion) from financial markets. Changes in the severity of credit restrictions

induce price changes in bond markets. These price changes, in turn, affect the value of default

and, therefore, the extent of risk sharing, potentially improving efficiency. This source of

inefficiency is not present in Alvarez and Jermann (2000)’s framework since the value of

default does not respond to changes in bond prices.

Our work is related to a well-developed literature studying the emergence of pecuniary

externalities in production economies with collateral constraints. Gromb and Vayanos (2002)

show that both distributive and collateral externalities can emerge due to market segmenta-

tion. Lorenzoni (2008) shows that financial distress might lead to fire sales whose effects on

asset prices are not internalized by highly leveraged investors. Dávila and Korinek (2018)

characterize pecuniary externalities in dynamic settings that are subject to reduced-form,

price-dependent collateral constraints. They distinguish between distributive and collateral

externalities and show that each of these two types can be quantified as a function of intuitive

sufficient statistics. In all of these works, because of capital accumulation, the reallocation of

resources is induced by a change in the level of investment. A planner can overcome the mar-

ket failure by reducing aggregate investment ex ante and, therefore, the size of the asset sales

in bad states. In contrast, in our pure exchange setup, this channel is absent as aggregate re-

sources are fixed and only their distribution can vary. The reallocation of resources is solely

induced by the tightening of the endogenously determined debt constraints. This relates

to the work of Guerrieri and Lorenzoni (2017) who study the effects of unexpected credit

contractions in Bewley-type economies with incomplete markets and exogeneous borrowing

limits.

Gottardi and Kubler (2015) provide an antecedent to our paper by analyzing constrained

suboptimality in a collateral economy à la Chien and Lustig (2010). Our analysis differs from

theirs in two important aspects. First, they assume that the intervention is unexpectedly

announced at the initial period after all trades have taken place. We instead assume that the

intervention is fully anticipated by private agents. Second, their policy experiment exploits

an equivalence between equilibria in the economy with collateral constraints and equilibria of

an auxiliary economy with financial intermediaries where agents can only take long positions

on contingent trees. They show that Pareto improvement obtains in the auxiliary economy,

however, they do not show whether the established equivalence is preserved post intervention,
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so that the equilibrium with financial intermediaries is mapped back to the equilibrium with

tighter collateral constraints. The online supplemental material of this paper offers a more

detailed discussion on how our analysis is distinct from Gottardi and Kubler (2015).

Finally, our work is related to a complementary strand of literature that focuses on

macroprudential controls that take the form of Pigouvian taxes or subsidies to reduce pecu-

niar externalities. Park (2014) studies optimal taxation in an Alvarez and Jermann (2000)

production economy. There, individuals do not take into account that their labor and saving

decisions affect aggregate labor and capital supply and wages, and thus the value of autarky.

Jeanne and Korinek (2010, 2019) and Dávila and Korinek (2018) provide a welfare rational

for the taxation of capital flows to mitigate the financial amplification effects of fire sales

in economies with collateral constraints. In Farhi and Werning (2016), the focus is on de-

mand externalities that are associated with the presence of nominal price rigidities. Though

such externalities are qualitatively different from the pecuniary externalities that we study

here, Korinek and Simsek (2016) argue that the two types of externalities interact and may

mutually reinforce each other. We show that, in an exchange setup, Pigouvian corrective

subsidies on net financial deliveries can be welfare improving because they induce a wedge

in marginal rates of substitutions that results in inflating bond prices and relaxing credit

conditions.

The plan of the paper is as follows. Section 2 describes the baseline model environment.

Section 3 provides a characterization of not-too-tight debt limits in two environments with

microfounded borrowing constraints. Section 4 shows that laissez-faire equilibria can be

Pareto inferior to equilibria with tighter debt constraints. Section 5 shows that corrective

Pigouvian subsidies can mitigate the extent of market failure. Section 6 concludes. The

online supplemental material5 provides additional discussions, derivations, and proofs of all

the results.

2 General Model

2.1 Fundamentals

Consider an infinite-horizon endowment economy with a single nonstorable consumption

good at each date. Time and uncertainty are both discrete. We use an event tree Σ to

5Available here.
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describe the revelation of information over an infinite horizon. There is a unique initial

date-0 event s0 ∈ Σ, and for each date t ∈ {0, 1, 2, . . .}, there is a finite set St ⊆ Σ of date-t

events st. Each st has a unique predecessor σ(st) in St−1 and a finite number of successors

st+1 in St+1 for which σ(st+1) = st. The notation st+1 ≻ st specifies that st+1 is a successor

of st. The event st+τ is said to follow event st, also denoted st+τ ≻ st, if σ(τ)(st+τ ) = st.6

The set St+τ (st) := {st+τ ∈ St+τ : st+τ ≻ st} denotes the collection of all date-(t+τ) events

following st. Abusing notation, we let St(st) := {st}. The subtree starting at event st is

then given by:

Σ(st) :=
⋃
τ⩾0

St+τ (st).

We use the notation sτ ⪰ st when sτ ≻ st or sτ = st. In particular, we have Σ(st) = {sτ ∈
Σ : sτ ⪰ st}.

There is a finite set I of household types, each consisting of a unit measure of identical,

infinitely lived agents who consume the single perishable good. Preferences over (nonneg-

ative) consumption processes c = (c(st))st⪰s0 are represented by the lifetime expected and

discounted utility:

U(c) :=
∑
t⩾0

βt
∑
st∈St

π(st)u(c(st)),

where β ∈ (0, 1) is the discount factor, π(st) is the unconditional probability of st, and

u : [0,∞) → R is a utility function that is strictly increasing, strictly concave, continuous on

[0,∞), differentiable on (0,∞), and satisfies Inada’s condition limε→0[u(ε) − u(0)]/ε = ∞.

To further simplify the exposition of the theoretical results in Section 3, we assume that

u is also bounded. This restriction ensures that the lifetime utility U is continuous (for

the product topology), and the demand set is nonempty.7 Given an event st, we denote by

6Formally, σ is a mapping from Σ \ {s0} to Σ such that σ(St+1) = St for every t ⩾ 0. We pose σ(1) := σ

and σ(τ+1) := σ ◦ σ(τ) for every τ ⩾ 1.
7The characterization of debt limits can be extended, and our results in this section continue to hold

even when u is unbounded. In particular, when u belongs to the class of constant relative risk aversion utility

functions u(c) = c1−α/(1−α) with α > 0. In fact, in the simple economy we consider to illustrate our main

result, we assume a logarithmic period utility function, i.e., α = 1. A general treatment of unbounded utility

functions requires some additional technical assumptions on endowment processes together with a suitable

modification of the utility function u outside a specific interval such that the equilibrium outcomes remain

unaffected. For a detailed discussion, see Martins-da-Rocha and Santos (2019).
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U(c|st) the lifetime continuation utility conditional on st, as defined by:

U(c|st) := u(c(st)) +
∑
τ⩾1

βτ
∑

st+τ≻st

π(st+τ |st)u(c(st+τ )),

where π(st+τ |st) := π(st+τ )/π(st) is the conditional probability of st+τ given st.

Agents’ endowments are subject to random shocks. We denote by yi = (yi(st))st⪰s0 the

process of positive endowments yi(st) > 0 of a representative agent of type i. For notational

convenience, our theoretical results in Section 3 obtain assuming that agents’ preferences and

beliefs are homogeneous. We remark that all of our arguments remain valid when agents have

heterogeneous preferences and beliefs, and the only necessary change is to replace (u, β, π)

with (ui, βi, πi). In fact, we explicitly consider a setting with heterogeneous beliefs in the

main Sections 4 and 5.

2.2 Debt-Constrained Asset Markets

At any event st, agents can issue and trade state-contingent one-period bonds, each

one promising to pay one unit of the consumption good contingent on the realization of a

successor event st+1 ≻ st. Let q(st+1) > 0 denote the price, at event st, of the st+1-contingent

bond (the inverse of q is the interest rate between st and st+1). Agent i’s bond holdings are

ai = (ai(st))st⪰s0 , where a
i(st) ⩽ 0 is a liability, and ai(st) ⩾ 0 is a claim. Each agent’s debt

is observable and subject to certain (state-contingent, nonnegative, and finite) debt limits

Di = (Di(st))st⪰s0 .

Given an initial bond holding ai(s0) and debt limits Di, we denote by Bi(Di, ai(s0)|s0)
the budget set of an agent who never defaults. It consists of all pairs (ci, ai) of consumption

and bond holdings satisfying the following budget flows and debt constraints: for all st ⪰ s0,

ci(st) +
∑

st+1≻st

q(st+1)ai(st+1) ⩽ yi(st) + ai(st), (2.1)

and

ai(st+1) ⩾ −Di(st+1), ∀st+1 ≻ st. (2.2)

We naturally restrict attention to allocations where the initial asset holdings clear the market,

i.e.,
∑

i∈I a
i(s0) = 0, and satisfy the debt constraints, i.e., ai(s0) ⩾ −Di(s0) for each i.

Similarly, let Bi(Di, b|sτ ) be the set of all plans (ci, ai) satisfying restrictions (2.1) and (2.2)
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at every successor node st ⪰ sτ with initial claim ai(sτ ) = b. Let V i(Di, b|st) be the

contingent value function defined by:

V i(Di, b|st) := sup{U(ci|st) : (ci, ai) ∈ Bi(Di, b|st)}.

When b = ai(st), this will be the equilibrium value, i.e., the payoff to each agent i along the

equilibrium path following any event st.

Definition 2.1. Given initial asset holdings (ai(s0))i∈I satisfying
∑

i∈I a
i(s0) = 0, an equi-

librium (q, (ci, ai, Di)i∈I) is a collection of state-contingent bond prices q, a consumption

allocation (ci)i∈I , a bond holdings allocation (ai)i∈I , and a family of nonnegative and finite

debt limits (Di)i∈I satisfying:

(a) each agent i, taking prices and the debt limits as given, chooses a plan (ci, ai) that is

optimal among budget feasible plans in Bi(Di, ai(s0)|s0);

(b) markets clear:
∑

i∈I c
i =

∑
i∈I y

i and
∑

i∈I a
i = 0.

In the above definition, debt limits are arbitrary. Our main object of interest is the

endogenous determination of the debt limits, which are a critical determinant of equilibrium

allocations and equilibrium payoffs.

2.3 Debt Limits

The limits represent the maximal amount of debt that borrowers can issue. In general

equilibrium, they also represent the maximal amount of liquidity (or storage of value) that

savers have access to. For reasons and microfoundations that will soon be provided, we

specify that debt limits satisfy the following general decomposition property:

Di(st) = ℓi(st) +
∑

st+1≻st

q(st+1)Di(st+1), ∀st ≻ s0, (2.3)

where the first term ℓi(st) ∈ [0, yi(st)] is exogenously given, and the second term is the

maximum amount the agent can get from rolling over debt. If the debt level Di(st) is self-

enforceable, ℓi(st) represents the amount agent i is willing to deliver beyond the resources

he can get from rolling over debt to next period. We use the terms pledgeable endowment

and endowment loss interchangeably when referring to the process ℓi = (ℓi(st))st⪰s0 .
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It is straightforward that a process of debt limits Di satisfies property (2.3) if, and only

if, it can be decomposed into a fundamental and a bubble component:

Di(st) = PV(ℓi|st)︸ ︷︷ ︸
fundamental

+M i(st)︸ ︷︷ ︸
bubble

, for all st ⪰ s0. (2.4)

Here, the fundamental component is simply the present value of pledgeable income, defined

as:

PV(ℓi|st) := 1

p(st)

∑
sτ⪰st

p(sτ )ℓi(sτ ), 8

where p(st) is the date-0 price of consumption at event st.9 The bubble component of Di is

a nonnegative process satisfying the following exact rollover property:

M i(st) =
∑

st+1≻st

q(st+1)M i(st+1), ∀st ⪰ s0.

We now have the following equilibrium definition:

Definition 2.2. Given pledgeable endowment processes (ℓi)i∈I , we call an equilibrium with

limited pledgeability any equilibrium (q, (ci, ai, Di)i∈I) such that the debt limits Di of each

agent i satisfy the condition (2.3), or equivalently the condition (2.4).

Our setting nests several important benchmarks. When the whole endowment is pledge-

able, i.e., ℓi = yi for any i ∈ I, the debt limits coincide with the natural debt limits, i.e.,

Di = PV(yi).10 When no endowment is pledgeable, i.e., ℓi = 0 for each agent i, then our

setting collapses to Hellwig and Lorenzoni (2009), where debt is necessarily rolled over as a

credit bubble. In Martins-da-Rocha et al. (2021), we provide an example of an equilibrium

where the fundamental and bubble components coexist, i.e., PV(ℓi) > 0 and M i > 0. We

also provide conditions on primitives sufficient to guarantee the existence of an equilibrium

with limited pledgeability.

When can we rule out bubbly equilibria where the credit bubble component M i is pos-

itive? The following proposition shows that this is the case when the pledgeable resources

constitute a nonnegligible fraction of aggregate resources:

8Similarly, the wealth of an agent at event st is defined as the present value PV(yi|st) of his endowments.
9Formally, p(st) is defined recursively by p(s0) = 1 and p(st+1) = q(st+1)p(st) for all st+1 ≻ st.

10Proposition 2.1 below implies that when ℓi = yi for each agent i, the bubble component is necessarily

zero in equilibrium, and hence Di = PV(yi).
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Proposition 2.1. If pledgeable resources are a nonnegligible fraction of aggregate resources,

in the sense that there exists ε > 0 such that:∑
i∈I

ℓi(st) ⩾ ε
∑
i∈I

yi(st), ∀st ⪰ s0,

then in any equilibrium with limited pledgeability, the bubble component is necessarily zero.

As a consequence, Di = PV(ℓi) for every agent i.

3 Microfoundations for Debt Limits

In equilibrium with limited pledgeability, debt limits satisfy condition (2.3), or equiv-

alently condition (2.4). It turns out that this decomposition property arises naturally in

environments with limited commitment. Formally, consider an environment where agents

cannot commit to their financial contracts and may opt for default. We denote by V i
def(s

t)

agent i’s value of the default option at event st. Following Alvarez and Jermann (2000), we

impose that the debt limits reflect the fact that repayment is always individually rational.

Specifically, we say that debt limits Di are self-enforcing if debtors prefer to repay even the

maximum debt allowed, i.e.,

V i(Di,−Di(st)|st) ⩾ V i
def(s

t), for all st ⪰ s0. (3.1)

We say that Di are not too tight if (3.1) always holds with equality, i.e., borrowers are

indifferent between repaying and defaulting:

V i(Di,−Di(st)|st) = V i
def(s

t), for all st ⪰ s0. (3.2)

Given future debt limits (Di(sτ ))sτ≻st , the level Di(st) satisfying (3.2) is interpreted as the

largest self-enforcing debt limit contingent to event st. We say that Di are too tight if they

are self enforcing and (3.1) holds with strict inequality at some event st ≻ s0.

Definition 3.1. Given a family of default value functions (V i
def)i∈I , we call a self-enforcing

equilibrium any equilibrium (q, (ci, ai, Di)i∈I) such that the debt limits Di of each agent i

satisfy condition (3.1). When the debt limits satisfy the not-too-tight condition (3.2), we

use the term not-too-tight equilibrium. Similarly, when the debt limits are too tight, we use

the term too-tight equilibrium.
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It is reasonable to expect that in a competitive market, competition among lenders should

naturally lead them to offer as much credit as possible, without violating borrowers’ incentive

to repay. Hence, we will also use the term laissez-faire equilibrium as a synonym for not-

too-tight equilibrium.

The value of default is the key object that determines the debt limits. We analyze

two well-established frameworks: a reputation debt environment in which default entails

restricted market participation and a loss of endowments (Bulow and Rogoff 1989 and Hellwig

and Lorenzoni 2009), and a collateralized debt environment in which the only consequence of

default is the seizure of a collateral asset (Chien and Lustig 2010 and Gottardi and Kubler

2015).

3.1 Reputation Debt

In this section, we consider a framework à la Bulow and Rogoff (1989) where all assets are

seized upon default, and debtors lose access to credit while retaining the ability to save (by

purchasing other people’s debt). In addition, default causes a (dead weight) endowment loss:

if agent i defaults at sτ , then his endowments will reduce to yi(st) − ℓi(st) for all successor

events st ⪰ sτ , with ℓi(st) ∈ [0, yi(st)] exogenously given.11 As a consequence, the default

utility for any agent i at any event st is given by:

V i
def(s

t) = V i
ℓi(0, 0|st) := sup{U(ci|st) : (ci, ai) ∈ Bi

ℓi(0, 0|st)}, (3.3)

where Bi
ℓi(0, 0|st) is the budget set of any agent i who has zero liabilities, cannot borrow,

and is endowed with yi − ℓi resources. The condition (3.2) then reads as follows:

V i(Di,−Di(st)|st) = V i
ℓi(0, 0|st), for all st. (3.4)

The following result shows that not-too-tight debt limits can be decomposed into a funda-

mental component and a credit bubble component that captures the possibility of rolling over

a fraction of debt indefinitely. It provides our first microfoundation for the decomposition

property (2.4).

11In the context of consumer credit, the endowment loss is a parsimonious way to capture recourse and

other legal consequences of default (e.g., Chatterjee et al. 2007; Livshits et al. 2007; Livshits 2015). In the

context of sovereign debt, the endowment loss parsimoniously captures the negative effects of default on

domestic production (e.g., Eaton and Gersovitz 1981; Bulow and Rogoff 1989; Cole and Kehoe 2000; Aguiar

and Gopinath 2006; Arellano 2008).
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Theorem 3.1. In the reputation debt framework, where the value of default is given by (3.3),

any process of not-too-tight debt limits Di can be decomposed as the sum of the present value

of the endowment loss process ℓi and a bubble component M i, i.e.,

Di = PV(ℓi) +M i,

where M i is a nonnegative exact rollover process.

Intuitively, the bubble component reflects the fact that credit beyond the fundamental

component is sustainable only if agents can rollover their debt. A crucial and nontrivial

step to prove the result is to show that the process PV(ℓi) is a lower bound to any sequence

of not-too-tight debt limits. A second step, based on a translation invariance of the flow

budget constraints, then shows that the process PV(ℓi) is itself not too tight. The result then

follows from the well-known fact that the difference between two processes of not-too-tight

debt limits necessarily satisfies the exact rollover property (see, for instance, Martins-da-

Rocha and Santos 2019).

Besides providing a microfoundation for our specification of debt limits in Section 2,

Theorem 3.1 is also useful for the computation of equilibria. It eliminates the usual compli-

cations related to the fixed-point process of determining not-too-tight debt limits, where the

value of default depends on prices (as defaulting agents can still save), which in turn depend

on equilibrium allocations and hence the debt limits. The usefulness will become clear when

we conduct our policy intervention experiments in Section 4.

3.2 Collateralized Debt

In this section, we shift our attention to an environment where all borrowing and lending

is fully secured by collateral. As in Chien and Lustig (2010) and Gottardi and Kubler (2015),

we assume that agents back their promises by means of trading a long-lived asset (or Lucas

tree). In contrast to the economy studied in the previous section, debt repudiation does

not induce any form of exclusion from financial markets. Upon default, debtors lose their

collateralizable assets which are handed over to creditors, but they still maintain access to

financial markets. Within this framework, our aim is to provide another microfoundation

for the specification of debt limits in Section 2. Furthermore, we will use Theorem 3.1 to

establish an intriguing and nontrivial equivalence mapping between the two settings. This

equivalence unravels an interesting link between credit limits and asset prices.
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Consider an economy where each agent i receives an endowment of ei(st) ⩾ 0 units of

the consumption good at event st. At the initial period, each agent i is also endowed with

an exogenous share αi(s−1) ⩾ 0 of a Lucas tree. The tree is an infinitely lived physical

asset that pays a dividend of δ(st) ⩾ 0 units of the consumption good at event st. Agent i’s

total endowment is therefore yi(st) := ei(st) + αi(s−1)δ(st) at event st. The tree exists

in unit supply, and its shares can be traded at the ex-dividend price P (st), determined in

equilibrium. We denote by αi(st) ⩾ 0 the post-trade tree holding of agent i at event st.

Agents can also trade one-period-ahead contingent bonds at any event st. Let bi(st+1) ∈ R
denote the position on the bond paying at event st+1, whose price, expressed in units of

st-consumption, is q(st+1). For each agent i, given an initial financial claim bi(s0), the initial

financial wealth is given by ai(s0) := bi(s0) + αi(s−1)[P (s0) + δ(s0)].

Since the tree holdings can be seized by creditors, it is intuitive to assume that debt

limits are imposed on the net asset position.12 Formally, we let B̃i(D̃i, ai(s0)|s0) denote the

budget set consisting of all triples (ci, αi, bi) of consumption processes ci = (ci(st))st⪰s0 , non-

negative tree holdings αi = (αi(st))st≻s0 , and contingent claims bi = (bi(st))st≻s0 satisfying

the following flow budget constraints and debt constraints: for all st ⪰ s0,13

ci(st) + P (st)αi(st) +
∑

st+1≻st

q(st+1)bi(st+1) ⩽

ei(st) + bi(st) + αi(σ(st))
[
δ(st) + P (st)

]
, (3.5)

and

∀st+1 ≻ st, bi(st+1) + αi(st)
[
δ(st+1) + P (st+1)

]
⩾ −D̃i(st+1). (3.6)

Since we have more markets than in the environment described in Section 2, we need to

modify Definition 2.1 as follows.

Definition 3.2. Given initial financial claims (bi(s0))i∈I satisfying
∑

i∈I b
i(s0) = 0, and

initial shares (αi(s−1))i∈I satisfying
∑

i∈I α
i(s−1) = 1, an equilibrium (q, P, (ci, αi, bi, D̃i)i∈I)

is a collection of state-contingent bond prices q, tree prices P , a consumption allocation

(ci)i∈I , an allocation of tree holdings (αi)i∈I , an allocation of contingent claims (bi)i∈I , and

finite debt limits (D̃i)i∈I such that:

12This follows Kocherlakota (2008).
13To keep notational consistency, we extend the domain of the predecessor function σ to the whole tree

Σ by posing σ(s0) := s−1.
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(a) each agent i, taking prices and the debt limits as given, chooses a plan (ci, αi, bi) that is

optimal among budget feasible plans in B̃i(D̃i, ai(s0)|s0);14

(b) all markets clear: ∑
i∈I

ci =
∑
i∈I

yi,
∑
i∈I

bi = 0 and
∑
i∈I

αi = 1.

For every event sτ ≻ s0 and every beginning-of-period net financial wealth x ∈ R, we let
B̃i(D̃i, x|sτ ) be the set of triples (ci, αi, bi) satisfying the flow budget constraint (3.5) and

the debt constraints (3.6) for all successor events st ⪰ sτ , together with the initial wealth

condition:

x = bi(sτ ) + αi(σ(sτ )) [δ(sτ ) + P (sτ )] .

The continuation value conditional on no default is then given by:

Ṽ i(D̃i, x|sτ ) := sup{U(ci|sτ ) : (ci, αi, bi) ∈ B̃i(D̃i, x|sτ )}.

At any contingency, debtors have the option to renege on their contracts and file for

bankruptcy. In this case, all tree holdings and current period dividends are seized and

transferred to lenders to redeem their debt. The part ei(st) of total endowment yi(st) =

ei(st)+αi(s−1)δ(st) cannot be seized, and defaulters still maintain access to financial markets.

We refer to the process (αi(s−1)δ(st))st⪰s0 as the collateralizable income. The residual ei(st)

constitutes the nonpledgeable component of the total endowment yi(st), since it cannot be

sold in advance to finance consumption or savings at any date before the endowment is

received.

This specification of the default punishment leads to the following value of default:

Ṽ i
def(s

τ ) := Ṽ i(D̃i, 0|sτ ), (3.7)

and the condition (3.2) for debt limits D̃i to be not too tight becomes:

Ṽ i(D̃i,−D̃i(st)|st) = Ṽ i(D̃i, 0|st) for all st ⪰ s0. (3.8)

Comparing condition (3.8) and its counterpart (3.4) reveals that it is simpler to solve

for the not-too-tight debt limits in the collateral model than in the reputation model, as

14Recall that the initial financial wealth is given by ai(s0) = bi(s0) + αi(s−1)[P (s0) + δ(s0)].

16



the former condition does not depend on future debt limits. In fact, we have the following

immediate result: when the value of default is given by (3.7), any process of not-too-tight

debt limits must be equal to zero.15 This in turn implies that the not-too-tight debt con-

straints (3.6) are equivalent to the collateral constraints:

∀st+1 ≻ st, bi(st+1) ⩾ −αi(st)
[
P (st+1) + δ(st+1)

]
. (3.9)

To connect the above constraint to the decomposition of debt limits in (2.4), we recall

the following standard asset-pricing result:

δ + P = PV(δ) +M, (3.10)

where M is a nonnegative exact rollover process. Asset pricing equation (3.10) implies that

tree holdings are indeterminate since what matters for consumption smoothing purposes is

the net financial position

θi(st) := bi(st) + αi(σ(st))
[
P (st) + δ(st)

]
.

Indeed, given Equation (3.10), the flow budget constraint (3.5) can be written as:

ci(st) +
∑

st+1≻st

q(st+1)θi(st+1) ⩽ ei(st) + θi(st).

Therefore, adjusting contingent claims bi if necessary, we can assume without any loss of

generality that agents do not trade their equity shares, i.e., αi(st) = αi(s−1) for every st.

The flow budget constraint (3.5) then becomes:

ci(st) +
∑

st+1≻st

q(st+1)bi(st+1) ⩽ yi(st) + bi(st) (3.11)

while the debt constraint is stated as:

bi(st+1) ⩾ −αi(s−1)P (st+1) = −
[
PV(αi(s−1)δ|st+1) + αi(s−1)M(st+1)

]
. (3.12)

15In the reputation debt framework, the debt limit Di(st) is not too tight when V i(Di,−Di(st)|st) =

V i
ℓi(0, 0|s

t). Since future debt limits only appear in the LHS of the equation, the determination of Di(st)

depends on the value of the future debt limits (Di(sτ ))sτ≻st . Additionally, since we require future debt limits

to be not too tight, this involves a fixed point in the space of debt limits processes. In the collateralized

debt environment, however, future debt limits appear both in the RHS and LHS of (3.8). Since the mapping

x 7→ Ṽ i(D̃i, x|st) is strictly increasing, we deduce that D̃i(st) = 0 is the only possible solution of (3.8).

Observe that this property is valid even if future debt limits were too tight. This will be crucial in the

analysis conducted in Section 4.4.
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Fix an arbitrary decomposition of the process M =
∑

i∈I M
i where each M i is a nonnegative

exact rollover process. Consider the allocation (ai)i∈I given by:

ai(st) := bi(st) + αi(s−1)M(st)−M i(st).

We can check that the flow budget constraint (3.11) is equivalent to:

ci(st) +
∑

st+1≻st

q(st+1)ai(st+1) ⩽ yi(st) + ai(st),

and the debt constraint (3.12) is equivalent to:

ai(st+1) ⩾ −
[
PV(αi(s−1)δ|st+1) +M i(st+1)

]
.

The above implies that agents’ borrowing capacity in the economy with collateralized debt is

decomposed into a fundamental and a bubble component exactly the same way it is decom-

posed in the economy with reputation debt. We can now present the following equivalence

theorem.

Theorem 3.2. A consumption allocation is the outcome of a laissez-faire equilibrium in the

collateralized debt framework, where the tree’s dividend process is δ, and the tree’s initial

holdings are (αi(s−1))i∈I , if, and only if, it is the outcome of a laissez-faire equilibrium in

the reputation debt framework, where the endowment losses are (αi(s−1)δ)i∈I .

Our equivalence result has implications for the effects of vanishing pledgeable income on

borrowing capacity and intertemporal trade. Assume, as in Chien and Lustig (2010), that

endowments are bounded and that collateralizable income represents a constant fraction of

the endowment, i.e., there exists δ ⩾ 0 such that for all st, δ(st) = δ ⩾ 0. When δ > 0,

Proposition 2.1 implies that the present value of pledgeable resources is finite, and assets

are priced at their fundamental value, so prices are bubble-free. One may think that when

δ = 0 (i.e., assets pay no dividends), asset prices must equal zero, so autarky is the only

equilibrium outcome. But such a claim presupposes that the aggregate wealth is still finite,

or equivalently, that the implied interest rates remain positive (higher than the growth rate)

when passing to the limit. However, as documented by Hellwig and Lorenzoni (2009), when

δ = 0, equilibrium interest rates can be sufficiently low (equal to zero in the absence of

growth) so that the economy’s aggregate wealth is infinite. The implication for the collateral

equilibrium, is that, even if the trees pay no dividend, assets may be priced as a speculative
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bubble. Indeed, it is sufficient to appeal to Theorem 3.2 and translate the bubbly equilibrium

of Hellwig and Lorenzoni (2009) in the environment of Chien and Lustig (2010). The intuition

for this discrepancy relies on the dual role of collateral as a source of liquidity. As dividends

become negligible (i.e., δ approaches zero), the value of the asset increases to compensate for

the decreased investment value. In the limit, the value of the collateral asset is still positive,

reflecting purely a bubble, even though there is no collateral in the market anymore.

4 Tightening Debt Constraints

The common belief in models where financial frictions are due to limited commitment

is that borrowing should be subject to not-too-tight debt limits. As we mentioned before,

this choice is justified on the grounds that competition among lenders will eventually permit

borrowers to issue the largest amount of debt compatible with repayment incentives. This

view is further reinforced by the misguided intuition that not-too-tight debt limits allow

for maximum risk-sharing. Though this is trivially true in a partial equilibrium framework

where prices are fixed, this intuition is questionable in general equilibrium settings where

both prices and debt limits are determined endogenously.

For a given specification of the default option, an obvious way to justify the choice of

imposing not-too-tight debt limits is to show that any other choice of debt limits consis-

tent with repayment incentives cannot lead to Pareto improvement. Equivalently, the test

amounts to explore whether it is possible that equilibria with too-tight debt limits (see Defi-

nition 3.1) can Pareto dominate laissez-faire equilibria. We adopt the term debt-constrained

efficiency, defined formally below, for this optimality property.

Definition 4.1. Fix a feasible allocation (ai(s0))i∈I of initial financial claims and a self-

enforcing equilibrium (q, (ci, ai, Di)i∈I).
16 This equilibrium is said to be debt-constrained

efficient if there does not exist another self-enforcing equilibrium (q̂, (ĉi, âi, D̂i)i∈I) with,

possibly, a different feasible allocation (âi(s0)) of initial financial claims such that the con-

sumption allocation (ĉi)i∈I Pareto dominates (ci)i∈I .
17

We hereafter explore whether laissez-faire equilibria in economies with limited commit-

ment, like those analyzed in the previous sections, are debt-constrained efficient and whether

16In the sense that debt limits Di satisfy the condition (3.1) with (possibly) strict inequality in some

contingencies. Recall that laissez-faire equilibria are a particular case of self-enforcing equilibria.
17In the sense that U(ĉi) > U(ci) for each agent i ∈ I.
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policy interventions are warranted. In doing so, it is useful to first revisit a well-known bench-

mark where debt-constrained efficiency is unambiguous despite the fact that equilibrium debt

limits depend on market prices: the Alvarez and Jermann (2000) model, where default in-

duces complete financial autarky and nonnegligible dead weight losses. There, we have the

following result:

Theorem 4.1. Assume that for each agent i, the value of the default option is:

V i
def(s

t) = U i(yi − ℓi|st), for all st ≻ s0.

If the endowment losses (ℓi)i∈I are a nonnegligible fraction of aggregate resources (see Propo-

sition 2.1), then any laissez-faire equilibrium is debt-constrained efficient.

This section’s main contribution is to overturn this efficiency result in economies where

agents can still save upon default. In particular, we show that, in the environments of

Sections 3.1 and 3.2, a policy intervention that tightens the debt constraints can Pareto

improve upon the laissez-faire allocation. Specifically, we allow for a credit agency or the

government to impose too-tight debt limits and show that, under certain conditions, in the

new equilibrium, all agents are better off with respect to the equilibrium that is subject to

not-too-tight debt limits. We interpret such interventions as a parsimonious representation

of regulatory or prudential policies that aim to constrain leverage in the financial markets.

Intuitively, when do we expect laissez-faire allocations to be debt-constrained inefficient?

When the value of default depends on market prices, there is a pecuniary externality that

is not internalized by agents in a competitive environment. In particular, we will show that

a reduction of the borrowing capacity from a period τ onward reduces the credit volume

and increases bond prices, or equivalently, lowers the implied interest rates. This impact on

prices has a negative feedback effect on the value of the default option at periods t < τ , since

it is now more costly to smooth consumption over time by saving only. This implies that

the not-too-tight debt limits at periods t < τ must be looser compared to their level before

the intervention. Pareto improvement can be obtained when the benefits from the relaxed

credit conditions at periods t < τ compensate the costs of the tighter credit conditions at

subsequent periods.

To illustrate the intuition above in the simplest possible manner, we consider an economy

with two agents facing uncertainty only at the initial period. The economy is thereafter

a deterministic one in which every other period agents’ endowments switch from a high
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value to a low value. Within this setting, we perform the following exercise. We first

construct a Markov laissez-faire equilibrium (q, (ci, ai, Di)i∈I), in which after the realization

of uncertainty, the economy settles in a cyclical and symmetric steady-state equilibrium

where debt limits are not too tight. We then construct another equilibrium (q̂, (ĉi, âi, D̂i)i∈i),

supported by the same allocation of initial financial claims, but with debt constraints that

are tighter than necessary. We then show that the consumption allocation (ĉi)i∈I Pareto

dominates the consumption allocation (ci)i∈I of the laissez-faire equilibrium. Throughout

our analysis, we make use of our decomposition result (Theorem 3.1) and equivalence result

(Theorem 3.2).

4.1 Primitives of the Example

There are two agents I = {a, b} who enter the market with an identical endowment

y0 > 0 and no financial claims (i.e., aa(s0) = ab(s0) = 0). There is uncertainty only at the

initial period t = 0, described by two possible states za ̸= zb. After the realization of the

state zi, the economy becomes deterministic where agents endowments’ switch between a

high value yh and a low value yl with yh > yl. The realization of state zi means that it is

agent i who starts with the high endowment at t = 1. The beliefs are heterogeneous, with

each agent assigning a probability πh < 1/2 (πl := 1− πh, respectively) of getting the high

(low, respectively) endowment at t = 1.

Since there is uncertainty only at the initial period, we simplify notation by writing a

generic process (x(st))st⪰s0 as follows: x(s0) = x0 and

x(st) = xt(z), if st ⪰ (s0, z) with z ∈ {za, zb}.18

The representation of the event tree is as in Figure 4.1.

18The event tree Σ can be formally defined as follows: S0 := {s0} and for every t ⩾ 1, St = {(za, t), (zb, t)}.
The binary relation ≻ is defined as follows: (z, 1) ≻ s0 and (z, τ) ≻ (ζ, t) when z = ζ and τ > t.
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y(s0) = (y0, y0)

y1(z
a) = (yh, yl) (za, 1)

y2(z
a) = (yl, yh) (za, 2)

π(za) = (πh, πl)

y1(z
b) = (yl, yh)(zb, 1)

y2(z
b) = (yh, yl)(zb, 2)

π(zb) = (πl, πh)

Figure 4.1: Event tree and endowments.

For future reference, we point out that the symmetric first-best allocation of this econ-

omy obtains when both agents consume their endowment at t = 0 and, conditional on the

realization of state zi, agent i consumes cfb while agent j ̸= i consumes cfb at every period

t ⩾ 1. The consumption levels cfb and cfb solve the following system of equations:

πhu
′(cfb) = πlu

′(cfb) and cfb + cfb = yh + yl. (4.1)

Observe that cfb > cfb: since both agents believe that reaching the low endowment state at

t = 1 has a higher likelihood πl > πh, they will trade to implement the larger consumption

level cfb contingent to this event.

All figures in the paper are obtained assuming:

u = ln, y0 = 1, yl = 2, yh = 2.5, β = 0.9, and πh = 0.35.

Setting specific values for the primitives serves the purpose to provide a graphical illustration

of our policy interventions. It also helps to verify straightaway the validity of the first-order

optimality conditions which is an essential part of the construction of Pareto-improving

equilibria. It should be clear that, given our assumptions (continuity), the whole analysis

is valid for an open set of parameters values. For brevity, we abstract from presenting the

technical details of the robustness of our results.
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4.2 Laissez-Faire Equilibrium

Suppose that pledgeable endowment is time-invariant and identical for both agents, i.e.,

ℓi(st) = ℓ for all i ∈ I and st ∈ Σ. Within this framework, we restrict attention to symmetric

Markov equilibria with limited pledgeability and recall that equilibrium debt limits are equal

to the present value of pledgeable endowment.19

We first notice that the first-best allocation can be implemented as an equilibrium when

the level ℓ of pledgeable endowment is larger than the following threshold:

ℓfb :=
(yh − cfb)− β(cfb − yl)

1 + β
. (4.2)

Consider next the following lower level of pledgeable endowment:

ℓ⋆ :=
1− β

1 + β
× yh − yl

2
. (4.3)

We assume the parameters such that ℓ⋆ < yl.
20 The following claim shows that ℓ∗ supports

an equilibrium with the following characteristics: at period t = 0, both agents borrow against

their high-income state and save contingent to their low-income state. After the resolution

of the uncertainty at period t = 1, the economy settles in a cyclical steady-state where the

low-income agent borrows up to the not-too-tight debt limit, the high-income agent saves,

and consumption is constant and equal to clf := (yl + yl)/2 for every t ⩾ 1.

Claim 4.1. Let ℓ⋆ be specified as in (4.3) and denote:

q(0) := β and d(0) :=
ℓ⋆

1− q(0)
.

There exists an equilibrium with limited pleadgebility (q, (ci, ai, Di)i∈I) where for each z ∈
{za, zb} and every i ∈ I:

(i) debt limits equal Di
t(z) = d(0), for t ⩾ 1;

(ii) consumption is risk-free: ci0 = y0 and cit(z
a) = cit(z

b) = clf , for t ⩾ 1;

(iii) net asset positions are ait(z) = −d(0) (i.e., the debt limit binds) if yit(z) = yh and

ait(z) = d(0) if yit(z) = yl, for t ⩾ 1;

19When ℓ > 0, it follows from Proposition 2.1 that debt limits in an equilibrium with limited pledgeability

cannot display bubbles.
20This is the case when β is sufficiently close to 1, or yh − yl is sufficiently small.

23



(iv) prices are given by q1(z) = βπlu
′(clf)/u′(y0) and qt+1(z) = q(0), for t ⩾ 1;

(v) the continuation utility at period t = 1 is:

U lf
1 =

u(clf)

1− β
,

and the expected utility at period t = 0 is:

U lf
0 = u(y0) + βU lf

1 .

We omit the straightforward proof of the claim and conclude by noting that Theorem 3.1

and Theorem 3.2 imply that the equilibrium described above can be supported as a laissez-

faire equilibrium where debt limits are not-too-tight, as is the case in the model with rep-

utation debt and the model with collateralized debt. Indeed, the collateral equilibrium is

obtained when the dividend process δ of the Lucas tree is constant and equal to 2ℓ⋆, and the

initial tree holdings are symmetric, i.e., αi(s−1) = 1/2 for each i. Nonpledgeable endowment

is then given by ei(st) := yi(st)− ℓ⋆.21

4.3 Tightening Debt Limits in the Reputation Debt Environment

We now proceed to show that a policy intervention that tightens the debt constraints

can potentially Pareto improve upon the laissez-faire allocation, starting with the reputation

debt framework (Section 4.4 will analyze the collateral debt framework). Formally, for each

tightening parameter ε ∈ [0, 1], we will show that there is an equilibrium

(qε, (ci,ε, ai,ε, Di,ε)i∈I),

where, for every state z ∈ {za, zb}, the debt limits Di,ε
1 (z) satisfy the not-too-tight condi-

tion (3.2), but the debt limits in subsequent periods are too-tight and equal to:

Di,ε
t (z) = (1− ε) PVε

t(ℓ
⋆|z), for t ⩾ 2.22 (4.4)

Our aim is to show that for some values of ε, the new consumption allocation (ci,ε)i∈I Pareto

dominates the laissez-faire consumption allocation (ci)i∈I in Claim 4.1. To facilitate the

exposition of this policy experiment, we split the argument in several steps.

21Recall that the values of primitive parameters are such that ℓ⋆ < yl.
22The notation PVε

t (ℓ
⋆|z) represents the present value PV(ℓ⋆|st) computed with the price process qε and

conditional to time-t event st = (z, t).

24



4.3.1 Steady-State Phase

The first step amounts to show that the debt limits in (4.4) support a cyclical steady-state

from period t = 2 onward. For each tightening parameter ε, denote

q(ε) := β
u′(cl(ε))

u′(ch(ε))
and d(ε) := (1− ε)

ℓ⋆

1− q(ε)
, (4.5)

where:

ch(ε) := yh − (1 + q(ε))d(ε) and cl(ε) := yl + (1 + q(ε))d(ε).

We have the following result:

Claim 4.2. Contingent to any state z ∈ {za, zb}, the economy reaches a steady-state phase

at t = 2 with the following characteristics: for all t ⩾ 2:

(i) debt limits Di,ε
t (z) = d(ε) are too tight;

(ii) the consumption allocation is ci,εt (z) = ch(ε) if y
i
t(z) = yh and ci,εt (z) = cl(ε) if y

i
t(z) =

yl;

(iii) net asset positions are ai,εt (z) = −d(ε) (i.e., the debt limit binds) if yit(z) = yh and

ai,εt (z) = d(ε) if yit(z) = yl;

(iv) prices are given by qεt+1(z) = q(ε).

In words, agents borrow the amount d(ε) when their income is low and save the amount

d(ε) when their income is high. It is shown below (see Figures 4.2(a) and 4.2(b)) that the

higher the tightening coefficient ε, the tighter the debt limits (i.e., the function ε 7→ d(ε)

is decreasing), and the higher the steady-state price q(ε) (or, equivalently, the lower the

steady-state interest rate). In the limit, when ε tends to 1, the interest rate is zero (i.e.,

limε→1 q(ε) = 1), and debt limits form a bubble, i.e., Di,1
t (z) = d(1) where d(1) is determined

by the equation: u′(yh − 2d(1)) = βu′(yl + 2d(1)).23

By construction, the steady-state variables satisfy market clearing. To be part of an

equilibrium, they should also be optimal. This requires that the following inequality holds

23We notice that under the chosen values for the primitives, we have that βu′(yl)/u
′(yh) = 1.125 > 1,

which ensures the existence of a pure bubbly equilibrium when there is no endowment loss.
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true:24

q(ε) ⩾ β
u′(ch(ε))

u′(cl(ε))
. (4.6)

The claim that Di,ε
t (z) is too tight relies on the following observation. From the decom-

position result (Theorem 3.1), we infer that the equilibrium described in Claim 4.2 is in fact

a laissez-faire equilibrium of another economy where the endowment loss upon default is

(1− ε)ℓ⋆. Indeed, for every z ∈ {za, zb} and st = (z, t) with t > 0, we have:

d(ε) = PVε
t((1− ε)ℓ⋆|z).

So Di,ε(st) = d(ε) satisfies the not-too-tight condition:

V i(Di,ε,−Di,ε(st)|st) = V i
(1−ε)ℓ⋆(0, 0|st).

Since in the actual economy, the endowment loss equals ℓ⋆, we deduce that:

V i(Di,ε,−Di,ε(st)|st) = V i
(1−ε)ℓ⋆(0, 0|st) > V i

ℓ⋆(0, 0|st) = V i
def(s

t),

which proves the claim.

4.3.2 Transition Phase

The second step is to determine the equilibrium variables for the transition periods t = 0

and t = 1. This is nontrivial since we have to compute the not-too-tight debt limits Di,ε
1 (z)

without being able to appeal to our decomposition result (Theorem 3.1).25 We address

this issue in the next step (Section 4.3.3). For the moment, fix a parameter d1 ∈ [0, yh)

representing the debt issued at period t = 0, and look for an equilibrium where for every

i ∈ I:

ci,ε0 = y0, ai,ε1 (zi) = −d1, ai,ε1 (zj) = d1 and Di,ε
1 (zi) = d1.

That is, at the initial period, both agents borrow against next period’s high-income state

and save contingent to the low-income state.

24The online supplemental material shows that inequality (4.6) is satisfied for the values of the primitives

we consider.
25Note that we only need to specify the debt limit Di,ε

1 (zi) as the debt limit Di,ε
1 (zj) that is contingent

to the low-income state will be nonbinding.
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Since at period t = 2, the economy settles in the cyclical steady-state described in

Claim 4.2, bond holdings at the end of period t = 1 should be equal to:

ai,ε2 (z) =

d(ε) if yi2(z) = yl,

−d(ε) if yi2(z) = yh.

This in turn implies that the corresponding consumption levels at t = 1 are given by:

ci,ε1 (zi) = yh − d1 − qε2(z)d(ε) =: c1,h(ε, d1)

and

ci,ε1 (zj) = yl + d1 + qε2(z)d(ε) =: c1,l(ε, d1),

where the bond prices qε2(z) at period t = 1 are determined by the first-order conditions:

qε2(z) = β
u′(cl(ε))

u′(c1,h(ε, d1))
=: q2(ε, d1), for z ∈ {za, zb}.

Similarly, the bond prices at period t = 0 are determined by the following first-order condi-

tions:

qε1(z) = βπl
u′(c1,l(ε, d1))

u′(y0)
=: q1(ε, d1), for z ∈ {za, zb}.

Optimality requires that:

u′(c1,l(ε, d1))

u′(c1,h(ε, d1))
⩾ max

{
πh

πl

,
u′(ch(ε))

u′(cl(ε))

}
.26 (4.7)

4.3.3 Determination of d1

We next identify the level of d1 (that is not too tight) given that the debt limits at all

successor periods t ⩾ 2 are set to be too tight (see Claim 4.2). Let us denote by d1(ε) this

level and remark that we cannot appeal to Theorem 3.1 to claim that d1(ε) = PVε
1(ℓ

⋆|z).
This would be the case if future debt limits were also not-too-tight (i.e., they are also equal

to the present value of pledgeable income), which we have ruled out by construction. There-

fore, the determination of d1(ε) requires that we do compute the value functions associated

26The inequality obtains from the first-order conditions of the borrowing decisions at t = 0 and t = 1,

respectively, i.e., q1(ε, d1) ⩾ βπh
u′(c1,h(ε,d1))

u′(y0)
and q2(ε, d1) ⩾ β u′(ch(ε))

u′(c1,l(ε,d1))
. The online supplemental material

shows that inequality (4.7) is satisfied for the values of the primitives we consider.
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to equilibrium and out-of-equilibrium paths. For this purpose, we introduce the following

notations.

Let U1,h(ε, d1) denote the value function

U1,h(ε, d1) := V i(Di,ε,−d1|(zi, 1))

that corresponds to the largest continuation utility when the debt of the high-income agent

at period t = 1 equals to d1. Provided that (4.7) holds true, it follows that:

U1,h(ε, d1) = u(c1,h(ε, d1)) + βUl(ε) where Ul(ε) :=
u(cl(ε)) + βu(ch(ε))

1− β2
.

Let also W1,h(ε, d1) denote the default option of the high-income agent at t = 1:

W1,h(ε, d1) := V i
ℓ⋆(0, 0|(zi, 1)).

Note that the default option depends indirectly on the debt level d1, as d1 affects the

bond prices q2(ε, d1). In the online supplemental material, we derive the following solution

for W1,H :

W1,h(ε, d1) = u(c1(ε, d1)) + βu(c2(ε, d1)) + β2

[
u(ch(ε)) + βu(cl(ε))

1− β2

]
,

where the consumption levels satisfy the flow budget constraint at t = 1:

c1(ε, d1) + q2(ε, d1)θ̄2(ε, d1) = yh − ℓ⋆ with θ̄2(ε, d1) ⩾ 0,

the flow budget constraint at t = 2:

c2(ε, d1) = yl − ℓ⋆ + θ̄2(ε, d1),

the flow budget constraint at any date t ⩾ 3 where agents are receiving high income:

ch(ε) + q(ε)θ̄(ε) = yh − ℓ⋆ with θ̄(ε) ⩾ 0,

and the flow budget constraint at any date t ⩾ 3 where agents are receiving low income

cl(ε) = yl − ℓ⋆ + θ̄(ε).

There are no savings when income is low. The saving choices θ̄2(ε, d1) and θ̄(ε) when income

is high are determined by the first-order conditions

q2(ε, d1) = β
u′(c2(ε, d1))

u′(c̄1(ε, d1))
and q(ε) = β

u′(cl(ε))

u′(ch(ε))
, (4.8)
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where the prices q2(ε, d1) and q(ε) are determined in the transition and steady-state phases.

We finally notice that the above (out-of-equilibrium) consumption and saving choices are

optimal provided that they satisfy27

u′(cl(ε))

u′(ch(ε))
⩾

u′(ch(ε))

u′(c2(ε, d1))
and ch(ε) ⩾ cl(ε). (4.9)

Figure 4.2(a) plots the debt level d1(ε) obtained as the solution to the following not-too-

tight condition

U1,h(ε, d1) = W1,h(ε, d1). (4.10)

For comparison, we also plot the equilibrium too-tight debt level d(ε) as defined in (4.5). We

see that ε 7→ d1(ε) is an increasing function while ε 7→ d(ε) is a decreasing function. With

the determination of d1(ε) well understood, we can simplify the notation for the equilibrium

variables along the transition as follows: for t ∈ {1, 2},

c1,h(ε) := c1,h(ε, d1(ε)), c1,l(ε) := c1,l(ε, d1(ε)), and qt(ε) := qt(ε, d1(ε)).

To understand why the policy intervention might be Pareto-improving, it is useful to

disentangle the effects it has on the not-too-tight debt limit Di
1(z

i). Before the intervention

(ε = 0), the economy is at the laissez-faire equilibrium where Di
1(z

i) equals to d(0). If we

ignore the impact on prices, the deterioration of future credit conditions has a first-order

effect: restricting borrowing in the future (i.e., d(ε) falls below d(0) as ε increases) reduces the

value of honoring the debt d(0) at period t = 1 while it leaves the default option unaffected.

This implies that Di
1(z

i) has to decrease below d(0) for the not-too-tight condition (3.1) to

be satisfied. Taking into account the feedback on prices produces a second-order effect: as

ε increases, both the period-1 bond price q2(ε) and the steady-state price q(ε) increase, as

shown in Figure 4.2(b). Thus the intervention makes the option of default less appealing by

reducing the interest rate on saving. The impact on the value for honoring the debt d(0)

is, however, ambiguous since along the equilibrium path, the agents both save and borrow.

Figure 4.3(a) shows that the value U1,h(ε, d(0)) of repaying the debt level d(0) is strictly

above the value W1,h(ε, d(0)) of the default option, so Di
1(z

i) has to increase above d(0) for

the not-too-tight condition (3.1) to be satisfied. The overall effect of policy intervention on

27The inequalities correspond to the first-order conditions of the saving decisions at t = 2 and t ⩾ 3,

respectively, i.e., q(ε) ⩾ β u′(ch(ε))
u′(c2(ε,d1))

and q(ε) ⩾ β u′(ch(ε))
u′(cl(ε))

. The online supplemental material shows that

both inequalities are satisfied for the values of the primitives we consider.
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the level of Di
1(z

i) is reflected in the value of d1(ε), the new not-too-tight debt level. As

shown in Figure 4.2(a), d1(ε) > d(0), so the second-order effect outweighs the first-order

effect.

(a) Debt Limits (b) Prices

Figure 4.2: Equilibrium debt limits and prices as functions of the tightening coefficient ε.

The following claim summarizes the construction of the equilibrium with too-tight debt

constraints.

Claim 4.3. The consumption allocations, bond holdings, and debt limits of the steady-state

and transition phases support a competitive equilibrium with not-too-tight reputation debt at

t = 1 and too-tight reputation debt at every subsequent date t ⩾ 2.

4.3.4 Pareto Improvement

We now numerically show that the equilibrium described in Claim 4.3 Pareto dominates

the laissez-faire equilibrium. To identify the overall impact on expected utility, we introduce

the following notations. Let U1,h(ε) and U1,l(ε) be the continuation utilities contingent to

high and low income at t = 1 when the debt limit is d1(ε). That is,

U1,h(ε) = u(c1,h(ε)) + βUl(ε) and U1,l(ε) = u(c1,l(ε)) + βUh(ε),

where

Uh(ε) :=
u(ch(ε)) + βu(cl(ε))

1− β2
and Ul(ε) :=

u(cl(ε)) + βu(ch(ε))

1− β2
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are the steady-state continuation utilities. Time-0 utility U0(ε) is then given by

U0(ε) = u(y0) + β [πhU1,h(ε) + πlU1,l(ε)] .

Since the equilibrium is symmetric, we have

U i(ci,ε|s0) = U0(ε)

for each agent i ∈ I. It is straightforward to verify that if ε = 0, then we recover the

laissez-faire equilibrium with not-too-tight debt limits, that is

(q0, (ci,0, ai,0, Di,0)i∈I) = (q, (ci, ai, Di)i∈I),

and we deduce that U0(0) = U i(ci|s0). Therefore, to show that the consumption allocation

(ci,ε)i∈I Pareto dominates the consumption allocation (ci)i∈I , it is sufficient to show that

U0(ε) > U0(0) for some value of ε.

Figure 4.3(b) shows that the steady-state utility of the high-income (low-income, respec-

tively) agent increases (decreases, respectively) with ε. We can also see from Figure 4.3(c)

that the period t = 1 consumption of the high-income (low-income, respectively) agent de-

creases (increases, respectively). The above impacts the ex-ante (i.e., at t = 0) utility in two

ways. There is a negative effect due to the decrease of period t = 1 continuation utility of

the high-income agent, and a positive effect due to the increase of period t = 1 continua-

tion utility of the low-income agent. This is illustrated in Figure 4.3(d). Since both agents

assign a higher probability on low-income state than on high-income state, i.e., πl > πh,

it is possible that, for some values of ε, the positive effect might offset the negative effect,

so that the ex-ante utility increases. Figure 4.3(e) confirms this conjecture: for the values

of the primitives, we consider the benefit due to the increased borrowing capacity at t = 0

can outweigh the cost of reduced borrowing opportunities at each t ⩾ 1. In summary, our

numerical analysis has shown that for some values of ε, the intervention of tightening the

debt limits can increase the ex-ante utility for both agents.

It is crucial that the intervention does not occur at the initial period t = 0. Indeed,

without the transition phase, the symmetric ex-ante expected utility Un
0 (ε) associated to

this naive intervention is given by

Un
0 (ε) = u(y0) + β [πhUh(ε) + πlUl(ε)] .

Mathematically, this corresponds to a laissez-faire equilibrium where the pledgeable endow-

ment is reduced by ε. As depicted in Figure 4.3(f), such intervention does not improve

welfare.
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(a) Default and Repayment Values (b) Steady-State Utility

(c) Transitory vs. Steady-State Consumption (d) Utility at t = 1

(e) Expected lifetime utility at t = 0 (f) Expected lifetime utility at t = 0 (no transition phase)

Figure 4.3: Consumption and utilities as functions of tightening coefficient ε.
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4.4 Tightening Debt Limits in the Collateral Debt Environment

We now show that tightening debt limits can also increase welfare in the environment

of Section 3.2 where debt is collateralized. We mentioned before that the laissez-faire equi-

librium described in Claim 4.1 can be supported as an equilibrium with collateralized debt

when the dividend of the Lucas tree is constant and equal to 2ℓ⋆, and the initial tree holdings

are symmetric, i.e., αi(s−1) = 1/2 for each agent i. Nonpledgeable endowment is then given

by ei(st) := yi(st) − ℓ⋆. We recall from Section 3.2 that debt limits are self-enforcing at

event st = (z, t) when

Ṽ i
t (D̃

i,−D̃i
t(z)|z) ⩾ Ṽ i

t (D̃
i, 0|z).28

Independently of the level (not too tight or too tight) of future debt limits D̃i
τ (z) for τ > t, the

above condition is satisfied with equality at date t if, and only if, D̃i
t(z) = 0, whereas a strict

inequality obtains if, and only if, D̃i
t(z) < 0. Equivalently, in the collateral environment, the

debt limit is too tight at some contingency if, and only if, it forces mandatory saving in net

terms.

Our objective is to construct a collateral equilibrium with too tight debt limits at some

events that Pareto dominates the laissez-faire equilibrium. To do this, we fix a sequence

(ηt)t⩾1 of tightening parameters ηt ∈ [0, 1] and set

D̃i
t(z) = −ηt [Pt(z) + ℓ⋆] , (4.11)

where Pt(z) is the price of the tree at event s
t = (z, t). When ηt = 0, the debt limit D̃i

t(z) = 0

is not too tight, whereas when ηt > 0, the debt limit D̃i
t(z) < 0 is too tight. The borrowing

(collateral) constraints (3.6) now take the following form: for all z ∈ {za, zb}

bit(z) + αi
t−1(z)[Pt(z) + ℓ⋆] ⩾ ηt [Pt(z) + ℓ⋆] , (4.12)

where 0 ⩽ ηt ⩽ 1 is interpreted as a margin requirement imposed by a regulatory agency or

the government that requires agents to keep at least (the market value of) a fraction ηt of

the physical asset in their balance sheet.

An important observation is that, even under the possibly too-tight debt limits (4.11),

the asset pricing equation (3.10) remains valid, so we have that Pt(z) + ℓ⋆ = PVt(ℓ
⋆|z).

This permits, without any loss of generality, to focus attention to the case where there is no

trade in the equity market, i.e., αi
t(z) = 1/2 for each i and all t. In particular, as argued

28We replace the notation Ṽ i(D̃i, x|st) by the simpler Ṽ i
t (D̃

i, x|z) when st = (z, t).
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in Section 3.2, we can show that an equilibrium (q, P, (ci, αi, bi, D̃i)i∈I) with self-enforcing

(possibly too-tight) collateral constraints (4.12) is equivalent to an equilibrium with limited

pledgeability (q, (ci, ai, Di)i∈I) where the debt limits are given by Di
t(z) := (1−ηt) PVt(ℓ

⋆|z).
In the rest of the section, we compute such equilibria by considering a nonzero sequence of

tightening coefficients, i.e., (ηt)t⩾1 ̸= 0.

We perform two policy experiments that give rise to equilibria with different characteris-

tics. We first look in the case where the margin requirements (or, equivalently, the too-tight

collateral constraints) are imposed from period t = 1 onward, similar to what we did in

the economy with reputation debt. We then look in the case where the intervention takes

place from period t = 2 onward. Interestingly enough, the analysis reveals that delaying the

tightening of the collateral constraints one period ahead generates higher welfare gains. We

show that this is a general property in our example: the later in the future the intervention

takes place, the higher the welfare gains. In the limit, if we delay the intervention for a

sufficiently long time, we can get as close as we desire to the first-best regime.

4.4.1 Tightening Collateral Constraints at t ⩾ 1

Assume that η1 = 0 and ηt = ε > 0 for every t ⩾ 2. We construct an equilibrium

(qε, (ci,ε, ai,ε, Di,ε)i∈I) where the debt limits satisfy

Di,ε
1 (z) = PVε

1(ℓ
⋆|z) and Di,ε

t (z) = (1− ε) PVε
t(ℓ

⋆|z), for all t ⩾ 2.

As argued above, such an equilibrium can be implemented as an equilibrium with not-too-

tight collateral constraints at t = 0 and too-tight collateral constraints at every t ⩾ 1.

The characteristics of the equilibrium are as follows: the economy reaches at period t = 3

a cyclical steady-state (q(ε), ch(ε), cl(ε), d(ε)) similar to the one obtained in the model with

reputation debt (i.e., Claim 4.2 applies for t ⩾ 3). In the transition periods t ∈ {1, 2},
consumption, asset holdings, and debt limits are symmetric, i.e., for any z ∈ {za, zb},

ci,εt (z) =

ct,h(ε), if yit(z) = yh,

ct,l(ε), if yit(z) = yl;
and ai,εt (z) =

−dt(ε), if yit(z) = yh,

dt(ε), if yit(z) = yl;

together with qεt+1(z) =: qt+1(ε) and Di,ε(z) =: Dt(ε) where:

D1(ε) = ℓ⋆
[
1 + q2(ε)

(
1 + q3(ε)

1

1− q(ε)

)]
and D2(ε) = (1− ε)ℓ⋆

[
1 + q3(ε)

1

1− q(ε)

]
.
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At t = 0, both agents consume their endowment ci,ε0 = y0, with asset prices given by:

qε1(z) = βπl
u′(c1,l(ε))

u′(y0)
, for each z ∈ {za, zb}.

An important feature of the cyclical steady state described in Claim 4.2 is that the

interest rates tend to zero when ε converges to 1 (i.e., limε→1 q(ε) = 1). This property has

implications for the not-too-tight debt limit D1(ε) and the too-tight debt limit D2(ε). In

particular, Figure 4.4(a) shows that D1(ε) explodes to infinite, while D2(ε) decreases as ε

increases. In turn, these features have implications for the determination of the equilibrium

consumption, asset positions, and prices over the transition period. Specifically, they give

rise to three threshold values 0 < ε1 < ε2 < ε3 < 1 over which equilibrium characteristics

differ. We delegate the detailed equilibrium derivations to the online supplemental material

of this paper and present the main characteristics hereafter. A graphical illustration is given

in Figure 4.4.

• For ε ∈ [0, ε1], both agents borrow up to the debt limit against their high income at

periods t ∈ {1, 2}, i.e., d1(ε) = D1(ε) and d2(ε) = D2(ε). For ε ∈ (0, ε1), we have

c1,l(ε) < c2,h(ε) and c1,h(ε) > c2,l(ε). At the threshold value ε1, the debt limit D1(ε1)

is large enough so that agents’ consumption levels at t = 1 and t = 2 are equalized,

i.e., c1,h(ε1) = c2,l(ε1) and c1,l(ε1) = c2,h(ε1).

• For ε ∈ (ε1, ε2], both agents borrow up to the debt limit against their high-income

state at period t = 1, i.e., d1(ε) = D1(ε). But now D1(ε) is sufficiently large so that

the low-income agent at period t = 1 does not need to borrow up to the debt limit,

i.e., d2(ε) < D2(ε) to achieve perfect consumption smoothing between t = 1 and t = 2.

We then have c1,h(ε) = c2,l(ε) and c1,l(ε) = c2,h(ε), which implies that q2(ε) = β. As ε

increases, D1(ε) becomes so large that the high-income agent at period t = 1 finds it

optimal to borrow, i.e., d2(ε) becomes negative. The threshold value ε2 is determined

by the binding constraint d2(ε2) = −D2(ε2).

• For ε ∈ (ε2, ε3], both agents borrow up to the debt limit against their high-income

state at t = 1, i.e., d1(ε) = D1(ε). However, perfect consumption smoothing between

periods t = 1 and t = 2 is not feasible anymore, since the debt constraint of the

high-income agent at period t = 1 is binding, i.e., the agent continues to borrow up

to d2(ε) = −D2(ε). The consumption c1,l(ε) of the low-income agent continues to
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increase with ε while the consumption c1,h(ε) of the high-income agent continues to

decrease. At the threshold level ε3, the consumption levels c1,l(ε3) and c1,h(ε3) equal

the first-best values cfb and cfb, so we have πlu
′(c1,l(ε3)) = πhu

′(c1,h(ε3)).

• Finally, for ε ∈ (ε3, 1], the debt limit level D1(ε) is so large that the debt constraint

at t = 0 is not binding, i.e., d1(ε) < D1(ε). The first-best allocation is implemented

at period t = 1. The high-income agent continues to borrow up to the debt limit

contingent to low income, i.e., d2(ε) = −D2(ε).

Figure 4.4(a) and Figure 4.4(b) plot the debt levels and equilibrium prices as functions

of the tightening parameter ε. As in the model with reputation debt, the tightening of debt

constraints at every t ⩾ 1 leads to lower interest rates in the cyclical steady-state (ε 7→ q(ε)

is increasing). This has a positive feedback effect on the equity price at t = 1, which in turn

relaxes the collateral constraints at t = 0: the price PVε
1(ℓ

⋆|z) of the asset is increasing with

ε and tends to infinite when ε converges to 1.

In terms of utility values, the tightening of debt constraints increases (decreases) the

steady-state continuation utility Uh(ε) (Ul(ε)) of the high-income (low-income) agent. Fig-

ures 4.4(c) and 4.4(d) plot the consumption levels at dates t = 1 and t = 2. The consumption

(c1,l(ε), c2,h(ε)) of the agent having low income at period t = 1 increases with ε. As shown in

Figure 4.4(e), this increase in consumption more than compensates for the lower steady-state

utility value Ul(ε), so the period-1 continuation utility U1,l(ε) increases with ε. Symmetri-

cally, the consumption (c1,h(ε), c2,l(ε)) of the agent having high income at t = 1 decreases

with ε, and this outweighs the increase in the steady-state utility Uh(ε), so the period-1

continuation utility U1,h(ε) decreases with ε. The overall effect on ex-ante utility U0(ε) is

driven by the trade-off of period-1 continuation utility values. Since both agents assign a

higher probability to low-income state than to high-income state, i.e., πl > πh we get Pareto

improvement. This is illustrated in Figure 4.4(f).

When ε is close enough to 1 (formally, ε ⩾ ε3), interest rates are so low, and the value of

collateral is so large that the debt constraints at t = 0 are not binding anymore. Therefore,

there is no gain (in terms of period t = 1 and period t = 2 consumption levels) from

restricting trade in the future, and the ex-ante expected utility decreases with ε.
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(a) Debt Limits (b) Prices

(c) Consumption for Low Values of ε (d) Consumption for High Values of ε

(e) Time 1 Continuation Utility (f) Time 0 Expected Utility

Figure 4.4: Equilibrium debt limits, prices, consumption, and utility as functions of the tightening coefficient ε.
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4.4.2 Tightening Collateral Constraints at t ⩾ 2

Consider now the case where the collateral constraints are tightened at all dates t ⩾ 2,

but at t = 0 and t = 1, constraints are not-too-tight. Formally, we assume that η1 = η2 = 0

and for every t ⩾ 3, ηt = ε for some ε > 0. As in the previous section, depending on the

value of ε, we exhibit an equilibrium (qε, (ci,ε, ai,ε, Di,ε)i∈I) that has different characteristics

before the economy reaches the cyclical steady-state at t = 3. The difference is that we now

only have a single threshold value ε1 ∈ (0, 1) where the equilibrium variables differ over the

transition phase. We hereafter discuss the main equilibrium characteristics and delegate the

detailed derivations to the online supplemental material of this paper.

Agents now can borrow at period t = 1 up to

D2(ε) = ℓ⋆
[
1 + q3(ε)

1

1− q(ε)

]
.

Figure 4.5(a) shows that D2(ε) is increasing in ε and explodes to infinite as ε converges

to 1 (and q(ε) 7→ 1), exactly as it happens with D1(ε). Figures 4.5(b) and 4.5(c) plot the

equilibrium bond prices and consumption levels for the transition period as functions of the

tightening parameter ε.

• For ε ∈ [0, ε1], both agents borrow at t = 0 up to the debt limit contingent to period-

1 high-income state. However, the low-income agent does not exhaust all borrowing

opportunities at period t = 1, that is, the debt constraint is nonbinding: −D2(ε) <

d2(ε) < D2(ε). In doing so, agents perfectly smooth consumption between t = 1

and t = 2 before reaching the cyclical steady-state at t = 3: c1,l(ε) = c2,h(ε) and

c1,h(ε) = c2,l(ε).

• For ε ∈ (ε1, 1], the debt limit D1(ε) is so large that both the period-0 and period-1

debt constraints are nonbinding. In this case, the first-best consumption levels can be

implemented at periods t = 1 and t = 2: c1,l(ε) = c2,h(ε) = cfb and c1,h(ε) = c2,l(ε) =

cfb.

Figure 4.5(d) plots the ex-ante expected utility and shows that the tightening of debt

constraints can lead to Pareto improvement. A comparison with Figure 4.4(f) also reveals

that the tightening of debt constraints one period ahead generates higher utility gains. This

is because the first-best consumption levels are achieved not only at t = 1, but also at t = 2.
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(a) Debt Limits (b) Prices

(c) Consumption (d) Expected Lifetime Utility at t = 0

Figure 4.5: Equilibrium debt limits, prices, consumption, and utility as functions of the tightening coefficient ε.

Figure (d) shows that tightening debt limits can lead to a Pareto improvement of the laissez-faire equilibrium.

39



4.4.3 Tightening Collateral Constraints in the Long Run

The analysis in Section 4.4.2 suggests that the later the government decides to intervene

in financial markets, by means of tightening the debt constraints, the larger the utility

gains. We provide more insight on this issue by showing that late interventions can support

equilibria that are as close as possible to the first-best outcome. To formalize this property,

given a date T ⩾ 2 and ε > 0, we consider an equilibrium where the tightening of debt

constraints is given by

η1 = η2 = . . . = ηT = 0 and ηt = ε, ∀t ⩾ T + 1.

When T ⩾ 2 is an even date, choosing ε close enough to one, we can verify (arguing as in

the previous section) that there exists a competitive equilibrium where, at any t ⩽ T − 1,

the debt constraints are not binding and consumption equals the first-best level, while a

steady-state is reached at period T + 1.29 That is, for every t ⩽ T , we have

ci,εt (z) =

cfb, if yi1(z) = yl,

cfb, if yi1(z) = yh,

and qεt (z) = β. For t ⩾ T + 1, we have

ci,εt (z) =

cl(ε), if yit(z) = yl,

ch(ε), if yit(z) = yh,

and qεt+1(z) = q(ε).

The bond price qεT+1(z) is determined by the first-order condition of the saving decision

of the agent with the high income at date T . Observe that since T is even, the high-income

agent at date T had low income at t = 1, so his current consumption level is cfb. This implies

that

qεT+1(z) = β
u′(cL(ε))

u′(cfb)
.

Debt limits at every t ⩽ T satisfy

Dε
t

ℓ⋆
= 1 + β

[
1 + β

[
. . .+

[
1 + qεT+1

1

1− q(ε)

]]]
.

29Since ηT+1 = ε, the debt constraint ai,εT+1(z) ⩾ (1− ε) PV(ℓ⋆|(z, T +1)) imposed at date T is too-tight.
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We notice that

lim
ε→1

cl(ε) = yl + 2d(1),

where d(1) is the unique positive value satisfying

1 = β
u′(yl + 2d(1))

u′(yh − 2d(1)
.

Since limε→1 q(ε) = 1, we get that for every t ⩽ T ,

lim
ε→1

Dε
t = ∞.

This verifies the claim that, choosing ε close enough to 1, debt constraints do not bind at

every t ⩽ T − 1. The debt constraint binds at T , and the variables defined above form a

competitive equilibrium if, and only if,

u′(cl(ε))

u′(cfb)
⩾

u′(ch(ε))

u′(cfb)
. (4.13)

The above condition is always satisfied since cl(ε) ⩽ ch(ε) and cfb ⩽ cfb. The period-0

expected utility is then given by

U(ci,ε|s0) = u(y0) + πh

[
u(cfb)

(
β + . . .+ βT

)
+ βT+1Uh(ε)

]
+

πl

[
u(cfb)

(
β + . . .+ βT

)
+ βT+1Ul(ε)

]
.

In particular, we have

sup
ε∈[0,1]

U(ci,ε|s0) ⩾ U0(T ) := U(ci,1|s0).

Since

lim
T→∞

U0(T ) = u(y0) + πh
u(cfb)

1− β
+ πl

u(cfb)

1− β
,

we can get as close as desired to the first-best utility level by choosing T large enough and

ε close enough to 1. This property is illustrated by Figure (4.6) where we plot the function

T 7→ U0(T ).
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Figure 4.6: Expected lifetime utility at t = 0 (for tightening parameter ε close enough to 1)

as a function of tightening period T .

5 Pigouvian Subsidies

In the previous section, we have illustrated that private agents fail to internalize how

their financial decisions affect the debt limits via prices. This gives room for a government

intervention by means of macroprudential controls on financial markets in the lines of Jeanne

and Korinek (2010, 2019) and Farhi and Werning (2016). Below, we explore the effects of

such a policy experiment by considering corrective Pigouvian subsidies on net deliveries

financed by lump-sum taxes.

Formally, each agent i maximizes U i(c|s0) among all plans (c, a) satisfying, for every

event st, the flow budget constraint

c(st) + T i(st) +
∑

st+1≻st

q(st+1)a(st+1) ⩽

yi(st) + a(st) + κ

[
−a(st) +

∑
st+1≻st

q(st+1)a(st+1)

]+

(5.1)
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while we keep unchanged the debt constraints

a(st+1) ⩾ −Di(st+1), ∀st+1 ≻ st. (5.2)

When maximizing his utility, agent i takes as given not only the price process (q(st))st≻s0

and the process (Di(st))st≻s0 of debt limits, but also the subsidy coefficient κ ∈ [0, 1] and

the process (T i(st))st⪰s0 of lump-sum taxes. The subsidy applies only when the net financial

position −a(st) +
∑

st+1≻st q(s
t+1)a(st+1) is positive. If the agent starts with some debt, i.e.,

a(st) < 0, the net financial position is positive when the agent repays at least a part of his

debt out of his endowment, or equivalently, when not all the current debt is rolled over. If,

instead, the agent starts with some positive claim, i.e., a(st) ⩾ 0, the net financial position

is positive when the agent saves more than the value of his initial financial claim.

The following equilibrium concept is the analogue of Definition 2.2 in the current envi-

ronment.

Definition 5.1. Given pledgeable endowment processes (ℓi)i∈I , a family (q, (ci, ai, Di, T i)i∈I)

is a competitive equilibrium with limited pledgeability and Pigouvian subsidy rate κ ∈ [0, 1]

when:

(a) for each i, the plan (ci, ai) maximizes U i(c|s0) among all plans (c, a) satisfying the flow

budget constraints (5.1) and the debt constraints (5.2);

(b) for each i, there exists a nonnegative exact rollover process M i such that the debt limits

satisfy Di = PV(ℓi) +M i;

(c) subsidies are financed by lump-sum taxes along the equilibrium path:

T i(st) = κ

[
−ai(st) +

∑
st+1≻st

qκ(st+1)ai(st+1)

]+

; (5.3)

(d) markets clear.

Two observations are worth remarking. First, we only require that the tax revenue T i(st)

offsets the subsidy along the equilibrium path. Second, we notice that the microfoundations

for limited pledgeability, discussed in Section 3, remain valid in the current environment.

This follows from our assumption that the subsidy only applies to the net financial position.

The equivalence between the reputation debt model and the collateral debt model is pre-

served, and this permits us to study in a unified way whether macroprudential controls can

be welfare improving.
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5.1 A Simple Equilibrium Characterization

To better understand how corrective subsidies can improve welfare, we here present a

characterization of equilibria with limited pledgeability and Pigouvian subsidies on net de-

liveries. Consider a pair of subsidy rate and lump-sum taxes (κ, (T i)i∈I) such that κ ∈ [0, 1]

and

T i(st) ⩽ κyi(st) (5.4)

for every i ∈ I and every st ∈ Σ. Let (c, a) be a post-tax/subsidy plan that satisfies the

flow budget constraints (5.1) with equality and the debt constraints (5.2). Denote by c̃ the

pre-tax/subsidy consumption process defined by:

c̃(st) := yi(st) + a(st)−
∑

st+1≻st

q(st+1)a(st+1).

Observe that:

c(st) = F i(c̃(st), st) where F i(x, st) := x− T i(st) + κ[yi(st)− x]+.

Equivalently, F i can also be written as follows:

F i(x, st) =

x− T i(st) if x > yi(st),

(1− κ)x+ κyi(st)− T i(st) elsewhere.

By construction, the function F i(·, st) is well-defined on the whole domain [0,∞) with non-

negative values. Let ũi(·, st) be the period utility function defined by:

ũi(x, st) := u(F i(x, st)).

Denote the corresponding continuation utility by:

Ũ i(c̃|st) := ũi(c̃(st), st) +
∑
τ⩾1

βτ
∑

st+τ≻st

π(st+τ |st)ũi(c̃(st+τ ), st+τ ).

We can see that a post-tax/subsidy plan (c, a) satisfies the flow budget constraints (5.1) with

equality if, and only if, the pre-tax/subsidy plan (c̃, a) satisfies with equality the standard

flow budget constraint

c̃(st) +
∑

st+1≻st

q(st+1)a(st+1) = yi(st) + a(st). (5.5)
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This implies that (ci, ai) maximizes the utility U i among all plans (c, a) satisfying the post-

tax/subsidy flow budget constraints (5.1) and the debt constraints (5.2) if, and only if, (c̃i, ai)

maximizes the utility Ũ i among all plans (c̃, a) satisfying the pre-tax/subsidy flow budget

constraints (5.5) and the debt constraints (5.2). Moreover, if

T i(st) = κ

[
−ai(st) +

∑
st+1≻st

q(st+1)ai(st+1)

]+

,

then the pre- and post-tax/subsidy consumption plans coincide, ci = c̃i.30 It then follows

that

ũ′(c̃i(st), st) =

u′(ci(st)) if ci(st) > yi(st),

(1− κ)u′(ci(st)) if ci(st) < yi(st).
(5.6)

This allows us to establish the following characterization.

Proposition 5.1. Fix a collection (q, (ci, ai, Di)i∈I) satisfying market clearing such that

ci(st) ̸= yi(st), for all i ∈ I and all st ≻ s0.

Let

χi(st) :=

1− κ if ci(st) < yi(st),

1 if ci(st) > yi(st).

The collection (q, (ci, ai, Di)i∈I) is a competitive equilibrium with limited pledgeability and

Pigouvian subsidy κ ∈ [0, 1] if, and only if, for each agent i:

• the post-tax/subsidy plan (ci, ai) satisfies the pre-tax/subsidy flow budget constraints

with equality and the debt constraints;

• debt limits take the following form Di = PV(ℓi)+M i, where M i is a nonnegative exact

rollover process;

• the following Euler equations are satisfied: for every event st and each successor

event st+1 ≻ st, we have

q(st+1) = max
i∈I

χi(st+1)

χi(st)

[
βπ(st+1|st)u′(ci(st+1))

u′(ci(st))

]
; (5.7)

30Observe that condition (5.4) is satisfied since T i(st) = κ[yi(st)− c̃i(st)]+.
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• the following standard transversality condition holds

lim inf
t→∞

∑
st∈St

βtπ(st)u′(ci(st)) = 0;

• the lump-sum taxes satisfy

T i(st) := κ

[
−ai(st) +

∑
st+1≻st

q(st+1)ai(st+1)

]+

.

We remark that the subsidy rate affects only the term χi(st+1)/χi(st) of the Euler Equa-

tion (5.7). However, this term plays a crucial role in determining the remaining equilibrium

variables as we illustrate in subsequent sections. The proof of Proposition 5.1 is straightfor-

ward once we observe that an equilibrium with Pigouvian subsidies is nothing more than a

standard equilibrium with limited pledgeability but with a different period utility function

(the function u(·) is replaced by ũi(·, st)). This also reveals why the microfoundations for

limited pleadgeability, discussed in Section 3, remain valid.

5.2 Example

We consider again the example of Section 4.1. For any possible value of the subsidy

rate κ ∈ [0, 1], we look for an equilibrium with limited pleadgeability and subsidies on net

deliveries having the following characteristics: at period t = 0, both agents borrow against

their high-income state and save contingent to their low-income state. After the resolution

of the uncertainty at period t = 1, the economy settles in a cyclical steady-state where the

low-income agent borrows up to the not-too-tight debt limit, and the high-income agent

saves. To describe the equilibrium variables, we denote by q(κ) the solution of the following

equation:

q(κ) =
β

1− κ
× u′(cl(κ))

u′(ch(κ))
, (5.8)

where the consumption levels satisfy the following equations

ch(κ) = yh − (1 + q(κ))d(κ) and cl(κ) = yl + (1 + q(κ))d(κ), (5.9)

and the level of debt satisfies

d(κ) =
ℓ⋆

1− q(κ)
, (5.10)
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where ℓ∗ be specified as in (4.3). We claim that the above quantities support a competitive

equilibrium provided that the subsidy rate is such that

u′(cl(κ))

u′(ch(κ))
⩾ 1− κ.31 (5.11)

Proposition 5.2. Let q(κ), ch(κ), cl(κ) and d(κ) be specified as in (5.8), (5.9), (5.10),

and assume that the rate κ satisfies condition (5.11). There exists a competitive equilibrium

(qκ, (ci,κ, ai,κ, Di,κ, T i)i∈I) with limited pledgeability and subsidity rate κ where for each z ∈
{za, zb}:

(i) debt limits are Di,κ
t (z) = d(κ);

(ii) the consumption allocation is ci,κ0 = y0, c
i,κ
t (z) = ch(κ) if y

i
t(z) = yh and ci,κt (z) = cl(κ)

if yit(z) = yl, for t ⩾ 1;

(iii) Net asset positions are ai,κt (z) = −d(κ) (i.e., the debt limit binds) if yit(z) = yh and

ai,κt (z) = d(κ) if yit(z) = yl, for t ⩾ 1;

(iv) prices are given by:

qκ1 (z) = πl
β

1− κ
× u′(cl(κ))

u′(y0)
and qκt+1(z) = q(κ);

(v) lump-sum taxes are T i,κ
t (z) = κ(1+q(κ))d(κ) if yit(z) = yh and T i,κ

t (z) = 0 if yit(z) = yl

for t ⩾ 1.

We delegate to the appendix the straightforward proof of the claim. We here show

numerically that there are values of κ such that the equilibrium described in Claim 5.2

Pareto dominates the laissez-faire equilibrium described in Claim 4.1. To this purpose, Fig-

ures 5.1(a), 5.1(b) and 5.1(c) plot the steady-state bond prices, debt levels and consumption

allocations as a function of the subsidy rate κ. We also show in Figure 5.1(d) that the

sufficient condition (5.11) is satisfied for the values of primitives we consider.

31The inequality corresponds to the sufficient optimality condition for t ⩾ 1.
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(a) Steady-State Bond Price (b) Steady-State Debt

(c) Steady-State Consumption (d) FOC for Borrowing

(e) Time 1 Utility (f) Time 0 Utility

Figure 5.1: Equilibrium Variables.
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Given our specifications of the model, an equilibrium with subsidies can be seen as a stan-

dard equilibrium (without subsidies) where agents’ time preference coefficient β is replaced

by the higher β(κ) := β/(1 − κ) when agents’ current income is high (and, consequently,

future income is low). In other words, agents are more patient when their current income

is high than when their current income is low. That is, the distortion created by the sub-

sidies leads to a wedge in marginal rates of substitution between the high-income and the

low-income agents. When compared to the laissez-faire equilibrium, this wedge allows for

higher prices (Figure 5.1(a)), looser debt limits (Figure 5.1(b)), higher consumption when

income is low and lower consumption when income is high (Figure 5.1(c)).

Let Uh(κ) and Ul(κ) be the continuation utilities when the agents’ income is high and

low, respectively. Observe that

Uh(κ) =
u(ch(κ)) + βu(cl(κ))

1− β2
and Ul(κ) =

u(cl(κ)) + βu(ch(κ))

1− β2
.

Let also

U0(κ) = u(y0) + β [πhUh(κ) + πlUl(κ)] .

Since the equilibrium is symmetric, for each agent i, the period-0 utility satisfies

U i(ci,κ|s0) = U0(κ).

It is straightforward to verify that, for κ = 0, we recover the laissez-faire equilibrium in

Claim 4.1, that is

(q0, (ci,0, ai,0, Di,0)i∈I) = (q, (ci, ai, Di)i∈I),

and we deduce that U0(0) = U i(ci|s0) = U lf
0 .

32

To show that the consumption allocation (ci,κ)i∈I Pareto dominates the consumption

allocation (ci)i∈I , it is sufficient to show that U0(κ) > U0(0) for some values of κ. Figure 5.1(c)

shows that consumption contingent to low (high) income at t = 1 increases (decreases) with

κ. Figure 5.1(e) then shows that the continuation utility Ul(κ) (Ul(κ)) contingent to low

(high) income increases (decreases) with κ. Since agents believe that it is more likely that

income is low at period t = 1 (πl > πh), in expectation, the increase of Ul(κ) more than

compensates the loss of Uh(κ) as shown in Figure 5.1(f). This proves our claim.

32Recall from Claim 4.1 that

U lf
0 := u(y0) + β

u((yh + yl)/2)

1− β
.
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6 Conclusion

There is a recent and growing literature in macroeconomics showing that competitive

economies with price-dependent financial constraints are prone to pecuniary externalities.

These claims are in sharp contrast with the renowned constrained efficiency results of Al-

varez and Jermann (2000) in economies with limited commitment where financial constraints

are microfounded as the largest self-enforcing debt limits. The contribution of this paper is

to reconcile these two strands of the literature by showing that pecuniary externalities can

emerge even in models à la Alvarez and Jermann (2000) when the autarkic default punish-

ment is replaced by weaker punishments that allow agents to save upon default. A planner

can improve upon the competitive outcomes by reducing credit in future periods, forcing

the implied interest rates to decline. This can make saving after default less appealing and

increase the borrowing capacity of constrained agents at earlier periods, leading to Pareto

improvement. The analysis suggests that there is scope for macroprudential policies to re-

duce the extent of market failure. We show that imposing corrective Pigouvian subsidies

on net financial positions supported by lump-sum taxes is an alternative Pareto-improving

policy. The distortion created by the subsidy reduces interest rates and makes borrowing

more permissive for the financially constrained agents.
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